xref: /netbsd-src/sys/kern/subr_pool.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /*	$NetBSD: subr_pool.c,v 1.171 2008/11/11 16:13:03 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.171 2008/11/11 16:13:03 ad Exp $");
35 
36 #include "opt_ddb.h"
37 #include "opt_pool.h"
38 #include "opt_poollog.h"
39 #include "opt_lockdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bitops.h>
44 #include <sys/proc.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/debug.h>
51 #include <sys/lockdebug.h>
52 #include <sys/xcall.h>
53 #include <sys/cpu.h>
54 #include <sys/atomic.h>
55 
56 #include <uvm/uvm.h>
57 
58 /*
59  * Pool resource management utility.
60  *
61  * Memory is allocated in pages which are split into pieces according to
62  * the pool item size. Each page is kept on one of three lists in the
63  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
64  * for empty, full and partially-full pages respectively. The individual
65  * pool items are on a linked list headed by `ph_itemlist' in each page
66  * header. The memory for building the page list is either taken from
67  * the allocated pages themselves (for small pool items) or taken from
68  * an internal pool of page headers (`phpool').
69  */
70 
71 /* List of all pools */
72 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
73 
74 /* Private pool for page header structures */
75 #define	PHPOOL_MAX	8
76 static struct pool phpool[PHPOOL_MAX];
77 #define	PHPOOL_FREELIST_NELEM(idx) \
78 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
79 
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84 
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
87 
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90 
91 /* allocator for pool metadata */
92 struct pool_allocator pool_allocator_meta = {
93 	pool_page_alloc_meta, pool_page_free_meta,
94 	.pa_backingmapptr = &kmem_map,
95 };
96 
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99 
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool	*drainpp;
102 
103 /* This lock protects both pool_head and drainpp. */
104 static kmutex_t pool_head_lock;
105 static kcondvar_t pool_busy;
106 
107 typedef uint32_t pool_item_bitmap_t;
108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
110 
111 struct pool_item_header {
112 	/* Page headers */
113 	LIST_ENTRY(pool_item_header)
114 				ph_pagelist;	/* pool page list */
115 	SPLAY_ENTRY(pool_item_header)
116 				ph_node;	/* Off-page page headers */
117 	void *			ph_page;	/* this page's address */
118 	uint32_t		ph_time;	/* last referenced */
119 	uint16_t		ph_nmissing;	/* # of chunks in use */
120 	uint16_t		ph_off;		/* start offset in page */
121 	union {
122 		/* !PR_NOTOUCH */
123 		struct {
124 			LIST_HEAD(, pool_item)
125 				phu_itemlist;	/* chunk list for this page */
126 		} phu_normal;
127 		/* PR_NOTOUCH */
128 		struct {
129 			pool_item_bitmap_t phu_bitmap[1];
130 		} phu_notouch;
131 	} ph_u;
132 };
133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
135 
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 	u_int pi_magic;
139 #endif
140 #define	PI_MAGIC 0xdeaddeadU
141 	/* Other entries use only this list entry */
142 	LIST_ENTRY(pool_item)	pi_list;
143 };
144 
145 #define	POOL_NEEDS_CATCHUP(pp)						\
146 	((pp)->pr_nitems < (pp)->pr_minitems)
147 
148 /*
149  * Pool cache management.
150  *
151  * Pool caches provide a way for constructed objects to be cached by the
152  * pool subsystem.  This can lead to performance improvements by avoiding
153  * needless object construction/destruction; it is deferred until absolutely
154  * necessary.
155  *
156  * Caches are grouped into cache groups.  Each cache group references up
157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
158  * object from the pool, it calls the object's constructor and places it
159  * into a cache group.  When a cache group frees an object back to the
160  * pool, it first calls the object's destructor.  This allows the object
161  * to persist in constructed form while freed to the cache.
162  *
163  * The pool references each cache, so that when a pool is drained by the
164  * pagedaemon, it can drain each individual cache as well.  Each time a
165  * cache is drained, the most idle cache group is freed to the pool in
166  * its entirety.
167  *
168  * Pool caches are layed on top of pools.  By layering them, we can avoid
169  * the complexity of cache management for pools which would not benefit
170  * from it.
171  */
172 
173 static struct pool pcg_normal_pool;
174 static struct pool pcg_large_pool;
175 static struct pool cache_pool;
176 static struct pool cache_cpu_pool;
177 
178 /* List of all caches. */
179 TAILQ_HEAD(,pool_cache) pool_cache_head =
180     TAILQ_HEAD_INITIALIZER(pool_cache_head);
181 
182 int pool_cache_disable;		/* global disable for caching */
183 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
184 
185 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
186 				    void *);
187 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
188 				    void **, paddr_t *, int);
189 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
190 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
191 static void	pool_cache_xcall(pool_cache_t);
192 
193 static int	pool_catchup(struct pool *);
194 static void	pool_prime_page(struct pool *, void *,
195 		    struct pool_item_header *);
196 static void	pool_update_curpage(struct pool *);
197 
198 static int	pool_grow(struct pool *, int);
199 static void	*pool_allocator_alloc(struct pool *, int);
200 static void	pool_allocator_free(struct pool *, void *);
201 
202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
203 	void (*)(const char *, ...));
204 static void pool_print1(struct pool *, const char *,
205 	void (*)(const char *, ...));
206 
207 static int pool_chk_page(struct pool *, const char *,
208 			 struct pool_item_header *);
209 
210 /*
211  * Pool log entry. An array of these is allocated in pool_init().
212  */
213 struct pool_log {
214 	const char	*pl_file;
215 	long		pl_line;
216 	int		pl_action;
217 #define	PRLOG_GET	1
218 #define	PRLOG_PUT	2
219 	void		*pl_addr;
220 };
221 
222 #ifdef POOL_DIAGNOSTIC
223 /* Number of entries in pool log buffers */
224 #ifndef POOL_LOGSIZE
225 #define	POOL_LOGSIZE	10
226 #endif
227 
228 int pool_logsize = POOL_LOGSIZE;
229 
230 static inline void
231 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
232 {
233 	int n = pp->pr_curlogentry;
234 	struct pool_log *pl;
235 
236 	if ((pp->pr_roflags & PR_LOGGING) == 0)
237 		return;
238 
239 	/*
240 	 * Fill in the current entry. Wrap around and overwrite
241 	 * the oldest entry if necessary.
242 	 */
243 	pl = &pp->pr_log[n];
244 	pl->pl_file = file;
245 	pl->pl_line = line;
246 	pl->pl_action = action;
247 	pl->pl_addr = v;
248 	if (++n >= pp->pr_logsize)
249 		n = 0;
250 	pp->pr_curlogentry = n;
251 }
252 
253 static void
254 pr_printlog(struct pool *pp, struct pool_item *pi,
255     void (*pr)(const char *, ...))
256 {
257 	int i = pp->pr_logsize;
258 	int n = pp->pr_curlogentry;
259 
260 	if ((pp->pr_roflags & PR_LOGGING) == 0)
261 		return;
262 
263 	/*
264 	 * Print all entries in this pool's log.
265 	 */
266 	while (i-- > 0) {
267 		struct pool_log *pl = &pp->pr_log[n];
268 		if (pl->pl_action != 0) {
269 			if (pi == NULL || pi == pl->pl_addr) {
270 				(*pr)("\tlog entry %d:\n", i);
271 				(*pr)("\t\taction = %s, addr = %p\n",
272 				    pl->pl_action == PRLOG_GET ? "get" : "put",
273 				    pl->pl_addr);
274 				(*pr)("\t\tfile: %s at line %lu\n",
275 				    pl->pl_file, pl->pl_line);
276 			}
277 		}
278 		if (++n >= pp->pr_logsize)
279 			n = 0;
280 	}
281 }
282 
283 static inline void
284 pr_enter(struct pool *pp, const char *file, long line)
285 {
286 
287 	if (__predict_false(pp->pr_entered_file != NULL)) {
288 		printf("pool %s: reentrancy at file %s line %ld\n",
289 		    pp->pr_wchan, file, line);
290 		printf("         previous entry at file %s line %ld\n",
291 		    pp->pr_entered_file, pp->pr_entered_line);
292 		panic("pr_enter");
293 	}
294 
295 	pp->pr_entered_file = file;
296 	pp->pr_entered_line = line;
297 }
298 
299 static inline void
300 pr_leave(struct pool *pp)
301 {
302 
303 	if (__predict_false(pp->pr_entered_file == NULL)) {
304 		printf("pool %s not entered?\n", pp->pr_wchan);
305 		panic("pr_leave");
306 	}
307 
308 	pp->pr_entered_file = NULL;
309 	pp->pr_entered_line = 0;
310 }
311 
312 static inline void
313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
314 {
315 
316 	if (pp->pr_entered_file != NULL)
317 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
318 		    pp->pr_entered_file, pp->pr_entered_line);
319 }
320 #else
321 #define	pr_log(pp, v, action, file, line)
322 #define	pr_printlog(pp, pi, pr)
323 #define	pr_enter(pp, file, line)
324 #define	pr_leave(pp)
325 #define	pr_enter_check(pp, pr)
326 #endif /* POOL_DIAGNOSTIC */
327 
328 static inline unsigned int
329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
330     const void *v)
331 {
332 	const char *cp = v;
333 	unsigned int idx;
334 
335 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
336 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
337 	KASSERT(idx < pp->pr_itemsperpage);
338 	return idx;
339 }
340 
341 static inline void
342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
343     void *obj)
344 {
345 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
346 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
347 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
348 
349 	KASSERT((*bitmap & mask) == 0);
350 	*bitmap |= mask;
351 }
352 
353 static inline void *
354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
355 {
356 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
357 	unsigned int idx;
358 	int i;
359 
360 	for (i = 0; ; i++) {
361 		int bit;
362 
363 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
364 		bit = ffs32(bitmap[i]);
365 		if (bit) {
366 			pool_item_bitmap_t mask;
367 
368 			bit--;
369 			idx = (i * BITMAP_SIZE) + bit;
370 			mask = 1 << bit;
371 			KASSERT((bitmap[i] & mask) != 0);
372 			bitmap[i] &= ~mask;
373 			break;
374 		}
375 	}
376 	KASSERT(idx < pp->pr_itemsperpage);
377 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
378 }
379 
380 static inline void
381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
382 {
383 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
384 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
385 	int i;
386 
387 	for (i = 0; i < n; i++) {
388 		bitmap[i] = (pool_item_bitmap_t)-1;
389 	}
390 }
391 
392 static inline int
393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
394 {
395 
396 	/*
397 	 * we consider pool_item_header with smaller ph_page bigger.
398 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
399 	 */
400 
401 	if (a->ph_page < b->ph_page)
402 		return (1);
403 	else if (a->ph_page > b->ph_page)
404 		return (-1);
405 	else
406 		return (0);
407 }
408 
409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
411 
412 static inline struct pool_item_header *
413 pr_find_pagehead_noalign(struct pool *pp, void *v)
414 {
415 	struct pool_item_header *ph, tmp;
416 
417 	tmp.ph_page = (void *)(uintptr_t)v;
418 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
419 	if (ph == NULL) {
420 		ph = SPLAY_ROOT(&pp->pr_phtree);
421 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
422 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
423 		}
424 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
425 	}
426 
427 	return ph;
428 }
429 
430 /*
431  * Return the pool page header based on item address.
432  */
433 static inline struct pool_item_header *
434 pr_find_pagehead(struct pool *pp, void *v)
435 {
436 	struct pool_item_header *ph, tmp;
437 
438 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
439 		ph = pr_find_pagehead_noalign(pp, v);
440 	} else {
441 		void *page =
442 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
443 
444 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
445 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
446 		} else {
447 			tmp.ph_page = page;
448 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
449 		}
450 	}
451 
452 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
453 	    ((char *)ph->ph_page <= (char *)v &&
454 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
455 	return ph;
456 }
457 
458 static void
459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
460 {
461 	struct pool_item_header *ph;
462 
463 	while ((ph = LIST_FIRST(pq)) != NULL) {
464 		LIST_REMOVE(ph, ph_pagelist);
465 		pool_allocator_free(pp, ph->ph_page);
466 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 			pool_put(pp->pr_phpool, ph);
468 	}
469 }
470 
471 /*
472  * Remove a page from the pool.
473  */
474 static inline void
475 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
476      struct pool_pagelist *pq)
477 {
478 
479 	KASSERT(mutex_owned(&pp->pr_lock));
480 
481 	/*
482 	 * If the page was idle, decrement the idle page count.
483 	 */
484 	if (ph->ph_nmissing == 0) {
485 #ifdef DIAGNOSTIC
486 		if (pp->pr_nidle == 0)
487 			panic("pr_rmpage: nidle inconsistent");
488 		if (pp->pr_nitems < pp->pr_itemsperpage)
489 			panic("pr_rmpage: nitems inconsistent");
490 #endif
491 		pp->pr_nidle--;
492 	}
493 
494 	pp->pr_nitems -= pp->pr_itemsperpage;
495 
496 	/*
497 	 * Unlink the page from the pool and queue it for release.
498 	 */
499 	LIST_REMOVE(ph, ph_pagelist);
500 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
501 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
502 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
503 
504 	pp->pr_npages--;
505 	pp->pr_npagefree++;
506 
507 	pool_update_curpage(pp);
508 }
509 
510 static bool
511 pa_starved_p(struct pool_allocator *pa)
512 {
513 
514 	if (pa->pa_backingmap != NULL) {
515 		return vm_map_starved_p(pa->pa_backingmap);
516 	}
517 	return false;
518 }
519 
520 static int
521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
522 {
523 	struct pool *pp = obj;
524 	struct pool_allocator *pa = pp->pr_alloc;
525 
526 	KASSERT(&pp->pr_reclaimerentry == ce);
527 	pool_reclaim(pp);
528 	if (!pa_starved_p(pa)) {
529 		return CALLBACK_CHAIN_ABORT;
530 	}
531 	return CALLBACK_CHAIN_CONTINUE;
532 }
533 
534 static void
535 pool_reclaim_register(struct pool *pp)
536 {
537 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
538 	int s;
539 
540 	if (map == NULL) {
541 		return;
542 	}
543 
544 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
545 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
546 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
547 	splx(s);
548 }
549 
550 static void
551 pool_reclaim_unregister(struct pool *pp)
552 {
553 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
554 	int s;
555 
556 	if (map == NULL) {
557 		return;
558 	}
559 
560 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
561 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
562 	    &pp->pr_reclaimerentry);
563 	splx(s);
564 }
565 
566 static void
567 pa_reclaim_register(struct pool_allocator *pa)
568 {
569 	struct vm_map *map = *pa->pa_backingmapptr;
570 	struct pool *pp;
571 
572 	KASSERT(pa->pa_backingmap == NULL);
573 	if (map == NULL) {
574 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
575 		return;
576 	}
577 	pa->pa_backingmap = map;
578 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
579 		pool_reclaim_register(pp);
580 	}
581 }
582 
583 /*
584  * Initialize all the pools listed in the "pools" link set.
585  */
586 void
587 pool_subsystem_init(void)
588 {
589 	struct pool_allocator *pa;
590 	__link_set_decl(pools, struct link_pool_init);
591 	struct link_pool_init * const *pi;
592 
593 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
594 	cv_init(&pool_busy, "poolbusy");
595 
596 	__link_set_foreach(pi, pools)
597 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
598 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
599 		    (*pi)->palloc, (*pi)->ipl);
600 
601 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
602 		KASSERT(pa->pa_backingmapptr != NULL);
603 		KASSERT(*pa->pa_backingmapptr != NULL);
604 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
605 		pa_reclaim_register(pa);
606 	}
607 
608 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
609 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
610 
611 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
612 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
613 }
614 
615 /*
616  * Initialize the given pool resource structure.
617  *
618  * We export this routine to allow other kernel parts to declare
619  * static pools that must be initialized before malloc() is available.
620  */
621 void
622 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
623     const char *wchan, struct pool_allocator *palloc, int ipl)
624 {
625 	struct pool *pp1;
626 	size_t trysize, phsize;
627 	int off, slack;
628 
629 #ifdef DEBUG
630 	/*
631 	 * Check that the pool hasn't already been initialised and
632 	 * added to the list of all pools.
633 	 */
634 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
635 		if (pp == pp1)
636 			panic("pool_init: pool %s already initialised",
637 			    wchan);
638 	}
639 #endif
640 
641 #ifdef POOL_DIAGNOSTIC
642 	/*
643 	 * Always log if POOL_DIAGNOSTIC is defined.
644 	 */
645 	if (pool_logsize != 0)
646 		flags |= PR_LOGGING;
647 #endif
648 
649 	if (palloc == NULL)
650 		palloc = &pool_allocator_kmem;
651 #ifdef POOL_SUBPAGE
652 	if (size > palloc->pa_pagesz) {
653 		if (palloc == &pool_allocator_kmem)
654 			palloc = &pool_allocator_kmem_fullpage;
655 		else if (palloc == &pool_allocator_nointr)
656 			palloc = &pool_allocator_nointr_fullpage;
657 	}
658 #endif /* POOL_SUBPAGE */
659 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
660 		if (palloc->pa_pagesz == 0)
661 			palloc->pa_pagesz = PAGE_SIZE;
662 
663 		TAILQ_INIT(&palloc->pa_list);
664 
665 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
666 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
667 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
668 
669 		if (palloc->pa_backingmapptr != NULL) {
670 			pa_reclaim_register(palloc);
671 		}
672 		palloc->pa_flags |= PA_INITIALIZED;
673 	}
674 
675 	if (align == 0)
676 		align = ALIGN(1);
677 
678 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
679 		size = sizeof(struct pool_item);
680 
681 	size = roundup(size, align);
682 #ifdef DIAGNOSTIC
683 	if (size > palloc->pa_pagesz)
684 		panic("pool_init: pool item size (%zu) too large", size);
685 #endif
686 
687 	/*
688 	 * Initialize the pool structure.
689 	 */
690 	LIST_INIT(&pp->pr_emptypages);
691 	LIST_INIT(&pp->pr_fullpages);
692 	LIST_INIT(&pp->pr_partpages);
693 	pp->pr_cache = NULL;
694 	pp->pr_curpage = NULL;
695 	pp->pr_npages = 0;
696 	pp->pr_minitems = 0;
697 	pp->pr_minpages = 0;
698 	pp->pr_maxpages = UINT_MAX;
699 	pp->pr_roflags = flags;
700 	pp->pr_flags = 0;
701 	pp->pr_size = size;
702 	pp->pr_align = align;
703 	pp->pr_wchan = wchan;
704 	pp->pr_alloc = palloc;
705 	pp->pr_nitems = 0;
706 	pp->pr_nout = 0;
707 	pp->pr_hardlimit = UINT_MAX;
708 	pp->pr_hardlimit_warning = NULL;
709 	pp->pr_hardlimit_ratecap.tv_sec = 0;
710 	pp->pr_hardlimit_ratecap.tv_usec = 0;
711 	pp->pr_hardlimit_warning_last.tv_sec = 0;
712 	pp->pr_hardlimit_warning_last.tv_usec = 0;
713 	pp->pr_drain_hook = NULL;
714 	pp->pr_drain_hook_arg = NULL;
715 	pp->pr_freecheck = NULL;
716 
717 	/*
718 	 * Decide whether to put the page header off page to avoid
719 	 * wasting too large a part of the page or too big item.
720 	 * Off-page page headers go on a hash table, so we can match
721 	 * a returned item with its header based on the page address.
722 	 * We use 1/16 of the page size and about 8 times of the item
723 	 * size as the threshold (XXX: tune)
724 	 *
725 	 * However, we'll put the header into the page if we can put
726 	 * it without wasting any items.
727 	 *
728 	 * Silently enforce `0 <= ioff < align'.
729 	 */
730 	pp->pr_itemoffset = ioff %= align;
731 	/* See the comment below about reserved bytes. */
732 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
733 	phsize = ALIGN(sizeof(struct pool_item_header));
734 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
735 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
736 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
737 		/* Use the end of the page for the page header */
738 		pp->pr_roflags |= PR_PHINPAGE;
739 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
740 	} else {
741 		/* The page header will be taken from our page header pool */
742 		pp->pr_phoffset = 0;
743 		off = palloc->pa_pagesz;
744 		SPLAY_INIT(&pp->pr_phtree);
745 	}
746 
747 	/*
748 	 * Alignment is to take place at `ioff' within the item. This means
749 	 * we must reserve up to `align - 1' bytes on the page to allow
750 	 * appropriate positioning of each item.
751 	 */
752 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
753 	KASSERT(pp->pr_itemsperpage != 0);
754 	if ((pp->pr_roflags & PR_NOTOUCH)) {
755 		int idx;
756 
757 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
758 		    idx++) {
759 			/* nothing */
760 		}
761 		if (idx >= PHPOOL_MAX) {
762 			/*
763 			 * if you see this panic, consider to tweak
764 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
765 			 */
766 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
767 			    pp->pr_wchan, pp->pr_itemsperpage);
768 		}
769 		pp->pr_phpool = &phpool[idx];
770 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
771 		pp->pr_phpool = &phpool[0];
772 	}
773 #if defined(DIAGNOSTIC)
774 	else {
775 		pp->pr_phpool = NULL;
776 	}
777 #endif
778 
779 	/*
780 	 * Use the slack between the chunks and the page header
781 	 * for "cache coloring".
782 	 */
783 	slack = off - pp->pr_itemsperpage * pp->pr_size;
784 	pp->pr_maxcolor = (slack / align) * align;
785 	pp->pr_curcolor = 0;
786 
787 	pp->pr_nget = 0;
788 	pp->pr_nfail = 0;
789 	pp->pr_nput = 0;
790 	pp->pr_npagealloc = 0;
791 	pp->pr_npagefree = 0;
792 	pp->pr_hiwat = 0;
793 	pp->pr_nidle = 0;
794 	pp->pr_refcnt = 0;
795 
796 #ifdef POOL_DIAGNOSTIC
797 	if (flags & PR_LOGGING) {
798 		if (kmem_map == NULL ||
799 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
800 		     M_TEMP, M_NOWAIT)) == NULL)
801 			pp->pr_roflags &= ~PR_LOGGING;
802 		pp->pr_curlogentry = 0;
803 		pp->pr_logsize = pool_logsize;
804 	}
805 #endif
806 
807 	pp->pr_entered_file = NULL;
808 	pp->pr_entered_line = 0;
809 
810 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
811 	cv_init(&pp->pr_cv, wchan);
812 	pp->pr_ipl = ipl;
813 
814 	/*
815 	 * Initialize private page header pool and cache magazine pool if we
816 	 * haven't done so yet.
817 	 * XXX LOCKING.
818 	 */
819 	if (phpool[0].pr_size == 0) {
820 		int idx;
821 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
822 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
823 			int nelem;
824 			size_t sz;
825 
826 			nelem = PHPOOL_FREELIST_NELEM(idx);
827 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
828 			    "phpool-%d", nelem);
829 			sz = sizeof(struct pool_item_header);
830 			if (nelem) {
831 				sz = offsetof(struct pool_item_header,
832 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
833 			}
834 			pool_init(&phpool[idx], sz, 0, 0, 0,
835 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
836 		}
837 #ifdef POOL_SUBPAGE
838 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
839 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
840 #endif
841 
842 		size = sizeof(pcg_t) +
843 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
844 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
845 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
846 
847 		size = sizeof(pcg_t) +
848 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
849 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
850 		    "pcglarge", &pool_allocator_meta, IPL_VM);
851 	}
852 
853 	/* Insert into the list of all pools. */
854 	if (__predict_true(!cold))
855 		mutex_enter(&pool_head_lock);
856 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
857 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
858 			break;
859 	}
860 	if (pp1 == NULL)
861 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
862 	else
863 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
864 	if (__predict_true(!cold))
865 		mutex_exit(&pool_head_lock);
866 
867 	/* Insert this into the list of pools using this allocator. */
868 	if (__predict_true(!cold))
869 		mutex_enter(&palloc->pa_lock);
870 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
871 	if (__predict_true(!cold))
872 		mutex_exit(&palloc->pa_lock);
873 
874 	pool_reclaim_register(pp);
875 }
876 
877 /*
878  * De-commision a pool resource.
879  */
880 void
881 pool_destroy(struct pool *pp)
882 {
883 	struct pool_pagelist pq;
884 	struct pool_item_header *ph;
885 
886 	/* Remove from global pool list */
887 	mutex_enter(&pool_head_lock);
888 	while (pp->pr_refcnt != 0)
889 		cv_wait(&pool_busy, &pool_head_lock);
890 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
891 	if (drainpp == pp)
892 		drainpp = NULL;
893 	mutex_exit(&pool_head_lock);
894 
895 	/* Remove this pool from its allocator's list of pools. */
896 	pool_reclaim_unregister(pp);
897 	mutex_enter(&pp->pr_alloc->pa_lock);
898 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
899 	mutex_exit(&pp->pr_alloc->pa_lock);
900 
901 	mutex_enter(&pp->pr_lock);
902 
903 	KASSERT(pp->pr_cache == NULL);
904 
905 #ifdef DIAGNOSTIC
906 	if (pp->pr_nout != 0) {
907 		pr_printlog(pp, NULL, printf);
908 		panic("pool_destroy: pool busy: still out: %u",
909 		    pp->pr_nout);
910 	}
911 #endif
912 
913 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
914 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
915 
916 	/* Remove all pages */
917 	LIST_INIT(&pq);
918 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
919 		pr_rmpage(pp, ph, &pq);
920 
921 	mutex_exit(&pp->pr_lock);
922 
923 	pr_pagelist_free(pp, &pq);
924 
925 #ifdef POOL_DIAGNOSTIC
926 	if ((pp->pr_roflags & PR_LOGGING) != 0)
927 		free(pp->pr_log, M_TEMP);
928 #endif
929 
930 	cv_destroy(&pp->pr_cv);
931 	mutex_destroy(&pp->pr_lock);
932 }
933 
934 void
935 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
936 {
937 
938 	/* XXX no locking -- must be used just after pool_init() */
939 #ifdef DIAGNOSTIC
940 	if (pp->pr_drain_hook != NULL)
941 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
942 #endif
943 	pp->pr_drain_hook = fn;
944 	pp->pr_drain_hook_arg = arg;
945 }
946 
947 static struct pool_item_header *
948 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
949 {
950 	struct pool_item_header *ph;
951 
952 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
953 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
954 	else
955 		ph = pool_get(pp->pr_phpool, flags);
956 
957 	return (ph);
958 }
959 
960 /*
961  * Grab an item from the pool.
962  */
963 void *
964 #ifdef POOL_DIAGNOSTIC
965 _pool_get(struct pool *pp, int flags, const char *file, long line)
966 #else
967 pool_get(struct pool *pp, int flags)
968 #endif
969 {
970 	struct pool_item *pi;
971 	struct pool_item_header *ph;
972 	void *v;
973 
974 #ifdef DIAGNOSTIC
975 	if (__predict_false(pp->pr_itemsperpage == 0))
976 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
977 		    "pool not initialized?", pp);
978 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
979 			    (flags & PR_WAITOK) != 0))
980 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
981 
982 #endif /* DIAGNOSTIC */
983 #ifdef LOCKDEBUG
984 	if (flags & PR_WAITOK) {
985 		ASSERT_SLEEPABLE();
986 	}
987 #endif
988 
989 	mutex_enter(&pp->pr_lock);
990 	pr_enter(pp, file, line);
991 
992  startover:
993 	/*
994 	 * Check to see if we've reached the hard limit.  If we have,
995 	 * and we can wait, then wait until an item has been returned to
996 	 * the pool.
997 	 */
998 #ifdef DIAGNOSTIC
999 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1000 		pr_leave(pp);
1001 		mutex_exit(&pp->pr_lock);
1002 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1003 	}
1004 #endif
1005 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1006 		if (pp->pr_drain_hook != NULL) {
1007 			/*
1008 			 * Since the drain hook is going to free things
1009 			 * back to the pool, unlock, call the hook, re-lock,
1010 			 * and check the hardlimit condition again.
1011 			 */
1012 			pr_leave(pp);
1013 			mutex_exit(&pp->pr_lock);
1014 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1015 			mutex_enter(&pp->pr_lock);
1016 			pr_enter(pp, file, line);
1017 			if (pp->pr_nout < pp->pr_hardlimit)
1018 				goto startover;
1019 		}
1020 
1021 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1022 			/*
1023 			 * XXX: A warning isn't logged in this case.  Should
1024 			 * it be?
1025 			 */
1026 			pp->pr_flags |= PR_WANTED;
1027 			pr_leave(pp);
1028 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1029 			pr_enter(pp, file, line);
1030 			goto startover;
1031 		}
1032 
1033 		/*
1034 		 * Log a message that the hard limit has been hit.
1035 		 */
1036 		if (pp->pr_hardlimit_warning != NULL &&
1037 		    ratecheck(&pp->pr_hardlimit_warning_last,
1038 			      &pp->pr_hardlimit_ratecap))
1039 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1040 
1041 		pp->pr_nfail++;
1042 
1043 		pr_leave(pp);
1044 		mutex_exit(&pp->pr_lock);
1045 		return (NULL);
1046 	}
1047 
1048 	/*
1049 	 * The convention we use is that if `curpage' is not NULL, then
1050 	 * it points at a non-empty bucket. In particular, `curpage'
1051 	 * never points at a page header which has PR_PHINPAGE set and
1052 	 * has no items in its bucket.
1053 	 */
1054 	if ((ph = pp->pr_curpage) == NULL) {
1055 		int error;
1056 
1057 #ifdef DIAGNOSTIC
1058 		if (pp->pr_nitems != 0) {
1059 			mutex_exit(&pp->pr_lock);
1060 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1061 			    pp->pr_wchan, pp->pr_nitems);
1062 			panic("pool_get: nitems inconsistent");
1063 		}
1064 #endif
1065 
1066 		/*
1067 		 * Call the back-end page allocator for more memory.
1068 		 * Release the pool lock, as the back-end page allocator
1069 		 * may block.
1070 		 */
1071 		pr_leave(pp);
1072 		error = pool_grow(pp, flags);
1073 		pr_enter(pp, file, line);
1074 		if (error != 0) {
1075 			/*
1076 			 * We were unable to allocate a page or item
1077 			 * header, but we released the lock during
1078 			 * allocation, so perhaps items were freed
1079 			 * back to the pool.  Check for this case.
1080 			 */
1081 			if (pp->pr_curpage != NULL)
1082 				goto startover;
1083 
1084 			pp->pr_nfail++;
1085 			pr_leave(pp);
1086 			mutex_exit(&pp->pr_lock);
1087 			return (NULL);
1088 		}
1089 
1090 		/* Start the allocation process over. */
1091 		goto startover;
1092 	}
1093 	if (pp->pr_roflags & PR_NOTOUCH) {
1094 #ifdef DIAGNOSTIC
1095 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1096 			pr_leave(pp);
1097 			mutex_exit(&pp->pr_lock);
1098 			panic("pool_get: %s: page empty", pp->pr_wchan);
1099 		}
1100 #endif
1101 		v = pr_item_notouch_get(pp, ph);
1102 #ifdef POOL_DIAGNOSTIC
1103 		pr_log(pp, v, PRLOG_GET, file, line);
1104 #endif
1105 	} else {
1106 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1107 		if (__predict_false(v == NULL)) {
1108 			pr_leave(pp);
1109 			mutex_exit(&pp->pr_lock);
1110 			panic("pool_get: %s: page empty", pp->pr_wchan);
1111 		}
1112 #ifdef DIAGNOSTIC
1113 		if (__predict_false(pp->pr_nitems == 0)) {
1114 			pr_leave(pp);
1115 			mutex_exit(&pp->pr_lock);
1116 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1117 			    pp->pr_wchan, pp->pr_nitems);
1118 			panic("pool_get: nitems inconsistent");
1119 		}
1120 #endif
1121 
1122 #ifdef POOL_DIAGNOSTIC
1123 		pr_log(pp, v, PRLOG_GET, file, line);
1124 #endif
1125 
1126 #ifdef DIAGNOSTIC
1127 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1128 			pr_printlog(pp, pi, printf);
1129 			panic("pool_get(%s): free list modified: "
1130 			    "magic=%x; page %p; item addr %p\n",
1131 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1132 		}
1133 #endif
1134 
1135 		/*
1136 		 * Remove from item list.
1137 		 */
1138 		LIST_REMOVE(pi, pi_list);
1139 	}
1140 	pp->pr_nitems--;
1141 	pp->pr_nout++;
1142 	if (ph->ph_nmissing == 0) {
1143 #ifdef DIAGNOSTIC
1144 		if (__predict_false(pp->pr_nidle == 0))
1145 			panic("pool_get: nidle inconsistent");
1146 #endif
1147 		pp->pr_nidle--;
1148 
1149 		/*
1150 		 * This page was previously empty.  Move it to the list of
1151 		 * partially-full pages.  This page is already curpage.
1152 		 */
1153 		LIST_REMOVE(ph, ph_pagelist);
1154 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1155 	}
1156 	ph->ph_nmissing++;
1157 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1158 #ifdef DIAGNOSTIC
1159 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1160 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1161 			pr_leave(pp);
1162 			mutex_exit(&pp->pr_lock);
1163 			panic("pool_get: %s: nmissing inconsistent",
1164 			    pp->pr_wchan);
1165 		}
1166 #endif
1167 		/*
1168 		 * This page is now full.  Move it to the full list
1169 		 * and select a new current page.
1170 		 */
1171 		LIST_REMOVE(ph, ph_pagelist);
1172 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1173 		pool_update_curpage(pp);
1174 	}
1175 
1176 	pp->pr_nget++;
1177 	pr_leave(pp);
1178 
1179 	/*
1180 	 * If we have a low water mark and we are now below that low
1181 	 * water mark, add more items to the pool.
1182 	 */
1183 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1184 		/*
1185 		 * XXX: Should we log a warning?  Should we set up a timeout
1186 		 * to try again in a second or so?  The latter could break
1187 		 * a caller's assumptions about interrupt protection, etc.
1188 		 */
1189 	}
1190 
1191 	mutex_exit(&pp->pr_lock);
1192 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1193 	FREECHECK_OUT(&pp->pr_freecheck, v);
1194 	return (v);
1195 }
1196 
1197 /*
1198  * Internal version of pool_put().  Pool is already locked/entered.
1199  */
1200 static void
1201 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1202 {
1203 	struct pool_item *pi = v;
1204 	struct pool_item_header *ph;
1205 
1206 	KASSERT(mutex_owned(&pp->pr_lock));
1207 	FREECHECK_IN(&pp->pr_freecheck, v);
1208 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1209 
1210 #ifdef DIAGNOSTIC
1211 	if (__predict_false(pp->pr_nout == 0)) {
1212 		printf("pool %s: putting with none out\n",
1213 		    pp->pr_wchan);
1214 		panic("pool_put");
1215 	}
1216 #endif
1217 
1218 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1219 		pr_printlog(pp, NULL, printf);
1220 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1221 	}
1222 
1223 	/*
1224 	 * Return to item list.
1225 	 */
1226 	if (pp->pr_roflags & PR_NOTOUCH) {
1227 		pr_item_notouch_put(pp, ph, v);
1228 	} else {
1229 #ifdef DIAGNOSTIC
1230 		pi->pi_magic = PI_MAGIC;
1231 #endif
1232 #ifdef DEBUG
1233 		{
1234 			int i, *ip = v;
1235 
1236 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1237 				*ip++ = PI_MAGIC;
1238 			}
1239 		}
1240 #endif
1241 
1242 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1243 	}
1244 	KDASSERT(ph->ph_nmissing != 0);
1245 	ph->ph_nmissing--;
1246 	pp->pr_nput++;
1247 	pp->pr_nitems++;
1248 	pp->pr_nout--;
1249 
1250 	/* Cancel "pool empty" condition if it exists */
1251 	if (pp->pr_curpage == NULL)
1252 		pp->pr_curpage = ph;
1253 
1254 	if (pp->pr_flags & PR_WANTED) {
1255 		pp->pr_flags &= ~PR_WANTED;
1256 		cv_broadcast(&pp->pr_cv);
1257 	}
1258 
1259 	/*
1260 	 * If this page is now empty, do one of two things:
1261 	 *
1262 	 *	(1) If we have more pages than the page high water mark,
1263 	 *	    free the page back to the system.  ONLY CONSIDER
1264 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1265 	 *	    CLAIM.
1266 	 *
1267 	 *	(2) Otherwise, move the page to the empty page list.
1268 	 *
1269 	 * Either way, select a new current page (so we use a partially-full
1270 	 * page if one is available).
1271 	 */
1272 	if (ph->ph_nmissing == 0) {
1273 		pp->pr_nidle++;
1274 		if (pp->pr_npages > pp->pr_minpages &&
1275 		    pp->pr_npages > pp->pr_maxpages) {
1276 			pr_rmpage(pp, ph, pq);
1277 		} else {
1278 			LIST_REMOVE(ph, ph_pagelist);
1279 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1280 
1281 			/*
1282 			 * Update the timestamp on the page.  A page must
1283 			 * be idle for some period of time before it can
1284 			 * be reclaimed by the pagedaemon.  This minimizes
1285 			 * ping-pong'ing for memory.
1286 			 *
1287 			 * note for 64-bit time_t: truncating to 32-bit is not
1288 			 * a problem for our usage.
1289 			 */
1290 			ph->ph_time = time_uptime;
1291 		}
1292 		pool_update_curpage(pp);
1293 	}
1294 
1295 	/*
1296 	 * If the page was previously completely full, move it to the
1297 	 * partially-full list and make it the current page.  The next
1298 	 * allocation will get the item from this page, instead of
1299 	 * further fragmenting the pool.
1300 	 */
1301 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1302 		LIST_REMOVE(ph, ph_pagelist);
1303 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1304 		pp->pr_curpage = ph;
1305 	}
1306 }
1307 
1308 /*
1309  * Return resource to the pool.
1310  */
1311 #ifdef POOL_DIAGNOSTIC
1312 void
1313 _pool_put(struct pool *pp, void *v, const char *file, long line)
1314 {
1315 	struct pool_pagelist pq;
1316 
1317 	LIST_INIT(&pq);
1318 
1319 	mutex_enter(&pp->pr_lock);
1320 	pr_enter(pp, file, line);
1321 
1322 	pr_log(pp, v, PRLOG_PUT, file, line);
1323 
1324 	pool_do_put(pp, v, &pq);
1325 
1326 	pr_leave(pp);
1327 	mutex_exit(&pp->pr_lock);
1328 
1329 	pr_pagelist_free(pp, &pq);
1330 }
1331 #undef pool_put
1332 #endif /* POOL_DIAGNOSTIC */
1333 
1334 void
1335 pool_put(struct pool *pp, void *v)
1336 {
1337 	struct pool_pagelist pq;
1338 
1339 	LIST_INIT(&pq);
1340 
1341 	mutex_enter(&pp->pr_lock);
1342 	pool_do_put(pp, v, &pq);
1343 	mutex_exit(&pp->pr_lock);
1344 
1345 	pr_pagelist_free(pp, &pq);
1346 }
1347 
1348 #ifdef POOL_DIAGNOSTIC
1349 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1350 #endif
1351 
1352 /*
1353  * pool_grow: grow a pool by a page.
1354  *
1355  * => called with pool locked.
1356  * => unlock and relock the pool.
1357  * => return with pool locked.
1358  */
1359 
1360 static int
1361 pool_grow(struct pool *pp, int flags)
1362 {
1363 	struct pool_item_header *ph = NULL;
1364 	char *cp;
1365 
1366 	mutex_exit(&pp->pr_lock);
1367 	cp = pool_allocator_alloc(pp, flags);
1368 	if (__predict_true(cp != NULL)) {
1369 		ph = pool_alloc_item_header(pp, cp, flags);
1370 	}
1371 	if (__predict_false(cp == NULL || ph == NULL)) {
1372 		if (cp != NULL) {
1373 			pool_allocator_free(pp, cp);
1374 		}
1375 		mutex_enter(&pp->pr_lock);
1376 		return ENOMEM;
1377 	}
1378 
1379 	mutex_enter(&pp->pr_lock);
1380 	pool_prime_page(pp, cp, ph);
1381 	pp->pr_npagealloc++;
1382 	return 0;
1383 }
1384 
1385 /*
1386  * Add N items to the pool.
1387  */
1388 int
1389 pool_prime(struct pool *pp, int n)
1390 {
1391 	int newpages;
1392 	int error = 0;
1393 
1394 	mutex_enter(&pp->pr_lock);
1395 
1396 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1397 
1398 	while (newpages-- > 0) {
1399 		error = pool_grow(pp, PR_NOWAIT);
1400 		if (error) {
1401 			break;
1402 		}
1403 		pp->pr_minpages++;
1404 	}
1405 
1406 	if (pp->pr_minpages >= pp->pr_maxpages)
1407 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1408 
1409 	mutex_exit(&pp->pr_lock);
1410 	return error;
1411 }
1412 
1413 /*
1414  * Add a page worth of items to the pool.
1415  *
1416  * Note, we must be called with the pool descriptor LOCKED.
1417  */
1418 static void
1419 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1420 {
1421 	struct pool_item *pi;
1422 	void *cp = storage;
1423 	const unsigned int align = pp->pr_align;
1424 	const unsigned int ioff = pp->pr_itemoffset;
1425 	int n;
1426 
1427 	KASSERT(mutex_owned(&pp->pr_lock));
1428 
1429 #ifdef DIAGNOSTIC
1430 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1431 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1432 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1433 #endif
1434 
1435 	/*
1436 	 * Insert page header.
1437 	 */
1438 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1439 	LIST_INIT(&ph->ph_itemlist);
1440 	ph->ph_page = storage;
1441 	ph->ph_nmissing = 0;
1442 	ph->ph_time = time_uptime;
1443 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1444 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1445 
1446 	pp->pr_nidle++;
1447 
1448 	/*
1449 	 * Color this page.
1450 	 */
1451 	ph->ph_off = pp->pr_curcolor;
1452 	cp = (char *)cp + ph->ph_off;
1453 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1454 		pp->pr_curcolor = 0;
1455 
1456 	/*
1457 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1458 	 */
1459 	if (ioff != 0)
1460 		cp = (char *)cp + align - ioff;
1461 
1462 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1463 
1464 	/*
1465 	 * Insert remaining chunks on the bucket list.
1466 	 */
1467 	n = pp->pr_itemsperpage;
1468 	pp->pr_nitems += n;
1469 
1470 	if (pp->pr_roflags & PR_NOTOUCH) {
1471 		pr_item_notouch_init(pp, ph);
1472 	} else {
1473 		while (n--) {
1474 			pi = (struct pool_item *)cp;
1475 
1476 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1477 
1478 			/* Insert on page list */
1479 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1480 #ifdef DIAGNOSTIC
1481 			pi->pi_magic = PI_MAGIC;
1482 #endif
1483 			cp = (char *)cp + pp->pr_size;
1484 
1485 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * If the pool was depleted, point at the new page.
1491 	 */
1492 	if (pp->pr_curpage == NULL)
1493 		pp->pr_curpage = ph;
1494 
1495 	if (++pp->pr_npages > pp->pr_hiwat)
1496 		pp->pr_hiwat = pp->pr_npages;
1497 }
1498 
1499 /*
1500  * Used by pool_get() when nitems drops below the low water mark.  This
1501  * is used to catch up pr_nitems with the low water mark.
1502  *
1503  * Note 1, we never wait for memory here, we let the caller decide what to do.
1504  *
1505  * Note 2, we must be called with the pool already locked, and we return
1506  * with it locked.
1507  */
1508 static int
1509 pool_catchup(struct pool *pp)
1510 {
1511 	int error = 0;
1512 
1513 	while (POOL_NEEDS_CATCHUP(pp)) {
1514 		error = pool_grow(pp, PR_NOWAIT);
1515 		if (error) {
1516 			break;
1517 		}
1518 	}
1519 	return error;
1520 }
1521 
1522 static void
1523 pool_update_curpage(struct pool *pp)
1524 {
1525 
1526 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1527 	if (pp->pr_curpage == NULL) {
1528 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1529 	}
1530 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1531 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1532 }
1533 
1534 void
1535 pool_setlowat(struct pool *pp, int n)
1536 {
1537 
1538 	mutex_enter(&pp->pr_lock);
1539 
1540 	pp->pr_minitems = n;
1541 	pp->pr_minpages = (n == 0)
1542 		? 0
1543 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1544 
1545 	/* Make sure we're caught up with the newly-set low water mark. */
1546 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1547 		/*
1548 		 * XXX: Should we log a warning?  Should we set up a timeout
1549 		 * to try again in a second or so?  The latter could break
1550 		 * a caller's assumptions about interrupt protection, etc.
1551 		 */
1552 	}
1553 
1554 	mutex_exit(&pp->pr_lock);
1555 }
1556 
1557 void
1558 pool_sethiwat(struct pool *pp, int n)
1559 {
1560 
1561 	mutex_enter(&pp->pr_lock);
1562 
1563 	pp->pr_maxpages = (n == 0)
1564 		? 0
1565 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1566 
1567 	mutex_exit(&pp->pr_lock);
1568 }
1569 
1570 void
1571 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1572 {
1573 
1574 	mutex_enter(&pp->pr_lock);
1575 
1576 	pp->pr_hardlimit = n;
1577 	pp->pr_hardlimit_warning = warnmess;
1578 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1579 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1580 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1581 
1582 	/*
1583 	 * In-line version of pool_sethiwat(), because we don't want to
1584 	 * release the lock.
1585 	 */
1586 	pp->pr_maxpages = (n == 0)
1587 		? 0
1588 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1589 
1590 	mutex_exit(&pp->pr_lock);
1591 }
1592 
1593 /*
1594  * Release all complete pages that have not been used recently.
1595  */
1596 int
1597 #ifdef POOL_DIAGNOSTIC
1598 _pool_reclaim(struct pool *pp, const char *file, long line)
1599 #else
1600 pool_reclaim(struct pool *pp)
1601 #endif
1602 {
1603 	struct pool_item_header *ph, *phnext;
1604 	struct pool_pagelist pq;
1605 	uint32_t curtime;
1606 	bool klock;
1607 	int rv;
1608 
1609 	if (pp->pr_drain_hook != NULL) {
1610 		/*
1611 		 * The drain hook must be called with the pool unlocked.
1612 		 */
1613 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1614 	}
1615 
1616 	/*
1617 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1618 	 * to block.
1619 	 */
1620 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1621 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1622 		KERNEL_LOCK(1, NULL);
1623 		klock = true;
1624 	} else
1625 		klock = false;
1626 
1627 	/* Reclaim items from the pool's cache (if any). */
1628 	if (pp->pr_cache != NULL)
1629 		pool_cache_invalidate(pp->pr_cache);
1630 
1631 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1632 		if (klock) {
1633 			KERNEL_UNLOCK_ONE(NULL);
1634 		}
1635 		return (0);
1636 	}
1637 	pr_enter(pp, file, line);
1638 
1639 	LIST_INIT(&pq);
1640 
1641 	curtime = time_uptime;
1642 
1643 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1644 		phnext = LIST_NEXT(ph, ph_pagelist);
1645 
1646 		/* Check our minimum page claim */
1647 		if (pp->pr_npages <= pp->pr_minpages)
1648 			break;
1649 
1650 		KASSERT(ph->ph_nmissing == 0);
1651 		if (curtime - ph->ph_time < pool_inactive_time
1652 		    && !pa_starved_p(pp->pr_alloc))
1653 			continue;
1654 
1655 		/*
1656 		 * If freeing this page would put us below
1657 		 * the low water mark, stop now.
1658 		 */
1659 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1660 		    pp->pr_minitems)
1661 			break;
1662 
1663 		pr_rmpage(pp, ph, &pq);
1664 	}
1665 
1666 	pr_leave(pp);
1667 	mutex_exit(&pp->pr_lock);
1668 
1669 	if (LIST_EMPTY(&pq))
1670 		rv = 0;
1671 	else {
1672 		pr_pagelist_free(pp, &pq);
1673 		rv = 1;
1674 	}
1675 
1676 	if (klock) {
1677 		KERNEL_UNLOCK_ONE(NULL);
1678 	}
1679 
1680 	return (rv);
1681 }
1682 
1683 /*
1684  * Drain pools, one at a time.  This is a two stage process;
1685  * drain_start kicks off a cross call to drain CPU-level caches
1686  * if the pool has an associated pool_cache.  drain_end waits
1687  * for those cross calls to finish, and then drains the cache
1688  * (if any) and pool.
1689  *
1690  * Note, must never be called from interrupt context.
1691  */
1692 void
1693 pool_drain_start(struct pool **ppp, uint64_t *wp)
1694 {
1695 	struct pool *pp;
1696 
1697 	KASSERT(!TAILQ_EMPTY(&pool_head));
1698 
1699 	pp = NULL;
1700 
1701 	/* Find next pool to drain, and add a reference. */
1702 	mutex_enter(&pool_head_lock);
1703 	do {
1704 		if (drainpp == NULL) {
1705 			drainpp = TAILQ_FIRST(&pool_head);
1706 		}
1707 		if (drainpp != NULL) {
1708 			pp = drainpp;
1709 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1710 		}
1711 		/*
1712 		 * Skip completely idle pools.  We depend on at least
1713 		 * one pool in the system being active.
1714 		 */
1715 	} while (pp == NULL || pp->pr_npages == 0);
1716 	pp->pr_refcnt++;
1717 	mutex_exit(&pool_head_lock);
1718 
1719 	/* If there is a pool_cache, drain CPU level caches. */
1720 	*ppp = pp;
1721 	if (pp->pr_cache != NULL) {
1722 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1723 		    pp->pr_cache, NULL);
1724 	}
1725 }
1726 
1727 void
1728 pool_drain_end(struct pool *pp, uint64_t where)
1729 {
1730 
1731 	if (pp == NULL)
1732 		return;
1733 
1734 	KASSERT(pp->pr_refcnt > 0);
1735 
1736 	/* Wait for remote draining to complete. */
1737 	if (pp->pr_cache != NULL)
1738 		xc_wait(where);
1739 
1740 	/* Drain the cache (if any) and pool.. */
1741 	pool_reclaim(pp);
1742 
1743 	/* Finally, unlock the pool. */
1744 	mutex_enter(&pool_head_lock);
1745 	pp->pr_refcnt--;
1746 	cv_broadcast(&pool_busy);
1747 	mutex_exit(&pool_head_lock);
1748 }
1749 
1750 /*
1751  * Diagnostic helpers.
1752  */
1753 void
1754 pool_print(struct pool *pp, const char *modif)
1755 {
1756 
1757 	pool_print1(pp, modif, printf);
1758 }
1759 
1760 void
1761 pool_printall(const char *modif, void (*pr)(const char *, ...))
1762 {
1763 	struct pool *pp;
1764 
1765 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1766 		pool_printit(pp, modif, pr);
1767 	}
1768 }
1769 
1770 void
1771 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1772 {
1773 
1774 	if (pp == NULL) {
1775 		(*pr)("Must specify a pool to print.\n");
1776 		return;
1777 	}
1778 
1779 	pool_print1(pp, modif, pr);
1780 }
1781 
1782 static void
1783 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1784     void (*pr)(const char *, ...))
1785 {
1786 	struct pool_item_header *ph;
1787 #ifdef DIAGNOSTIC
1788 	struct pool_item *pi;
1789 #endif
1790 
1791 	LIST_FOREACH(ph, pl, ph_pagelist) {
1792 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1793 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1794 #ifdef DIAGNOSTIC
1795 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1796 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1797 				if (pi->pi_magic != PI_MAGIC) {
1798 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1799 					    pi, pi->pi_magic);
1800 				}
1801 			}
1802 		}
1803 #endif
1804 	}
1805 }
1806 
1807 static void
1808 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1809 {
1810 	struct pool_item_header *ph;
1811 	pool_cache_t pc;
1812 	pcg_t *pcg;
1813 	pool_cache_cpu_t *cc;
1814 	uint64_t cpuhit, cpumiss;
1815 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1816 	char c;
1817 
1818 	while ((c = *modif++) != '\0') {
1819 		if (c == 'l')
1820 			print_log = 1;
1821 		if (c == 'p')
1822 			print_pagelist = 1;
1823 		if (c == 'c')
1824 			print_cache = 1;
1825 	}
1826 
1827 	if ((pc = pp->pr_cache) != NULL) {
1828 		(*pr)("POOL CACHE");
1829 	} else {
1830 		(*pr)("POOL");
1831 	}
1832 
1833 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1834 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1835 	    pp->pr_roflags);
1836 	(*pr)("\talloc %p\n", pp->pr_alloc);
1837 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1838 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1839 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1840 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1841 
1842 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1843 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1844 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1845 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1846 
1847 	if (print_pagelist == 0)
1848 		goto skip_pagelist;
1849 
1850 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1851 		(*pr)("\n\tempty page list:\n");
1852 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1853 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1854 		(*pr)("\n\tfull page list:\n");
1855 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1856 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1857 		(*pr)("\n\tpartial-page list:\n");
1858 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1859 
1860 	if (pp->pr_curpage == NULL)
1861 		(*pr)("\tno current page\n");
1862 	else
1863 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1864 
1865  skip_pagelist:
1866 	if (print_log == 0)
1867 		goto skip_log;
1868 
1869 	(*pr)("\n");
1870 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1871 		(*pr)("\tno log\n");
1872 	else {
1873 		pr_printlog(pp, NULL, pr);
1874 	}
1875 
1876  skip_log:
1877 
1878 #define PR_GROUPLIST(pcg)						\
1879 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1880 	for (i = 0; i < pcg->pcg_size; i++) {				\
1881 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1882 		    POOL_PADDR_INVALID) {				\
1883 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1884 			    pcg->pcg_objects[i].pcgo_va,		\
1885 			    (unsigned long long)			\
1886 			    pcg->pcg_objects[i].pcgo_pa);		\
1887 		} else {						\
1888 			(*pr)("\t\t\t%p\n",				\
1889 			    pcg->pcg_objects[i].pcgo_va);		\
1890 		}							\
1891 	}
1892 
1893 	if (pc != NULL) {
1894 		cpuhit = 0;
1895 		cpumiss = 0;
1896 		for (i = 0; i < MAXCPUS; i++) {
1897 			if ((cc = pc->pc_cpus[i]) == NULL)
1898 				continue;
1899 			cpuhit += cc->cc_hits;
1900 			cpumiss += cc->cc_misses;
1901 		}
1902 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1903 		(*pr)("\tcache layer hits %llu misses %llu\n",
1904 		    pc->pc_hits, pc->pc_misses);
1905 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1906 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1907 		    pc->pc_contended);
1908 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1909 		    pc->pc_nempty, pc->pc_nfull);
1910 		if (print_cache) {
1911 			(*pr)("\tfull cache groups:\n");
1912 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1913 			    pcg = pcg->pcg_next) {
1914 				PR_GROUPLIST(pcg);
1915 			}
1916 			(*pr)("\tempty cache groups:\n");
1917 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1918 			    pcg = pcg->pcg_next) {
1919 				PR_GROUPLIST(pcg);
1920 			}
1921 		}
1922 	}
1923 #undef PR_GROUPLIST
1924 
1925 	pr_enter_check(pp, pr);
1926 }
1927 
1928 static int
1929 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1930 {
1931 	struct pool_item *pi;
1932 	void *page;
1933 	int n;
1934 
1935 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1936 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1937 		if (page != ph->ph_page &&
1938 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1939 			if (label != NULL)
1940 				printf("%s: ", label);
1941 			printf("pool(%p:%s): page inconsistency: page %p;"
1942 			       " at page head addr %p (p %p)\n", pp,
1943 				pp->pr_wchan, ph->ph_page,
1944 				ph, page);
1945 			return 1;
1946 		}
1947 	}
1948 
1949 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1950 		return 0;
1951 
1952 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1953 	     pi != NULL;
1954 	     pi = LIST_NEXT(pi,pi_list), n++) {
1955 
1956 #ifdef DIAGNOSTIC
1957 		if (pi->pi_magic != PI_MAGIC) {
1958 			if (label != NULL)
1959 				printf("%s: ", label);
1960 			printf("pool(%s): free list modified: magic=%x;"
1961 			       " page %p; item ordinal %d; addr %p\n",
1962 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1963 				n, pi);
1964 			panic("pool");
1965 		}
1966 #endif
1967 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1968 			continue;
1969 		}
1970 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1971 		if (page == ph->ph_page)
1972 			continue;
1973 
1974 		if (label != NULL)
1975 			printf("%s: ", label);
1976 		printf("pool(%p:%s): page inconsistency: page %p;"
1977 		       " item ordinal %d; addr %p (p %p)\n", pp,
1978 			pp->pr_wchan, ph->ph_page,
1979 			n, pi, page);
1980 		return 1;
1981 	}
1982 	return 0;
1983 }
1984 
1985 
1986 int
1987 pool_chk(struct pool *pp, const char *label)
1988 {
1989 	struct pool_item_header *ph;
1990 	int r = 0;
1991 
1992 	mutex_enter(&pp->pr_lock);
1993 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1994 		r = pool_chk_page(pp, label, ph);
1995 		if (r) {
1996 			goto out;
1997 		}
1998 	}
1999 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2000 		r = pool_chk_page(pp, label, ph);
2001 		if (r) {
2002 			goto out;
2003 		}
2004 	}
2005 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2006 		r = pool_chk_page(pp, label, ph);
2007 		if (r) {
2008 			goto out;
2009 		}
2010 	}
2011 
2012 out:
2013 	mutex_exit(&pp->pr_lock);
2014 	return (r);
2015 }
2016 
2017 /*
2018  * pool_cache_init:
2019  *
2020  *	Initialize a pool cache.
2021  */
2022 pool_cache_t
2023 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2024     const char *wchan, struct pool_allocator *palloc, int ipl,
2025     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2026 {
2027 	pool_cache_t pc;
2028 
2029 	pc = pool_get(&cache_pool, PR_WAITOK);
2030 	if (pc == NULL)
2031 		return NULL;
2032 
2033 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2034 	   palloc, ipl, ctor, dtor, arg);
2035 
2036 	return pc;
2037 }
2038 
2039 /*
2040  * pool_cache_bootstrap:
2041  *
2042  *	Kernel-private version of pool_cache_init().  The caller
2043  *	provides initial storage.
2044  */
2045 void
2046 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2047     u_int align_offset, u_int flags, const char *wchan,
2048     struct pool_allocator *palloc, int ipl,
2049     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2050     void *arg)
2051 {
2052 	CPU_INFO_ITERATOR cii;
2053 	pool_cache_t pc1;
2054 	struct cpu_info *ci;
2055 	struct pool *pp;
2056 
2057 	pp = &pc->pc_pool;
2058 	if (palloc == NULL && ipl == IPL_NONE)
2059 		palloc = &pool_allocator_nointr;
2060 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2061 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2062 
2063 	if (ctor == NULL) {
2064 		ctor = (int (*)(void *, void *, int))nullop;
2065 	}
2066 	if (dtor == NULL) {
2067 		dtor = (void (*)(void *, void *))nullop;
2068 	}
2069 
2070 	pc->pc_emptygroups = NULL;
2071 	pc->pc_fullgroups = NULL;
2072 	pc->pc_partgroups = NULL;
2073 	pc->pc_ctor = ctor;
2074 	pc->pc_dtor = dtor;
2075 	pc->pc_arg  = arg;
2076 	pc->pc_hits  = 0;
2077 	pc->pc_misses = 0;
2078 	pc->pc_nempty = 0;
2079 	pc->pc_npart = 0;
2080 	pc->pc_nfull = 0;
2081 	pc->pc_contended = 0;
2082 	pc->pc_refcnt = 0;
2083 	pc->pc_freecheck = NULL;
2084 
2085 	if ((flags & PR_LARGECACHE) != 0) {
2086 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2087 		pc->pc_pcgpool = &pcg_large_pool;
2088 	} else {
2089 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2090 		pc->pc_pcgpool = &pcg_normal_pool;
2091 	}
2092 
2093 	/* Allocate per-CPU caches. */
2094 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2095 	pc->pc_ncpu = 0;
2096 	if (ncpu < 2) {
2097 		/* XXX For sparc: boot CPU is not attached yet. */
2098 		pool_cache_cpu_init1(curcpu(), pc);
2099 	} else {
2100 		for (CPU_INFO_FOREACH(cii, ci)) {
2101 			pool_cache_cpu_init1(ci, pc);
2102 		}
2103 	}
2104 
2105 	/* Add to list of all pools. */
2106 	if (__predict_true(!cold))
2107 		mutex_enter(&pool_head_lock);
2108 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2109 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2110 			break;
2111 	}
2112 	if (pc1 == NULL)
2113 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2114 	else
2115 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2116 	if (__predict_true(!cold))
2117 		mutex_exit(&pool_head_lock);
2118 
2119 	membar_sync();
2120 	pp->pr_cache = pc;
2121 }
2122 
2123 /*
2124  * pool_cache_destroy:
2125  *
2126  *	Destroy a pool cache.
2127  */
2128 void
2129 pool_cache_destroy(pool_cache_t pc)
2130 {
2131 	struct pool *pp = &pc->pc_pool;
2132 	pool_cache_cpu_t *cc;
2133 	pcg_t *pcg;
2134 	int i;
2135 
2136 	/* Remove it from the global list. */
2137 	mutex_enter(&pool_head_lock);
2138 	while (pc->pc_refcnt != 0)
2139 		cv_wait(&pool_busy, &pool_head_lock);
2140 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2141 	mutex_exit(&pool_head_lock);
2142 
2143 	/* First, invalidate the entire cache. */
2144 	pool_cache_invalidate(pc);
2145 
2146 	/* Disassociate it from the pool. */
2147 	mutex_enter(&pp->pr_lock);
2148 	pp->pr_cache = NULL;
2149 	mutex_exit(&pp->pr_lock);
2150 
2151 	/* Destroy per-CPU data */
2152 	for (i = 0; i < MAXCPUS; i++) {
2153 		if ((cc = pc->pc_cpus[i]) == NULL)
2154 			continue;
2155 		if ((pcg = cc->cc_current) != &pcg_dummy) {
2156 			pcg->pcg_next = NULL;
2157 			pool_cache_invalidate_groups(pc, pcg);
2158 		}
2159 		if ((pcg = cc->cc_previous) != &pcg_dummy) {
2160 			pcg->pcg_next = NULL;
2161 			pool_cache_invalidate_groups(pc, pcg);
2162 		}
2163 		if (cc != &pc->pc_cpu0)
2164 			pool_put(&cache_cpu_pool, cc);
2165 	}
2166 
2167 	/* Finally, destroy it. */
2168 	mutex_destroy(&pc->pc_lock);
2169 	pool_destroy(pp);
2170 	pool_put(&cache_pool, pc);
2171 }
2172 
2173 /*
2174  * pool_cache_cpu_init1:
2175  *
2176  *	Called for each pool_cache whenever a new CPU is attached.
2177  */
2178 static void
2179 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2180 {
2181 	pool_cache_cpu_t *cc;
2182 	int index;
2183 
2184 	index = ci->ci_index;
2185 
2186 	KASSERT(index < MAXCPUS);
2187 
2188 	if ((cc = pc->pc_cpus[index]) != NULL) {
2189 		KASSERT(cc->cc_cpuindex == index);
2190 		return;
2191 	}
2192 
2193 	/*
2194 	 * The first CPU is 'free'.  This needs to be the case for
2195 	 * bootstrap - we may not be able to allocate yet.
2196 	 */
2197 	if (pc->pc_ncpu == 0) {
2198 		cc = &pc->pc_cpu0;
2199 		pc->pc_ncpu = 1;
2200 	} else {
2201 		mutex_enter(&pc->pc_lock);
2202 		pc->pc_ncpu++;
2203 		mutex_exit(&pc->pc_lock);
2204 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2205 	}
2206 
2207 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2208 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2209 	cc->cc_cache = pc;
2210 	cc->cc_cpuindex = index;
2211 	cc->cc_hits = 0;
2212 	cc->cc_misses = 0;
2213 	cc->cc_current = __UNCONST(&pcg_dummy);
2214 	cc->cc_previous = __UNCONST(&pcg_dummy);
2215 
2216 	pc->pc_cpus[index] = cc;
2217 }
2218 
2219 /*
2220  * pool_cache_cpu_init:
2221  *
2222  *	Called whenever a new CPU is attached.
2223  */
2224 void
2225 pool_cache_cpu_init(struct cpu_info *ci)
2226 {
2227 	pool_cache_t pc;
2228 
2229 	mutex_enter(&pool_head_lock);
2230 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2231 		pc->pc_refcnt++;
2232 		mutex_exit(&pool_head_lock);
2233 
2234 		pool_cache_cpu_init1(ci, pc);
2235 
2236 		mutex_enter(&pool_head_lock);
2237 		pc->pc_refcnt--;
2238 		cv_broadcast(&pool_busy);
2239 	}
2240 	mutex_exit(&pool_head_lock);
2241 }
2242 
2243 /*
2244  * pool_cache_reclaim:
2245  *
2246  *	Reclaim memory from a pool cache.
2247  */
2248 bool
2249 pool_cache_reclaim(pool_cache_t pc)
2250 {
2251 
2252 	return pool_reclaim(&pc->pc_pool);
2253 }
2254 
2255 static void
2256 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2257 {
2258 
2259 	(*pc->pc_dtor)(pc->pc_arg, object);
2260 	pool_put(&pc->pc_pool, object);
2261 }
2262 
2263 /*
2264  * pool_cache_destruct_object:
2265  *
2266  *	Force destruction of an object and its release back into
2267  *	the pool.
2268  */
2269 void
2270 pool_cache_destruct_object(pool_cache_t pc, void *object)
2271 {
2272 
2273 	FREECHECK_IN(&pc->pc_freecheck, object);
2274 
2275 	pool_cache_destruct_object1(pc, object);
2276 }
2277 
2278 /*
2279  * pool_cache_invalidate_groups:
2280  *
2281  *	Invalidate a chain of groups and destruct all objects.
2282  */
2283 static void
2284 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2285 {
2286 	void *object;
2287 	pcg_t *next;
2288 	int i;
2289 
2290 	for (; pcg != NULL; pcg = next) {
2291 		next = pcg->pcg_next;
2292 
2293 		for (i = 0; i < pcg->pcg_avail; i++) {
2294 			object = pcg->pcg_objects[i].pcgo_va;
2295 			pool_cache_destruct_object1(pc, object);
2296 		}
2297 
2298 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2299 			pool_put(&pcg_large_pool, pcg);
2300 		} else {
2301 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2302 			pool_put(&pcg_normal_pool, pcg);
2303 		}
2304 	}
2305 }
2306 
2307 /*
2308  * pool_cache_invalidate:
2309  *
2310  *	Invalidate a pool cache (destruct and release all of the
2311  *	cached objects).  Does not reclaim objects from the pool.
2312  */
2313 void
2314 pool_cache_invalidate(pool_cache_t pc)
2315 {
2316 	pcg_t *full, *empty, *part;
2317 
2318 	mutex_enter(&pc->pc_lock);
2319 	full = pc->pc_fullgroups;
2320 	empty = pc->pc_emptygroups;
2321 	part = pc->pc_partgroups;
2322 	pc->pc_fullgroups = NULL;
2323 	pc->pc_emptygroups = NULL;
2324 	pc->pc_partgroups = NULL;
2325 	pc->pc_nfull = 0;
2326 	pc->pc_nempty = 0;
2327 	pc->pc_npart = 0;
2328 	mutex_exit(&pc->pc_lock);
2329 
2330 	pool_cache_invalidate_groups(pc, full);
2331 	pool_cache_invalidate_groups(pc, empty);
2332 	pool_cache_invalidate_groups(pc, part);
2333 }
2334 
2335 void
2336 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2337 {
2338 
2339 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2340 }
2341 
2342 void
2343 pool_cache_setlowat(pool_cache_t pc, int n)
2344 {
2345 
2346 	pool_setlowat(&pc->pc_pool, n);
2347 }
2348 
2349 void
2350 pool_cache_sethiwat(pool_cache_t pc, int n)
2351 {
2352 
2353 	pool_sethiwat(&pc->pc_pool, n);
2354 }
2355 
2356 void
2357 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2358 {
2359 
2360 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2361 }
2362 
2363 static bool __noinline
2364 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2365 		    paddr_t *pap, int flags)
2366 {
2367 	pcg_t *pcg, *cur;
2368 	uint64_t ncsw;
2369 	pool_cache_t pc;
2370 	void *object;
2371 
2372 	KASSERT(cc->cc_current->pcg_avail == 0);
2373 	KASSERT(cc->cc_previous->pcg_avail == 0);
2374 
2375 	pc = cc->cc_cache;
2376 	cc->cc_misses++;
2377 
2378 	/*
2379 	 * Nothing was available locally.  Try and grab a group
2380 	 * from the cache.
2381 	 */
2382 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2383 		ncsw = curlwp->l_ncsw;
2384 		mutex_enter(&pc->pc_lock);
2385 		pc->pc_contended++;
2386 
2387 		/*
2388 		 * If we context switched while locking, then
2389 		 * our view of the per-CPU data is invalid:
2390 		 * retry.
2391 		 */
2392 		if (curlwp->l_ncsw != ncsw) {
2393 			mutex_exit(&pc->pc_lock);
2394 			return true;
2395 		}
2396 	}
2397 
2398 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2399 		/*
2400 		 * If there's a full group, release our empty
2401 		 * group back to the cache.  Install the full
2402 		 * group as cc_current and return.
2403 		 */
2404 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2405 			KASSERT(cur->pcg_avail == 0);
2406 			cur->pcg_next = pc->pc_emptygroups;
2407 			pc->pc_emptygroups = cur;
2408 			pc->pc_nempty++;
2409 		}
2410 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2411 		cc->cc_current = pcg;
2412 		pc->pc_fullgroups = pcg->pcg_next;
2413 		pc->pc_hits++;
2414 		pc->pc_nfull--;
2415 		mutex_exit(&pc->pc_lock);
2416 		return true;
2417 	}
2418 
2419 	/*
2420 	 * Nothing available locally or in cache.  Take the slow
2421 	 * path: fetch a new object from the pool and construct
2422 	 * it.
2423 	 */
2424 	pc->pc_misses++;
2425 	mutex_exit(&pc->pc_lock);
2426 	splx(s);
2427 
2428 	object = pool_get(&pc->pc_pool, flags);
2429 	*objectp = object;
2430 	if (__predict_false(object == NULL))
2431 		return false;
2432 
2433 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2434 		pool_put(&pc->pc_pool, object);
2435 		*objectp = NULL;
2436 		return false;
2437 	}
2438 
2439 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2440 	    (pc->pc_pool.pr_align - 1)) == 0);
2441 
2442 	if (pap != NULL) {
2443 #ifdef POOL_VTOPHYS
2444 		*pap = POOL_VTOPHYS(object);
2445 #else
2446 		*pap = POOL_PADDR_INVALID;
2447 #endif
2448 	}
2449 
2450 	FREECHECK_OUT(&pc->pc_freecheck, object);
2451 	return false;
2452 }
2453 
2454 /*
2455  * pool_cache_get{,_paddr}:
2456  *
2457  *	Get an object from a pool cache (optionally returning
2458  *	the physical address of the object).
2459  */
2460 void *
2461 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2462 {
2463 	pool_cache_cpu_t *cc;
2464 	pcg_t *pcg;
2465 	void *object;
2466 	int s;
2467 
2468 #ifdef LOCKDEBUG
2469 	if (flags & PR_WAITOK) {
2470 		ASSERT_SLEEPABLE();
2471 	}
2472 #endif
2473 
2474 	/* Lock out interrupts and disable preemption. */
2475 	s = splvm();
2476 	while (/* CONSTCOND */ true) {
2477 		/* Try and allocate an object from the current group. */
2478 		cc = pc->pc_cpus[curcpu()->ci_index];
2479 		KASSERT(cc->cc_cache == pc);
2480 	 	pcg = cc->cc_current;
2481 		if (__predict_true(pcg->pcg_avail > 0)) {
2482 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2483 			if (__predict_false(pap != NULL))
2484 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2485 #if defined(DIAGNOSTIC)
2486 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2487 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2488 			KASSERT(object != NULL);
2489 #endif
2490 			cc->cc_hits++;
2491 			splx(s);
2492 			FREECHECK_OUT(&pc->pc_freecheck, object);
2493 			return object;
2494 		}
2495 
2496 		/*
2497 		 * That failed.  If the previous group isn't empty, swap
2498 		 * it with the current group and allocate from there.
2499 		 */
2500 		pcg = cc->cc_previous;
2501 		if (__predict_true(pcg->pcg_avail > 0)) {
2502 			cc->cc_previous = cc->cc_current;
2503 			cc->cc_current = pcg;
2504 			continue;
2505 		}
2506 
2507 		/*
2508 		 * Can't allocate from either group: try the slow path.
2509 		 * If get_slow() allocated an object for us, or if
2510 		 * no more objects are available, it will return false.
2511 		 * Otherwise, we need to retry.
2512 		 */
2513 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2514 			break;
2515 	}
2516 
2517 	return object;
2518 }
2519 
2520 static bool __noinline
2521 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2522 {
2523 	pcg_t *pcg, *cur;
2524 	uint64_t ncsw;
2525 	pool_cache_t pc;
2526 
2527 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2528 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2529 
2530 	pc = cc->cc_cache;
2531 	pcg = NULL;
2532 	cc->cc_misses++;
2533 
2534 	/*
2535 	 * If there are no empty groups in the cache then allocate one
2536 	 * while still unlocked.
2537 	 */
2538 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2539 		if (__predict_true(!pool_cache_disable)) {
2540 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2541 		}
2542 		if (__predict_true(pcg != NULL)) {
2543 			pcg->pcg_avail = 0;
2544 			pcg->pcg_size = pc->pc_pcgsize;
2545 		}
2546 	}
2547 
2548 	/* Lock the cache. */
2549 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2550 		ncsw = curlwp->l_ncsw;
2551 		mutex_enter(&pc->pc_lock);
2552 		pc->pc_contended++;
2553 
2554 		/*
2555 		 * If we context switched while locking, then our view of
2556 		 * the per-CPU data is invalid: retry.
2557 		 */
2558 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
2559 			mutex_exit(&pc->pc_lock);
2560 			if (pcg != NULL) {
2561 				pool_put(pc->pc_pcgpool, pcg);
2562 			}
2563 			return true;
2564 		}
2565 	}
2566 
2567 	/* If there are no empty groups in the cache then allocate one. */
2568 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2569 		pcg = pc->pc_emptygroups;
2570 		pc->pc_emptygroups = pcg->pcg_next;
2571 		pc->pc_nempty--;
2572 	}
2573 
2574 	/*
2575 	 * If there's a empty group, release our full group back
2576 	 * to the cache.  Install the empty group to the local CPU
2577 	 * and return.
2578 	 */
2579 	if (pcg != NULL) {
2580 		KASSERT(pcg->pcg_avail == 0);
2581 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2582 			cc->cc_previous = pcg;
2583 		} else {
2584 			cur = cc->cc_current;
2585 			if (__predict_true(cur != &pcg_dummy)) {
2586 				KASSERT(cur->pcg_avail == cur->pcg_size);
2587 				cur->pcg_next = pc->pc_fullgroups;
2588 				pc->pc_fullgroups = cur;
2589 				pc->pc_nfull++;
2590 			}
2591 			cc->cc_current = pcg;
2592 		}
2593 		pc->pc_hits++;
2594 		mutex_exit(&pc->pc_lock);
2595 		return true;
2596 	}
2597 
2598 	/*
2599 	 * Nothing available locally or in cache, and we didn't
2600 	 * allocate an empty group.  Take the slow path and destroy
2601 	 * the object here and now.
2602 	 */
2603 	pc->pc_misses++;
2604 	mutex_exit(&pc->pc_lock);
2605 	splx(s);
2606 	pool_cache_destruct_object(pc, object);
2607 
2608 	return false;
2609 }
2610 
2611 /*
2612  * pool_cache_put{,_paddr}:
2613  *
2614  *	Put an object back to the pool cache (optionally caching the
2615  *	physical address of the object).
2616  */
2617 void
2618 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2619 {
2620 	pool_cache_cpu_t *cc;
2621 	pcg_t *pcg;
2622 	int s;
2623 
2624 	FREECHECK_IN(&pc->pc_freecheck, object);
2625 
2626 	/* Lock out interrupts and disable preemption. */
2627 	s = splvm();
2628 	while (/* CONSTCOND */ true) {
2629 		/* If the current group isn't full, release it there. */
2630 		cc = pc->pc_cpus[curcpu()->ci_index];
2631 		KASSERT(cc->cc_cache == pc);
2632 	 	pcg = cc->cc_current;
2633 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2634 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2635 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2636 			pcg->pcg_avail++;
2637 			cc->cc_hits++;
2638 			splx(s);
2639 			return;
2640 		}
2641 
2642 		/*
2643 		 * That failed.  If the previous group isn't full, swap
2644 		 * it with the current group and try again.
2645 		 */
2646 		pcg = cc->cc_previous;
2647 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2648 			cc->cc_previous = cc->cc_current;
2649 			cc->cc_current = pcg;
2650 			continue;
2651 		}
2652 
2653 		/*
2654 		 * Can't free to either group: try the slow path.
2655 		 * If put_slow() releases the object for us, it
2656 		 * will return false.  Otherwise we need to retry.
2657 		 */
2658 		if (!pool_cache_put_slow(cc, s, object))
2659 			break;
2660 	}
2661 }
2662 
2663 /*
2664  * pool_cache_xcall:
2665  *
2666  *	Transfer objects from the per-CPU cache to the global cache.
2667  *	Run within a cross-call thread.
2668  */
2669 static void
2670 pool_cache_xcall(pool_cache_t pc)
2671 {
2672 	pool_cache_cpu_t *cc;
2673 	pcg_t *prev, *cur, **list;
2674 	int s;
2675 
2676 	s = splvm();
2677 	mutex_enter(&pc->pc_lock);
2678 	cc = pc->pc_cpus[curcpu()->ci_index];
2679 	cur = cc->cc_current;
2680 	cc->cc_current = __UNCONST(&pcg_dummy);
2681 	prev = cc->cc_previous;
2682 	cc->cc_previous = __UNCONST(&pcg_dummy);
2683 	if (cur != &pcg_dummy) {
2684 		if (cur->pcg_avail == cur->pcg_size) {
2685 			list = &pc->pc_fullgroups;
2686 			pc->pc_nfull++;
2687 		} else if (cur->pcg_avail == 0) {
2688 			list = &pc->pc_emptygroups;
2689 			pc->pc_nempty++;
2690 		} else {
2691 			list = &pc->pc_partgroups;
2692 			pc->pc_npart++;
2693 		}
2694 		cur->pcg_next = *list;
2695 		*list = cur;
2696 	}
2697 	if (prev != &pcg_dummy) {
2698 		if (prev->pcg_avail == prev->pcg_size) {
2699 			list = &pc->pc_fullgroups;
2700 			pc->pc_nfull++;
2701 		} else if (prev->pcg_avail == 0) {
2702 			list = &pc->pc_emptygroups;
2703 			pc->pc_nempty++;
2704 		} else {
2705 			list = &pc->pc_partgroups;
2706 			pc->pc_npart++;
2707 		}
2708 		prev->pcg_next = *list;
2709 		*list = prev;
2710 	}
2711 	mutex_exit(&pc->pc_lock);
2712 	splx(s);
2713 }
2714 
2715 /*
2716  * Pool backend allocators.
2717  *
2718  * Each pool has a backend allocator that handles allocation, deallocation,
2719  * and any additional draining that might be needed.
2720  *
2721  * We provide two standard allocators:
2722  *
2723  *	pool_allocator_kmem - the default when no allocator is specified
2724  *
2725  *	pool_allocator_nointr - used for pools that will not be accessed
2726  *	in interrupt context.
2727  */
2728 void	*pool_page_alloc(struct pool *, int);
2729 void	pool_page_free(struct pool *, void *);
2730 
2731 #ifdef POOL_SUBPAGE
2732 struct pool_allocator pool_allocator_kmem_fullpage = {
2733 	pool_page_alloc, pool_page_free, 0,
2734 	.pa_backingmapptr = &kmem_map,
2735 };
2736 #else
2737 struct pool_allocator pool_allocator_kmem = {
2738 	pool_page_alloc, pool_page_free, 0,
2739 	.pa_backingmapptr = &kmem_map,
2740 };
2741 #endif
2742 
2743 void	*pool_page_alloc_nointr(struct pool *, int);
2744 void	pool_page_free_nointr(struct pool *, void *);
2745 
2746 #ifdef POOL_SUBPAGE
2747 struct pool_allocator pool_allocator_nointr_fullpage = {
2748 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2749 	.pa_backingmapptr = &kernel_map,
2750 };
2751 #else
2752 struct pool_allocator pool_allocator_nointr = {
2753 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2754 	.pa_backingmapptr = &kernel_map,
2755 };
2756 #endif
2757 
2758 #ifdef POOL_SUBPAGE
2759 void	*pool_subpage_alloc(struct pool *, int);
2760 void	pool_subpage_free(struct pool *, void *);
2761 
2762 struct pool_allocator pool_allocator_kmem = {
2763 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2764 	.pa_backingmapptr = &kmem_map,
2765 };
2766 
2767 void	*pool_subpage_alloc_nointr(struct pool *, int);
2768 void	pool_subpage_free_nointr(struct pool *, void *);
2769 
2770 struct pool_allocator pool_allocator_nointr = {
2771 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2772 	.pa_backingmapptr = &kmem_map,
2773 };
2774 #endif /* POOL_SUBPAGE */
2775 
2776 static void *
2777 pool_allocator_alloc(struct pool *pp, int flags)
2778 {
2779 	struct pool_allocator *pa = pp->pr_alloc;
2780 	void *res;
2781 
2782 	res = (*pa->pa_alloc)(pp, flags);
2783 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2784 		/*
2785 		 * We only run the drain hook here if PR_NOWAIT.
2786 		 * In other cases, the hook will be run in
2787 		 * pool_reclaim().
2788 		 */
2789 		if (pp->pr_drain_hook != NULL) {
2790 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2791 			res = (*pa->pa_alloc)(pp, flags);
2792 		}
2793 	}
2794 	return res;
2795 }
2796 
2797 static void
2798 pool_allocator_free(struct pool *pp, void *v)
2799 {
2800 	struct pool_allocator *pa = pp->pr_alloc;
2801 
2802 	(*pa->pa_free)(pp, v);
2803 }
2804 
2805 void *
2806 pool_page_alloc(struct pool *pp, int flags)
2807 {
2808 	bool waitok = (flags & PR_WAITOK) ? true : false;
2809 
2810 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2811 }
2812 
2813 void
2814 pool_page_free(struct pool *pp, void *v)
2815 {
2816 
2817 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2818 }
2819 
2820 static void *
2821 pool_page_alloc_meta(struct pool *pp, int flags)
2822 {
2823 	bool waitok = (flags & PR_WAITOK) ? true : false;
2824 
2825 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2826 }
2827 
2828 static void
2829 pool_page_free_meta(struct pool *pp, void *v)
2830 {
2831 
2832 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2833 }
2834 
2835 #ifdef POOL_SUBPAGE
2836 /* Sub-page allocator, for machines with large hardware pages. */
2837 void *
2838 pool_subpage_alloc(struct pool *pp, int flags)
2839 {
2840 	return pool_get(&psppool, flags);
2841 }
2842 
2843 void
2844 pool_subpage_free(struct pool *pp, void *v)
2845 {
2846 	pool_put(&psppool, v);
2847 }
2848 
2849 /* We don't provide a real nointr allocator.  Maybe later. */
2850 void *
2851 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2852 {
2853 
2854 	return (pool_subpage_alloc(pp, flags));
2855 }
2856 
2857 void
2858 pool_subpage_free_nointr(struct pool *pp, void *v)
2859 {
2860 
2861 	pool_subpage_free(pp, v);
2862 }
2863 #endif /* POOL_SUBPAGE */
2864 void *
2865 pool_page_alloc_nointr(struct pool *pp, int flags)
2866 {
2867 	bool waitok = (flags & PR_WAITOK) ? true : false;
2868 
2869 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2870 }
2871 
2872 void
2873 pool_page_free_nointr(struct pool *pp, void *v)
2874 {
2875 
2876 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2877 }
2878 
2879 #if defined(DDB)
2880 static bool
2881 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2882 {
2883 
2884 	return (uintptr_t)ph->ph_page <= addr &&
2885 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2886 }
2887 
2888 static bool
2889 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2890 {
2891 
2892 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2893 }
2894 
2895 static bool
2896 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2897 {
2898 	int i;
2899 
2900 	if (pcg == NULL) {
2901 		return false;
2902 	}
2903 	for (i = 0; i < pcg->pcg_avail; i++) {
2904 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2905 			return true;
2906 		}
2907 	}
2908 	return false;
2909 }
2910 
2911 static bool
2912 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2913 {
2914 
2915 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2916 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2917 		pool_item_bitmap_t *bitmap =
2918 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2919 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2920 
2921 		return (*bitmap & mask) == 0;
2922 	} else {
2923 		struct pool_item *pi;
2924 
2925 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2926 			if (pool_in_item(pp, pi, addr)) {
2927 				return false;
2928 			}
2929 		}
2930 		return true;
2931 	}
2932 }
2933 
2934 void
2935 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2936 {
2937 	struct pool *pp;
2938 
2939 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2940 		struct pool_item_header *ph;
2941 		uintptr_t item;
2942 		bool allocated = true;
2943 		bool incache = false;
2944 		bool incpucache = false;
2945 		char cpucachestr[32];
2946 
2947 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2948 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2949 				if (pool_in_page(pp, ph, addr)) {
2950 					goto found;
2951 				}
2952 			}
2953 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2954 				if (pool_in_page(pp, ph, addr)) {
2955 					allocated =
2956 					    pool_allocated(pp, ph, addr);
2957 					goto found;
2958 				}
2959 			}
2960 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2961 				if (pool_in_page(pp, ph, addr)) {
2962 					allocated = false;
2963 					goto found;
2964 				}
2965 			}
2966 			continue;
2967 		} else {
2968 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
2969 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2970 				continue;
2971 			}
2972 			allocated = pool_allocated(pp, ph, addr);
2973 		}
2974 found:
2975 		if (allocated && pp->pr_cache) {
2976 			pool_cache_t pc = pp->pr_cache;
2977 			struct pool_cache_group *pcg;
2978 			int i;
2979 
2980 			for (pcg = pc->pc_fullgroups; pcg != NULL;
2981 			    pcg = pcg->pcg_next) {
2982 				if (pool_in_cg(pp, pcg, addr)) {
2983 					incache = true;
2984 					goto print;
2985 				}
2986 			}
2987 			for (i = 0; i < MAXCPUS; i++) {
2988 				pool_cache_cpu_t *cc;
2989 
2990 				if ((cc = pc->pc_cpus[i]) == NULL) {
2991 					continue;
2992 				}
2993 				if (pool_in_cg(pp, cc->cc_current, addr) ||
2994 				    pool_in_cg(pp, cc->cc_previous, addr)) {
2995 					struct cpu_info *ci =
2996 					    cpu_lookup(i);
2997 
2998 					incpucache = true;
2999 					snprintf(cpucachestr,
3000 					    sizeof(cpucachestr),
3001 					    "cached by CPU %u",
3002 					    ci->ci_index);
3003 					goto print;
3004 				}
3005 			}
3006 		}
3007 print:
3008 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3009 		item = item + rounddown(addr - item, pp->pr_size);
3010 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3011 		    (void *)addr, item, (size_t)(addr - item),
3012 		    pp->pr_wchan,
3013 		    incpucache ? cpucachestr :
3014 		    incache ? "cached" : allocated ? "allocated" : "free");
3015 	}
3016 }
3017 #endif /* defined(DDB) */
3018