xref: /netbsd-src/sys/kern/subr_pool.c (revision bbde328be4e75ea9ad02e9715ea13ca54b797ada)
1 /*	$NetBSD: subr_pool.c,v 1.183 2010/04/25 11:49:04 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.183 2010/04/25 11:49:04 ad Exp $");
36 
37 #include "opt_ddb.h"
38 #include "opt_pool.h"
39 #include "opt_poollog.h"
40 #include "opt_lockdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitops.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/pool.h>
50 #include <sys/syslog.h>
51 #include <sys/debug.h>
52 #include <sys/lockdebug.h>
53 #include <sys/xcall.h>
54 #include <sys/cpu.h>
55 #include <sys/atomic.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according to
63  * the pool item size. Each page is kept on one of three lists in the
64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65  * for empty, full and partially-full pages respectively. The individual
66  * pool items are on a linked list headed by `ph_itemlist' in each page
67  * header. The memory for building the page list is either taken from
68  * the allocated pages themselves (for small pool items) or taken from
69  * an internal pool of page headers (`phpool').
70  */
71 
72 /* List of all pools */
73 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74 
75 /* Private pool for page header structures */
76 #define	PHPOOL_MAX	8
77 static struct pool phpool[PHPOOL_MAX];
78 #define	PHPOOL_FREELIST_NELEM(idx) \
79 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
80 
81 #ifdef POOL_SUBPAGE
82 /* Pool of subpages for use by normal pools. */
83 static struct pool psppool;
84 #endif
85 
86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
87     SLIST_HEAD_INITIALIZER(pa_deferinitq);
88 
89 static void *pool_page_alloc_meta(struct pool *, int);
90 static void pool_page_free_meta(struct pool *, void *);
91 
92 /* allocator for pool metadata */
93 struct pool_allocator pool_allocator_meta = {
94 	pool_page_alloc_meta, pool_page_free_meta,
95 	.pa_backingmapptr = &kmem_map,
96 };
97 
98 /* # of seconds to retain page after last use */
99 int pool_inactive_time = 10;
100 
101 /* Next candidate for drainage (see pool_drain()) */
102 static struct pool	*drainpp;
103 
104 /* This lock protects both pool_head and drainpp. */
105 static kmutex_t pool_head_lock;
106 static kcondvar_t pool_busy;
107 
108 /* This lock protects initialization of a potentially shared pool allocator */
109 static kmutex_t pool_allocator_lock;
110 
111 typedef uint32_t pool_item_bitmap_t;
112 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
113 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
114 
115 struct pool_item_header {
116 	/* Page headers */
117 	LIST_ENTRY(pool_item_header)
118 				ph_pagelist;	/* pool page list */
119 	SPLAY_ENTRY(pool_item_header)
120 				ph_node;	/* Off-page page headers */
121 	void *			ph_page;	/* this page's address */
122 	uint32_t		ph_time;	/* last referenced */
123 	uint16_t		ph_nmissing;	/* # of chunks in use */
124 	uint16_t		ph_off;		/* start offset in page */
125 	union {
126 		/* !PR_NOTOUCH */
127 		struct {
128 			LIST_HEAD(, pool_item)
129 				phu_itemlist;	/* chunk list for this page */
130 		} phu_normal;
131 		/* PR_NOTOUCH */
132 		struct {
133 			pool_item_bitmap_t phu_bitmap[1];
134 		} phu_notouch;
135 	} ph_u;
136 };
137 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
138 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
139 
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 	u_int pi_magic;
143 #endif
144 #define	PI_MAGIC 0xdeaddeadU
145 	/* Other entries use only this list entry */
146 	LIST_ENTRY(pool_item)	pi_list;
147 };
148 
149 #define	POOL_NEEDS_CATCHUP(pp)						\
150 	((pp)->pr_nitems < (pp)->pr_minitems)
151 
152 /*
153  * Pool cache management.
154  *
155  * Pool caches provide a way for constructed objects to be cached by the
156  * pool subsystem.  This can lead to performance improvements by avoiding
157  * needless object construction/destruction; it is deferred until absolutely
158  * necessary.
159  *
160  * Caches are grouped into cache groups.  Each cache group references up
161  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
162  * object from the pool, it calls the object's constructor and places it
163  * into a cache group.  When a cache group frees an object back to the
164  * pool, it first calls the object's destructor.  This allows the object
165  * to persist in constructed form while freed to the cache.
166  *
167  * The pool references each cache, so that when a pool is drained by the
168  * pagedaemon, it can drain each individual cache as well.  Each time a
169  * cache is drained, the most idle cache group is freed to the pool in
170  * its entirety.
171  *
172  * Pool caches are layed on top of pools.  By layering them, we can avoid
173  * the complexity of cache management for pools which would not benefit
174  * from it.
175  */
176 
177 static struct pool pcg_normal_pool;
178 static struct pool pcg_large_pool;
179 static struct pool cache_pool;
180 static struct pool cache_cpu_pool;
181 
182 /* List of all caches. */
183 TAILQ_HEAD(,pool_cache) pool_cache_head =
184     TAILQ_HEAD_INITIALIZER(pool_cache_head);
185 
186 int pool_cache_disable;		/* global disable for caching */
187 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
188 
189 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
190 				    void *);
191 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
192 				    void **, paddr_t *, int);
193 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
194 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
195 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
196 static void	pool_cache_xcall(pool_cache_t);
197 
198 static int	pool_catchup(struct pool *);
199 static void	pool_prime_page(struct pool *, void *,
200 		    struct pool_item_header *);
201 static void	pool_update_curpage(struct pool *);
202 
203 static int	pool_grow(struct pool *, int);
204 static void	*pool_allocator_alloc(struct pool *, int);
205 static void	pool_allocator_free(struct pool *, void *);
206 
207 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
208 	void (*)(const char *, ...));
209 static void pool_print1(struct pool *, const char *,
210 	void (*)(const char *, ...));
211 
212 static int pool_chk_page(struct pool *, const char *,
213 			 struct pool_item_header *);
214 
215 /*
216  * Pool log entry. An array of these is allocated in pool_init().
217  */
218 struct pool_log {
219 	const char	*pl_file;
220 	long		pl_line;
221 	int		pl_action;
222 #define	PRLOG_GET	1
223 #define	PRLOG_PUT	2
224 	void		*pl_addr;
225 };
226 
227 #ifdef POOL_DIAGNOSTIC
228 /* Number of entries in pool log buffers */
229 #ifndef POOL_LOGSIZE
230 #define	POOL_LOGSIZE	10
231 #endif
232 
233 int pool_logsize = POOL_LOGSIZE;
234 
235 static inline void
236 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
237 {
238 	int n;
239 	struct pool_log *pl;
240 
241 	if ((pp->pr_roflags & PR_LOGGING) == 0)
242 		return;
243 
244 	if (pp->pr_log == NULL) {
245 		if (kmem_map != NULL)
246 			pp->pr_log = malloc(
247 				pool_logsize * sizeof(struct pool_log),
248 				M_TEMP, M_NOWAIT | M_ZERO);
249 		if (pp->pr_log == NULL)
250 			return;
251 		pp->pr_curlogentry = 0;
252 		pp->pr_logsize = pool_logsize;
253 	}
254 
255 	/*
256 	 * Fill in the current entry. Wrap around and overwrite
257 	 * the oldest entry if necessary.
258 	 */
259 	n = pp->pr_curlogentry;
260 	pl = &pp->pr_log[n];
261 	pl->pl_file = file;
262 	pl->pl_line = line;
263 	pl->pl_action = action;
264 	pl->pl_addr = v;
265 	if (++n >= pp->pr_logsize)
266 		n = 0;
267 	pp->pr_curlogentry = n;
268 }
269 
270 static void
271 pr_printlog(struct pool *pp, struct pool_item *pi,
272     void (*pr)(const char *, ...))
273 {
274 	int i = pp->pr_logsize;
275 	int n = pp->pr_curlogentry;
276 
277 	if (pp->pr_log == NULL)
278 		return;
279 
280 	/*
281 	 * Print all entries in this pool's log.
282 	 */
283 	while (i-- > 0) {
284 		struct pool_log *pl = &pp->pr_log[n];
285 		if (pl->pl_action != 0) {
286 			if (pi == NULL || pi == pl->pl_addr) {
287 				(*pr)("\tlog entry %d:\n", i);
288 				(*pr)("\t\taction = %s, addr = %p\n",
289 				    pl->pl_action == PRLOG_GET ? "get" : "put",
290 				    pl->pl_addr);
291 				(*pr)("\t\tfile: %s at line %lu\n",
292 				    pl->pl_file, pl->pl_line);
293 			}
294 		}
295 		if (++n >= pp->pr_logsize)
296 			n = 0;
297 	}
298 }
299 
300 static inline void
301 pr_enter(struct pool *pp, const char *file, long line)
302 {
303 
304 	if (__predict_false(pp->pr_entered_file != NULL)) {
305 		printf("pool %s: reentrancy at file %s line %ld\n",
306 		    pp->pr_wchan, file, line);
307 		printf("         previous entry at file %s line %ld\n",
308 		    pp->pr_entered_file, pp->pr_entered_line);
309 		panic("pr_enter");
310 	}
311 
312 	pp->pr_entered_file = file;
313 	pp->pr_entered_line = line;
314 }
315 
316 static inline void
317 pr_leave(struct pool *pp)
318 {
319 
320 	if (__predict_false(pp->pr_entered_file == NULL)) {
321 		printf("pool %s not entered?\n", pp->pr_wchan);
322 		panic("pr_leave");
323 	}
324 
325 	pp->pr_entered_file = NULL;
326 	pp->pr_entered_line = 0;
327 }
328 
329 static inline void
330 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
331 {
332 
333 	if (pp->pr_entered_file != NULL)
334 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
335 		    pp->pr_entered_file, pp->pr_entered_line);
336 }
337 #else
338 #define	pr_log(pp, v, action, file, line)
339 #define	pr_printlog(pp, pi, pr)
340 #define	pr_enter(pp, file, line)
341 #define	pr_leave(pp)
342 #define	pr_enter_check(pp, pr)
343 #endif /* POOL_DIAGNOSTIC */
344 
345 static inline unsigned int
346 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
347     const void *v)
348 {
349 	const char *cp = v;
350 	unsigned int idx;
351 
352 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
353 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
354 	KASSERT(idx < pp->pr_itemsperpage);
355 	return idx;
356 }
357 
358 static inline void
359 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
360     void *obj)
361 {
362 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
364 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
365 
366 	KASSERT((*bitmap & mask) == 0);
367 	*bitmap |= mask;
368 }
369 
370 static inline void *
371 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
372 {
373 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
374 	unsigned int idx;
375 	int i;
376 
377 	for (i = 0; ; i++) {
378 		int bit;
379 
380 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
381 		bit = ffs32(bitmap[i]);
382 		if (bit) {
383 			pool_item_bitmap_t mask;
384 
385 			bit--;
386 			idx = (i * BITMAP_SIZE) + bit;
387 			mask = 1 << bit;
388 			KASSERT((bitmap[i] & mask) != 0);
389 			bitmap[i] &= ~mask;
390 			break;
391 		}
392 	}
393 	KASSERT(idx < pp->pr_itemsperpage);
394 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
395 }
396 
397 static inline void
398 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
399 {
400 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
401 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
402 	int i;
403 
404 	for (i = 0; i < n; i++) {
405 		bitmap[i] = (pool_item_bitmap_t)-1;
406 	}
407 }
408 
409 static inline int
410 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
411 {
412 
413 	/*
414 	 * we consider pool_item_header with smaller ph_page bigger.
415 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
416 	 */
417 
418 	if (a->ph_page < b->ph_page)
419 		return (1);
420 	else if (a->ph_page > b->ph_page)
421 		return (-1);
422 	else
423 		return (0);
424 }
425 
426 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
427 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
428 
429 static inline struct pool_item_header *
430 pr_find_pagehead_noalign(struct pool *pp, void *v)
431 {
432 	struct pool_item_header *ph, tmp;
433 
434 	tmp.ph_page = (void *)(uintptr_t)v;
435 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
436 	if (ph == NULL) {
437 		ph = SPLAY_ROOT(&pp->pr_phtree);
438 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
439 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
440 		}
441 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
442 	}
443 
444 	return ph;
445 }
446 
447 /*
448  * Return the pool page header based on item address.
449  */
450 static inline struct pool_item_header *
451 pr_find_pagehead(struct pool *pp, void *v)
452 {
453 	struct pool_item_header *ph, tmp;
454 
455 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
456 		ph = pr_find_pagehead_noalign(pp, v);
457 	} else {
458 		void *page =
459 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
460 
461 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
462 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
463 		} else {
464 			tmp.ph_page = page;
465 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
466 		}
467 	}
468 
469 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
470 	    ((char *)ph->ph_page <= (char *)v &&
471 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
472 	return ph;
473 }
474 
475 static void
476 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
477 {
478 	struct pool_item_header *ph;
479 
480 	while ((ph = LIST_FIRST(pq)) != NULL) {
481 		LIST_REMOVE(ph, ph_pagelist);
482 		pool_allocator_free(pp, ph->ph_page);
483 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
484 			pool_put(pp->pr_phpool, ph);
485 	}
486 }
487 
488 /*
489  * Remove a page from the pool.
490  */
491 static inline void
492 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
493      struct pool_pagelist *pq)
494 {
495 
496 	KASSERT(mutex_owned(&pp->pr_lock));
497 
498 	/*
499 	 * If the page was idle, decrement the idle page count.
500 	 */
501 	if (ph->ph_nmissing == 0) {
502 #ifdef DIAGNOSTIC
503 		if (pp->pr_nidle == 0)
504 			panic("pr_rmpage: nidle inconsistent");
505 		if (pp->pr_nitems < pp->pr_itemsperpage)
506 			panic("pr_rmpage: nitems inconsistent");
507 #endif
508 		pp->pr_nidle--;
509 	}
510 
511 	pp->pr_nitems -= pp->pr_itemsperpage;
512 
513 	/*
514 	 * Unlink the page from the pool and queue it for release.
515 	 */
516 	LIST_REMOVE(ph, ph_pagelist);
517 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
518 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
519 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
520 
521 	pp->pr_npages--;
522 	pp->pr_npagefree++;
523 
524 	pool_update_curpage(pp);
525 }
526 
527 static bool
528 pa_starved_p(struct pool_allocator *pa)
529 {
530 
531 	if (pa->pa_backingmap != NULL) {
532 		return vm_map_starved_p(pa->pa_backingmap);
533 	}
534 	return false;
535 }
536 
537 static int
538 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
539 {
540 	struct pool *pp = obj;
541 	struct pool_allocator *pa = pp->pr_alloc;
542 
543 	KASSERT(&pp->pr_reclaimerentry == ce);
544 	pool_reclaim(pp);
545 	if (!pa_starved_p(pa)) {
546 		return CALLBACK_CHAIN_ABORT;
547 	}
548 	return CALLBACK_CHAIN_CONTINUE;
549 }
550 
551 static void
552 pool_reclaim_register(struct pool *pp)
553 {
554 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
555 	int s;
556 
557 	if (map == NULL) {
558 		return;
559 	}
560 
561 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
562 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
563 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
564 	splx(s);
565 }
566 
567 static void
568 pool_reclaim_unregister(struct pool *pp)
569 {
570 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
571 	int s;
572 
573 	if (map == NULL) {
574 		return;
575 	}
576 
577 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
578 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
579 	    &pp->pr_reclaimerentry);
580 	splx(s);
581 }
582 
583 static void
584 pa_reclaim_register(struct pool_allocator *pa)
585 {
586 	struct vm_map *map = *pa->pa_backingmapptr;
587 	struct pool *pp;
588 
589 	KASSERT(pa->pa_backingmap == NULL);
590 	if (map == NULL) {
591 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
592 		return;
593 	}
594 	pa->pa_backingmap = map;
595 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
596 		pool_reclaim_register(pp);
597 	}
598 }
599 
600 /*
601  * Initialize all the pools listed in the "pools" link set.
602  */
603 void
604 pool_subsystem_init(void)
605 {
606 	struct pool_allocator *pa;
607 
608 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
609 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
610 	cv_init(&pool_busy, "poolbusy");
611 
612 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
613 		KASSERT(pa->pa_backingmapptr != NULL);
614 		KASSERT(*pa->pa_backingmapptr != NULL);
615 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
616 		pa_reclaim_register(pa);
617 	}
618 
619 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
620 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
621 
622 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
623 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
624 }
625 
626 /*
627  * Initialize the given pool resource structure.
628  *
629  * We export this routine to allow other kernel parts to declare
630  * static pools that must be initialized before malloc() is available.
631  */
632 void
633 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
634     const char *wchan, struct pool_allocator *palloc, int ipl)
635 {
636 	struct pool *pp1;
637 	size_t trysize, phsize;
638 	int off, slack;
639 
640 #ifdef DEBUG
641 	/*
642 	 * Check that the pool hasn't already been initialised and
643 	 * added to the list of all pools.
644 	 */
645 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
646 		if (pp == pp1)
647 			panic("pool_init: pool %s already initialised",
648 			    wchan);
649 	}
650 #endif
651 
652 #ifdef POOL_DIAGNOSTIC
653 	/*
654 	 * Always log if POOL_DIAGNOSTIC is defined.
655 	 */
656 	if (pool_logsize != 0)
657 		flags |= PR_LOGGING;
658 #endif
659 
660 	if (palloc == NULL)
661 		palloc = &pool_allocator_kmem;
662 #ifdef POOL_SUBPAGE
663 	if (size > palloc->pa_pagesz) {
664 		if (palloc == &pool_allocator_kmem)
665 			palloc = &pool_allocator_kmem_fullpage;
666 		else if (palloc == &pool_allocator_nointr)
667 			palloc = &pool_allocator_nointr_fullpage;
668 	}
669 #endif /* POOL_SUBPAGE */
670 	if (!cold)
671 		mutex_enter(&pool_allocator_lock);
672 	if (palloc->pa_refcnt++ == 0) {
673 		if (palloc->pa_pagesz == 0)
674 			palloc->pa_pagesz = PAGE_SIZE;
675 
676 		TAILQ_INIT(&palloc->pa_list);
677 
678 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
679 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
680 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
681 
682 		if (palloc->pa_backingmapptr != NULL) {
683 			pa_reclaim_register(palloc);
684 		}
685 	}
686 	if (!cold)
687 		mutex_exit(&pool_allocator_lock);
688 
689 	if (align == 0)
690 		align = ALIGN(1);
691 
692 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
693 		size = sizeof(struct pool_item);
694 
695 	size = roundup(size, align);
696 #ifdef DIAGNOSTIC
697 	if (size > palloc->pa_pagesz)
698 		panic("pool_init: pool item size (%zu) too large", size);
699 #endif
700 
701 	/*
702 	 * Initialize the pool structure.
703 	 */
704 	LIST_INIT(&pp->pr_emptypages);
705 	LIST_INIT(&pp->pr_fullpages);
706 	LIST_INIT(&pp->pr_partpages);
707 	pp->pr_cache = NULL;
708 	pp->pr_curpage = NULL;
709 	pp->pr_npages = 0;
710 	pp->pr_minitems = 0;
711 	pp->pr_minpages = 0;
712 	pp->pr_maxpages = UINT_MAX;
713 	pp->pr_roflags = flags;
714 	pp->pr_flags = 0;
715 	pp->pr_size = size;
716 	pp->pr_align = align;
717 	pp->pr_wchan = wchan;
718 	pp->pr_alloc = palloc;
719 	pp->pr_nitems = 0;
720 	pp->pr_nout = 0;
721 	pp->pr_hardlimit = UINT_MAX;
722 	pp->pr_hardlimit_warning = NULL;
723 	pp->pr_hardlimit_ratecap.tv_sec = 0;
724 	pp->pr_hardlimit_ratecap.tv_usec = 0;
725 	pp->pr_hardlimit_warning_last.tv_sec = 0;
726 	pp->pr_hardlimit_warning_last.tv_usec = 0;
727 	pp->pr_drain_hook = NULL;
728 	pp->pr_drain_hook_arg = NULL;
729 	pp->pr_freecheck = NULL;
730 
731 	/*
732 	 * Decide whether to put the page header off page to avoid
733 	 * wasting too large a part of the page or too big item.
734 	 * Off-page page headers go on a hash table, so we can match
735 	 * a returned item with its header based on the page address.
736 	 * We use 1/16 of the page size and about 8 times of the item
737 	 * size as the threshold (XXX: tune)
738 	 *
739 	 * However, we'll put the header into the page if we can put
740 	 * it without wasting any items.
741 	 *
742 	 * Silently enforce `0 <= ioff < align'.
743 	 */
744 	pp->pr_itemoffset = ioff %= align;
745 	/* See the comment below about reserved bytes. */
746 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
747 	phsize = ALIGN(sizeof(struct pool_item_header));
748 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
749 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
750 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
751 		/* Use the end of the page for the page header */
752 		pp->pr_roflags |= PR_PHINPAGE;
753 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
754 	} else {
755 		/* The page header will be taken from our page header pool */
756 		pp->pr_phoffset = 0;
757 		off = palloc->pa_pagesz;
758 		SPLAY_INIT(&pp->pr_phtree);
759 	}
760 
761 	/*
762 	 * Alignment is to take place at `ioff' within the item. This means
763 	 * we must reserve up to `align - 1' bytes on the page to allow
764 	 * appropriate positioning of each item.
765 	 */
766 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
767 	KASSERT(pp->pr_itemsperpage != 0);
768 	if ((pp->pr_roflags & PR_NOTOUCH)) {
769 		int idx;
770 
771 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
772 		    idx++) {
773 			/* nothing */
774 		}
775 		if (idx >= PHPOOL_MAX) {
776 			/*
777 			 * if you see this panic, consider to tweak
778 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
779 			 */
780 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
781 			    pp->pr_wchan, pp->pr_itemsperpage);
782 		}
783 		pp->pr_phpool = &phpool[idx];
784 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
785 		pp->pr_phpool = &phpool[0];
786 	}
787 #if defined(DIAGNOSTIC)
788 	else {
789 		pp->pr_phpool = NULL;
790 	}
791 #endif
792 
793 	/*
794 	 * Use the slack between the chunks and the page header
795 	 * for "cache coloring".
796 	 */
797 	slack = off - pp->pr_itemsperpage * pp->pr_size;
798 	pp->pr_maxcolor = (slack / align) * align;
799 	pp->pr_curcolor = 0;
800 
801 	pp->pr_nget = 0;
802 	pp->pr_nfail = 0;
803 	pp->pr_nput = 0;
804 	pp->pr_npagealloc = 0;
805 	pp->pr_npagefree = 0;
806 	pp->pr_hiwat = 0;
807 	pp->pr_nidle = 0;
808 	pp->pr_refcnt = 0;
809 
810 	pp->pr_log = NULL;
811 
812 	pp->pr_entered_file = NULL;
813 	pp->pr_entered_line = 0;
814 
815 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
816 	cv_init(&pp->pr_cv, wchan);
817 	pp->pr_ipl = ipl;
818 
819 	/*
820 	 * Initialize private page header pool and cache magazine pool if we
821 	 * haven't done so yet.
822 	 * XXX LOCKING.
823 	 */
824 	if (phpool[0].pr_size == 0) {
825 		int idx;
826 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
827 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
828 			int nelem;
829 			size_t sz;
830 
831 			nelem = PHPOOL_FREELIST_NELEM(idx);
832 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
833 			    "phpool-%d", nelem);
834 			sz = sizeof(struct pool_item_header);
835 			if (nelem) {
836 				sz = offsetof(struct pool_item_header,
837 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
838 			}
839 			pool_init(&phpool[idx], sz, 0, 0, 0,
840 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
841 		}
842 #ifdef POOL_SUBPAGE
843 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
844 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
845 #endif
846 
847 		size = sizeof(pcg_t) +
848 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
849 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
850 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
851 
852 		size = sizeof(pcg_t) +
853 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
854 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
855 		    "pcglarge", &pool_allocator_meta, IPL_VM);
856 	}
857 
858 	/* Insert into the list of all pools. */
859 	if (!cold)
860 		mutex_enter(&pool_head_lock);
861 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
862 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
863 			break;
864 	}
865 	if (pp1 == NULL)
866 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
867 	else
868 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
869 	if (!cold)
870 		mutex_exit(&pool_head_lock);
871 
872 	/* Insert this into the list of pools using this allocator. */
873 	if (!cold)
874 		mutex_enter(&palloc->pa_lock);
875 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
876 	if (!cold)
877 		mutex_exit(&palloc->pa_lock);
878 
879 	pool_reclaim_register(pp);
880 }
881 
882 /*
883  * De-commision a pool resource.
884  */
885 void
886 pool_destroy(struct pool *pp)
887 {
888 	struct pool_pagelist pq;
889 	struct pool_item_header *ph;
890 
891 	/* Remove from global pool list */
892 	mutex_enter(&pool_head_lock);
893 	while (pp->pr_refcnt != 0)
894 		cv_wait(&pool_busy, &pool_head_lock);
895 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
896 	if (drainpp == pp)
897 		drainpp = NULL;
898 	mutex_exit(&pool_head_lock);
899 
900 	/* Remove this pool from its allocator's list of pools. */
901 	pool_reclaim_unregister(pp);
902 	mutex_enter(&pp->pr_alloc->pa_lock);
903 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
904 	mutex_exit(&pp->pr_alloc->pa_lock);
905 
906 	mutex_enter(&pool_allocator_lock);
907 	if (--pp->pr_alloc->pa_refcnt == 0)
908 		mutex_destroy(&pp->pr_alloc->pa_lock);
909 	mutex_exit(&pool_allocator_lock);
910 
911 	mutex_enter(&pp->pr_lock);
912 
913 	KASSERT(pp->pr_cache == NULL);
914 
915 #ifdef DIAGNOSTIC
916 	if (pp->pr_nout != 0) {
917 		pr_printlog(pp, NULL, printf);
918 		panic("pool_destroy: pool busy: still out: %u",
919 		    pp->pr_nout);
920 	}
921 #endif
922 
923 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
924 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
925 
926 	/* Remove all pages */
927 	LIST_INIT(&pq);
928 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
929 		pr_rmpage(pp, ph, &pq);
930 
931 	mutex_exit(&pp->pr_lock);
932 
933 	pr_pagelist_free(pp, &pq);
934 
935 #ifdef POOL_DIAGNOSTIC
936 	if (pp->pr_log != NULL) {
937 		free(pp->pr_log, M_TEMP);
938 		pp->pr_log = NULL;
939 	}
940 #endif
941 
942 	cv_destroy(&pp->pr_cv);
943 	mutex_destroy(&pp->pr_lock);
944 }
945 
946 void
947 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
948 {
949 
950 	/* XXX no locking -- must be used just after pool_init() */
951 #ifdef DIAGNOSTIC
952 	if (pp->pr_drain_hook != NULL)
953 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
954 #endif
955 	pp->pr_drain_hook = fn;
956 	pp->pr_drain_hook_arg = arg;
957 }
958 
959 static struct pool_item_header *
960 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
961 {
962 	struct pool_item_header *ph;
963 
964 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
965 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
966 	else
967 		ph = pool_get(pp->pr_phpool, flags);
968 
969 	return (ph);
970 }
971 
972 /*
973  * Grab an item from the pool.
974  */
975 void *
976 #ifdef POOL_DIAGNOSTIC
977 _pool_get(struct pool *pp, int flags, const char *file, long line)
978 #else
979 pool_get(struct pool *pp, int flags)
980 #endif
981 {
982 	struct pool_item *pi;
983 	struct pool_item_header *ph;
984 	void *v;
985 
986 #ifdef DIAGNOSTIC
987 	if (__predict_false(pp->pr_itemsperpage == 0))
988 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
989 		    "pool not initialized?", pp);
990 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
991 			    (flags & PR_WAITOK) != 0))
992 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
993 
994 #endif /* DIAGNOSTIC */
995 #ifdef LOCKDEBUG
996 	if (flags & PR_WAITOK) {
997 		ASSERT_SLEEPABLE();
998 	}
999 #endif
1000 
1001 	mutex_enter(&pp->pr_lock);
1002 	pr_enter(pp, file, line);
1003 
1004  startover:
1005 	/*
1006 	 * Check to see if we've reached the hard limit.  If we have,
1007 	 * and we can wait, then wait until an item has been returned to
1008 	 * the pool.
1009 	 */
1010 #ifdef DIAGNOSTIC
1011 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1012 		pr_leave(pp);
1013 		mutex_exit(&pp->pr_lock);
1014 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1015 	}
1016 #endif
1017 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1018 		if (pp->pr_drain_hook != NULL) {
1019 			/*
1020 			 * Since the drain hook is going to free things
1021 			 * back to the pool, unlock, call the hook, re-lock,
1022 			 * and check the hardlimit condition again.
1023 			 */
1024 			pr_leave(pp);
1025 			mutex_exit(&pp->pr_lock);
1026 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1027 			mutex_enter(&pp->pr_lock);
1028 			pr_enter(pp, file, line);
1029 			if (pp->pr_nout < pp->pr_hardlimit)
1030 				goto startover;
1031 		}
1032 
1033 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1034 			/*
1035 			 * XXX: A warning isn't logged in this case.  Should
1036 			 * it be?
1037 			 */
1038 			pp->pr_flags |= PR_WANTED;
1039 			pr_leave(pp);
1040 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1041 			pr_enter(pp, file, line);
1042 			goto startover;
1043 		}
1044 
1045 		/*
1046 		 * Log a message that the hard limit has been hit.
1047 		 */
1048 		if (pp->pr_hardlimit_warning != NULL &&
1049 		    ratecheck(&pp->pr_hardlimit_warning_last,
1050 			      &pp->pr_hardlimit_ratecap))
1051 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1052 
1053 		pp->pr_nfail++;
1054 
1055 		pr_leave(pp);
1056 		mutex_exit(&pp->pr_lock);
1057 		return (NULL);
1058 	}
1059 
1060 	/*
1061 	 * The convention we use is that if `curpage' is not NULL, then
1062 	 * it points at a non-empty bucket. In particular, `curpage'
1063 	 * never points at a page header which has PR_PHINPAGE set and
1064 	 * has no items in its bucket.
1065 	 */
1066 	if ((ph = pp->pr_curpage) == NULL) {
1067 		int error;
1068 
1069 #ifdef DIAGNOSTIC
1070 		if (pp->pr_nitems != 0) {
1071 			mutex_exit(&pp->pr_lock);
1072 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1073 			    pp->pr_wchan, pp->pr_nitems);
1074 			panic("pool_get: nitems inconsistent");
1075 		}
1076 #endif
1077 
1078 		/*
1079 		 * Call the back-end page allocator for more memory.
1080 		 * Release the pool lock, as the back-end page allocator
1081 		 * may block.
1082 		 */
1083 		pr_leave(pp);
1084 		error = pool_grow(pp, flags);
1085 		pr_enter(pp, file, line);
1086 		if (error != 0) {
1087 			/*
1088 			 * We were unable to allocate a page or item
1089 			 * header, but we released the lock during
1090 			 * allocation, so perhaps items were freed
1091 			 * back to the pool.  Check for this case.
1092 			 */
1093 			if (pp->pr_curpage != NULL)
1094 				goto startover;
1095 
1096 			pp->pr_nfail++;
1097 			pr_leave(pp);
1098 			mutex_exit(&pp->pr_lock);
1099 			return (NULL);
1100 		}
1101 
1102 		/* Start the allocation process over. */
1103 		goto startover;
1104 	}
1105 	if (pp->pr_roflags & PR_NOTOUCH) {
1106 #ifdef DIAGNOSTIC
1107 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1108 			pr_leave(pp);
1109 			mutex_exit(&pp->pr_lock);
1110 			panic("pool_get: %s: page empty", pp->pr_wchan);
1111 		}
1112 #endif
1113 		v = pr_item_notouch_get(pp, ph);
1114 #ifdef POOL_DIAGNOSTIC
1115 		pr_log(pp, v, PRLOG_GET, file, line);
1116 #endif
1117 	} else {
1118 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1119 		if (__predict_false(v == NULL)) {
1120 			pr_leave(pp);
1121 			mutex_exit(&pp->pr_lock);
1122 			panic("pool_get: %s: page empty", pp->pr_wchan);
1123 		}
1124 #ifdef DIAGNOSTIC
1125 		if (__predict_false(pp->pr_nitems == 0)) {
1126 			pr_leave(pp);
1127 			mutex_exit(&pp->pr_lock);
1128 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1129 			    pp->pr_wchan, pp->pr_nitems);
1130 			panic("pool_get: nitems inconsistent");
1131 		}
1132 #endif
1133 
1134 #ifdef POOL_DIAGNOSTIC
1135 		pr_log(pp, v, PRLOG_GET, file, line);
1136 #endif
1137 
1138 #ifdef DIAGNOSTIC
1139 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1140 			pr_printlog(pp, pi, printf);
1141 			panic("pool_get(%s): free list modified: "
1142 			    "magic=%x; page %p; item addr %p\n",
1143 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1144 		}
1145 #endif
1146 
1147 		/*
1148 		 * Remove from item list.
1149 		 */
1150 		LIST_REMOVE(pi, pi_list);
1151 	}
1152 	pp->pr_nitems--;
1153 	pp->pr_nout++;
1154 	if (ph->ph_nmissing == 0) {
1155 #ifdef DIAGNOSTIC
1156 		if (__predict_false(pp->pr_nidle == 0))
1157 			panic("pool_get: nidle inconsistent");
1158 #endif
1159 		pp->pr_nidle--;
1160 
1161 		/*
1162 		 * This page was previously empty.  Move it to the list of
1163 		 * partially-full pages.  This page is already curpage.
1164 		 */
1165 		LIST_REMOVE(ph, ph_pagelist);
1166 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1167 	}
1168 	ph->ph_nmissing++;
1169 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1170 #ifdef DIAGNOSTIC
1171 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1172 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1173 			pr_leave(pp);
1174 			mutex_exit(&pp->pr_lock);
1175 			panic("pool_get: %s: nmissing inconsistent",
1176 			    pp->pr_wchan);
1177 		}
1178 #endif
1179 		/*
1180 		 * This page is now full.  Move it to the full list
1181 		 * and select a new current page.
1182 		 */
1183 		LIST_REMOVE(ph, ph_pagelist);
1184 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1185 		pool_update_curpage(pp);
1186 	}
1187 
1188 	pp->pr_nget++;
1189 	pr_leave(pp);
1190 
1191 	/*
1192 	 * If we have a low water mark and we are now below that low
1193 	 * water mark, add more items to the pool.
1194 	 */
1195 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1196 		/*
1197 		 * XXX: Should we log a warning?  Should we set up a timeout
1198 		 * to try again in a second or so?  The latter could break
1199 		 * a caller's assumptions about interrupt protection, etc.
1200 		 */
1201 	}
1202 
1203 	mutex_exit(&pp->pr_lock);
1204 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1205 	FREECHECK_OUT(&pp->pr_freecheck, v);
1206 	return (v);
1207 }
1208 
1209 /*
1210  * Internal version of pool_put().  Pool is already locked/entered.
1211  */
1212 static void
1213 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1214 {
1215 	struct pool_item *pi = v;
1216 	struct pool_item_header *ph;
1217 
1218 	KASSERT(mutex_owned(&pp->pr_lock));
1219 	FREECHECK_IN(&pp->pr_freecheck, v);
1220 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1221 
1222 #ifdef DIAGNOSTIC
1223 	if (__predict_false(pp->pr_nout == 0)) {
1224 		printf("pool %s: putting with none out\n",
1225 		    pp->pr_wchan);
1226 		panic("pool_put");
1227 	}
1228 #endif
1229 
1230 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1231 		pr_printlog(pp, NULL, printf);
1232 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1233 	}
1234 
1235 	/*
1236 	 * Return to item list.
1237 	 */
1238 	if (pp->pr_roflags & PR_NOTOUCH) {
1239 		pr_item_notouch_put(pp, ph, v);
1240 	} else {
1241 #ifdef DIAGNOSTIC
1242 		pi->pi_magic = PI_MAGIC;
1243 #endif
1244 #ifdef DEBUG
1245 		{
1246 			int i, *ip = v;
1247 
1248 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1249 				*ip++ = PI_MAGIC;
1250 			}
1251 		}
1252 #endif
1253 
1254 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1255 	}
1256 	KDASSERT(ph->ph_nmissing != 0);
1257 	ph->ph_nmissing--;
1258 	pp->pr_nput++;
1259 	pp->pr_nitems++;
1260 	pp->pr_nout--;
1261 
1262 	/* Cancel "pool empty" condition if it exists */
1263 	if (pp->pr_curpage == NULL)
1264 		pp->pr_curpage = ph;
1265 
1266 	if (pp->pr_flags & PR_WANTED) {
1267 		pp->pr_flags &= ~PR_WANTED;
1268 		cv_broadcast(&pp->pr_cv);
1269 	}
1270 
1271 	/*
1272 	 * If this page is now empty, do one of two things:
1273 	 *
1274 	 *	(1) If we have more pages than the page high water mark,
1275 	 *	    free the page back to the system.  ONLY CONSIDER
1276 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1277 	 *	    CLAIM.
1278 	 *
1279 	 *	(2) Otherwise, move the page to the empty page list.
1280 	 *
1281 	 * Either way, select a new current page (so we use a partially-full
1282 	 * page if one is available).
1283 	 */
1284 	if (ph->ph_nmissing == 0) {
1285 		pp->pr_nidle++;
1286 		if (pp->pr_npages > pp->pr_minpages &&
1287 		    pp->pr_npages > pp->pr_maxpages) {
1288 			pr_rmpage(pp, ph, pq);
1289 		} else {
1290 			LIST_REMOVE(ph, ph_pagelist);
1291 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1292 
1293 			/*
1294 			 * Update the timestamp on the page.  A page must
1295 			 * be idle for some period of time before it can
1296 			 * be reclaimed by the pagedaemon.  This minimizes
1297 			 * ping-pong'ing for memory.
1298 			 *
1299 			 * note for 64-bit time_t: truncating to 32-bit is not
1300 			 * a problem for our usage.
1301 			 */
1302 			ph->ph_time = time_uptime;
1303 		}
1304 		pool_update_curpage(pp);
1305 	}
1306 
1307 	/*
1308 	 * If the page was previously completely full, move it to the
1309 	 * partially-full list and make it the current page.  The next
1310 	 * allocation will get the item from this page, instead of
1311 	 * further fragmenting the pool.
1312 	 */
1313 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1314 		LIST_REMOVE(ph, ph_pagelist);
1315 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1316 		pp->pr_curpage = ph;
1317 	}
1318 }
1319 
1320 /*
1321  * Return resource to the pool.
1322  */
1323 #ifdef POOL_DIAGNOSTIC
1324 void
1325 _pool_put(struct pool *pp, void *v, const char *file, long line)
1326 {
1327 	struct pool_pagelist pq;
1328 
1329 	LIST_INIT(&pq);
1330 
1331 	mutex_enter(&pp->pr_lock);
1332 	pr_enter(pp, file, line);
1333 
1334 	pr_log(pp, v, PRLOG_PUT, file, line);
1335 
1336 	pool_do_put(pp, v, &pq);
1337 
1338 	pr_leave(pp);
1339 	mutex_exit(&pp->pr_lock);
1340 
1341 	pr_pagelist_free(pp, &pq);
1342 }
1343 #undef pool_put
1344 #endif /* POOL_DIAGNOSTIC */
1345 
1346 void
1347 pool_put(struct pool *pp, void *v)
1348 {
1349 	struct pool_pagelist pq;
1350 
1351 	LIST_INIT(&pq);
1352 
1353 	mutex_enter(&pp->pr_lock);
1354 	pool_do_put(pp, v, &pq);
1355 	mutex_exit(&pp->pr_lock);
1356 
1357 	pr_pagelist_free(pp, &pq);
1358 }
1359 
1360 #ifdef POOL_DIAGNOSTIC
1361 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1362 #endif
1363 
1364 /*
1365  * pool_grow: grow a pool by a page.
1366  *
1367  * => called with pool locked.
1368  * => unlock and relock the pool.
1369  * => return with pool locked.
1370  */
1371 
1372 static int
1373 pool_grow(struct pool *pp, int flags)
1374 {
1375 	struct pool_item_header *ph = NULL;
1376 	char *cp;
1377 
1378 	mutex_exit(&pp->pr_lock);
1379 	cp = pool_allocator_alloc(pp, flags);
1380 	if (__predict_true(cp != NULL)) {
1381 		ph = pool_alloc_item_header(pp, cp, flags);
1382 	}
1383 	if (__predict_false(cp == NULL || ph == NULL)) {
1384 		if (cp != NULL) {
1385 			pool_allocator_free(pp, cp);
1386 		}
1387 		mutex_enter(&pp->pr_lock);
1388 		return ENOMEM;
1389 	}
1390 
1391 	mutex_enter(&pp->pr_lock);
1392 	pool_prime_page(pp, cp, ph);
1393 	pp->pr_npagealloc++;
1394 	return 0;
1395 }
1396 
1397 /*
1398  * Add N items to the pool.
1399  */
1400 int
1401 pool_prime(struct pool *pp, int n)
1402 {
1403 	int newpages;
1404 	int error = 0;
1405 
1406 	mutex_enter(&pp->pr_lock);
1407 
1408 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1409 
1410 	while (newpages-- > 0) {
1411 		error = pool_grow(pp, PR_NOWAIT);
1412 		if (error) {
1413 			break;
1414 		}
1415 		pp->pr_minpages++;
1416 	}
1417 
1418 	if (pp->pr_minpages >= pp->pr_maxpages)
1419 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1420 
1421 	mutex_exit(&pp->pr_lock);
1422 	return error;
1423 }
1424 
1425 /*
1426  * Add a page worth of items to the pool.
1427  *
1428  * Note, we must be called with the pool descriptor LOCKED.
1429  */
1430 static void
1431 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1432 {
1433 	struct pool_item *pi;
1434 	void *cp = storage;
1435 	const unsigned int align = pp->pr_align;
1436 	const unsigned int ioff = pp->pr_itemoffset;
1437 	int n;
1438 
1439 	KASSERT(mutex_owned(&pp->pr_lock));
1440 
1441 #ifdef DIAGNOSTIC
1442 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1443 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1444 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1445 #endif
1446 
1447 	/*
1448 	 * Insert page header.
1449 	 */
1450 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1451 	LIST_INIT(&ph->ph_itemlist);
1452 	ph->ph_page = storage;
1453 	ph->ph_nmissing = 0;
1454 	ph->ph_time = time_uptime;
1455 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1456 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1457 
1458 	pp->pr_nidle++;
1459 
1460 	/*
1461 	 * Color this page.
1462 	 */
1463 	ph->ph_off = pp->pr_curcolor;
1464 	cp = (char *)cp + ph->ph_off;
1465 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1466 		pp->pr_curcolor = 0;
1467 
1468 	/*
1469 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1470 	 */
1471 	if (ioff != 0)
1472 		cp = (char *)cp + align - ioff;
1473 
1474 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1475 
1476 	/*
1477 	 * Insert remaining chunks on the bucket list.
1478 	 */
1479 	n = pp->pr_itemsperpage;
1480 	pp->pr_nitems += n;
1481 
1482 	if (pp->pr_roflags & PR_NOTOUCH) {
1483 		pr_item_notouch_init(pp, ph);
1484 	} else {
1485 		while (n--) {
1486 			pi = (struct pool_item *)cp;
1487 
1488 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1489 
1490 			/* Insert on page list */
1491 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1492 #ifdef DIAGNOSTIC
1493 			pi->pi_magic = PI_MAGIC;
1494 #endif
1495 			cp = (char *)cp + pp->pr_size;
1496 
1497 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * If the pool was depleted, point at the new page.
1503 	 */
1504 	if (pp->pr_curpage == NULL)
1505 		pp->pr_curpage = ph;
1506 
1507 	if (++pp->pr_npages > pp->pr_hiwat)
1508 		pp->pr_hiwat = pp->pr_npages;
1509 }
1510 
1511 /*
1512  * Used by pool_get() when nitems drops below the low water mark.  This
1513  * is used to catch up pr_nitems with the low water mark.
1514  *
1515  * Note 1, we never wait for memory here, we let the caller decide what to do.
1516  *
1517  * Note 2, we must be called with the pool already locked, and we return
1518  * with it locked.
1519  */
1520 static int
1521 pool_catchup(struct pool *pp)
1522 {
1523 	int error = 0;
1524 
1525 	while (POOL_NEEDS_CATCHUP(pp)) {
1526 		error = pool_grow(pp, PR_NOWAIT);
1527 		if (error) {
1528 			break;
1529 		}
1530 	}
1531 	return error;
1532 }
1533 
1534 static void
1535 pool_update_curpage(struct pool *pp)
1536 {
1537 
1538 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1539 	if (pp->pr_curpage == NULL) {
1540 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1541 	}
1542 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1543 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1544 }
1545 
1546 void
1547 pool_setlowat(struct pool *pp, int n)
1548 {
1549 
1550 	mutex_enter(&pp->pr_lock);
1551 
1552 	pp->pr_minitems = n;
1553 	pp->pr_minpages = (n == 0)
1554 		? 0
1555 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1556 
1557 	/* Make sure we're caught up with the newly-set low water mark. */
1558 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1559 		/*
1560 		 * XXX: Should we log a warning?  Should we set up a timeout
1561 		 * to try again in a second or so?  The latter could break
1562 		 * a caller's assumptions about interrupt protection, etc.
1563 		 */
1564 	}
1565 
1566 	mutex_exit(&pp->pr_lock);
1567 }
1568 
1569 void
1570 pool_sethiwat(struct pool *pp, int n)
1571 {
1572 
1573 	mutex_enter(&pp->pr_lock);
1574 
1575 	pp->pr_maxpages = (n == 0)
1576 		? 0
1577 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1578 
1579 	mutex_exit(&pp->pr_lock);
1580 }
1581 
1582 void
1583 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1584 {
1585 
1586 	mutex_enter(&pp->pr_lock);
1587 
1588 	pp->pr_hardlimit = n;
1589 	pp->pr_hardlimit_warning = warnmess;
1590 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1591 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1592 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1593 
1594 	/*
1595 	 * In-line version of pool_sethiwat(), because we don't want to
1596 	 * release the lock.
1597 	 */
1598 	pp->pr_maxpages = (n == 0)
1599 		? 0
1600 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1601 
1602 	mutex_exit(&pp->pr_lock);
1603 }
1604 
1605 /*
1606  * Release all complete pages that have not been used recently.
1607  */
1608 int
1609 #ifdef POOL_DIAGNOSTIC
1610 _pool_reclaim(struct pool *pp, const char *file, long line)
1611 #else
1612 pool_reclaim(struct pool *pp)
1613 #endif
1614 {
1615 	struct pool_item_header *ph, *phnext;
1616 	struct pool_pagelist pq;
1617 	uint32_t curtime;
1618 	bool klock;
1619 	int rv;
1620 
1621 	if (pp->pr_drain_hook != NULL) {
1622 		/*
1623 		 * The drain hook must be called with the pool unlocked.
1624 		 */
1625 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1626 	}
1627 
1628 	/*
1629 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1630 	 * to block.
1631 	 */
1632 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1633 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1634 		KERNEL_LOCK(1, NULL);
1635 		klock = true;
1636 	} else
1637 		klock = false;
1638 
1639 	/* Reclaim items from the pool's cache (if any). */
1640 	if (pp->pr_cache != NULL)
1641 		pool_cache_invalidate(pp->pr_cache);
1642 
1643 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1644 		if (klock) {
1645 			KERNEL_UNLOCK_ONE(NULL);
1646 		}
1647 		return (0);
1648 	}
1649 	pr_enter(pp, file, line);
1650 
1651 	LIST_INIT(&pq);
1652 
1653 	curtime = time_uptime;
1654 
1655 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1656 		phnext = LIST_NEXT(ph, ph_pagelist);
1657 
1658 		/* Check our minimum page claim */
1659 		if (pp->pr_npages <= pp->pr_minpages)
1660 			break;
1661 
1662 		KASSERT(ph->ph_nmissing == 0);
1663 		if (curtime - ph->ph_time < pool_inactive_time
1664 		    && !pa_starved_p(pp->pr_alloc))
1665 			continue;
1666 
1667 		/*
1668 		 * If freeing this page would put us below
1669 		 * the low water mark, stop now.
1670 		 */
1671 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1672 		    pp->pr_minitems)
1673 			break;
1674 
1675 		pr_rmpage(pp, ph, &pq);
1676 	}
1677 
1678 	pr_leave(pp);
1679 	mutex_exit(&pp->pr_lock);
1680 
1681 	if (LIST_EMPTY(&pq))
1682 		rv = 0;
1683 	else {
1684 		pr_pagelist_free(pp, &pq);
1685 		rv = 1;
1686 	}
1687 
1688 	if (klock) {
1689 		KERNEL_UNLOCK_ONE(NULL);
1690 	}
1691 
1692 	return (rv);
1693 }
1694 
1695 /*
1696  * Drain pools, one at a time.  This is a two stage process;
1697  * drain_start kicks off a cross call to drain CPU-level caches
1698  * if the pool has an associated pool_cache.  drain_end waits
1699  * for those cross calls to finish, and then drains the cache
1700  * (if any) and pool.
1701  *
1702  * Note, must never be called from interrupt context.
1703  */
1704 void
1705 pool_drain_start(struct pool **ppp, uint64_t *wp)
1706 {
1707 	struct pool *pp;
1708 
1709 	KASSERT(!TAILQ_EMPTY(&pool_head));
1710 
1711 	pp = NULL;
1712 
1713 	/* Find next pool to drain, and add a reference. */
1714 	mutex_enter(&pool_head_lock);
1715 	do {
1716 		if (drainpp == NULL) {
1717 			drainpp = TAILQ_FIRST(&pool_head);
1718 		}
1719 		if (drainpp != NULL) {
1720 			pp = drainpp;
1721 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1722 		}
1723 		/*
1724 		 * Skip completely idle pools.  We depend on at least
1725 		 * one pool in the system being active.
1726 		 */
1727 	} while (pp == NULL || pp->pr_npages == 0);
1728 	pp->pr_refcnt++;
1729 	mutex_exit(&pool_head_lock);
1730 
1731 	/* If there is a pool_cache, drain CPU level caches. */
1732 	*ppp = pp;
1733 	if (pp->pr_cache != NULL) {
1734 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1735 		    pp->pr_cache, NULL);
1736 	}
1737 }
1738 
1739 void
1740 pool_drain_end(struct pool *pp, uint64_t where)
1741 {
1742 
1743 	if (pp == NULL)
1744 		return;
1745 
1746 	KASSERT(pp->pr_refcnt > 0);
1747 
1748 	/* Wait for remote draining to complete. */
1749 	if (pp->pr_cache != NULL)
1750 		xc_wait(where);
1751 
1752 	/* Drain the cache (if any) and pool.. */
1753 	pool_reclaim(pp);
1754 
1755 	/* Finally, unlock the pool. */
1756 	mutex_enter(&pool_head_lock);
1757 	pp->pr_refcnt--;
1758 	cv_broadcast(&pool_busy);
1759 	mutex_exit(&pool_head_lock);
1760 }
1761 
1762 /*
1763  * Diagnostic helpers.
1764  */
1765 void
1766 pool_print(struct pool *pp, const char *modif)
1767 {
1768 
1769 	pool_print1(pp, modif, printf);
1770 }
1771 
1772 void
1773 pool_printall(const char *modif, void (*pr)(const char *, ...))
1774 {
1775 	struct pool *pp;
1776 
1777 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1778 		pool_printit(pp, modif, pr);
1779 	}
1780 }
1781 
1782 void
1783 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1784 {
1785 
1786 	if (pp == NULL) {
1787 		(*pr)("Must specify a pool to print.\n");
1788 		return;
1789 	}
1790 
1791 	pool_print1(pp, modif, pr);
1792 }
1793 
1794 static void
1795 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1796     void (*pr)(const char *, ...))
1797 {
1798 	struct pool_item_header *ph;
1799 #ifdef DIAGNOSTIC
1800 	struct pool_item *pi;
1801 #endif
1802 
1803 	LIST_FOREACH(ph, pl, ph_pagelist) {
1804 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1805 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1806 #ifdef DIAGNOSTIC
1807 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1808 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1809 				if (pi->pi_magic != PI_MAGIC) {
1810 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1811 					    pi, pi->pi_magic);
1812 				}
1813 			}
1814 		}
1815 #endif
1816 	}
1817 }
1818 
1819 static void
1820 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1821 {
1822 	struct pool_item_header *ph;
1823 	pool_cache_t pc;
1824 	pcg_t *pcg;
1825 	pool_cache_cpu_t *cc;
1826 	uint64_t cpuhit, cpumiss;
1827 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1828 	char c;
1829 
1830 	while ((c = *modif++) != '\0') {
1831 		if (c == 'l')
1832 			print_log = 1;
1833 		if (c == 'p')
1834 			print_pagelist = 1;
1835 		if (c == 'c')
1836 			print_cache = 1;
1837 	}
1838 
1839 	if ((pc = pp->pr_cache) != NULL) {
1840 		(*pr)("POOL CACHE");
1841 	} else {
1842 		(*pr)("POOL");
1843 	}
1844 
1845 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1846 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1847 	    pp->pr_roflags);
1848 	(*pr)("\talloc %p\n", pp->pr_alloc);
1849 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1850 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1851 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1852 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1853 
1854 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1855 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1856 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1857 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1858 
1859 	if (print_pagelist == 0)
1860 		goto skip_pagelist;
1861 
1862 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1863 		(*pr)("\n\tempty page list:\n");
1864 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1865 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1866 		(*pr)("\n\tfull page list:\n");
1867 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1868 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1869 		(*pr)("\n\tpartial-page list:\n");
1870 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1871 
1872 	if (pp->pr_curpage == NULL)
1873 		(*pr)("\tno current page\n");
1874 	else
1875 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1876 
1877  skip_pagelist:
1878 	if (print_log == 0)
1879 		goto skip_log;
1880 
1881 	(*pr)("\n");
1882 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1883 		(*pr)("\tno log\n");
1884 	else {
1885 		pr_printlog(pp, NULL, pr);
1886 	}
1887 
1888  skip_log:
1889 
1890 #define PR_GROUPLIST(pcg)						\
1891 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1892 	for (i = 0; i < pcg->pcg_size; i++) {				\
1893 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1894 		    POOL_PADDR_INVALID) {				\
1895 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1896 			    pcg->pcg_objects[i].pcgo_va,		\
1897 			    (unsigned long long)			\
1898 			    pcg->pcg_objects[i].pcgo_pa);		\
1899 		} else {						\
1900 			(*pr)("\t\t\t%p\n",				\
1901 			    pcg->pcg_objects[i].pcgo_va);		\
1902 		}							\
1903 	}
1904 
1905 	if (pc != NULL) {
1906 		cpuhit = 0;
1907 		cpumiss = 0;
1908 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1909 			if ((cc = pc->pc_cpus[i]) == NULL)
1910 				continue;
1911 			cpuhit += cc->cc_hits;
1912 			cpumiss += cc->cc_misses;
1913 		}
1914 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1915 		(*pr)("\tcache layer hits %llu misses %llu\n",
1916 		    pc->pc_hits, pc->pc_misses);
1917 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1918 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1919 		    pc->pc_contended);
1920 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1921 		    pc->pc_nempty, pc->pc_nfull);
1922 		if (print_cache) {
1923 			(*pr)("\tfull cache groups:\n");
1924 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1925 			    pcg = pcg->pcg_next) {
1926 				PR_GROUPLIST(pcg);
1927 			}
1928 			(*pr)("\tempty cache groups:\n");
1929 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1930 			    pcg = pcg->pcg_next) {
1931 				PR_GROUPLIST(pcg);
1932 			}
1933 		}
1934 	}
1935 #undef PR_GROUPLIST
1936 
1937 	pr_enter_check(pp, pr);
1938 }
1939 
1940 static int
1941 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1942 {
1943 	struct pool_item *pi;
1944 	void *page;
1945 	int n;
1946 
1947 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1948 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1949 		if (page != ph->ph_page &&
1950 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1951 			if (label != NULL)
1952 				printf("%s: ", label);
1953 			printf("pool(%p:%s): page inconsistency: page %p;"
1954 			       " at page head addr %p (p %p)\n", pp,
1955 				pp->pr_wchan, ph->ph_page,
1956 				ph, page);
1957 			return 1;
1958 		}
1959 	}
1960 
1961 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1962 		return 0;
1963 
1964 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1965 	     pi != NULL;
1966 	     pi = LIST_NEXT(pi,pi_list), n++) {
1967 
1968 #ifdef DIAGNOSTIC
1969 		if (pi->pi_magic != PI_MAGIC) {
1970 			if (label != NULL)
1971 				printf("%s: ", label);
1972 			printf("pool(%s): free list modified: magic=%x;"
1973 			       " page %p; item ordinal %d; addr %p\n",
1974 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1975 				n, pi);
1976 			panic("pool");
1977 		}
1978 #endif
1979 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1980 			continue;
1981 		}
1982 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1983 		if (page == ph->ph_page)
1984 			continue;
1985 
1986 		if (label != NULL)
1987 			printf("%s: ", label);
1988 		printf("pool(%p:%s): page inconsistency: page %p;"
1989 		       " item ordinal %d; addr %p (p %p)\n", pp,
1990 			pp->pr_wchan, ph->ph_page,
1991 			n, pi, page);
1992 		return 1;
1993 	}
1994 	return 0;
1995 }
1996 
1997 
1998 int
1999 pool_chk(struct pool *pp, const char *label)
2000 {
2001 	struct pool_item_header *ph;
2002 	int r = 0;
2003 
2004 	mutex_enter(&pp->pr_lock);
2005 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2006 		r = pool_chk_page(pp, label, ph);
2007 		if (r) {
2008 			goto out;
2009 		}
2010 	}
2011 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2012 		r = pool_chk_page(pp, label, ph);
2013 		if (r) {
2014 			goto out;
2015 		}
2016 	}
2017 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2018 		r = pool_chk_page(pp, label, ph);
2019 		if (r) {
2020 			goto out;
2021 		}
2022 	}
2023 
2024 out:
2025 	mutex_exit(&pp->pr_lock);
2026 	return (r);
2027 }
2028 
2029 /*
2030  * pool_cache_init:
2031  *
2032  *	Initialize a pool cache.
2033  */
2034 pool_cache_t
2035 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2036     const char *wchan, struct pool_allocator *palloc, int ipl,
2037     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2038 {
2039 	pool_cache_t pc;
2040 
2041 	pc = pool_get(&cache_pool, PR_WAITOK);
2042 	if (pc == NULL)
2043 		return NULL;
2044 
2045 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2046 	   palloc, ipl, ctor, dtor, arg);
2047 
2048 	return pc;
2049 }
2050 
2051 /*
2052  * pool_cache_bootstrap:
2053  *
2054  *	Kernel-private version of pool_cache_init().  The caller
2055  *	provides initial storage.
2056  */
2057 void
2058 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2059     u_int align_offset, u_int flags, const char *wchan,
2060     struct pool_allocator *palloc, int ipl,
2061     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2062     void *arg)
2063 {
2064 	CPU_INFO_ITERATOR cii;
2065 	pool_cache_t pc1;
2066 	struct cpu_info *ci;
2067 	struct pool *pp;
2068 
2069 	pp = &pc->pc_pool;
2070 	if (palloc == NULL && ipl == IPL_NONE)
2071 		palloc = &pool_allocator_nointr;
2072 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2073 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2074 
2075 	if (ctor == NULL) {
2076 		ctor = (int (*)(void *, void *, int))nullop;
2077 	}
2078 	if (dtor == NULL) {
2079 		dtor = (void (*)(void *, void *))nullop;
2080 	}
2081 
2082 	pc->pc_emptygroups = NULL;
2083 	pc->pc_fullgroups = NULL;
2084 	pc->pc_partgroups = NULL;
2085 	pc->pc_ctor = ctor;
2086 	pc->pc_dtor = dtor;
2087 	pc->pc_arg  = arg;
2088 	pc->pc_hits  = 0;
2089 	pc->pc_misses = 0;
2090 	pc->pc_nempty = 0;
2091 	pc->pc_npart = 0;
2092 	pc->pc_nfull = 0;
2093 	pc->pc_contended = 0;
2094 	pc->pc_refcnt = 0;
2095 	pc->pc_freecheck = NULL;
2096 
2097 	if ((flags & PR_LARGECACHE) != 0) {
2098 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2099 		pc->pc_pcgpool = &pcg_large_pool;
2100 	} else {
2101 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2102 		pc->pc_pcgpool = &pcg_normal_pool;
2103 	}
2104 
2105 	/* Allocate per-CPU caches. */
2106 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2107 	pc->pc_ncpu = 0;
2108 	if (ncpu < 2) {
2109 		/* XXX For sparc: boot CPU is not attached yet. */
2110 		pool_cache_cpu_init1(curcpu(), pc);
2111 	} else {
2112 		for (CPU_INFO_FOREACH(cii, ci)) {
2113 			pool_cache_cpu_init1(ci, pc);
2114 		}
2115 	}
2116 
2117 	/* Add to list of all pools. */
2118 	if (__predict_true(!cold))
2119 		mutex_enter(&pool_head_lock);
2120 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2121 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2122 			break;
2123 	}
2124 	if (pc1 == NULL)
2125 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2126 	else
2127 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2128 	if (__predict_true(!cold))
2129 		mutex_exit(&pool_head_lock);
2130 
2131 	membar_sync();
2132 	pp->pr_cache = pc;
2133 }
2134 
2135 /*
2136  * pool_cache_destroy:
2137  *
2138  *	Destroy a pool cache.
2139  */
2140 void
2141 pool_cache_destroy(pool_cache_t pc)
2142 {
2143 	struct pool *pp = &pc->pc_pool;
2144 	u_int i;
2145 
2146 	/* Remove it from the global list. */
2147 	mutex_enter(&pool_head_lock);
2148 	while (pc->pc_refcnt != 0)
2149 		cv_wait(&pool_busy, &pool_head_lock);
2150 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2151 	mutex_exit(&pool_head_lock);
2152 
2153 	/* First, invalidate the entire cache. */
2154 	pool_cache_invalidate(pc);
2155 
2156 	/* Disassociate it from the pool. */
2157 	mutex_enter(&pp->pr_lock);
2158 	pp->pr_cache = NULL;
2159 	mutex_exit(&pp->pr_lock);
2160 
2161 	/* Destroy per-CPU data */
2162 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2163 		pool_cache_invalidate_cpu(pc, i);
2164 
2165 	/* Finally, destroy it. */
2166 	mutex_destroy(&pc->pc_lock);
2167 	pool_destroy(pp);
2168 	pool_put(&cache_pool, pc);
2169 }
2170 
2171 /*
2172  * pool_cache_cpu_init1:
2173  *
2174  *	Called for each pool_cache whenever a new CPU is attached.
2175  */
2176 static void
2177 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2178 {
2179 	pool_cache_cpu_t *cc;
2180 	int index;
2181 
2182 	index = ci->ci_index;
2183 
2184 	KASSERT(index < __arraycount(pc->pc_cpus));
2185 
2186 	if ((cc = pc->pc_cpus[index]) != NULL) {
2187 		KASSERT(cc->cc_cpuindex == index);
2188 		return;
2189 	}
2190 
2191 	/*
2192 	 * The first CPU is 'free'.  This needs to be the case for
2193 	 * bootstrap - we may not be able to allocate yet.
2194 	 */
2195 	if (pc->pc_ncpu == 0) {
2196 		cc = &pc->pc_cpu0;
2197 		pc->pc_ncpu = 1;
2198 	} else {
2199 		mutex_enter(&pc->pc_lock);
2200 		pc->pc_ncpu++;
2201 		mutex_exit(&pc->pc_lock);
2202 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2203 	}
2204 
2205 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2206 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2207 	cc->cc_cache = pc;
2208 	cc->cc_cpuindex = index;
2209 	cc->cc_hits = 0;
2210 	cc->cc_misses = 0;
2211 	cc->cc_current = __UNCONST(&pcg_dummy);
2212 	cc->cc_previous = __UNCONST(&pcg_dummy);
2213 
2214 	pc->pc_cpus[index] = cc;
2215 }
2216 
2217 /*
2218  * pool_cache_cpu_init:
2219  *
2220  *	Called whenever a new CPU is attached.
2221  */
2222 void
2223 pool_cache_cpu_init(struct cpu_info *ci)
2224 {
2225 	pool_cache_t pc;
2226 
2227 	mutex_enter(&pool_head_lock);
2228 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2229 		pc->pc_refcnt++;
2230 		mutex_exit(&pool_head_lock);
2231 
2232 		pool_cache_cpu_init1(ci, pc);
2233 
2234 		mutex_enter(&pool_head_lock);
2235 		pc->pc_refcnt--;
2236 		cv_broadcast(&pool_busy);
2237 	}
2238 	mutex_exit(&pool_head_lock);
2239 }
2240 
2241 /*
2242  * pool_cache_reclaim:
2243  *
2244  *	Reclaim memory from a pool cache.
2245  */
2246 bool
2247 pool_cache_reclaim(pool_cache_t pc)
2248 {
2249 
2250 	return pool_reclaim(&pc->pc_pool);
2251 }
2252 
2253 static void
2254 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2255 {
2256 
2257 	(*pc->pc_dtor)(pc->pc_arg, object);
2258 	pool_put(&pc->pc_pool, object);
2259 }
2260 
2261 /*
2262  * pool_cache_destruct_object:
2263  *
2264  *	Force destruction of an object and its release back into
2265  *	the pool.
2266  */
2267 void
2268 pool_cache_destruct_object(pool_cache_t pc, void *object)
2269 {
2270 
2271 	FREECHECK_IN(&pc->pc_freecheck, object);
2272 
2273 	pool_cache_destruct_object1(pc, object);
2274 }
2275 
2276 /*
2277  * pool_cache_invalidate_groups:
2278  *
2279  *	Invalidate a chain of groups and destruct all objects.
2280  */
2281 static void
2282 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2283 {
2284 	void *object;
2285 	pcg_t *next;
2286 	int i;
2287 
2288 	for (; pcg != NULL; pcg = next) {
2289 		next = pcg->pcg_next;
2290 
2291 		for (i = 0; i < pcg->pcg_avail; i++) {
2292 			object = pcg->pcg_objects[i].pcgo_va;
2293 			pool_cache_destruct_object1(pc, object);
2294 		}
2295 
2296 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2297 			pool_put(&pcg_large_pool, pcg);
2298 		} else {
2299 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2300 			pool_put(&pcg_normal_pool, pcg);
2301 		}
2302 	}
2303 }
2304 
2305 /*
2306  * pool_cache_invalidate:
2307  *
2308  *	Invalidate a pool cache (destruct and release all of the
2309  *	cached objects).  Does not reclaim objects from the pool.
2310  *
2311  *	Note: For pool caches that provide constructed objects, there
2312  *	is an assumption that another level of synchronization is occurring
2313  *	between the input to the constructor and the cache invalidation.
2314  */
2315 void
2316 pool_cache_invalidate(pool_cache_t pc)
2317 {
2318 	pcg_t *full, *empty, *part;
2319 #if 0
2320 	uint64_t where;
2321 
2322 	if (ncpu < 2 || !mp_online) {
2323 		/*
2324 		 * We might be called early enough in the boot process
2325 		 * for the CPU data structures to not be fully initialized.
2326 		 * In this case, simply gather the local CPU's cache now
2327 		 * since it will be the only one running.
2328 		 */
2329 		pool_cache_xcall(pc);
2330 	} else {
2331 		/*
2332 		 * Gather all of the CPU-specific caches into the
2333 		 * global cache.
2334 		 */
2335 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2336 		xc_wait(where);
2337 	}
2338 #endif
2339 	mutex_enter(&pc->pc_lock);
2340 	full = pc->pc_fullgroups;
2341 	empty = pc->pc_emptygroups;
2342 	part = pc->pc_partgroups;
2343 	pc->pc_fullgroups = NULL;
2344 	pc->pc_emptygroups = NULL;
2345 	pc->pc_partgroups = NULL;
2346 	pc->pc_nfull = 0;
2347 	pc->pc_nempty = 0;
2348 	pc->pc_npart = 0;
2349 	mutex_exit(&pc->pc_lock);
2350 
2351 	pool_cache_invalidate_groups(pc, full);
2352 	pool_cache_invalidate_groups(pc, empty);
2353 	pool_cache_invalidate_groups(pc, part);
2354 }
2355 
2356 /*
2357  * pool_cache_invalidate_cpu:
2358  *
2359  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2360  *	identified by its associated index.
2361  *	It is caller's responsibility to ensure that no operation is
2362  *	taking place on this pool cache while doing this invalidation.
2363  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2364  *	pool cached objects from a CPU different from the one currently running
2365  *	may result in an undefined behaviour.
2366  */
2367 static void
2368 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2369 {
2370 
2371 	pool_cache_cpu_t *cc;
2372 	pcg_t *pcg;
2373 
2374 	if ((cc = pc->pc_cpus[index]) == NULL)
2375 		return;
2376 
2377 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2378 		pcg->pcg_next = NULL;
2379 		pool_cache_invalidate_groups(pc, pcg);
2380 	}
2381 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2382 		pcg->pcg_next = NULL;
2383 		pool_cache_invalidate_groups(pc, pcg);
2384 	}
2385 	if (cc != &pc->pc_cpu0)
2386 		pool_put(&cache_cpu_pool, cc);
2387 
2388 }
2389 
2390 void
2391 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2392 {
2393 
2394 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2395 }
2396 
2397 void
2398 pool_cache_setlowat(pool_cache_t pc, int n)
2399 {
2400 
2401 	pool_setlowat(&pc->pc_pool, n);
2402 }
2403 
2404 void
2405 pool_cache_sethiwat(pool_cache_t pc, int n)
2406 {
2407 
2408 	pool_sethiwat(&pc->pc_pool, n);
2409 }
2410 
2411 void
2412 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2413 {
2414 
2415 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2416 }
2417 
2418 static bool __noinline
2419 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2420 		    paddr_t *pap, int flags)
2421 {
2422 	pcg_t *pcg, *cur;
2423 	uint64_t ncsw;
2424 	pool_cache_t pc;
2425 	void *object;
2426 
2427 	KASSERT(cc->cc_current->pcg_avail == 0);
2428 	KASSERT(cc->cc_previous->pcg_avail == 0);
2429 
2430 	pc = cc->cc_cache;
2431 	cc->cc_misses++;
2432 
2433 	/*
2434 	 * Nothing was available locally.  Try and grab a group
2435 	 * from the cache.
2436 	 */
2437 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2438 		ncsw = curlwp->l_ncsw;
2439 		mutex_enter(&pc->pc_lock);
2440 		pc->pc_contended++;
2441 
2442 		/*
2443 		 * If we context switched while locking, then
2444 		 * our view of the per-CPU data is invalid:
2445 		 * retry.
2446 		 */
2447 		if (curlwp->l_ncsw != ncsw) {
2448 			mutex_exit(&pc->pc_lock);
2449 			return true;
2450 		}
2451 	}
2452 
2453 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2454 		/*
2455 		 * If there's a full group, release our empty
2456 		 * group back to the cache.  Install the full
2457 		 * group as cc_current and return.
2458 		 */
2459 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2460 			KASSERT(cur->pcg_avail == 0);
2461 			cur->pcg_next = pc->pc_emptygroups;
2462 			pc->pc_emptygroups = cur;
2463 			pc->pc_nempty++;
2464 		}
2465 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2466 		cc->cc_current = pcg;
2467 		pc->pc_fullgroups = pcg->pcg_next;
2468 		pc->pc_hits++;
2469 		pc->pc_nfull--;
2470 		mutex_exit(&pc->pc_lock);
2471 		return true;
2472 	}
2473 
2474 	/*
2475 	 * Nothing available locally or in cache.  Take the slow
2476 	 * path: fetch a new object from the pool and construct
2477 	 * it.
2478 	 */
2479 	pc->pc_misses++;
2480 	mutex_exit(&pc->pc_lock);
2481 	splx(s);
2482 
2483 	object = pool_get(&pc->pc_pool, flags);
2484 	*objectp = object;
2485 	if (__predict_false(object == NULL))
2486 		return false;
2487 
2488 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2489 		pool_put(&pc->pc_pool, object);
2490 		*objectp = NULL;
2491 		return false;
2492 	}
2493 
2494 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2495 	    (pc->pc_pool.pr_align - 1)) == 0);
2496 
2497 	if (pap != NULL) {
2498 #ifdef POOL_VTOPHYS
2499 		*pap = POOL_VTOPHYS(object);
2500 #else
2501 		*pap = POOL_PADDR_INVALID;
2502 #endif
2503 	}
2504 
2505 	FREECHECK_OUT(&pc->pc_freecheck, object);
2506 	return false;
2507 }
2508 
2509 /*
2510  * pool_cache_get{,_paddr}:
2511  *
2512  *	Get an object from a pool cache (optionally returning
2513  *	the physical address of the object).
2514  */
2515 void *
2516 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2517 {
2518 	pool_cache_cpu_t *cc;
2519 	pcg_t *pcg;
2520 	void *object;
2521 	int s;
2522 
2523 #ifdef LOCKDEBUG
2524 	if (flags & PR_WAITOK) {
2525 		ASSERT_SLEEPABLE();
2526 	}
2527 #endif
2528 
2529 	/* Lock out interrupts and disable preemption. */
2530 	s = splvm();
2531 	while (/* CONSTCOND */ true) {
2532 		/* Try and allocate an object from the current group. */
2533 		cc = pc->pc_cpus[curcpu()->ci_index];
2534 		KASSERT(cc->cc_cache == pc);
2535 	 	pcg = cc->cc_current;
2536 		if (__predict_true(pcg->pcg_avail > 0)) {
2537 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2538 			if (__predict_false(pap != NULL))
2539 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2540 #if defined(DIAGNOSTIC)
2541 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2542 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2543 			KASSERT(object != NULL);
2544 #endif
2545 			cc->cc_hits++;
2546 			splx(s);
2547 			FREECHECK_OUT(&pc->pc_freecheck, object);
2548 			return object;
2549 		}
2550 
2551 		/*
2552 		 * That failed.  If the previous group isn't empty, swap
2553 		 * it with the current group and allocate from there.
2554 		 */
2555 		pcg = cc->cc_previous;
2556 		if (__predict_true(pcg->pcg_avail > 0)) {
2557 			cc->cc_previous = cc->cc_current;
2558 			cc->cc_current = pcg;
2559 			continue;
2560 		}
2561 
2562 		/*
2563 		 * Can't allocate from either group: try the slow path.
2564 		 * If get_slow() allocated an object for us, or if
2565 		 * no more objects are available, it will return false.
2566 		 * Otherwise, we need to retry.
2567 		 */
2568 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2569 			break;
2570 	}
2571 
2572 	return object;
2573 }
2574 
2575 static bool __noinline
2576 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2577 {
2578 	pcg_t *pcg, *cur;
2579 	uint64_t ncsw;
2580 	pool_cache_t pc;
2581 
2582 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2583 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2584 
2585 	pc = cc->cc_cache;
2586 	pcg = NULL;
2587 	cc->cc_misses++;
2588 
2589 	/*
2590 	 * If there are no empty groups in the cache then allocate one
2591 	 * while still unlocked.
2592 	 */
2593 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2594 		if (__predict_true(!pool_cache_disable)) {
2595 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2596 		}
2597 		if (__predict_true(pcg != NULL)) {
2598 			pcg->pcg_avail = 0;
2599 			pcg->pcg_size = pc->pc_pcgsize;
2600 		}
2601 	}
2602 
2603 	/* Lock the cache. */
2604 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2605 		ncsw = curlwp->l_ncsw;
2606 		mutex_enter(&pc->pc_lock);
2607 		pc->pc_contended++;
2608 
2609 		/*
2610 		 * If we context switched while locking, then our view of
2611 		 * the per-CPU data is invalid: retry.
2612 		 */
2613 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
2614 			mutex_exit(&pc->pc_lock);
2615 			if (pcg != NULL) {
2616 				pool_put(pc->pc_pcgpool, pcg);
2617 			}
2618 			return true;
2619 		}
2620 	}
2621 
2622 	/* If there are no empty groups in the cache then allocate one. */
2623 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2624 		pcg = pc->pc_emptygroups;
2625 		pc->pc_emptygroups = pcg->pcg_next;
2626 		pc->pc_nempty--;
2627 	}
2628 
2629 	/*
2630 	 * If there's a empty group, release our full group back
2631 	 * to the cache.  Install the empty group to the local CPU
2632 	 * and return.
2633 	 */
2634 	if (pcg != NULL) {
2635 		KASSERT(pcg->pcg_avail == 0);
2636 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2637 			cc->cc_previous = pcg;
2638 		} else {
2639 			cur = cc->cc_current;
2640 			if (__predict_true(cur != &pcg_dummy)) {
2641 				KASSERT(cur->pcg_avail == cur->pcg_size);
2642 				cur->pcg_next = pc->pc_fullgroups;
2643 				pc->pc_fullgroups = cur;
2644 				pc->pc_nfull++;
2645 			}
2646 			cc->cc_current = pcg;
2647 		}
2648 		pc->pc_hits++;
2649 		mutex_exit(&pc->pc_lock);
2650 		return true;
2651 	}
2652 
2653 	/*
2654 	 * Nothing available locally or in cache, and we didn't
2655 	 * allocate an empty group.  Take the slow path and destroy
2656 	 * the object here and now.
2657 	 */
2658 	pc->pc_misses++;
2659 	mutex_exit(&pc->pc_lock);
2660 	splx(s);
2661 	pool_cache_destruct_object(pc, object);
2662 
2663 	return false;
2664 }
2665 
2666 /*
2667  * pool_cache_put{,_paddr}:
2668  *
2669  *	Put an object back to the pool cache (optionally caching the
2670  *	physical address of the object).
2671  */
2672 void
2673 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2674 {
2675 	pool_cache_cpu_t *cc;
2676 	pcg_t *pcg;
2677 	int s;
2678 
2679 	KASSERT(object != NULL);
2680 	FREECHECK_IN(&pc->pc_freecheck, object);
2681 
2682 	/* Lock out interrupts and disable preemption. */
2683 	s = splvm();
2684 	while (/* CONSTCOND */ true) {
2685 		/* If the current group isn't full, release it there. */
2686 		cc = pc->pc_cpus[curcpu()->ci_index];
2687 		KASSERT(cc->cc_cache == pc);
2688 	 	pcg = cc->cc_current;
2689 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2690 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2691 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2692 			pcg->pcg_avail++;
2693 			cc->cc_hits++;
2694 			splx(s);
2695 			return;
2696 		}
2697 
2698 		/*
2699 		 * That failed.  If the previous group isn't full, swap
2700 		 * it with the current group and try again.
2701 		 */
2702 		pcg = cc->cc_previous;
2703 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2704 			cc->cc_previous = cc->cc_current;
2705 			cc->cc_current = pcg;
2706 			continue;
2707 		}
2708 
2709 		/*
2710 		 * Can't free to either group: try the slow path.
2711 		 * If put_slow() releases the object for us, it
2712 		 * will return false.  Otherwise we need to retry.
2713 		 */
2714 		if (!pool_cache_put_slow(cc, s, object))
2715 			break;
2716 	}
2717 }
2718 
2719 /*
2720  * pool_cache_xcall:
2721  *
2722  *	Transfer objects from the per-CPU cache to the global cache.
2723  *	Run within a cross-call thread.
2724  */
2725 static void
2726 pool_cache_xcall(pool_cache_t pc)
2727 {
2728 	pool_cache_cpu_t *cc;
2729 	pcg_t *prev, *cur, **list;
2730 	int s;
2731 
2732 	s = splvm();
2733 	mutex_enter(&pc->pc_lock);
2734 	cc = pc->pc_cpus[curcpu()->ci_index];
2735 	cur = cc->cc_current;
2736 	cc->cc_current = __UNCONST(&pcg_dummy);
2737 	prev = cc->cc_previous;
2738 	cc->cc_previous = __UNCONST(&pcg_dummy);
2739 	if (cur != &pcg_dummy) {
2740 		if (cur->pcg_avail == cur->pcg_size) {
2741 			list = &pc->pc_fullgroups;
2742 			pc->pc_nfull++;
2743 		} else if (cur->pcg_avail == 0) {
2744 			list = &pc->pc_emptygroups;
2745 			pc->pc_nempty++;
2746 		} else {
2747 			list = &pc->pc_partgroups;
2748 			pc->pc_npart++;
2749 		}
2750 		cur->pcg_next = *list;
2751 		*list = cur;
2752 	}
2753 	if (prev != &pcg_dummy) {
2754 		if (prev->pcg_avail == prev->pcg_size) {
2755 			list = &pc->pc_fullgroups;
2756 			pc->pc_nfull++;
2757 		} else if (prev->pcg_avail == 0) {
2758 			list = &pc->pc_emptygroups;
2759 			pc->pc_nempty++;
2760 		} else {
2761 			list = &pc->pc_partgroups;
2762 			pc->pc_npart++;
2763 		}
2764 		prev->pcg_next = *list;
2765 		*list = prev;
2766 	}
2767 	mutex_exit(&pc->pc_lock);
2768 	splx(s);
2769 }
2770 
2771 /*
2772  * Pool backend allocators.
2773  *
2774  * Each pool has a backend allocator that handles allocation, deallocation,
2775  * and any additional draining that might be needed.
2776  *
2777  * We provide two standard allocators:
2778  *
2779  *	pool_allocator_kmem - the default when no allocator is specified
2780  *
2781  *	pool_allocator_nointr - used for pools that will not be accessed
2782  *	in interrupt context.
2783  */
2784 void	*pool_page_alloc(struct pool *, int);
2785 void	pool_page_free(struct pool *, void *);
2786 
2787 #ifdef POOL_SUBPAGE
2788 struct pool_allocator pool_allocator_kmem_fullpage = {
2789 	pool_page_alloc, pool_page_free, 0,
2790 	.pa_backingmapptr = &kmem_map,
2791 };
2792 #else
2793 struct pool_allocator pool_allocator_kmem = {
2794 	pool_page_alloc, pool_page_free, 0,
2795 	.pa_backingmapptr = &kmem_map,
2796 };
2797 #endif
2798 
2799 void	*pool_page_alloc_nointr(struct pool *, int);
2800 void	pool_page_free_nointr(struct pool *, void *);
2801 
2802 #ifdef POOL_SUBPAGE
2803 struct pool_allocator pool_allocator_nointr_fullpage = {
2804 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2805 	.pa_backingmapptr = &kernel_map,
2806 };
2807 #else
2808 struct pool_allocator pool_allocator_nointr = {
2809 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2810 	.pa_backingmapptr = &kernel_map,
2811 };
2812 #endif
2813 
2814 #ifdef POOL_SUBPAGE
2815 void	*pool_subpage_alloc(struct pool *, int);
2816 void	pool_subpage_free(struct pool *, void *);
2817 
2818 struct pool_allocator pool_allocator_kmem = {
2819 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2820 	.pa_backingmapptr = &kmem_map,
2821 };
2822 
2823 void	*pool_subpage_alloc_nointr(struct pool *, int);
2824 void	pool_subpage_free_nointr(struct pool *, void *);
2825 
2826 struct pool_allocator pool_allocator_nointr = {
2827 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2828 	.pa_backingmapptr = &kmem_map,
2829 };
2830 #endif /* POOL_SUBPAGE */
2831 
2832 static void *
2833 pool_allocator_alloc(struct pool *pp, int flags)
2834 {
2835 	struct pool_allocator *pa = pp->pr_alloc;
2836 	void *res;
2837 
2838 	res = (*pa->pa_alloc)(pp, flags);
2839 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2840 		/*
2841 		 * We only run the drain hook here if PR_NOWAIT.
2842 		 * In other cases, the hook will be run in
2843 		 * pool_reclaim().
2844 		 */
2845 		if (pp->pr_drain_hook != NULL) {
2846 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2847 			res = (*pa->pa_alloc)(pp, flags);
2848 		}
2849 	}
2850 	return res;
2851 }
2852 
2853 static void
2854 pool_allocator_free(struct pool *pp, void *v)
2855 {
2856 	struct pool_allocator *pa = pp->pr_alloc;
2857 
2858 	(*pa->pa_free)(pp, v);
2859 }
2860 
2861 void *
2862 pool_page_alloc(struct pool *pp, int flags)
2863 {
2864 	bool waitok = (flags & PR_WAITOK) ? true : false;
2865 
2866 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2867 }
2868 
2869 void
2870 pool_page_free(struct pool *pp, void *v)
2871 {
2872 
2873 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2874 }
2875 
2876 static void *
2877 pool_page_alloc_meta(struct pool *pp, int flags)
2878 {
2879 	bool waitok = (flags & PR_WAITOK) ? true : false;
2880 
2881 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2882 }
2883 
2884 static void
2885 pool_page_free_meta(struct pool *pp, void *v)
2886 {
2887 
2888 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2889 }
2890 
2891 #ifdef POOL_SUBPAGE
2892 /* Sub-page allocator, for machines with large hardware pages. */
2893 void *
2894 pool_subpage_alloc(struct pool *pp, int flags)
2895 {
2896 	return pool_get(&psppool, flags);
2897 }
2898 
2899 void
2900 pool_subpage_free(struct pool *pp, void *v)
2901 {
2902 	pool_put(&psppool, v);
2903 }
2904 
2905 /* We don't provide a real nointr allocator.  Maybe later. */
2906 void *
2907 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2908 {
2909 
2910 	return (pool_subpage_alloc(pp, flags));
2911 }
2912 
2913 void
2914 pool_subpage_free_nointr(struct pool *pp, void *v)
2915 {
2916 
2917 	pool_subpage_free(pp, v);
2918 }
2919 #endif /* POOL_SUBPAGE */
2920 void *
2921 pool_page_alloc_nointr(struct pool *pp, int flags)
2922 {
2923 	bool waitok = (flags & PR_WAITOK) ? true : false;
2924 
2925 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2926 }
2927 
2928 void
2929 pool_page_free_nointr(struct pool *pp, void *v)
2930 {
2931 
2932 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2933 }
2934 
2935 #if defined(DDB)
2936 static bool
2937 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2938 {
2939 
2940 	return (uintptr_t)ph->ph_page <= addr &&
2941 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2942 }
2943 
2944 static bool
2945 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2946 {
2947 
2948 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2949 }
2950 
2951 static bool
2952 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2953 {
2954 	int i;
2955 
2956 	if (pcg == NULL) {
2957 		return false;
2958 	}
2959 	for (i = 0; i < pcg->pcg_avail; i++) {
2960 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2961 			return true;
2962 		}
2963 	}
2964 	return false;
2965 }
2966 
2967 static bool
2968 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2969 {
2970 
2971 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2972 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2973 		pool_item_bitmap_t *bitmap =
2974 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2975 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2976 
2977 		return (*bitmap & mask) == 0;
2978 	} else {
2979 		struct pool_item *pi;
2980 
2981 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2982 			if (pool_in_item(pp, pi, addr)) {
2983 				return false;
2984 			}
2985 		}
2986 		return true;
2987 	}
2988 }
2989 
2990 void
2991 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2992 {
2993 	struct pool *pp;
2994 
2995 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2996 		struct pool_item_header *ph;
2997 		uintptr_t item;
2998 		bool allocated = true;
2999 		bool incache = false;
3000 		bool incpucache = false;
3001 		char cpucachestr[32];
3002 
3003 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3004 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3005 				if (pool_in_page(pp, ph, addr)) {
3006 					goto found;
3007 				}
3008 			}
3009 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3010 				if (pool_in_page(pp, ph, addr)) {
3011 					allocated =
3012 					    pool_allocated(pp, ph, addr);
3013 					goto found;
3014 				}
3015 			}
3016 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3017 				if (pool_in_page(pp, ph, addr)) {
3018 					allocated = false;
3019 					goto found;
3020 				}
3021 			}
3022 			continue;
3023 		} else {
3024 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3025 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3026 				continue;
3027 			}
3028 			allocated = pool_allocated(pp, ph, addr);
3029 		}
3030 found:
3031 		if (allocated && pp->pr_cache) {
3032 			pool_cache_t pc = pp->pr_cache;
3033 			struct pool_cache_group *pcg;
3034 			int i;
3035 
3036 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3037 			    pcg = pcg->pcg_next) {
3038 				if (pool_in_cg(pp, pcg, addr)) {
3039 					incache = true;
3040 					goto print;
3041 				}
3042 			}
3043 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3044 				pool_cache_cpu_t *cc;
3045 
3046 				if ((cc = pc->pc_cpus[i]) == NULL) {
3047 					continue;
3048 				}
3049 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3050 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3051 					struct cpu_info *ci =
3052 					    cpu_lookup(i);
3053 
3054 					incpucache = true;
3055 					snprintf(cpucachestr,
3056 					    sizeof(cpucachestr),
3057 					    "cached by CPU %u",
3058 					    ci->ci_index);
3059 					goto print;
3060 				}
3061 			}
3062 		}
3063 print:
3064 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3065 		item = item + rounddown(addr - item, pp->pr_size);
3066 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3067 		    (void *)addr, item, (size_t)(addr - item),
3068 		    pp->pr_wchan,
3069 		    incpucache ? cpucachestr :
3070 		    incache ? "cached" : allocated ? "allocated" : "free");
3071 	}
3072 }
3073 #endif /* defined(DDB) */
3074