xref: /netbsd-src/sys/kern/subr_pool.c (revision c9496f6b604074a9451a67df576a5b423068e71e)
1 /*	$NetBSD: subr_pool.c,v 1.221 2018/01/12 18:54:37 para Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.221 2018/01/12 18:54:37 para Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/bitops.h>
47 #include <sys/proc.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/vmem.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 #include <sys/debug.h>
54 #include <sys/lockdebug.h>
55 #include <sys/xcall.h>
56 #include <sys/cpu.h>
57 #include <sys/atomic.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 /*
62  * Pool resource management utility.
63  *
64  * Memory is allocated in pages which are split into pieces according to
65  * the pool item size. Each page is kept on one of three lists in the
66  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
67  * for empty, full and partially-full pages respectively. The individual
68  * pool items are on a linked list headed by `ph_itemlist' in each page
69  * header. The memory for building the page list is either taken from
70  * the allocated pages themselves (for small pool items) or taken from
71  * an internal pool of page headers (`phpool').
72  */
73 
74 /* List of all pools. Non static as needed by 'vmstat -m' */
75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
76 
77 /* Private pool for page header structures */
78 #define	PHPOOL_MAX	8
79 static struct pool phpool[PHPOOL_MAX];
80 #define	PHPOOL_FREELIST_NELEM(idx) \
81 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
82 
83 #ifdef POOL_SUBPAGE
84 /* Pool of subpages for use by normal pools. */
85 static struct pool psppool;
86 #endif
87 
88 #ifdef POOL_REDZONE
89 # define POOL_REDZONE_SIZE 2
90 static void pool_redzone_init(struct pool *, size_t);
91 static void pool_redzone_fill(struct pool *, void *);
92 static void pool_redzone_check(struct pool *, void *);
93 #else
94 # define pool_redzone_init(pp, sz)	/* NOTHING */
95 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
96 # define pool_redzone_check(pp, ptr)	/* NOTHING */
97 #endif
98 
99 static void *pool_page_alloc_meta(struct pool *, int);
100 static void pool_page_free_meta(struct pool *, void *);
101 
102 /* allocator for pool metadata */
103 struct pool_allocator pool_allocator_meta = {
104 	.pa_alloc = pool_page_alloc_meta,
105 	.pa_free = pool_page_free_meta,
106 	.pa_pagesz = 0
107 };
108 
109 #define POOL_ALLOCATOR_BIG_BASE 13
110 extern struct pool_allocator pool_allocator_big[];
111 static int pool_bigidx(size_t);
112 
113 /* # of seconds to retain page after last use */
114 int pool_inactive_time = 10;
115 
116 /* Next candidate for drainage (see pool_drain()) */
117 static struct pool	*drainpp;
118 
119 /* This lock protects both pool_head and drainpp. */
120 static kmutex_t pool_head_lock;
121 static kcondvar_t pool_busy;
122 
123 /* This lock protects initialization of a potentially shared pool allocator */
124 static kmutex_t pool_allocator_lock;
125 
126 typedef uint32_t pool_item_bitmap_t;
127 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
128 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
129 
130 struct pool_item_header {
131 	/* Page headers */
132 	LIST_ENTRY(pool_item_header)
133 				ph_pagelist;	/* pool page list */
134 	SPLAY_ENTRY(pool_item_header)
135 				ph_node;	/* Off-page page headers */
136 	void *			ph_page;	/* this page's address */
137 	uint32_t		ph_time;	/* last referenced */
138 	uint16_t		ph_nmissing;	/* # of chunks in use */
139 	uint16_t		ph_off;		/* start offset in page */
140 	union {
141 		/* !PR_NOTOUCH */
142 		struct {
143 			LIST_HEAD(, pool_item)
144 				phu_itemlist;	/* chunk list for this page */
145 		} phu_normal;
146 		/* PR_NOTOUCH */
147 		struct {
148 			pool_item_bitmap_t phu_bitmap[1];
149 		} phu_notouch;
150 	} ph_u;
151 };
152 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
153 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
154 
155 struct pool_item {
156 #ifdef DIAGNOSTIC
157 	u_int pi_magic;
158 #endif
159 #define	PI_MAGIC 0xdeaddeadU
160 	/* Other entries use only this list entry */
161 	LIST_ENTRY(pool_item)	pi_list;
162 };
163 
164 #define	POOL_NEEDS_CATCHUP(pp)						\
165 	((pp)->pr_nitems < (pp)->pr_minitems)
166 
167 /*
168  * Pool cache management.
169  *
170  * Pool caches provide a way for constructed objects to be cached by the
171  * pool subsystem.  This can lead to performance improvements by avoiding
172  * needless object construction/destruction; it is deferred until absolutely
173  * necessary.
174  *
175  * Caches are grouped into cache groups.  Each cache group references up
176  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
177  * object from the pool, it calls the object's constructor and places it
178  * into a cache group.  When a cache group frees an object back to the
179  * pool, it first calls the object's destructor.  This allows the object
180  * to persist in constructed form while freed to the cache.
181  *
182  * The pool references each cache, so that when a pool is drained by the
183  * pagedaemon, it can drain each individual cache as well.  Each time a
184  * cache is drained, the most idle cache group is freed to the pool in
185  * its entirety.
186  *
187  * Pool caches are layed on top of pools.  By layering them, we can avoid
188  * the complexity of cache management for pools which would not benefit
189  * from it.
190  */
191 
192 static struct pool pcg_normal_pool;
193 static struct pool pcg_large_pool;
194 static struct pool cache_pool;
195 static struct pool cache_cpu_pool;
196 
197 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
198 
199 /* List of all caches. */
200 TAILQ_HEAD(,pool_cache) pool_cache_head =
201     TAILQ_HEAD_INITIALIZER(pool_cache_head);
202 
203 int pool_cache_disable;		/* global disable for caching */
204 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
205 
206 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
207 				    void *);
208 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
209 				    void **, paddr_t *, int);
210 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
211 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
212 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
213 static void	pool_cache_transfer(pool_cache_t);
214 
215 static int	pool_catchup(struct pool *);
216 static void	pool_prime_page(struct pool *, void *,
217 		    struct pool_item_header *);
218 static void	pool_update_curpage(struct pool *);
219 
220 static int	pool_grow(struct pool *, int);
221 static void	*pool_allocator_alloc(struct pool *, int);
222 static void	pool_allocator_free(struct pool *, void *);
223 
224 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
225 	void (*)(const char *, ...) __printflike(1, 2));
226 static void pool_print1(struct pool *, const char *,
227 	void (*)(const char *, ...) __printflike(1, 2));
228 
229 static int pool_chk_page(struct pool *, const char *,
230 			 struct pool_item_header *);
231 
232 static inline unsigned int
233 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
234     const void *v)
235 {
236 	const char *cp = v;
237 	unsigned int idx;
238 
239 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
240 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
241 	KASSERT(idx < pp->pr_itemsperpage);
242 	return idx;
243 }
244 
245 static inline void
246 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
247     void *obj)
248 {
249 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
250 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
251 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
252 
253 	KASSERT((*bitmap & mask) == 0);
254 	*bitmap |= mask;
255 }
256 
257 static inline void *
258 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
259 {
260 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
261 	unsigned int idx;
262 	int i;
263 
264 	for (i = 0; ; i++) {
265 		int bit;
266 
267 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
268 		bit = ffs32(bitmap[i]);
269 		if (bit) {
270 			pool_item_bitmap_t mask;
271 
272 			bit--;
273 			idx = (i * BITMAP_SIZE) + bit;
274 			mask = 1 << bit;
275 			KASSERT((bitmap[i] & mask) != 0);
276 			bitmap[i] &= ~mask;
277 			break;
278 		}
279 	}
280 	KASSERT(idx < pp->pr_itemsperpage);
281 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
282 }
283 
284 static inline void
285 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
286 {
287 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
288 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
289 	int i;
290 
291 	for (i = 0; i < n; i++) {
292 		bitmap[i] = (pool_item_bitmap_t)-1;
293 	}
294 }
295 
296 static inline int
297 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
298 {
299 
300 	/*
301 	 * we consider pool_item_header with smaller ph_page bigger.
302 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
303 	 */
304 
305 	if (a->ph_page < b->ph_page)
306 		return (1);
307 	else if (a->ph_page > b->ph_page)
308 		return (-1);
309 	else
310 		return (0);
311 }
312 
313 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
314 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
315 
316 static inline struct pool_item_header *
317 pr_find_pagehead_noalign(struct pool *pp, void *v)
318 {
319 	struct pool_item_header *ph, tmp;
320 
321 	tmp.ph_page = (void *)(uintptr_t)v;
322 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
323 	if (ph == NULL) {
324 		ph = SPLAY_ROOT(&pp->pr_phtree);
325 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
326 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
327 		}
328 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
329 	}
330 
331 	return ph;
332 }
333 
334 /*
335  * Return the pool page header based on item address.
336  */
337 static inline struct pool_item_header *
338 pr_find_pagehead(struct pool *pp, void *v)
339 {
340 	struct pool_item_header *ph, tmp;
341 
342 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
343 		ph = pr_find_pagehead_noalign(pp, v);
344 	} else {
345 		void *page =
346 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
347 
348 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
349 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
350 		} else {
351 			tmp.ph_page = page;
352 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
353 		}
354 	}
355 
356 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
357 	    ((char *)ph->ph_page <= (char *)v &&
358 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
359 	return ph;
360 }
361 
362 static void
363 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
364 {
365 	struct pool_item_header *ph;
366 
367 	while ((ph = LIST_FIRST(pq)) != NULL) {
368 		LIST_REMOVE(ph, ph_pagelist);
369 		pool_allocator_free(pp, ph->ph_page);
370 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
371 			pool_put(pp->pr_phpool, ph);
372 	}
373 }
374 
375 /*
376  * Remove a page from the pool.
377  */
378 static inline void
379 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
380      struct pool_pagelist *pq)
381 {
382 
383 	KASSERT(mutex_owned(&pp->pr_lock));
384 
385 	/*
386 	 * If the page was idle, decrement the idle page count.
387 	 */
388 	if (ph->ph_nmissing == 0) {
389 		KASSERT(pp->pr_nidle != 0);
390 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
391 		    "nitems=%u < itemsperpage=%u",
392 		    pp->pr_nitems, pp->pr_itemsperpage);
393 		pp->pr_nidle--;
394 	}
395 
396 	pp->pr_nitems -= pp->pr_itemsperpage;
397 
398 	/*
399 	 * Unlink the page from the pool and queue it for release.
400 	 */
401 	LIST_REMOVE(ph, ph_pagelist);
402 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
403 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
404 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
405 
406 	pp->pr_npages--;
407 	pp->pr_npagefree++;
408 
409 	pool_update_curpage(pp);
410 }
411 
412 /*
413  * Initialize all the pools listed in the "pools" link set.
414  */
415 void
416 pool_subsystem_init(void)
417 {
418 	size_t size;
419 	int idx;
420 
421 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
422 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
423 	cv_init(&pool_busy, "poolbusy");
424 
425 	/*
426 	 * Initialize private page header pool and cache magazine pool if we
427 	 * haven't done so yet.
428 	 */
429 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
430 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
431 		int nelem;
432 		size_t sz;
433 
434 		nelem = PHPOOL_FREELIST_NELEM(idx);
435 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
436 		    "phpool-%d", nelem);
437 		sz = sizeof(struct pool_item_header);
438 		if (nelem) {
439 			sz = offsetof(struct pool_item_header,
440 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
441 		}
442 		pool_init(&phpool[idx], sz, 0, 0, 0,
443 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
444 	}
445 #ifdef POOL_SUBPAGE
446 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
447 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
448 #endif
449 
450 	size = sizeof(pcg_t) +
451 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
452 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
453 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
454 
455 	size = sizeof(pcg_t) +
456 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
457 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
458 	    "pcglarge", &pool_allocator_meta, IPL_VM);
459 
460 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
461 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
462 
463 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
464 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
465 }
466 
467 /*
468  * Initialize the given pool resource structure.
469  *
470  * We export this routine to allow other kernel parts to declare
471  * static pools that must be initialized before kmem(9) is available.
472  */
473 void
474 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
475     const char *wchan, struct pool_allocator *palloc, int ipl)
476 {
477 	struct pool *pp1;
478 	size_t trysize, phsize, prsize;
479 	int off, slack;
480 
481 #ifdef DEBUG
482 	if (__predict_true(!cold))
483 		mutex_enter(&pool_head_lock);
484 	/*
485 	 * Check that the pool hasn't already been initialised and
486 	 * added to the list of all pools.
487 	 */
488 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
489 		if (pp == pp1)
490 			panic("%s: [%s] already initialised", __func__,
491 			    wchan);
492 	}
493 	if (__predict_true(!cold))
494 		mutex_exit(&pool_head_lock);
495 #endif
496 
497 	if (palloc == NULL)
498 		palloc = &pool_allocator_kmem;
499 #ifdef POOL_SUBPAGE
500 	if (size > palloc->pa_pagesz) {
501 		if (palloc == &pool_allocator_kmem)
502 			palloc = &pool_allocator_kmem_fullpage;
503 		else if (palloc == &pool_allocator_nointr)
504 			palloc = &pool_allocator_nointr_fullpage;
505 	}
506 #endif /* POOL_SUBPAGE */
507 	if (!cold)
508 		mutex_enter(&pool_allocator_lock);
509 	if (palloc->pa_refcnt++ == 0) {
510 		if (palloc->pa_pagesz == 0)
511 			palloc->pa_pagesz = PAGE_SIZE;
512 
513 		TAILQ_INIT(&palloc->pa_list);
514 
515 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
516 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
517 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
518 	}
519 	if (!cold)
520 		mutex_exit(&pool_allocator_lock);
521 
522 	if (align == 0)
523 		align = ALIGN(1);
524 
525 	prsize = size;
526 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
527 		prsize = sizeof(struct pool_item);
528 
529 	prsize = roundup(prsize, align);
530 	KASSERTMSG((prsize <= palloc->pa_pagesz),
531 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
532 	    __func__, wchan, prsize, palloc->pa_pagesz);
533 
534 	/*
535 	 * Initialize the pool structure.
536 	 */
537 	LIST_INIT(&pp->pr_emptypages);
538 	LIST_INIT(&pp->pr_fullpages);
539 	LIST_INIT(&pp->pr_partpages);
540 	pp->pr_cache = NULL;
541 	pp->pr_curpage = NULL;
542 	pp->pr_npages = 0;
543 	pp->pr_minitems = 0;
544 	pp->pr_minpages = 0;
545 	pp->pr_maxpages = UINT_MAX;
546 	pp->pr_roflags = flags;
547 	pp->pr_flags = 0;
548 	pp->pr_size = prsize;
549 	pp->pr_align = align;
550 	pp->pr_wchan = wchan;
551 	pp->pr_alloc = palloc;
552 	pp->pr_nitems = 0;
553 	pp->pr_nout = 0;
554 	pp->pr_hardlimit = UINT_MAX;
555 	pp->pr_hardlimit_warning = NULL;
556 	pp->pr_hardlimit_ratecap.tv_sec = 0;
557 	pp->pr_hardlimit_ratecap.tv_usec = 0;
558 	pp->pr_hardlimit_warning_last.tv_sec = 0;
559 	pp->pr_hardlimit_warning_last.tv_usec = 0;
560 	pp->pr_drain_hook = NULL;
561 	pp->pr_drain_hook_arg = NULL;
562 	pp->pr_freecheck = NULL;
563 	pool_redzone_init(pp, size);
564 
565 	/*
566 	 * Decide whether to put the page header off page to avoid
567 	 * wasting too large a part of the page or too big item.
568 	 * Off-page page headers go on a hash table, so we can match
569 	 * a returned item with its header based on the page address.
570 	 * We use 1/16 of the page size and about 8 times of the item
571 	 * size as the threshold (XXX: tune)
572 	 *
573 	 * However, we'll put the header into the page if we can put
574 	 * it without wasting any items.
575 	 *
576 	 * Silently enforce `0 <= ioff < align'.
577 	 */
578 	pp->pr_itemoffset = ioff %= align;
579 	/* See the comment below about reserved bytes. */
580 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
581 	phsize = ALIGN(sizeof(struct pool_item_header));
582 	if (pp->pr_roflags & PR_PHINPAGE ||
583 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
584 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
585 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
586 		/* Use the end of the page for the page header */
587 		pp->pr_roflags |= PR_PHINPAGE;
588 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
589 	} else {
590 		/* The page header will be taken from our page header pool */
591 		pp->pr_phoffset = 0;
592 		off = palloc->pa_pagesz;
593 		SPLAY_INIT(&pp->pr_phtree);
594 	}
595 
596 	/*
597 	 * Alignment is to take place at `ioff' within the item. This means
598 	 * we must reserve up to `align - 1' bytes on the page to allow
599 	 * appropriate positioning of each item.
600 	 */
601 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
602 	KASSERT(pp->pr_itemsperpage != 0);
603 	if ((pp->pr_roflags & PR_NOTOUCH)) {
604 		int idx;
605 
606 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
607 		    idx++) {
608 			/* nothing */
609 		}
610 		if (idx >= PHPOOL_MAX) {
611 			/*
612 			 * if you see this panic, consider to tweak
613 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
614 			 */
615 			panic("%s: [%s] too large itemsperpage(%d) for "
616 			    "PR_NOTOUCH", __func__,
617 			    pp->pr_wchan, pp->pr_itemsperpage);
618 		}
619 		pp->pr_phpool = &phpool[idx];
620 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
621 		pp->pr_phpool = &phpool[0];
622 	}
623 #if defined(DIAGNOSTIC)
624 	else {
625 		pp->pr_phpool = NULL;
626 	}
627 #endif
628 
629 	/*
630 	 * Use the slack between the chunks and the page header
631 	 * for "cache coloring".
632 	 */
633 	slack = off - pp->pr_itemsperpage * pp->pr_size;
634 	pp->pr_maxcolor = (slack / align) * align;
635 	pp->pr_curcolor = 0;
636 
637 	pp->pr_nget = 0;
638 	pp->pr_nfail = 0;
639 	pp->pr_nput = 0;
640 	pp->pr_npagealloc = 0;
641 	pp->pr_npagefree = 0;
642 	pp->pr_hiwat = 0;
643 	pp->pr_nidle = 0;
644 	pp->pr_refcnt = 0;
645 
646 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
647 	cv_init(&pp->pr_cv, wchan);
648 	pp->pr_ipl = ipl;
649 
650 	/* Insert into the list of all pools. */
651 	if (!cold)
652 		mutex_enter(&pool_head_lock);
653 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
654 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
655 			break;
656 	}
657 	if (pp1 == NULL)
658 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
659 	else
660 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
661 	if (!cold)
662 		mutex_exit(&pool_head_lock);
663 
664 	/* Insert this into the list of pools using this allocator. */
665 	if (!cold)
666 		mutex_enter(&palloc->pa_lock);
667 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
668 	if (!cold)
669 		mutex_exit(&palloc->pa_lock);
670 }
671 
672 /*
673  * De-commision a pool resource.
674  */
675 void
676 pool_destroy(struct pool *pp)
677 {
678 	struct pool_pagelist pq;
679 	struct pool_item_header *ph;
680 
681 	/* Remove from global pool list */
682 	mutex_enter(&pool_head_lock);
683 	while (pp->pr_refcnt != 0)
684 		cv_wait(&pool_busy, &pool_head_lock);
685 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
686 	if (drainpp == pp)
687 		drainpp = NULL;
688 	mutex_exit(&pool_head_lock);
689 
690 	/* Remove this pool from its allocator's list of pools. */
691 	mutex_enter(&pp->pr_alloc->pa_lock);
692 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
693 	mutex_exit(&pp->pr_alloc->pa_lock);
694 
695 	mutex_enter(&pool_allocator_lock);
696 	if (--pp->pr_alloc->pa_refcnt == 0)
697 		mutex_destroy(&pp->pr_alloc->pa_lock);
698 	mutex_exit(&pool_allocator_lock);
699 
700 	mutex_enter(&pp->pr_lock);
701 
702 	KASSERT(pp->pr_cache == NULL);
703 	KASSERTMSG((pp->pr_nout == 0),
704 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
705 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
706 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
707 
708 	/* Remove all pages */
709 	LIST_INIT(&pq);
710 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
711 		pr_rmpage(pp, ph, &pq);
712 
713 	mutex_exit(&pp->pr_lock);
714 
715 	pr_pagelist_free(pp, &pq);
716 	cv_destroy(&pp->pr_cv);
717 	mutex_destroy(&pp->pr_lock);
718 }
719 
720 void
721 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
722 {
723 
724 	/* XXX no locking -- must be used just after pool_init() */
725 	KASSERTMSG((pp->pr_drain_hook == NULL),
726 	    "%s: [%s] already set", __func__, pp->pr_wchan);
727 	pp->pr_drain_hook = fn;
728 	pp->pr_drain_hook_arg = arg;
729 }
730 
731 static struct pool_item_header *
732 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
733 {
734 	struct pool_item_header *ph;
735 
736 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
737 		ph = (void *)((char *)storage + pp->pr_phoffset);
738 	else
739 		ph = pool_get(pp->pr_phpool, flags);
740 
741 	return (ph);
742 }
743 
744 /*
745  * Grab an item from the pool.
746  */
747 void *
748 pool_get(struct pool *pp, int flags)
749 {
750 	struct pool_item *pi;
751 	struct pool_item_header *ph;
752 	void *v;
753 
754 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
755 	KASSERTMSG((pp->pr_itemsperpage != 0),
756 	    "%s: [%s] pr_itemsperpage is zero, "
757 	    "pool not initialized?", __func__, pp->pr_wchan);
758 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
759 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
760 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
761 	    __func__, pp->pr_wchan);
762 	if (flags & PR_WAITOK) {
763 		ASSERT_SLEEPABLE();
764 	}
765 
766 	mutex_enter(&pp->pr_lock);
767  startover:
768 	/*
769 	 * Check to see if we've reached the hard limit.  If we have,
770 	 * and we can wait, then wait until an item has been returned to
771 	 * the pool.
772 	 */
773 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
774 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
775 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
776 		if (pp->pr_drain_hook != NULL) {
777 			/*
778 			 * Since the drain hook is going to free things
779 			 * back to the pool, unlock, call the hook, re-lock,
780 			 * and check the hardlimit condition again.
781 			 */
782 			mutex_exit(&pp->pr_lock);
783 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
784 			mutex_enter(&pp->pr_lock);
785 			if (pp->pr_nout < pp->pr_hardlimit)
786 				goto startover;
787 		}
788 
789 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
790 			/*
791 			 * XXX: A warning isn't logged in this case.  Should
792 			 * it be?
793 			 */
794 			pp->pr_flags |= PR_WANTED;
795 			do {
796 				cv_wait(&pp->pr_cv, &pp->pr_lock);
797 			} while (pp->pr_flags & PR_WANTED);
798 			goto startover;
799 		}
800 
801 		/*
802 		 * Log a message that the hard limit has been hit.
803 		 */
804 		if (pp->pr_hardlimit_warning != NULL &&
805 		    ratecheck(&pp->pr_hardlimit_warning_last,
806 			      &pp->pr_hardlimit_ratecap))
807 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
808 
809 		pp->pr_nfail++;
810 
811 		mutex_exit(&pp->pr_lock);
812 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
813 		return (NULL);
814 	}
815 
816 	/*
817 	 * The convention we use is that if `curpage' is not NULL, then
818 	 * it points at a non-empty bucket. In particular, `curpage'
819 	 * never points at a page header which has PR_PHINPAGE set and
820 	 * has no items in its bucket.
821 	 */
822 	if ((ph = pp->pr_curpage) == NULL) {
823 		int error;
824 
825 		KASSERTMSG((pp->pr_nitems == 0),
826 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
827 		    __func__, pp->pr_wchan, pp->pr_nitems);
828 
829 		/*
830 		 * Call the back-end page allocator for more memory.
831 		 * Release the pool lock, as the back-end page allocator
832 		 * may block.
833 		 */
834 		error = pool_grow(pp, flags);
835 		if (error != 0) {
836 			/*
837 			 * pool_grow aborts when another thread
838 			 * is allocating a new page. Retry if it
839 			 * waited for it.
840 			 */
841 			if (error == ERESTART)
842 				goto startover;
843 
844 			/*
845 			 * We were unable to allocate a page or item
846 			 * header, but we released the lock during
847 			 * allocation, so perhaps items were freed
848 			 * back to the pool.  Check for this case.
849 			 */
850 			if (pp->pr_curpage != NULL)
851 				goto startover;
852 
853 			pp->pr_nfail++;
854 			mutex_exit(&pp->pr_lock);
855 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
856 			return (NULL);
857 		}
858 
859 		/* Start the allocation process over. */
860 		goto startover;
861 	}
862 	if (pp->pr_roflags & PR_NOTOUCH) {
863 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
864 		    "%s: %s: page empty", __func__, pp->pr_wchan);
865 		v = pr_item_notouch_get(pp, ph);
866 	} else {
867 		v = pi = LIST_FIRST(&ph->ph_itemlist);
868 		if (__predict_false(v == NULL)) {
869 			mutex_exit(&pp->pr_lock);
870 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
871 		}
872 		KASSERTMSG((pp->pr_nitems > 0),
873 		    "%s: [%s] nitems %u inconsistent on itemlist",
874 		    __func__, pp->pr_wchan, pp->pr_nitems);
875 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
876 		    "%s: [%s] free list modified: "
877 		    "magic=%x; page %p; item addr %p", __func__,
878 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
879 
880 		/*
881 		 * Remove from item list.
882 		 */
883 		LIST_REMOVE(pi, pi_list);
884 	}
885 	pp->pr_nitems--;
886 	pp->pr_nout++;
887 	if (ph->ph_nmissing == 0) {
888 		KASSERT(pp->pr_nidle > 0);
889 		pp->pr_nidle--;
890 
891 		/*
892 		 * This page was previously empty.  Move it to the list of
893 		 * partially-full pages.  This page is already curpage.
894 		 */
895 		LIST_REMOVE(ph, ph_pagelist);
896 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
897 	}
898 	ph->ph_nmissing++;
899 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
900 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
901 			LIST_EMPTY(&ph->ph_itemlist)),
902 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
903 			pp->pr_wchan, ph->ph_nmissing);
904 		/*
905 		 * This page is now full.  Move it to the full list
906 		 * and select a new current page.
907 		 */
908 		LIST_REMOVE(ph, ph_pagelist);
909 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
910 		pool_update_curpage(pp);
911 	}
912 
913 	pp->pr_nget++;
914 
915 	/*
916 	 * If we have a low water mark and we are now below that low
917 	 * water mark, add more items to the pool.
918 	 */
919 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
920 		/*
921 		 * XXX: Should we log a warning?  Should we set up a timeout
922 		 * to try again in a second or so?  The latter could break
923 		 * a caller's assumptions about interrupt protection, etc.
924 		 */
925 	}
926 
927 	mutex_exit(&pp->pr_lock);
928 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
929 	FREECHECK_OUT(&pp->pr_freecheck, v);
930 	pool_redzone_fill(pp, v);
931 	return (v);
932 }
933 
934 /*
935  * Internal version of pool_put().  Pool is already locked/entered.
936  */
937 static void
938 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
939 {
940 	struct pool_item *pi = v;
941 	struct pool_item_header *ph;
942 
943 	KASSERT(mutex_owned(&pp->pr_lock));
944 	pool_redzone_check(pp, v);
945 	FREECHECK_IN(&pp->pr_freecheck, v);
946 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
947 
948 	KASSERTMSG((pp->pr_nout > 0),
949 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
950 
951 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
952 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
953 	}
954 
955 	/*
956 	 * Return to item list.
957 	 */
958 	if (pp->pr_roflags & PR_NOTOUCH) {
959 		pr_item_notouch_put(pp, ph, v);
960 	} else {
961 #ifdef DIAGNOSTIC
962 		pi->pi_magic = PI_MAGIC;
963 #endif
964 #ifdef DEBUG
965 		{
966 			int i, *ip = v;
967 
968 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
969 				*ip++ = PI_MAGIC;
970 			}
971 		}
972 #endif
973 
974 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
975 	}
976 	KDASSERT(ph->ph_nmissing != 0);
977 	ph->ph_nmissing--;
978 	pp->pr_nput++;
979 	pp->pr_nitems++;
980 	pp->pr_nout--;
981 
982 	/* Cancel "pool empty" condition if it exists */
983 	if (pp->pr_curpage == NULL)
984 		pp->pr_curpage = ph;
985 
986 	if (pp->pr_flags & PR_WANTED) {
987 		pp->pr_flags &= ~PR_WANTED;
988 		cv_broadcast(&pp->pr_cv);
989 	}
990 
991 	/*
992 	 * If this page is now empty, do one of two things:
993 	 *
994 	 *	(1) If we have more pages than the page high water mark,
995 	 *	    free the page back to the system.  ONLY CONSIDER
996 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
997 	 *	    CLAIM.
998 	 *
999 	 *	(2) Otherwise, move the page to the empty page list.
1000 	 *
1001 	 * Either way, select a new current page (so we use a partially-full
1002 	 * page if one is available).
1003 	 */
1004 	if (ph->ph_nmissing == 0) {
1005 		pp->pr_nidle++;
1006 		if (pp->pr_npages > pp->pr_minpages &&
1007 		    pp->pr_npages > pp->pr_maxpages) {
1008 			pr_rmpage(pp, ph, pq);
1009 		} else {
1010 			LIST_REMOVE(ph, ph_pagelist);
1011 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1012 
1013 			/*
1014 			 * Update the timestamp on the page.  A page must
1015 			 * be idle for some period of time before it can
1016 			 * be reclaimed by the pagedaemon.  This minimizes
1017 			 * ping-pong'ing for memory.
1018 			 *
1019 			 * note for 64-bit time_t: truncating to 32-bit is not
1020 			 * a problem for our usage.
1021 			 */
1022 			ph->ph_time = time_uptime;
1023 		}
1024 		pool_update_curpage(pp);
1025 	}
1026 
1027 	/*
1028 	 * If the page was previously completely full, move it to the
1029 	 * partially-full list and make it the current page.  The next
1030 	 * allocation will get the item from this page, instead of
1031 	 * further fragmenting the pool.
1032 	 */
1033 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1034 		LIST_REMOVE(ph, ph_pagelist);
1035 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1036 		pp->pr_curpage = ph;
1037 	}
1038 }
1039 
1040 void
1041 pool_put(struct pool *pp, void *v)
1042 {
1043 	struct pool_pagelist pq;
1044 
1045 	LIST_INIT(&pq);
1046 
1047 	mutex_enter(&pp->pr_lock);
1048 	pool_do_put(pp, v, &pq);
1049 	mutex_exit(&pp->pr_lock);
1050 
1051 	pr_pagelist_free(pp, &pq);
1052 }
1053 
1054 /*
1055  * pool_grow: grow a pool by a page.
1056  *
1057  * => called with pool locked.
1058  * => unlock and relock the pool.
1059  * => return with pool locked.
1060  */
1061 
1062 static int
1063 pool_grow(struct pool *pp, int flags)
1064 {
1065 	/*
1066 	 * If there's a pool_grow in progress, wait for it to complete
1067 	 * and try again from the top.
1068 	 */
1069 	if (pp->pr_flags & PR_GROWING) {
1070 		if (flags & PR_WAITOK) {
1071 			do {
1072 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1073 			} while (pp->pr_flags & PR_GROWING);
1074 			return ERESTART;
1075 		} else {
1076 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1077 				/*
1078 				 * This needs an unlock/relock dance so
1079 				 * that the other caller has a chance to
1080 				 * run and actually do the thing.  Note
1081 				 * that this is effectively a busy-wait.
1082 				 */
1083 				mutex_exit(&pp->pr_lock);
1084 				mutex_enter(&pp->pr_lock);
1085 				return ERESTART;
1086 			}
1087 			return EWOULDBLOCK;
1088 		}
1089 	}
1090 	pp->pr_flags |= PR_GROWING;
1091 	if (flags & PR_WAITOK)
1092 		mutex_exit(&pp->pr_lock);
1093 	else
1094 		pp->pr_flags |= PR_GROWINGNOWAIT;
1095 
1096 	char *cp = pool_allocator_alloc(pp, flags);
1097 	if (__predict_false(cp == NULL))
1098 		goto out;
1099 
1100 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
1101 	if (__predict_false(ph == NULL)) {
1102 		pool_allocator_free(pp, cp);
1103 		goto out;
1104 	}
1105 
1106 	if (flags & PR_WAITOK)
1107 		mutex_enter(&pp->pr_lock);
1108 	pool_prime_page(pp, cp, ph);
1109 	pp->pr_npagealloc++;
1110 	KASSERT(pp->pr_flags & PR_GROWING);
1111 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1112 	/*
1113 	 * If anyone was waiting for pool_grow, notify them that we
1114 	 * may have just done it.
1115 	 */
1116 	cv_broadcast(&pp->pr_cv);
1117 	return 0;
1118 out:
1119 	if (flags & PR_WAITOK)
1120 		mutex_enter(&pp->pr_lock);
1121 	KASSERT(pp->pr_flags & PR_GROWING);
1122 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1123 	return ENOMEM;
1124 }
1125 
1126 /*
1127  * Add N items to the pool.
1128  */
1129 int
1130 pool_prime(struct pool *pp, int n)
1131 {
1132 	int newpages;
1133 	int error = 0;
1134 
1135 	mutex_enter(&pp->pr_lock);
1136 
1137 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1138 
1139 	while (newpages > 0) {
1140 		error = pool_grow(pp, PR_NOWAIT);
1141 		if (error) {
1142 			if (error == ERESTART)
1143 				continue;
1144 			break;
1145 		}
1146 		pp->pr_minpages++;
1147 		newpages--;
1148 	}
1149 
1150 	if (pp->pr_minpages >= pp->pr_maxpages)
1151 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1152 
1153 	mutex_exit(&pp->pr_lock);
1154 	return error;
1155 }
1156 
1157 /*
1158  * Add a page worth of items to the pool.
1159  *
1160  * Note, we must be called with the pool descriptor LOCKED.
1161  */
1162 static void
1163 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1164 {
1165 	struct pool_item *pi;
1166 	void *cp = storage;
1167 	const unsigned int align = pp->pr_align;
1168 	const unsigned int ioff = pp->pr_itemoffset;
1169 	int n;
1170 
1171 	KASSERT(mutex_owned(&pp->pr_lock));
1172 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1173 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1174 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1175 
1176 	/*
1177 	 * Insert page header.
1178 	 */
1179 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1180 	LIST_INIT(&ph->ph_itemlist);
1181 	ph->ph_page = storage;
1182 	ph->ph_nmissing = 0;
1183 	ph->ph_time = time_uptime;
1184 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1185 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1186 
1187 	pp->pr_nidle++;
1188 
1189 	/*
1190 	 * Color this page.
1191 	 */
1192 	ph->ph_off = pp->pr_curcolor;
1193 	cp = (char *)cp + ph->ph_off;
1194 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1195 		pp->pr_curcolor = 0;
1196 
1197 	/*
1198 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1199 	 */
1200 	if (ioff != 0)
1201 		cp = (char *)cp + align - ioff;
1202 
1203 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1204 
1205 	/*
1206 	 * Insert remaining chunks on the bucket list.
1207 	 */
1208 	n = pp->pr_itemsperpage;
1209 	pp->pr_nitems += n;
1210 
1211 	if (pp->pr_roflags & PR_NOTOUCH) {
1212 		pr_item_notouch_init(pp, ph);
1213 	} else {
1214 		while (n--) {
1215 			pi = (struct pool_item *)cp;
1216 
1217 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1218 
1219 			/* Insert on page list */
1220 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1221 #ifdef DIAGNOSTIC
1222 			pi->pi_magic = PI_MAGIC;
1223 #endif
1224 			cp = (char *)cp + pp->pr_size;
1225 
1226 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * If the pool was depleted, point at the new page.
1232 	 */
1233 	if (pp->pr_curpage == NULL)
1234 		pp->pr_curpage = ph;
1235 
1236 	if (++pp->pr_npages > pp->pr_hiwat)
1237 		pp->pr_hiwat = pp->pr_npages;
1238 }
1239 
1240 /*
1241  * Used by pool_get() when nitems drops below the low water mark.  This
1242  * is used to catch up pr_nitems with the low water mark.
1243  *
1244  * Note 1, we never wait for memory here, we let the caller decide what to do.
1245  *
1246  * Note 2, we must be called with the pool already locked, and we return
1247  * with it locked.
1248  */
1249 static int
1250 pool_catchup(struct pool *pp)
1251 {
1252 	int error = 0;
1253 
1254 	while (POOL_NEEDS_CATCHUP(pp)) {
1255 		error = pool_grow(pp, PR_NOWAIT);
1256 		if (error) {
1257 			if (error == ERESTART)
1258 				continue;
1259 			break;
1260 		}
1261 	}
1262 	return error;
1263 }
1264 
1265 static void
1266 pool_update_curpage(struct pool *pp)
1267 {
1268 
1269 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1270 	if (pp->pr_curpage == NULL) {
1271 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1272 	}
1273 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1274 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1275 }
1276 
1277 void
1278 pool_setlowat(struct pool *pp, int n)
1279 {
1280 
1281 	mutex_enter(&pp->pr_lock);
1282 
1283 	pp->pr_minitems = n;
1284 	pp->pr_minpages = (n == 0)
1285 		? 0
1286 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1287 
1288 	/* Make sure we're caught up with the newly-set low water mark. */
1289 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1290 		/*
1291 		 * XXX: Should we log a warning?  Should we set up a timeout
1292 		 * to try again in a second or so?  The latter could break
1293 		 * a caller's assumptions about interrupt protection, etc.
1294 		 */
1295 	}
1296 
1297 	mutex_exit(&pp->pr_lock);
1298 }
1299 
1300 void
1301 pool_sethiwat(struct pool *pp, int n)
1302 {
1303 
1304 	mutex_enter(&pp->pr_lock);
1305 
1306 	pp->pr_maxpages = (n == 0)
1307 		? 0
1308 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1309 
1310 	mutex_exit(&pp->pr_lock);
1311 }
1312 
1313 void
1314 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1315 {
1316 
1317 	mutex_enter(&pp->pr_lock);
1318 
1319 	pp->pr_hardlimit = n;
1320 	pp->pr_hardlimit_warning = warnmess;
1321 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1322 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1323 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1324 
1325 	/*
1326 	 * In-line version of pool_sethiwat(), because we don't want to
1327 	 * release the lock.
1328 	 */
1329 	pp->pr_maxpages = (n == 0)
1330 		? 0
1331 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1332 
1333 	mutex_exit(&pp->pr_lock);
1334 }
1335 
1336 /*
1337  * Release all complete pages that have not been used recently.
1338  *
1339  * Must not be called from interrupt context.
1340  */
1341 int
1342 pool_reclaim(struct pool *pp)
1343 {
1344 	struct pool_item_header *ph, *phnext;
1345 	struct pool_pagelist pq;
1346 	uint32_t curtime;
1347 	bool klock;
1348 	int rv;
1349 
1350 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1351 
1352 	if (pp->pr_drain_hook != NULL) {
1353 		/*
1354 		 * The drain hook must be called with the pool unlocked.
1355 		 */
1356 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1357 	}
1358 
1359 	/*
1360 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1361 	 * to block.
1362 	 */
1363 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1364 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1365 		KERNEL_LOCK(1, NULL);
1366 		klock = true;
1367 	} else
1368 		klock = false;
1369 
1370 	/* Reclaim items from the pool's cache (if any). */
1371 	if (pp->pr_cache != NULL)
1372 		pool_cache_invalidate(pp->pr_cache);
1373 
1374 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1375 		if (klock) {
1376 			KERNEL_UNLOCK_ONE(NULL);
1377 		}
1378 		return (0);
1379 	}
1380 
1381 	LIST_INIT(&pq);
1382 
1383 	curtime = time_uptime;
1384 
1385 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1386 		phnext = LIST_NEXT(ph, ph_pagelist);
1387 
1388 		/* Check our minimum page claim */
1389 		if (pp->pr_npages <= pp->pr_minpages)
1390 			break;
1391 
1392 		KASSERT(ph->ph_nmissing == 0);
1393 		if (curtime - ph->ph_time < pool_inactive_time)
1394 			continue;
1395 
1396 		/*
1397 		 * If freeing this page would put us below
1398 		 * the low water mark, stop now.
1399 		 */
1400 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1401 		    pp->pr_minitems)
1402 			break;
1403 
1404 		pr_rmpage(pp, ph, &pq);
1405 	}
1406 
1407 	mutex_exit(&pp->pr_lock);
1408 
1409 	if (LIST_EMPTY(&pq))
1410 		rv = 0;
1411 	else {
1412 		pr_pagelist_free(pp, &pq);
1413 		rv = 1;
1414 	}
1415 
1416 	if (klock) {
1417 		KERNEL_UNLOCK_ONE(NULL);
1418 	}
1419 
1420 	return (rv);
1421 }
1422 
1423 /*
1424  * Drain pools, one at a time. The drained pool is returned within ppp.
1425  *
1426  * Note, must never be called from interrupt context.
1427  */
1428 bool
1429 pool_drain(struct pool **ppp)
1430 {
1431 	bool reclaimed;
1432 	struct pool *pp;
1433 
1434 	KASSERT(!TAILQ_EMPTY(&pool_head));
1435 
1436 	pp = NULL;
1437 
1438 	/* Find next pool to drain, and add a reference. */
1439 	mutex_enter(&pool_head_lock);
1440 	do {
1441 		if (drainpp == NULL) {
1442 			drainpp = TAILQ_FIRST(&pool_head);
1443 		}
1444 		if (drainpp != NULL) {
1445 			pp = drainpp;
1446 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1447 		}
1448 		/*
1449 		 * Skip completely idle pools.  We depend on at least
1450 		 * one pool in the system being active.
1451 		 */
1452 	} while (pp == NULL || pp->pr_npages == 0);
1453 	pp->pr_refcnt++;
1454 	mutex_exit(&pool_head_lock);
1455 
1456 	/* Drain the cache (if any) and pool.. */
1457 	reclaimed = pool_reclaim(pp);
1458 
1459 	/* Finally, unlock the pool. */
1460 	mutex_enter(&pool_head_lock);
1461 	pp->pr_refcnt--;
1462 	cv_broadcast(&pool_busy);
1463 	mutex_exit(&pool_head_lock);
1464 
1465 	if (ppp != NULL)
1466 		*ppp = pp;
1467 
1468 	return reclaimed;
1469 }
1470 
1471 /*
1472  * Calculate the total number of pages consumed by pools.
1473  */
1474 int
1475 pool_totalpages(void)
1476 {
1477 	struct pool *pp;
1478 	uint64_t total = 0;
1479 
1480 	mutex_enter(&pool_head_lock);
1481 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1482 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1483 
1484 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1485 			bytes -= (pp->pr_nout * pp->pr_size);
1486 		total += bytes;
1487 	}
1488 	mutex_exit(&pool_head_lock);
1489 
1490 	return atop(total);
1491 }
1492 
1493 /*
1494  * Diagnostic helpers.
1495  */
1496 
1497 void
1498 pool_printall(const char *modif, void (*pr)(const char *, ...))
1499 {
1500 	struct pool *pp;
1501 
1502 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1503 		pool_printit(pp, modif, pr);
1504 	}
1505 }
1506 
1507 void
1508 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1509 {
1510 
1511 	if (pp == NULL) {
1512 		(*pr)("Must specify a pool to print.\n");
1513 		return;
1514 	}
1515 
1516 	pool_print1(pp, modif, pr);
1517 }
1518 
1519 static void
1520 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1521     void (*pr)(const char *, ...))
1522 {
1523 	struct pool_item_header *ph;
1524 	struct pool_item *pi __diagused;
1525 
1526 	LIST_FOREACH(ph, pl, ph_pagelist) {
1527 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1528 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1529 #ifdef DIAGNOSTIC
1530 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1531 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1532 				if (pi->pi_magic != PI_MAGIC) {
1533 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1534 					    pi, pi->pi_magic);
1535 				}
1536 			}
1537 		}
1538 #endif
1539 	}
1540 }
1541 
1542 static void
1543 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1544 {
1545 	struct pool_item_header *ph;
1546 	pool_cache_t pc;
1547 	pcg_t *pcg;
1548 	pool_cache_cpu_t *cc;
1549 	uint64_t cpuhit, cpumiss;
1550 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1551 	char c;
1552 
1553 	while ((c = *modif++) != '\0') {
1554 		if (c == 'l')
1555 			print_log = 1;
1556 		if (c == 'p')
1557 			print_pagelist = 1;
1558 		if (c == 'c')
1559 			print_cache = 1;
1560 	}
1561 
1562 	if ((pc = pp->pr_cache) != NULL) {
1563 		(*pr)("POOL CACHE");
1564 	} else {
1565 		(*pr)("POOL");
1566 	}
1567 
1568 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1569 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1570 	    pp->pr_roflags);
1571 	(*pr)("\talloc %p\n", pp->pr_alloc);
1572 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1573 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1574 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1575 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1576 
1577 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1578 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1579 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1580 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1581 
1582 	if (print_pagelist == 0)
1583 		goto skip_pagelist;
1584 
1585 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1586 		(*pr)("\n\tempty page list:\n");
1587 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1588 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1589 		(*pr)("\n\tfull page list:\n");
1590 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1591 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1592 		(*pr)("\n\tpartial-page list:\n");
1593 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1594 
1595 	if (pp->pr_curpage == NULL)
1596 		(*pr)("\tno current page\n");
1597 	else
1598 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1599 
1600  skip_pagelist:
1601 	if (print_log == 0)
1602 		goto skip_log;
1603 
1604 	(*pr)("\n");
1605 
1606  skip_log:
1607 
1608 #define PR_GROUPLIST(pcg)						\
1609 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1610 	for (i = 0; i < pcg->pcg_size; i++) {				\
1611 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1612 		    POOL_PADDR_INVALID) {				\
1613 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1614 			    pcg->pcg_objects[i].pcgo_va,		\
1615 			    (unsigned long long)			\
1616 			    pcg->pcg_objects[i].pcgo_pa);		\
1617 		} else {						\
1618 			(*pr)("\t\t\t%p\n",				\
1619 			    pcg->pcg_objects[i].pcgo_va);		\
1620 		}							\
1621 	}
1622 
1623 	if (pc != NULL) {
1624 		cpuhit = 0;
1625 		cpumiss = 0;
1626 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1627 			if ((cc = pc->pc_cpus[i]) == NULL)
1628 				continue;
1629 			cpuhit += cc->cc_hits;
1630 			cpumiss += cc->cc_misses;
1631 		}
1632 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1633 		(*pr)("\tcache layer hits %llu misses %llu\n",
1634 		    pc->pc_hits, pc->pc_misses);
1635 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1636 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1637 		    pc->pc_contended);
1638 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1639 		    pc->pc_nempty, pc->pc_nfull);
1640 		if (print_cache) {
1641 			(*pr)("\tfull cache groups:\n");
1642 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1643 			    pcg = pcg->pcg_next) {
1644 				PR_GROUPLIST(pcg);
1645 			}
1646 			(*pr)("\tempty cache groups:\n");
1647 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1648 			    pcg = pcg->pcg_next) {
1649 				PR_GROUPLIST(pcg);
1650 			}
1651 		}
1652 	}
1653 #undef PR_GROUPLIST
1654 }
1655 
1656 static int
1657 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1658 {
1659 	struct pool_item *pi;
1660 	void *page;
1661 	int n;
1662 
1663 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1664 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1665 		if (page != ph->ph_page &&
1666 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1667 			if (label != NULL)
1668 				printf("%s: ", label);
1669 			printf("pool(%p:%s): page inconsistency: page %p;"
1670 			       " at page head addr %p (p %p)\n", pp,
1671 				pp->pr_wchan, ph->ph_page,
1672 				ph, page);
1673 			return 1;
1674 		}
1675 	}
1676 
1677 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1678 		return 0;
1679 
1680 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1681 	     pi != NULL;
1682 	     pi = LIST_NEXT(pi,pi_list), n++) {
1683 
1684 #ifdef DIAGNOSTIC
1685 		if (pi->pi_magic != PI_MAGIC) {
1686 			if (label != NULL)
1687 				printf("%s: ", label);
1688 			printf("pool(%s): free list modified: magic=%x;"
1689 			       " page %p; item ordinal %d; addr %p\n",
1690 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1691 				n, pi);
1692 			panic("pool");
1693 		}
1694 #endif
1695 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1696 			continue;
1697 		}
1698 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1699 		if (page == ph->ph_page)
1700 			continue;
1701 
1702 		if (label != NULL)
1703 			printf("%s: ", label);
1704 		printf("pool(%p:%s): page inconsistency: page %p;"
1705 		       " item ordinal %d; addr %p (p %p)\n", pp,
1706 			pp->pr_wchan, ph->ph_page,
1707 			n, pi, page);
1708 		return 1;
1709 	}
1710 	return 0;
1711 }
1712 
1713 
1714 int
1715 pool_chk(struct pool *pp, const char *label)
1716 {
1717 	struct pool_item_header *ph;
1718 	int r = 0;
1719 
1720 	mutex_enter(&pp->pr_lock);
1721 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1722 		r = pool_chk_page(pp, label, ph);
1723 		if (r) {
1724 			goto out;
1725 		}
1726 	}
1727 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1728 		r = pool_chk_page(pp, label, ph);
1729 		if (r) {
1730 			goto out;
1731 		}
1732 	}
1733 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1734 		r = pool_chk_page(pp, label, ph);
1735 		if (r) {
1736 			goto out;
1737 		}
1738 	}
1739 
1740 out:
1741 	mutex_exit(&pp->pr_lock);
1742 	return (r);
1743 }
1744 
1745 /*
1746  * pool_cache_init:
1747  *
1748  *	Initialize a pool cache.
1749  */
1750 pool_cache_t
1751 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1752     const char *wchan, struct pool_allocator *palloc, int ipl,
1753     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1754 {
1755 	pool_cache_t pc;
1756 
1757 	pc = pool_get(&cache_pool, PR_WAITOK);
1758 	if (pc == NULL)
1759 		return NULL;
1760 
1761 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1762 	   palloc, ipl, ctor, dtor, arg);
1763 
1764 	return pc;
1765 }
1766 
1767 /*
1768  * pool_cache_bootstrap:
1769  *
1770  *	Kernel-private version of pool_cache_init().  The caller
1771  *	provides initial storage.
1772  */
1773 void
1774 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1775     u_int align_offset, u_int flags, const char *wchan,
1776     struct pool_allocator *palloc, int ipl,
1777     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1778     void *arg)
1779 {
1780 	CPU_INFO_ITERATOR cii;
1781 	pool_cache_t pc1;
1782 	struct cpu_info *ci;
1783 	struct pool *pp;
1784 
1785 	pp = &pc->pc_pool;
1786 	if (palloc == NULL && ipl == IPL_NONE) {
1787 		if (size > PAGE_SIZE) {
1788 			int bigidx = pool_bigidx(size);
1789 
1790 			palloc = &pool_allocator_big[bigidx];
1791 		} else
1792 			palloc = &pool_allocator_nointr;
1793 	}
1794 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1795 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1796 
1797 	if (ctor == NULL) {
1798 		ctor = (int (*)(void *, void *, int))nullop;
1799 	}
1800 	if (dtor == NULL) {
1801 		dtor = (void (*)(void *, void *))nullop;
1802 	}
1803 
1804 	pc->pc_emptygroups = NULL;
1805 	pc->pc_fullgroups = NULL;
1806 	pc->pc_partgroups = NULL;
1807 	pc->pc_ctor = ctor;
1808 	pc->pc_dtor = dtor;
1809 	pc->pc_arg  = arg;
1810 	pc->pc_hits  = 0;
1811 	pc->pc_misses = 0;
1812 	pc->pc_nempty = 0;
1813 	pc->pc_npart = 0;
1814 	pc->pc_nfull = 0;
1815 	pc->pc_contended = 0;
1816 	pc->pc_refcnt = 0;
1817 	pc->pc_freecheck = NULL;
1818 
1819 	if ((flags & PR_LARGECACHE) != 0) {
1820 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1821 		pc->pc_pcgpool = &pcg_large_pool;
1822 	} else {
1823 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1824 		pc->pc_pcgpool = &pcg_normal_pool;
1825 	}
1826 
1827 	/* Allocate per-CPU caches. */
1828 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1829 	pc->pc_ncpu = 0;
1830 	if (ncpu < 2) {
1831 		/* XXX For sparc: boot CPU is not attached yet. */
1832 		pool_cache_cpu_init1(curcpu(), pc);
1833 	} else {
1834 		for (CPU_INFO_FOREACH(cii, ci)) {
1835 			pool_cache_cpu_init1(ci, pc);
1836 		}
1837 	}
1838 
1839 	/* Add to list of all pools. */
1840 	if (__predict_true(!cold))
1841 		mutex_enter(&pool_head_lock);
1842 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1843 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1844 			break;
1845 	}
1846 	if (pc1 == NULL)
1847 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1848 	else
1849 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1850 	if (__predict_true(!cold))
1851 		mutex_exit(&pool_head_lock);
1852 
1853 	membar_sync();
1854 	pp->pr_cache = pc;
1855 }
1856 
1857 /*
1858  * pool_cache_destroy:
1859  *
1860  *	Destroy a pool cache.
1861  */
1862 void
1863 pool_cache_destroy(pool_cache_t pc)
1864 {
1865 
1866 	pool_cache_bootstrap_destroy(pc);
1867 	pool_put(&cache_pool, pc);
1868 }
1869 
1870 /*
1871  * pool_cache_bootstrap_destroy:
1872  *
1873  *	Destroy a pool cache.
1874  */
1875 void
1876 pool_cache_bootstrap_destroy(pool_cache_t pc)
1877 {
1878 	struct pool *pp = &pc->pc_pool;
1879 	u_int i;
1880 
1881 	/* Remove it from the global list. */
1882 	mutex_enter(&pool_head_lock);
1883 	while (pc->pc_refcnt != 0)
1884 		cv_wait(&pool_busy, &pool_head_lock);
1885 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1886 	mutex_exit(&pool_head_lock);
1887 
1888 	/* First, invalidate the entire cache. */
1889 	pool_cache_invalidate(pc);
1890 
1891 	/* Disassociate it from the pool. */
1892 	mutex_enter(&pp->pr_lock);
1893 	pp->pr_cache = NULL;
1894 	mutex_exit(&pp->pr_lock);
1895 
1896 	/* Destroy per-CPU data */
1897 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1898 		pool_cache_invalidate_cpu(pc, i);
1899 
1900 	/* Finally, destroy it. */
1901 	mutex_destroy(&pc->pc_lock);
1902 	pool_destroy(pp);
1903 }
1904 
1905 /*
1906  * pool_cache_cpu_init1:
1907  *
1908  *	Called for each pool_cache whenever a new CPU is attached.
1909  */
1910 static void
1911 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1912 {
1913 	pool_cache_cpu_t *cc;
1914 	int index;
1915 
1916 	index = ci->ci_index;
1917 
1918 	KASSERT(index < __arraycount(pc->pc_cpus));
1919 
1920 	if ((cc = pc->pc_cpus[index]) != NULL) {
1921 		KASSERT(cc->cc_cpuindex == index);
1922 		return;
1923 	}
1924 
1925 	/*
1926 	 * The first CPU is 'free'.  This needs to be the case for
1927 	 * bootstrap - we may not be able to allocate yet.
1928 	 */
1929 	if (pc->pc_ncpu == 0) {
1930 		cc = &pc->pc_cpu0;
1931 		pc->pc_ncpu = 1;
1932 	} else {
1933 		mutex_enter(&pc->pc_lock);
1934 		pc->pc_ncpu++;
1935 		mutex_exit(&pc->pc_lock);
1936 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1937 	}
1938 
1939 	cc->cc_ipl = pc->pc_pool.pr_ipl;
1940 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1941 	cc->cc_cache = pc;
1942 	cc->cc_cpuindex = index;
1943 	cc->cc_hits = 0;
1944 	cc->cc_misses = 0;
1945 	cc->cc_current = __UNCONST(&pcg_dummy);
1946 	cc->cc_previous = __UNCONST(&pcg_dummy);
1947 
1948 	pc->pc_cpus[index] = cc;
1949 }
1950 
1951 /*
1952  * pool_cache_cpu_init:
1953  *
1954  *	Called whenever a new CPU is attached.
1955  */
1956 void
1957 pool_cache_cpu_init(struct cpu_info *ci)
1958 {
1959 	pool_cache_t pc;
1960 
1961 	mutex_enter(&pool_head_lock);
1962 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1963 		pc->pc_refcnt++;
1964 		mutex_exit(&pool_head_lock);
1965 
1966 		pool_cache_cpu_init1(ci, pc);
1967 
1968 		mutex_enter(&pool_head_lock);
1969 		pc->pc_refcnt--;
1970 		cv_broadcast(&pool_busy);
1971 	}
1972 	mutex_exit(&pool_head_lock);
1973 }
1974 
1975 /*
1976  * pool_cache_reclaim:
1977  *
1978  *	Reclaim memory from a pool cache.
1979  */
1980 bool
1981 pool_cache_reclaim(pool_cache_t pc)
1982 {
1983 
1984 	return pool_reclaim(&pc->pc_pool);
1985 }
1986 
1987 static void
1988 pool_cache_destruct_object1(pool_cache_t pc, void *object)
1989 {
1990 
1991 	(*pc->pc_dtor)(pc->pc_arg, object);
1992 	pool_put(&pc->pc_pool, object);
1993 }
1994 
1995 /*
1996  * pool_cache_destruct_object:
1997  *
1998  *	Force destruction of an object and its release back into
1999  *	the pool.
2000  */
2001 void
2002 pool_cache_destruct_object(pool_cache_t pc, void *object)
2003 {
2004 
2005 	FREECHECK_IN(&pc->pc_freecheck, object);
2006 
2007 	pool_cache_destruct_object1(pc, object);
2008 }
2009 
2010 /*
2011  * pool_cache_invalidate_groups:
2012  *
2013  *	Invalidate a chain of groups and destruct all objects.
2014  */
2015 static void
2016 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2017 {
2018 	void *object;
2019 	pcg_t *next;
2020 	int i;
2021 
2022 	for (; pcg != NULL; pcg = next) {
2023 		next = pcg->pcg_next;
2024 
2025 		for (i = 0; i < pcg->pcg_avail; i++) {
2026 			object = pcg->pcg_objects[i].pcgo_va;
2027 			pool_cache_destruct_object1(pc, object);
2028 		}
2029 
2030 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2031 			pool_put(&pcg_large_pool, pcg);
2032 		} else {
2033 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2034 			pool_put(&pcg_normal_pool, pcg);
2035 		}
2036 	}
2037 }
2038 
2039 /*
2040  * pool_cache_invalidate:
2041  *
2042  *	Invalidate a pool cache (destruct and release all of the
2043  *	cached objects).  Does not reclaim objects from the pool.
2044  *
2045  *	Note: For pool caches that provide constructed objects, there
2046  *	is an assumption that another level of synchronization is occurring
2047  *	between the input to the constructor and the cache invalidation.
2048  *
2049  *	Invalidation is a costly process and should not be called from
2050  *	interrupt context.
2051  */
2052 void
2053 pool_cache_invalidate(pool_cache_t pc)
2054 {
2055 	uint64_t where;
2056 	pcg_t *full, *empty, *part;
2057 
2058 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2059 
2060 	if (ncpu < 2 || !mp_online) {
2061 		/*
2062 		 * We might be called early enough in the boot process
2063 		 * for the CPU data structures to not be fully initialized.
2064 		 * In this case, transfer the content of the local CPU's
2065 		 * cache back into global cache as only this CPU is currently
2066 		 * running.
2067 		 */
2068 		pool_cache_transfer(pc);
2069 	} else {
2070 		/*
2071 		 * Signal all CPUs that they must transfer their local
2072 		 * cache back to the global pool then wait for the xcall to
2073 		 * complete.
2074 		 */
2075 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2076 		    pc, NULL);
2077 		xc_wait(where);
2078 	}
2079 
2080 	/* Empty pool caches, then invalidate objects */
2081 	mutex_enter(&pc->pc_lock);
2082 	full = pc->pc_fullgroups;
2083 	empty = pc->pc_emptygroups;
2084 	part = pc->pc_partgroups;
2085 	pc->pc_fullgroups = NULL;
2086 	pc->pc_emptygroups = NULL;
2087 	pc->pc_partgroups = NULL;
2088 	pc->pc_nfull = 0;
2089 	pc->pc_nempty = 0;
2090 	pc->pc_npart = 0;
2091 	mutex_exit(&pc->pc_lock);
2092 
2093 	pool_cache_invalidate_groups(pc, full);
2094 	pool_cache_invalidate_groups(pc, empty);
2095 	pool_cache_invalidate_groups(pc, part);
2096 }
2097 
2098 /*
2099  * pool_cache_invalidate_cpu:
2100  *
2101  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2102  *	identified by its associated index.
2103  *	It is caller's responsibility to ensure that no operation is
2104  *	taking place on this pool cache while doing this invalidation.
2105  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2106  *	pool cached objects from a CPU different from the one currently running
2107  *	may result in an undefined behaviour.
2108  */
2109 static void
2110 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2111 {
2112 	pool_cache_cpu_t *cc;
2113 	pcg_t *pcg;
2114 
2115 	if ((cc = pc->pc_cpus[index]) == NULL)
2116 		return;
2117 
2118 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2119 		pcg->pcg_next = NULL;
2120 		pool_cache_invalidate_groups(pc, pcg);
2121 	}
2122 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2123 		pcg->pcg_next = NULL;
2124 		pool_cache_invalidate_groups(pc, pcg);
2125 	}
2126 	if (cc != &pc->pc_cpu0)
2127 		pool_put(&cache_cpu_pool, cc);
2128 
2129 }
2130 
2131 void
2132 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2133 {
2134 
2135 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2136 }
2137 
2138 void
2139 pool_cache_setlowat(pool_cache_t pc, int n)
2140 {
2141 
2142 	pool_setlowat(&pc->pc_pool, n);
2143 }
2144 
2145 void
2146 pool_cache_sethiwat(pool_cache_t pc, int n)
2147 {
2148 
2149 	pool_sethiwat(&pc->pc_pool, n);
2150 }
2151 
2152 void
2153 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2154 {
2155 
2156 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2157 }
2158 
2159 static bool __noinline
2160 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2161 		    paddr_t *pap, int flags)
2162 {
2163 	pcg_t *pcg, *cur;
2164 	uint64_t ncsw;
2165 	pool_cache_t pc;
2166 	void *object;
2167 
2168 	KASSERT(cc->cc_current->pcg_avail == 0);
2169 	KASSERT(cc->cc_previous->pcg_avail == 0);
2170 
2171 	pc = cc->cc_cache;
2172 	cc->cc_misses++;
2173 
2174 	/*
2175 	 * Nothing was available locally.  Try and grab a group
2176 	 * from the cache.
2177 	 */
2178 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2179 		ncsw = curlwp->l_ncsw;
2180 		mutex_enter(&pc->pc_lock);
2181 		pc->pc_contended++;
2182 
2183 		/*
2184 		 * If we context switched while locking, then
2185 		 * our view of the per-CPU data is invalid:
2186 		 * retry.
2187 		 */
2188 		if (curlwp->l_ncsw != ncsw) {
2189 			mutex_exit(&pc->pc_lock);
2190 			return true;
2191 		}
2192 	}
2193 
2194 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2195 		/*
2196 		 * If there's a full group, release our empty
2197 		 * group back to the cache.  Install the full
2198 		 * group as cc_current and return.
2199 		 */
2200 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2201 			KASSERT(cur->pcg_avail == 0);
2202 			cur->pcg_next = pc->pc_emptygroups;
2203 			pc->pc_emptygroups = cur;
2204 			pc->pc_nempty++;
2205 		}
2206 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2207 		cc->cc_current = pcg;
2208 		pc->pc_fullgroups = pcg->pcg_next;
2209 		pc->pc_hits++;
2210 		pc->pc_nfull--;
2211 		mutex_exit(&pc->pc_lock);
2212 		return true;
2213 	}
2214 
2215 	/*
2216 	 * Nothing available locally or in cache.  Take the slow
2217 	 * path: fetch a new object from the pool and construct
2218 	 * it.
2219 	 */
2220 	pc->pc_misses++;
2221 	mutex_exit(&pc->pc_lock);
2222 	splx(s);
2223 
2224 	object = pool_get(&pc->pc_pool, flags);
2225 	*objectp = object;
2226 	if (__predict_false(object == NULL)) {
2227 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2228 		return false;
2229 	}
2230 
2231 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2232 		pool_put(&pc->pc_pool, object);
2233 		*objectp = NULL;
2234 		return false;
2235 	}
2236 
2237 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2238 	    (pc->pc_pool.pr_align - 1)) == 0);
2239 
2240 	if (pap != NULL) {
2241 #ifdef POOL_VTOPHYS
2242 		*pap = POOL_VTOPHYS(object);
2243 #else
2244 		*pap = POOL_PADDR_INVALID;
2245 #endif
2246 	}
2247 
2248 	FREECHECK_OUT(&pc->pc_freecheck, object);
2249 	pool_redzone_fill(&pc->pc_pool, object);
2250 	return false;
2251 }
2252 
2253 /*
2254  * pool_cache_get{,_paddr}:
2255  *
2256  *	Get an object from a pool cache (optionally returning
2257  *	the physical address of the object).
2258  */
2259 void *
2260 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2261 {
2262 	pool_cache_cpu_t *cc;
2263 	pcg_t *pcg;
2264 	void *object;
2265 	int s;
2266 
2267 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2268 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2269 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2270 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
2271 	    __func__, pc->pc_pool.pr_wchan);
2272 
2273 	if (flags & PR_WAITOK) {
2274 		ASSERT_SLEEPABLE();
2275 	}
2276 
2277 	/* Lock out interrupts and disable preemption. */
2278 	s = splvm();
2279 	while (/* CONSTCOND */ true) {
2280 		/* Try and allocate an object from the current group. */
2281 		cc = pc->pc_cpus[curcpu()->ci_index];
2282 		KASSERT(cc->cc_cache == pc);
2283 	 	pcg = cc->cc_current;
2284 		if (__predict_true(pcg->pcg_avail > 0)) {
2285 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2286 			if (__predict_false(pap != NULL))
2287 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2288 #if defined(DIAGNOSTIC)
2289 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2290 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2291 			KASSERT(object != NULL);
2292 #endif
2293 			cc->cc_hits++;
2294 			splx(s);
2295 			FREECHECK_OUT(&pc->pc_freecheck, object);
2296 			pool_redzone_fill(&pc->pc_pool, object);
2297 			return object;
2298 		}
2299 
2300 		/*
2301 		 * That failed.  If the previous group isn't empty, swap
2302 		 * it with the current group and allocate from there.
2303 		 */
2304 		pcg = cc->cc_previous;
2305 		if (__predict_true(pcg->pcg_avail > 0)) {
2306 			cc->cc_previous = cc->cc_current;
2307 			cc->cc_current = pcg;
2308 			continue;
2309 		}
2310 
2311 		/*
2312 		 * Can't allocate from either group: try the slow path.
2313 		 * If get_slow() allocated an object for us, or if
2314 		 * no more objects are available, it will return false.
2315 		 * Otherwise, we need to retry.
2316 		 */
2317 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2318 			break;
2319 	}
2320 
2321 	/*
2322 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2323 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2324 	 * constructor fails.
2325 	 */
2326 	return object;
2327 }
2328 
2329 static bool __noinline
2330 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2331 {
2332 	struct lwp *l = curlwp;
2333 	pcg_t *pcg, *cur;
2334 	uint64_t ncsw;
2335 	pool_cache_t pc;
2336 
2337 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2338 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2339 
2340 	pc = cc->cc_cache;
2341 	pcg = NULL;
2342 	cc->cc_misses++;
2343 	ncsw = l->l_ncsw;
2344 
2345 	/*
2346 	 * If there are no empty groups in the cache then allocate one
2347 	 * while still unlocked.
2348 	 */
2349 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2350 		if (__predict_true(!pool_cache_disable)) {
2351 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2352 		}
2353 		/*
2354 		 * If pool_get() blocked, then our view of
2355 		 * the per-CPU data is invalid: retry.
2356 		 */
2357 		if (__predict_false(l->l_ncsw != ncsw)) {
2358 			if (pcg != NULL) {
2359 				pool_put(pc->pc_pcgpool, pcg);
2360 			}
2361 			return true;
2362 		}
2363 		if (__predict_true(pcg != NULL)) {
2364 			pcg->pcg_avail = 0;
2365 			pcg->pcg_size = pc->pc_pcgsize;
2366 		}
2367 	}
2368 
2369 	/* Lock the cache. */
2370 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2371 		mutex_enter(&pc->pc_lock);
2372 		pc->pc_contended++;
2373 
2374 		/*
2375 		 * If we context switched while locking, then our view of
2376 		 * the per-CPU data is invalid: retry.
2377 		 */
2378 		if (__predict_false(l->l_ncsw != ncsw)) {
2379 			mutex_exit(&pc->pc_lock);
2380 			if (pcg != NULL) {
2381 				pool_put(pc->pc_pcgpool, pcg);
2382 			}
2383 			return true;
2384 		}
2385 	}
2386 
2387 	/* If there are no empty groups in the cache then allocate one. */
2388 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2389 		pcg = pc->pc_emptygroups;
2390 		pc->pc_emptygroups = pcg->pcg_next;
2391 		pc->pc_nempty--;
2392 	}
2393 
2394 	/*
2395 	 * If there's a empty group, release our full group back
2396 	 * to the cache.  Install the empty group to the local CPU
2397 	 * and return.
2398 	 */
2399 	if (pcg != NULL) {
2400 		KASSERT(pcg->pcg_avail == 0);
2401 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2402 			cc->cc_previous = pcg;
2403 		} else {
2404 			cur = cc->cc_current;
2405 			if (__predict_true(cur != &pcg_dummy)) {
2406 				KASSERT(cur->pcg_avail == cur->pcg_size);
2407 				cur->pcg_next = pc->pc_fullgroups;
2408 				pc->pc_fullgroups = cur;
2409 				pc->pc_nfull++;
2410 			}
2411 			cc->cc_current = pcg;
2412 		}
2413 		pc->pc_hits++;
2414 		mutex_exit(&pc->pc_lock);
2415 		return true;
2416 	}
2417 
2418 	/*
2419 	 * Nothing available locally or in cache, and we didn't
2420 	 * allocate an empty group.  Take the slow path and destroy
2421 	 * the object here and now.
2422 	 */
2423 	pc->pc_misses++;
2424 	mutex_exit(&pc->pc_lock);
2425 	splx(s);
2426 	pool_cache_destruct_object(pc, object);
2427 
2428 	return false;
2429 }
2430 
2431 /*
2432  * pool_cache_put{,_paddr}:
2433  *
2434  *	Put an object back to the pool cache (optionally caching the
2435  *	physical address of the object).
2436  */
2437 void
2438 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2439 {
2440 	pool_cache_cpu_t *cc;
2441 	pcg_t *pcg;
2442 	int s;
2443 
2444 	KASSERT(object != NULL);
2445 	pool_redzone_check(&pc->pc_pool, object);
2446 	FREECHECK_IN(&pc->pc_freecheck, object);
2447 
2448 	/* Lock out interrupts and disable preemption. */
2449 	s = splvm();
2450 	while (/* CONSTCOND */ true) {
2451 		/* If the current group isn't full, release it there. */
2452 		cc = pc->pc_cpus[curcpu()->ci_index];
2453 		KASSERT(cc->cc_cache == pc);
2454 	 	pcg = cc->cc_current;
2455 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2456 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2457 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2458 			pcg->pcg_avail++;
2459 			cc->cc_hits++;
2460 			splx(s);
2461 			return;
2462 		}
2463 
2464 		/*
2465 		 * That failed.  If the previous group isn't full, swap
2466 		 * it with the current group and try again.
2467 		 */
2468 		pcg = cc->cc_previous;
2469 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2470 			cc->cc_previous = cc->cc_current;
2471 			cc->cc_current = pcg;
2472 			continue;
2473 		}
2474 
2475 		/*
2476 		 * Can't free to either group: try the slow path.
2477 		 * If put_slow() releases the object for us, it
2478 		 * will return false.  Otherwise we need to retry.
2479 		 */
2480 		if (!pool_cache_put_slow(cc, s, object))
2481 			break;
2482 	}
2483 }
2484 
2485 /*
2486  * pool_cache_transfer:
2487  *
2488  *	Transfer objects from the per-CPU cache to the global cache.
2489  *	Run within a cross-call thread.
2490  */
2491 static void
2492 pool_cache_transfer(pool_cache_t pc)
2493 {
2494 	pool_cache_cpu_t *cc;
2495 	pcg_t *prev, *cur, **list;
2496 	int s;
2497 
2498 	s = splvm();
2499 	mutex_enter(&pc->pc_lock);
2500 	cc = pc->pc_cpus[curcpu()->ci_index];
2501 	cur = cc->cc_current;
2502 	cc->cc_current = __UNCONST(&pcg_dummy);
2503 	prev = cc->cc_previous;
2504 	cc->cc_previous = __UNCONST(&pcg_dummy);
2505 	if (cur != &pcg_dummy) {
2506 		if (cur->pcg_avail == cur->pcg_size) {
2507 			list = &pc->pc_fullgroups;
2508 			pc->pc_nfull++;
2509 		} else if (cur->pcg_avail == 0) {
2510 			list = &pc->pc_emptygroups;
2511 			pc->pc_nempty++;
2512 		} else {
2513 			list = &pc->pc_partgroups;
2514 			pc->pc_npart++;
2515 		}
2516 		cur->pcg_next = *list;
2517 		*list = cur;
2518 	}
2519 	if (prev != &pcg_dummy) {
2520 		if (prev->pcg_avail == prev->pcg_size) {
2521 			list = &pc->pc_fullgroups;
2522 			pc->pc_nfull++;
2523 		} else if (prev->pcg_avail == 0) {
2524 			list = &pc->pc_emptygroups;
2525 			pc->pc_nempty++;
2526 		} else {
2527 			list = &pc->pc_partgroups;
2528 			pc->pc_npart++;
2529 		}
2530 		prev->pcg_next = *list;
2531 		*list = prev;
2532 	}
2533 	mutex_exit(&pc->pc_lock);
2534 	splx(s);
2535 }
2536 
2537 /*
2538  * Pool backend allocators.
2539  *
2540  * Each pool has a backend allocator that handles allocation, deallocation,
2541  * and any additional draining that might be needed.
2542  *
2543  * We provide two standard allocators:
2544  *
2545  *	pool_allocator_kmem - the default when no allocator is specified
2546  *
2547  *	pool_allocator_nointr - used for pools that will not be accessed
2548  *	in interrupt context.
2549  */
2550 void	*pool_page_alloc(struct pool *, int);
2551 void	pool_page_free(struct pool *, void *);
2552 
2553 #ifdef POOL_SUBPAGE
2554 struct pool_allocator pool_allocator_kmem_fullpage = {
2555 	.pa_alloc = pool_page_alloc,
2556 	.pa_free = pool_page_free,
2557 	.pa_pagesz = 0
2558 };
2559 #else
2560 struct pool_allocator pool_allocator_kmem = {
2561 	.pa_alloc = pool_page_alloc,
2562 	.pa_free = pool_page_free,
2563 	.pa_pagesz = 0
2564 };
2565 #endif
2566 
2567 #ifdef POOL_SUBPAGE
2568 struct pool_allocator pool_allocator_nointr_fullpage = {
2569 	.pa_alloc = pool_page_alloc,
2570 	.pa_free = pool_page_free,
2571 	.pa_pagesz = 0
2572 };
2573 #else
2574 struct pool_allocator pool_allocator_nointr = {
2575 	.pa_alloc = pool_page_alloc,
2576 	.pa_free = pool_page_free,
2577 	.pa_pagesz = 0
2578 };
2579 #endif
2580 
2581 #ifdef POOL_SUBPAGE
2582 void	*pool_subpage_alloc(struct pool *, int);
2583 void	pool_subpage_free(struct pool *, void *);
2584 
2585 struct pool_allocator pool_allocator_kmem = {
2586 	.pa_alloc = pool_subpage_alloc,
2587 	.pa_free = pool_subpage_free,
2588 	.pa_pagesz = POOL_SUBPAGE
2589 };
2590 
2591 struct pool_allocator pool_allocator_nointr = {
2592 	.pa_alloc = pool_subpage_alloc,
2593 	.pa_free = pool_subpage_free,
2594 	.pa_pagesz = POOL_SUBPAGE
2595 };
2596 #endif /* POOL_SUBPAGE */
2597 
2598 struct pool_allocator pool_allocator_big[] = {
2599 	{
2600 		.pa_alloc = pool_page_alloc,
2601 		.pa_free = pool_page_free,
2602 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2603 	},
2604 	{
2605 		.pa_alloc = pool_page_alloc,
2606 		.pa_free = pool_page_free,
2607 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2608 	},
2609 	{
2610 		.pa_alloc = pool_page_alloc,
2611 		.pa_free = pool_page_free,
2612 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2613 	},
2614 	{
2615 		.pa_alloc = pool_page_alloc,
2616 		.pa_free = pool_page_free,
2617 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2618 	},
2619 	{
2620 		.pa_alloc = pool_page_alloc,
2621 		.pa_free = pool_page_free,
2622 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2623 	},
2624 	{
2625 		.pa_alloc = pool_page_alloc,
2626 		.pa_free = pool_page_free,
2627 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2628 	},
2629 	{
2630 		.pa_alloc = pool_page_alloc,
2631 		.pa_free = pool_page_free,
2632 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2633 	},
2634 	{
2635 		.pa_alloc = pool_page_alloc,
2636 		.pa_free = pool_page_free,
2637 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2638 	}
2639 };
2640 
2641 static int
2642 pool_bigidx(size_t size)
2643 {
2644 	int i;
2645 
2646 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2647 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2648 			return i;
2649 	}
2650 	panic("pool item size %zu too large, use a custom allocator", size);
2651 }
2652 
2653 static void *
2654 pool_allocator_alloc(struct pool *pp, int flags)
2655 {
2656 	struct pool_allocator *pa = pp->pr_alloc;
2657 	void *res;
2658 
2659 	res = (*pa->pa_alloc)(pp, flags);
2660 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2661 		/*
2662 		 * We only run the drain hook here if PR_NOWAIT.
2663 		 * In other cases, the hook will be run in
2664 		 * pool_reclaim().
2665 		 */
2666 		if (pp->pr_drain_hook != NULL) {
2667 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2668 			res = (*pa->pa_alloc)(pp, flags);
2669 		}
2670 	}
2671 	return res;
2672 }
2673 
2674 static void
2675 pool_allocator_free(struct pool *pp, void *v)
2676 {
2677 	struct pool_allocator *pa = pp->pr_alloc;
2678 
2679 	(*pa->pa_free)(pp, v);
2680 }
2681 
2682 void *
2683 pool_page_alloc(struct pool *pp, int flags)
2684 {
2685 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2686 	vmem_addr_t va;
2687 	int ret;
2688 
2689 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2690 	    vflags | VM_INSTANTFIT, &va);
2691 
2692 	return ret ? NULL : (void *)va;
2693 }
2694 
2695 void
2696 pool_page_free(struct pool *pp, void *v)
2697 {
2698 
2699 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2700 }
2701 
2702 static void *
2703 pool_page_alloc_meta(struct pool *pp, int flags)
2704 {
2705 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2706 	vmem_addr_t va;
2707 	int ret;
2708 
2709 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2710 	    vflags | VM_INSTANTFIT, &va);
2711 
2712 	return ret ? NULL : (void *)va;
2713 }
2714 
2715 static void
2716 pool_page_free_meta(struct pool *pp, void *v)
2717 {
2718 
2719 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2720 }
2721 
2722 #ifdef POOL_REDZONE
2723 #if defined(_LP64)
2724 # define PRIME 0x9e37fffffffc0000UL
2725 #else /* defined(_LP64) */
2726 # define PRIME 0x9e3779b1
2727 #endif /* defined(_LP64) */
2728 #define STATIC_BYTE	0xFE
2729 CTASSERT(POOL_REDZONE_SIZE > 1);
2730 
2731 static inline uint8_t
2732 pool_pattern_generate(const void *p)
2733 {
2734 	return (uint8_t)(((uintptr_t)p) * PRIME
2735 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2736 }
2737 
2738 static void
2739 pool_redzone_init(struct pool *pp, size_t requested_size)
2740 {
2741 	size_t nsz;
2742 
2743 	if (pp->pr_roflags & PR_NOTOUCH) {
2744 		pp->pr_reqsize = 0;
2745 		pp->pr_redzone = false;
2746 		return;
2747 	}
2748 
2749 	/*
2750 	 * We may have extended the requested size earlier; check if
2751 	 * there's naturally space in the padding for a red zone.
2752 	 */
2753 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
2754 		pp->pr_reqsize = requested_size;
2755 		pp->pr_redzone = true;
2756 		return;
2757 	}
2758 
2759 	/*
2760 	 * No space in the natural padding; check if we can extend a
2761 	 * bit the size of the pool.
2762 	 */
2763 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
2764 	if (nsz <= pp->pr_alloc->pa_pagesz) {
2765 		/* Ok, we can */
2766 		pp->pr_size = nsz;
2767 		pp->pr_reqsize = requested_size;
2768 		pp->pr_redzone = true;
2769 	} else {
2770 		/* No space for a red zone... snif :'( */
2771 		pp->pr_reqsize = 0;
2772 		pp->pr_redzone = false;
2773 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2774 	}
2775 }
2776 
2777 static void
2778 pool_redzone_fill(struct pool *pp, void *p)
2779 {
2780 	uint8_t *cp, pat;
2781 	const uint8_t *ep;
2782 
2783 	if (!pp->pr_redzone)
2784 		return;
2785 
2786 	cp = (uint8_t *)p + pp->pr_reqsize;
2787 	ep = cp + POOL_REDZONE_SIZE;
2788 
2789 	/*
2790 	 * We really don't want the first byte of the red zone to be '\0';
2791 	 * an off-by-one in a string may not be properly detected.
2792 	 */
2793 	pat = pool_pattern_generate(cp);
2794 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
2795 	cp++;
2796 
2797 	while (cp < ep) {
2798 		*cp = pool_pattern_generate(cp);
2799 		cp++;
2800 	}
2801 }
2802 
2803 static void
2804 pool_redzone_check(struct pool *pp, void *p)
2805 {
2806 	uint8_t *cp, pat, expected;
2807 	const uint8_t *ep;
2808 
2809 	if (!pp->pr_redzone)
2810 		return;
2811 
2812 	cp = (uint8_t *)p + pp->pr_reqsize;
2813 	ep = cp + POOL_REDZONE_SIZE;
2814 
2815 	pat = pool_pattern_generate(cp);
2816 	expected = (pat == '\0') ? STATIC_BYTE: pat;
2817 	if (expected != *cp) {
2818 		panic("%s: %p: 0x%02x != 0x%02x\n",
2819 		   __func__, cp, *cp, expected);
2820 	}
2821 	cp++;
2822 
2823 	while (cp < ep) {
2824 		expected = pool_pattern_generate(cp);
2825 		if (*cp != expected) {
2826 			panic("%s: %p: 0x%02x != 0x%02x\n",
2827 			   __func__, cp, *cp, expected);
2828 		}
2829 		cp++;
2830 	}
2831 }
2832 
2833 #endif /* POOL_REDZONE */
2834 
2835 
2836 #ifdef POOL_SUBPAGE
2837 /* Sub-page allocator, for machines with large hardware pages. */
2838 void *
2839 pool_subpage_alloc(struct pool *pp, int flags)
2840 {
2841 	return pool_get(&psppool, flags);
2842 }
2843 
2844 void
2845 pool_subpage_free(struct pool *pp, void *v)
2846 {
2847 	pool_put(&psppool, v);
2848 }
2849 
2850 #endif /* POOL_SUBPAGE */
2851 
2852 #if defined(DDB)
2853 static bool
2854 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2855 {
2856 
2857 	return (uintptr_t)ph->ph_page <= addr &&
2858 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2859 }
2860 
2861 static bool
2862 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2863 {
2864 
2865 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2866 }
2867 
2868 static bool
2869 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2870 {
2871 	int i;
2872 
2873 	if (pcg == NULL) {
2874 		return false;
2875 	}
2876 	for (i = 0; i < pcg->pcg_avail; i++) {
2877 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2878 			return true;
2879 		}
2880 	}
2881 	return false;
2882 }
2883 
2884 static bool
2885 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2886 {
2887 
2888 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2889 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2890 		pool_item_bitmap_t *bitmap =
2891 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2892 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2893 
2894 		return (*bitmap & mask) == 0;
2895 	} else {
2896 		struct pool_item *pi;
2897 
2898 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2899 			if (pool_in_item(pp, pi, addr)) {
2900 				return false;
2901 			}
2902 		}
2903 		return true;
2904 	}
2905 }
2906 
2907 void
2908 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2909 {
2910 	struct pool *pp;
2911 
2912 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2913 		struct pool_item_header *ph;
2914 		uintptr_t item;
2915 		bool allocated = true;
2916 		bool incache = false;
2917 		bool incpucache = false;
2918 		char cpucachestr[32];
2919 
2920 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2921 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2922 				if (pool_in_page(pp, ph, addr)) {
2923 					goto found;
2924 				}
2925 			}
2926 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2927 				if (pool_in_page(pp, ph, addr)) {
2928 					allocated =
2929 					    pool_allocated(pp, ph, addr);
2930 					goto found;
2931 				}
2932 			}
2933 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2934 				if (pool_in_page(pp, ph, addr)) {
2935 					allocated = false;
2936 					goto found;
2937 				}
2938 			}
2939 			continue;
2940 		} else {
2941 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
2942 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2943 				continue;
2944 			}
2945 			allocated = pool_allocated(pp, ph, addr);
2946 		}
2947 found:
2948 		if (allocated && pp->pr_cache) {
2949 			pool_cache_t pc = pp->pr_cache;
2950 			struct pool_cache_group *pcg;
2951 			int i;
2952 
2953 			for (pcg = pc->pc_fullgroups; pcg != NULL;
2954 			    pcg = pcg->pcg_next) {
2955 				if (pool_in_cg(pp, pcg, addr)) {
2956 					incache = true;
2957 					goto print;
2958 				}
2959 			}
2960 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2961 				pool_cache_cpu_t *cc;
2962 
2963 				if ((cc = pc->pc_cpus[i]) == NULL) {
2964 					continue;
2965 				}
2966 				if (pool_in_cg(pp, cc->cc_current, addr) ||
2967 				    pool_in_cg(pp, cc->cc_previous, addr)) {
2968 					struct cpu_info *ci =
2969 					    cpu_lookup(i);
2970 
2971 					incpucache = true;
2972 					snprintf(cpucachestr,
2973 					    sizeof(cpucachestr),
2974 					    "cached by CPU %u",
2975 					    ci->ci_index);
2976 					goto print;
2977 				}
2978 			}
2979 		}
2980 print:
2981 		item = (uintptr_t)ph->ph_page + ph->ph_off;
2982 		item = item + rounddown(addr - item, pp->pr_size);
2983 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2984 		    (void *)addr, item, (size_t)(addr - item),
2985 		    pp->pr_wchan,
2986 		    incpucache ? cpucachestr :
2987 		    incache ? "cached" : allocated ? "allocated" : "free");
2988 	}
2989 }
2990 #endif /* defined(DDB) */
2991 
2992 static int
2993 pool_sysctl(SYSCTLFN_ARGS)
2994 {
2995 	struct pool_sysctl data;
2996 	struct pool *pp;
2997 	struct pool_cache *pc;
2998 	pool_cache_cpu_t *cc;
2999 	int error;
3000 	size_t i, written;
3001 
3002 	if (oldp == NULL) {
3003 		*oldlenp = 0;
3004 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3005 			*oldlenp += sizeof(data);
3006 		return 0;
3007 	}
3008 
3009 	memset(&data, 0, sizeof(data));
3010 	error = 0;
3011 	written = 0;
3012 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3013 		if (written + sizeof(data) > *oldlenp)
3014 			break;
3015 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3016 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3017 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3018 #define COPY(field) data.field = pp->field
3019 		COPY(pr_size);
3020 
3021 		COPY(pr_itemsperpage);
3022 		COPY(pr_nitems);
3023 		COPY(pr_nout);
3024 		COPY(pr_hardlimit);
3025 		COPY(pr_npages);
3026 		COPY(pr_minpages);
3027 		COPY(pr_maxpages);
3028 
3029 		COPY(pr_nget);
3030 		COPY(pr_nfail);
3031 		COPY(pr_nput);
3032 		COPY(pr_npagealloc);
3033 		COPY(pr_npagefree);
3034 		COPY(pr_hiwat);
3035 		COPY(pr_nidle);
3036 #undef COPY
3037 
3038 		data.pr_cache_nmiss_pcpu = 0;
3039 		data.pr_cache_nhit_pcpu = 0;
3040 		if (pp->pr_cache) {
3041 			pc = pp->pr_cache;
3042 			data.pr_cache_meta_size = pc->pc_pcgsize;
3043 			data.pr_cache_nfull = pc->pc_nfull;
3044 			data.pr_cache_npartial = pc->pc_npart;
3045 			data.pr_cache_nempty = pc->pc_nempty;
3046 			data.pr_cache_ncontended = pc->pc_contended;
3047 			data.pr_cache_nmiss_global = pc->pc_misses;
3048 			data.pr_cache_nhit_global = pc->pc_hits;
3049 			for (i = 0; i < pc->pc_ncpu; ++i) {
3050 				cc = pc->pc_cpus[i];
3051 				if (cc == NULL)
3052 					continue;
3053 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3054 				data.pr_cache_nhit_pcpu += cc->cc_hits;
3055 			}
3056 		} else {
3057 			data.pr_cache_meta_size = 0;
3058 			data.pr_cache_nfull = 0;
3059 			data.pr_cache_npartial = 0;
3060 			data.pr_cache_nempty = 0;
3061 			data.pr_cache_ncontended = 0;
3062 			data.pr_cache_nmiss_global = 0;
3063 			data.pr_cache_nhit_global = 0;
3064 		}
3065 
3066 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3067 		if (error)
3068 			break;
3069 		written += sizeof(data);
3070 		oldp = (char *)oldp + sizeof(data);
3071 	}
3072 
3073 	*oldlenp = written;
3074 	return error;
3075 }
3076 
3077 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3078 {
3079 	const struct sysctlnode *rnode = NULL;
3080 
3081 	sysctl_createv(clog, 0, NULL, &rnode,
3082 		       CTLFLAG_PERMANENT,
3083 		       CTLTYPE_STRUCT, "pool",
3084 		       SYSCTL_DESCR("Get pool statistics"),
3085 		       pool_sysctl, 0, NULL, 0,
3086 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3087 }
3088