xref: /netbsd-src/sys/kern/subr_pool.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: subr_pool.c,v 1.186 2010/06/03 10:40:17 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.186 2010/06/03 10:40:17 pooka Exp $");
36 
37 #include "opt_ddb.h"
38 #include "opt_pool.h"
39 #include "opt_poollog.h"
40 #include "opt_lockdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitops.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/pool.h>
50 #include <sys/syslog.h>
51 #include <sys/debug.h>
52 #include <sys/lockdebug.h>
53 #include <sys/xcall.h>
54 #include <sys/cpu.h>
55 #include <sys/atomic.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according to
63  * the pool item size. Each page is kept on one of three lists in the
64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65  * for empty, full and partially-full pages respectively. The individual
66  * pool items are on a linked list headed by `ph_itemlist' in each page
67  * header. The memory for building the page list is either taken from
68  * the allocated pages themselves (for small pool items) or taken from
69  * an internal pool of page headers (`phpool').
70  */
71 
72 /* List of all pools */
73 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74 
75 /* Private pool for page header structures */
76 #define	PHPOOL_MAX	8
77 static struct pool phpool[PHPOOL_MAX];
78 #define	PHPOOL_FREELIST_NELEM(idx) \
79 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
80 
81 #ifdef POOL_SUBPAGE
82 /* Pool of subpages for use by normal pools. */
83 static struct pool psppool;
84 #endif
85 
86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
87     SLIST_HEAD_INITIALIZER(pa_deferinitq);
88 
89 static void *pool_page_alloc_meta(struct pool *, int);
90 static void pool_page_free_meta(struct pool *, void *);
91 
92 /* allocator for pool metadata */
93 struct pool_allocator pool_allocator_meta = {
94 	pool_page_alloc_meta, pool_page_free_meta,
95 	.pa_backingmapptr = &kmem_map,
96 };
97 
98 /* # of seconds to retain page after last use */
99 int pool_inactive_time = 10;
100 
101 /* Next candidate for drainage (see pool_drain()) */
102 static struct pool	*drainpp;
103 
104 /* This lock protects both pool_head and drainpp. */
105 static kmutex_t pool_head_lock;
106 static kcondvar_t pool_busy;
107 
108 /* This lock protects initialization of a potentially shared pool allocator */
109 static kmutex_t pool_allocator_lock;
110 
111 typedef uint32_t pool_item_bitmap_t;
112 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
113 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
114 
115 struct pool_item_header {
116 	/* Page headers */
117 	LIST_ENTRY(pool_item_header)
118 				ph_pagelist;	/* pool page list */
119 	SPLAY_ENTRY(pool_item_header)
120 				ph_node;	/* Off-page page headers */
121 	void *			ph_page;	/* this page's address */
122 	uint32_t		ph_time;	/* last referenced */
123 	uint16_t		ph_nmissing;	/* # of chunks in use */
124 	uint16_t		ph_off;		/* start offset in page */
125 	union {
126 		/* !PR_NOTOUCH */
127 		struct {
128 			LIST_HEAD(, pool_item)
129 				phu_itemlist;	/* chunk list for this page */
130 		} phu_normal;
131 		/* PR_NOTOUCH */
132 		struct {
133 			pool_item_bitmap_t phu_bitmap[1];
134 		} phu_notouch;
135 	} ph_u;
136 };
137 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
138 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
139 
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 	u_int pi_magic;
143 #endif
144 #define	PI_MAGIC 0xdeaddeadU
145 	/* Other entries use only this list entry */
146 	LIST_ENTRY(pool_item)	pi_list;
147 };
148 
149 #define	POOL_NEEDS_CATCHUP(pp)						\
150 	((pp)->pr_nitems < (pp)->pr_minitems)
151 
152 /*
153  * Pool cache management.
154  *
155  * Pool caches provide a way for constructed objects to be cached by the
156  * pool subsystem.  This can lead to performance improvements by avoiding
157  * needless object construction/destruction; it is deferred until absolutely
158  * necessary.
159  *
160  * Caches are grouped into cache groups.  Each cache group references up
161  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
162  * object from the pool, it calls the object's constructor and places it
163  * into a cache group.  When a cache group frees an object back to the
164  * pool, it first calls the object's destructor.  This allows the object
165  * to persist in constructed form while freed to the cache.
166  *
167  * The pool references each cache, so that when a pool is drained by the
168  * pagedaemon, it can drain each individual cache as well.  Each time a
169  * cache is drained, the most idle cache group is freed to the pool in
170  * its entirety.
171  *
172  * Pool caches are layed on top of pools.  By layering them, we can avoid
173  * the complexity of cache management for pools which would not benefit
174  * from it.
175  */
176 
177 static struct pool pcg_normal_pool;
178 static struct pool pcg_large_pool;
179 static struct pool cache_pool;
180 static struct pool cache_cpu_pool;
181 
182 /* List of all caches. */
183 TAILQ_HEAD(,pool_cache) pool_cache_head =
184     TAILQ_HEAD_INITIALIZER(pool_cache_head);
185 
186 int pool_cache_disable;		/* global disable for caching */
187 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
188 
189 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
190 				    void *);
191 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
192 				    void **, paddr_t *, int);
193 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
194 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
195 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
196 static void	pool_cache_xcall(pool_cache_t);
197 
198 static int	pool_catchup(struct pool *);
199 static void	pool_prime_page(struct pool *, void *,
200 		    struct pool_item_header *);
201 static void	pool_update_curpage(struct pool *);
202 
203 static int	pool_grow(struct pool *, int);
204 static void	*pool_allocator_alloc(struct pool *, int);
205 static void	pool_allocator_free(struct pool *, void *);
206 
207 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
208 	void (*)(const char *, ...));
209 static void pool_print1(struct pool *, const char *,
210 	void (*)(const char *, ...));
211 
212 static int pool_chk_page(struct pool *, const char *,
213 			 struct pool_item_header *);
214 
215 /*
216  * Pool log entry. An array of these is allocated in pool_init().
217  */
218 struct pool_log {
219 	const char	*pl_file;
220 	long		pl_line;
221 	int		pl_action;
222 #define	PRLOG_GET	1
223 #define	PRLOG_PUT	2
224 	void		*pl_addr;
225 };
226 
227 #ifdef POOL_DIAGNOSTIC
228 /* Number of entries in pool log buffers */
229 #ifndef POOL_LOGSIZE
230 #define	POOL_LOGSIZE	10
231 #endif
232 
233 int pool_logsize = POOL_LOGSIZE;
234 
235 static inline void
236 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
237 {
238 	int n;
239 	struct pool_log *pl;
240 
241 	if ((pp->pr_roflags & PR_LOGGING) == 0)
242 		return;
243 
244 	if (pp->pr_log == NULL) {
245 		if (kmem_map != NULL)
246 			pp->pr_log = malloc(
247 				pool_logsize * sizeof(struct pool_log),
248 				M_TEMP, M_NOWAIT | M_ZERO);
249 		if (pp->pr_log == NULL)
250 			return;
251 		pp->pr_curlogentry = 0;
252 		pp->pr_logsize = pool_logsize;
253 	}
254 
255 	/*
256 	 * Fill in the current entry. Wrap around and overwrite
257 	 * the oldest entry if necessary.
258 	 */
259 	n = pp->pr_curlogentry;
260 	pl = &pp->pr_log[n];
261 	pl->pl_file = file;
262 	pl->pl_line = line;
263 	pl->pl_action = action;
264 	pl->pl_addr = v;
265 	if (++n >= pp->pr_logsize)
266 		n = 0;
267 	pp->pr_curlogentry = n;
268 }
269 
270 static void
271 pr_printlog(struct pool *pp, struct pool_item *pi,
272     void (*pr)(const char *, ...))
273 {
274 	int i = pp->pr_logsize;
275 	int n = pp->pr_curlogentry;
276 
277 	if (pp->pr_log == NULL)
278 		return;
279 
280 	/*
281 	 * Print all entries in this pool's log.
282 	 */
283 	while (i-- > 0) {
284 		struct pool_log *pl = &pp->pr_log[n];
285 		if (pl->pl_action != 0) {
286 			if (pi == NULL || pi == pl->pl_addr) {
287 				(*pr)("\tlog entry %d:\n", i);
288 				(*pr)("\t\taction = %s, addr = %p\n",
289 				    pl->pl_action == PRLOG_GET ? "get" : "put",
290 				    pl->pl_addr);
291 				(*pr)("\t\tfile: %s at line %lu\n",
292 				    pl->pl_file, pl->pl_line);
293 			}
294 		}
295 		if (++n >= pp->pr_logsize)
296 			n = 0;
297 	}
298 }
299 
300 static inline void
301 pr_enter(struct pool *pp, const char *file, long line)
302 {
303 
304 	if (__predict_false(pp->pr_entered_file != NULL)) {
305 		printf("pool %s: reentrancy at file %s line %ld\n",
306 		    pp->pr_wchan, file, line);
307 		printf("         previous entry at file %s line %ld\n",
308 		    pp->pr_entered_file, pp->pr_entered_line);
309 		panic("pr_enter");
310 	}
311 
312 	pp->pr_entered_file = file;
313 	pp->pr_entered_line = line;
314 }
315 
316 static inline void
317 pr_leave(struct pool *pp)
318 {
319 
320 	if (__predict_false(pp->pr_entered_file == NULL)) {
321 		printf("pool %s not entered?\n", pp->pr_wchan);
322 		panic("pr_leave");
323 	}
324 
325 	pp->pr_entered_file = NULL;
326 	pp->pr_entered_line = 0;
327 }
328 
329 static inline void
330 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
331 {
332 
333 	if (pp->pr_entered_file != NULL)
334 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
335 		    pp->pr_entered_file, pp->pr_entered_line);
336 }
337 #else
338 #define	pr_log(pp, v, action, file, line)
339 #define	pr_printlog(pp, pi, pr)
340 #define	pr_enter(pp, file, line)
341 #define	pr_leave(pp)
342 #define	pr_enter_check(pp, pr)
343 #endif /* POOL_DIAGNOSTIC */
344 
345 static inline unsigned int
346 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
347     const void *v)
348 {
349 	const char *cp = v;
350 	unsigned int idx;
351 
352 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
353 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
354 	KASSERT(idx < pp->pr_itemsperpage);
355 	return idx;
356 }
357 
358 static inline void
359 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
360     void *obj)
361 {
362 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
364 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
365 
366 	KASSERT((*bitmap & mask) == 0);
367 	*bitmap |= mask;
368 }
369 
370 static inline void *
371 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
372 {
373 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
374 	unsigned int idx;
375 	int i;
376 
377 	for (i = 0; ; i++) {
378 		int bit;
379 
380 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
381 		bit = ffs32(bitmap[i]);
382 		if (bit) {
383 			pool_item_bitmap_t mask;
384 
385 			bit--;
386 			idx = (i * BITMAP_SIZE) + bit;
387 			mask = 1 << bit;
388 			KASSERT((bitmap[i] & mask) != 0);
389 			bitmap[i] &= ~mask;
390 			break;
391 		}
392 	}
393 	KASSERT(idx < pp->pr_itemsperpage);
394 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
395 }
396 
397 static inline void
398 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
399 {
400 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
401 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
402 	int i;
403 
404 	for (i = 0; i < n; i++) {
405 		bitmap[i] = (pool_item_bitmap_t)-1;
406 	}
407 }
408 
409 static inline int
410 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
411 {
412 
413 	/*
414 	 * we consider pool_item_header with smaller ph_page bigger.
415 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
416 	 */
417 
418 	if (a->ph_page < b->ph_page)
419 		return (1);
420 	else if (a->ph_page > b->ph_page)
421 		return (-1);
422 	else
423 		return (0);
424 }
425 
426 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
427 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
428 
429 static inline struct pool_item_header *
430 pr_find_pagehead_noalign(struct pool *pp, void *v)
431 {
432 	struct pool_item_header *ph, tmp;
433 
434 	tmp.ph_page = (void *)(uintptr_t)v;
435 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
436 	if (ph == NULL) {
437 		ph = SPLAY_ROOT(&pp->pr_phtree);
438 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
439 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
440 		}
441 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
442 	}
443 
444 	return ph;
445 }
446 
447 /*
448  * Return the pool page header based on item address.
449  */
450 static inline struct pool_item_header *
451 pr_find_pagehead(struct pool *pp, void *v)
452 {
453 	struct pool_item_header *ph, tmp;
454 
455 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
456 		ph = pr_find_pagehead_noalign(pp, v);
457 	} else {
458 		void *page =
459 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
460 
461 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
462 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
463 		} else {
464 			tmp.ph_page = page;
465 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
466 		}
467 	}
468 
469 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
470 	    ((char *)ph->ph_page <= (char *)v &&
471 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
472 	return ph;
473 }
474 
475 static void
476 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
477 {
478 	struct pool_item_header *ph;
479 
480 	while ((ph = LIST_FIRST(pq)) != NULL) {
481 		LIST_REMOVE(ph, ph_pagelist);
482 		pool_allocator_free(pp, ph->ph_page);
483 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
484 			pool_put(pp->pr_phpool, ph);
485 	}
486 }
487 
488 /*
489  * Remove a page from the pool.
490  */
491 static inline void
492 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
493      struct pool_pagelist *pq)
494 {
495 
496 	KASSERT(mutex_owned(&pp->pr_lock));
497 
498 	/*
499 	 * If the page was idle, decrement the idle page count.
500 	 */
501 	if (ph->ph_nmissing == 0) {
502 #ifdef DIAGNOSTIC
503 		if (pp->pr_nidle == 0)
504 			panic("pr_rmpage: nidle inconsistent");
505 		if (pp->pr_nitems < pp->pr_itemsperpage)
506 			panic("pr_rmpage: nitems inconsistent");
507 #endif
508 		pp->pr_nidle--;
509 	}
510 
511 	pp->pr_nitems -= pp->pr_itemsperpage;
512 
513 	/*
514 	 * Unlink the page from the pool and queue it for release.
515 	 */
516 	LIST_REMOVE(ph, ph_pagelist);
517 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
518 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
519 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
520 
521 	pp->pr_npages--;
522 	pp->pr_npagefree++;
523 
524 	pool_update_curpage(pp);
525 }
526 
527 static bool
528 pa_starved_p(struct pool_allocator *pa)
529 {
530 
531 	if (pa->pa_backingmap != NULL) {
532 		return vm_map_starved_p(pa->pa_backingmap);
533 	}
534 	return false;
535 }
536 
537 static int
538 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
539 {
540 	struct pool *pp = obj;
541 	struct pool_allocator *pa = pp->pr_alloc;
542 
543 	KASSERT(&pp->pr_reclaimerentry == ce);
544 	pool_reclaim(pp);
545 	if (!pa_starved_p(pa)) {
546 		return CALLBACK_CHAIN_ABORT;
547 	}
548 	return CALLBACK_CHAIN_CONTINUE;
549 }
550 
551 static void
552 pool_reclaim_register(struct pool *pp)
553 {
554 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
555 	int s;
556 
557 	if (map == NULL) {
558 		return;
559 	}
560 
561 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
562 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
563 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
564 	splx(s);
565 
566 #ifdef DIAGNOSTIC
567 	/* Diagnostic drain attempt. */
568 	uvm_km_va_drain(map, 0);
569 #endif
570 }
571 
572 static void
573 pool_reclaim_unregister(struct pool *pp)
574 {
575 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
576 	int s;
577 
578 	if (map == NULL) {
579 		return;
580 	}
581 
582 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
583 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
584 	    &pp->pr_reclaimerentry);
585 	splx(s);
586 }
587 
588 static void
589 pa_reclaim_register(struct pool_allocator *pa)
590 {
591 	struct vm_map *map = *pa->pa_backingmapptr;
592 	struct pool *pp;
593 
594 	KASSERT(pa->pa_backingmap == NULL);
595 	if (map == NULL) {
596 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
597 		return;
598 	}
599 	pa->pa_backingmap = map;
600 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
601 		pool_reclaim_register(pp);
602 	}
603 }
604 
605 /*
606  * Initialize all the pools listed in the "pools" link set.
607  */
608 void
609 pool_subsystem_init(void)
610 {
611 	struct pool_allocator *pa;
612 
613 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
614 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
615 	cv_init(&pool_busy, "poolbusy");
616 
617 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
618 		KASSERT(pa->pa_backingmapptr != NULL);
619 		KASSERT(*pa->pa_backingmapptr != NULL);
620 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
621 		pa_reclaim_register(pa);
622 	}
623 
624 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
625 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
626 
627 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
628 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
629 }
630 
631 /*
632  * Initialize the given pool resource structure.
633  *
634  * We export this routine to allow other kernel parts to declare
635  * static pools that must be initialized before malloc() is available.
636  */
637 void
638 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
639     const char *wchan, struct pool_allocator *palloc, int ipl)
640 {
641 	struct pool *pp1;
642 	size_t trysize, phsize;
643 	int off, slack;
644 
645 #ifdef DEBUG
646 	/*
647 	 * Check that the pool hasn't already been initialised and
648 	 * added to the list of all pools.
649 	 */
650 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
651 		if (pp == pp1)
652 			panic("pool_init: pool %s already initialised",
653 			    wchan);
654 	}
655 #endif
656 
657 #ifdef POOL_DIAGNOSTIC
658 	/*
659 	 * Always log if POOL_DIAGNOSTIC is defined.
660 	 */
661 	if (pool_logsize != 0)
662 		flags |= PR_LOGGING;
663 #endif
664 
665 	if (palloc == NULL)
666 		palloc = &pool_allocator_kmem;
667 #ifdef POOL_SUBPAGE
668 	if (size > palloc->pa_pagesz) {
669 		if (palloc == &pool_allocator_kmem)
670 			palloc = &pool_allocator_kmem_fullpage;
671 		else if (palloc == &pool_allocator_nointr)
672 			palloc = &pool_allocator_nointr_fullpage;
673 	}
674 #endif /* POOL_SUBPAGE */
675 	if (!cold)
676 		mutex_enter(&pool_allocator_lock);
677 	if (palloc->pa_refcnt++ == 0) {
678 		if (palloc->pa_pagesz == 0)
679 			palloc->pa_pagesz = PAGE_SIZE;
680 
681 		TAILQ_INIT(&palloc->pa_list);
682 
683 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
684 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
685 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
686 
687 		if (palloc->pa_backingmapptr != NULL) {
688 			pa_reclaim_register(palloc);
689 		}
690 	}
691 	if (!cold)
692 		mutex_exit(&pool_allocator_lock);
693 
694 	if (align == 0)
695 		align = ALIGN(1);
696 
697 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
698 		size = sizeof(struct pool_item);
699 
700 	size = roundup(size, align);
701 #ifdef DIAGNOSTIC
702 	if (size > palloc->pa_pagesz)
703 		panic("pool_init: pool item size (%zu) too large", size);
704 #endif
705 
706 	/*
707 	 * Initialize the pool structure.
708 	 */
709 	LIST_INIT(&pp->pr_emptypages);
710 	LIST_INIT(&pp->pr_fullpages);
711 	LIST_INIT(&pp->pr_partpages);
712 	pp->pr_cache = NULL;
713 	pp->pr_curpage = NULL;
714 	pp->pr_npages = 0;
715 	pp->pr_minitems = 0;
716 	pp->pr_minpages = 0;
717 	pp->pr_maxpages = UINT_MAX;
718 	pp->pr_roflags = flags;
719 	pp->pr_flags = 0;
720 	pp->pr_size = size;
721 	pp->pr_align = align;
722 	pp->pr_wchan = wchan;
723 	pp->pr_alloc = palloc;
724 	pp->pr_nitems = 0;
725 	pp->pr_nout = 0;
726 	pp->pr_hardlimit = UINT_MAX;
727 	pp->pr_hardlimit_warning = NULL;
728 	pp->pr_hardlimit_ratecap.tv_sec = 0;
729 	pp->pr_hardlimit_ratecap.tv_usec = 0;
730 	pp->pr_hardlimit_warning_last.tv_sec = 0;
731 	pp->pr_hardlimit_warning_last.tv_usec = 0;
732 	pp->pr_drain_hook = NULL;
733 	pp->pr_drain_hook_arg = NULL;
734 	pp->pr_freecheck = NULL;
735 
736 	/*
737 	 * Decide whether to put the page header off page to avoid
738 	 * wasting too large a part of the page or too big item.
739 	 * Off-page page headers go on a hash table, so we can match
740 	 * a returned item with its header based on the page address.
741 	 * We use 1/16 of the page size and about 8 times of the item
742 	 * size as the threshold (XXX: tune)
743 	 *
744 	 * However, we'll put the header into the page if we can put
745 	 * it without wasting any items.
746 	 *
747 	 * Silently enforce `0 <= ioff < align'.
748 	 */
749 	pp->pr_itemoffset = ioff %= align;
750 	/* See the comment below about reserved bytes. */
751 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
752 	phsize = ALIGN(sizeof(struct pool_item_header));
753 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
754 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
755 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
756 		/* Use the end of the page for the page header */
757 		pp->pr_roflags |= PR_PHINPAGE;
758 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
759 	} else {
760 		/* The page header will be taken from our page header pool */
761 		pp->pr_phoffset = 0;
762 		off = palloc->pa_pagesz;
763 		SPLAY_INIT(&pp->pr_phtree);
764 	}
765 
766 	/*
767 	 * Alignment is to take place at `ioff' within the item. This means
768 	 * we must reserve up to `align - 1' bytes on the page to allow
769 	 * appropriate positioning of each item.
770 	 */
771 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
772 	KASSERT(pp->pr_itemsperpage != 0);
773 	if ((pp->pr_roflags & PR_NOTOUCH)) {
774 		int idx;
775 
776 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
777 		    idx++) {
778 			/* nothing */
779 		}
780 		if (idx >= PHPOOL_MAX) {
781 			/*
782 			 * if you see this panic, consider to tweak
783 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
784 			 */
785 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
786 			    pp->pr_wchan, pp->pr_itemsperpage);
787 		}
788 		pp->pr_phpool = &phpool[idx];
789 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
790 		pp->pr_phpool = &phpool[0];
791 	}
792 #if defined(DIAGNOSTIC)
793 	else {
794 		pp->pr_phpool = NULL;
795 	}
796 #endif
797 
798 	/*
799 	 * Use the slack between the chunks and the page header
800 	 * for "cache coloring".
801 	 */
802 	slack = off - pp->pr_itemsperpage * pp->pr_size;
803 	pp->pr_maxcolor = (slack / align) * align;
804 	pp->pr_curcolor = 0;
805 
806 	pp->pr_nget = 0;
807 	pp->pr_nfail = 0;
808 	pp->pr_nput = 0;
809 	pp->pr_npagealloc = 0;
810 	pp->pr_npagefree = 0;
811 	pp->pr_hiwat = 0;
812 	pp->pr_nidle = 0;
813 	pp->pr_refcnt = 0;
814 
815 	pp->pr_log = NULL;
816 
817 	pp->pr_entered_file = NULL;
818 	pp->pr_entered_line = 0;
819 
820 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
821 	cv_init(&pp->pr_cv, wchan);
822 	pp->pr_ipl = ipl;
823 
824 	/*
825 	 * Initialize private page header pool and cache magazine pool if we
826 	 * haven't done so yet.
827 	 * XXX LOCKING.
828 	 */
829 	if (phpool[0].pr_size == 0) {
830 		int idx;
831 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
832 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
833 			int nelem;
834 			size_t sz;
835 
836 			nelem = PHPOOL_FREELIST_NELEM(idx);
837 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
838 			    "phpool-%d", nelem);
839 			sz = sizeof(struct pool_item_header);
840 			if (nelem) {
841 				sz = offsetof(struct pool_item_header,
842 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
843 			}
844 			pool_init(&phpool[idx], sz, 0, 0, 0,
845 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
846 		}
847 #ifdef POOL_SUBPAGE
848 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
849 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
850 #endif
851 
852 		size = sizeof(pcg_t) +
853 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
854 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
855 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
856 
857 		size = sizeof(pcg_t) +
858 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
859 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
860 		    "pcglarge", &pool_allocator_meta, IPL_VM);
861 	}
862 
863 	/* Insert into the list of all pools. */
864 	if (!cold)
865 		mutex_enter(&pool_head_lock);
866 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
867 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
868 			break;
869 	}
870 	if (pp1 == NULL)
871 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
872 	else
873 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
874 	if (!cold)
875 		mutex_exit(&pool_head_lock);
876 
877 	/* Insert this into the list of pools using this allocator. */
878 	if (!cold)
879 		mutex_enter(&palloc->pa_lock);
880 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
881 	if (!cold)
882 		mutex_exit(&palloc->pa_lock);
883 
884 	pool_reclaim_register(pp);
885 }
886 
887 /*
888  * De-commision a pool resource.
889  */
890 void
891 pool_destroy(struct pool *pp)
892 {
893 	struct pool_pagelist pq;
894 	struct pool_item_header *ph;
895 
896 	/* Remove from global pool list */
897 	mutex_enter(&pool_head_lock);
898 	while (pp->pr_refcnt != 0)
899 		cv_wait(&pool_busy, &pool_head_lock);
900 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
901 	if (drainpp == pp)
902 		drainpp = NULL;
903 	mutex_exit(&pool_head_lock);
904 
905 	/* Remove this pool from its allocator's list of pools. */
906 	pool_reclaim_unregister(pp);
907 	mutex_enter(&pp->pr_alloc->pa_lock);
908 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
909 	mutex_exit(&pp->pr_alloc->pa_lock);
910 
911 	mutex_enter(&pool_allocator_lock);
912 	if (--pp->pr_alloc->pa_refcnt == 0)
913 		mutex_destroy(&pp->pr_alloc->pa_lock);
914 	mutex_exit(&pool_allocator_lock);
915 
916 	mutex_enter(&pp->pr_lock);
917 
918 	KASSERT(pp->pr_cache == NULL);
919 
920 #ifdef DIAGNOSTIC
921 	if (pp->pr_nout != 0) {
922 		pr_printlog(pp, NULL, printf);
923 		panic("pool_destroy: pool busy: still out: %u",
924 		    pp->pr_nout);
925 	}
926 #endif
927 
928 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
929 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
930 
931 	/* Remove all pages */
932 	LIST_INIT(&pq);
933 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
934 		pr_rmpage(pp, ph, &pq);
935 
936 	mutex_exit(&pp->pr_lock);
937 
938 	pr_pagelist_free(pp, &pq);
939 
940 #ifdef POOL_DIAGNOSTIC
941 	if (pp->pr_log != NULL) {
942 		free(pp->pr_log, M_TEMP);
943 		pp->pr_log = NULL;
944 	}
945 #endif
946 
947 	cv_destroy(&pp->pr_cv);
948 	mutex_destroy(&pp->pr_lock);
949 }
950 
951 void
952 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
953 {
954 
955 	/* XXX no locking -- must be used just after pool_init() */
956 #ifdef DIAGNOSTIC
957 	if (pp->pr_drain_hook != NULL)
958 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
959 #endif
960 	pp->pr_drain_hook = fn;
961 	pp->pr_drain_hook_arg = arg;
962 }
963 
964 static struct pool_item_header *
965 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
966 {
967 	struct pool_item_header *ph;
968 
969 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
970 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
971 	else
972 		ph = pool_get(pp->pr_phpool, flags);
973 
974 	return (ph);
975 }
976 
977 /*
978  * Grab an item from the pool.
979  */
980 void *
981 #ifdef POOL_DIAGNOSTIC
982 _pool_get(struct pool *pp, int flags, const char *file, long line)
983 #else
984 pool_get(struct pool *pp, int flags)
985 #endif
986 {
987 	struct pool_item *pi;
988 	struct pool_item_header *ph;
989 	void *v;
990 
991 #ifdef DIAGNOSTIC
992 	if (pp->pr_itemsperpage == 0)
993 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
994 		    "pool not initialized?", pp->pr_wchan);
995 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
996 	    !cold && panicstr == NULL)
997 		panic("pool '%s' is IPL_NONE, but called from "
998 		    "interrupt context\n", pp->pr_wchan);
999 #endif
1000 	if (flags & PR_WAITOK) {
1001 		ASSERT_SLEEPABLE();
1002 	}
1003 
1004 	mutex_enter(&pp->pr_lock);
1005 	pr_enter(pp, file, line);
1006 
1007  startover:
1008 	/*
1009 	 * Check to see if we've reached the hard limit.  If we have,
1010 	 * and we can wait, then wait until an item has been returned to
1011 	 * the pool.
1012 	 */
1013 #ifdef DIAGNOSTIC
1014 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1015 		pr_leave(pp);
1016 		mutex_exit(&pp->pr_lock);
1017 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1018 	}
1019 #endif
1020 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1021 		if (pp->pr_drain_hook != NULL) {
1022 			/*
1023 			 * Since the drain hook is going to free things
1024 			 * back to the pool, unlock, call the hook, re-lock,
1025 			 * and check the hardlimit condition again.
1026 			 */
1027 			pr_leave(pp);
1028 			mutex_exit(&pp->pr_lock);
1029 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1030 			mutex_enter(&pp->pr_lock);
1031 			pr_enter(pp, file, line);
1032 			if (pp->pr_nout < pp->pr_hardlimit)
1033 				goto startover;
1034 		}
1035 
1036 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1037 			/*
1038 			 * XXX: A warning isn't logged in this case.  Should
1039 			 * it be?
1040 			 */
1041 			pp->pr_flags |= PR_WANTED;
1042 			pr_leave(pp);
1043 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1044 			pr_enter(pp, file, line);
1045 			goto startover;
1046 		}
1047 
1048 		/*
1049 		 * Log a message that the hard limit has been hit.
1050 		 */
1051 		if (pp->pr_hardlimit_warning != NULL &&
1052 		    ratecheck(&pp->pr_hardlimit_warning_last,
1053 			      &pp->pr_hardlimit_ratecap))
1054 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1055 
1056 		pp->pr_nfail++;
1057 
1058 		pr_leave(pp);
1059 		mutex_exit(&pp->pr_lock);
1060 		return (NULL);
1061 	}
1062 
1063 	/*
1064 	 * The convention we use is that if `curpage' is not NULL, then
1065 	 * it points at a non-empty bucket. In particular, `curpage'
1066 	 * never points at a page header which has PR_PHINPAGE set and
1067 	 * has no items in its bucket.
1068 	 */
1069 	if ((ph = pp->pr_curpage) == NULL) {
1070 		int error;
1071 
1072 #ifdef DIAGNOSTIC
1073 		if (pp->pr_nitems != 0) {
1074 			mutex_exit(&pp->pr_lock);
1075 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1076 			    pp->pr_wchan, pp->pr_nitems);
1077 			panic("pool_get: nitems inconsistent");
1078 		}
1079 #endif
1080 
1081 		/*
1082 		 * Call the back-end page allocator for more memory.
1083 		 * Release the pool lock, as the back-end page allocator
1084 		 * may block.
1085 		 */
1086 		pr_leave(pp);
1087 		error = pool_grow(pp, flags);
1088 		pr_enter(pp, file, line);
1089 		if (error != 0) {
1090 			/*
1091 			 * We were unable to allocate a page or item
1092 			 * header, but we released the lock during
1093 			 * allocation, so perhaps items were freed
1094 			 * back to the pool.  Check for this case.
1095 			 */
1096 			if (pp->pr_curpage != NULL)
1097 				goto startover;
1098 
1099 			pp->pr_nfail++;
1100 			pr_leave(pp);
1101 			mutex_exit(&pp->pr_lock);
1102 			return (NULL);
1103 		}
1104 
1105 		/* Start the allocation process over. */
1106 		goto startover;
1107 	}
1108 	if (pp->pr_roflags & PR_NOTOUCH) {
1109 #ifdef DIAGNOSTIC
1110 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1111 			pr_leave(pp);
1112 			mutex_exit(&pp->pr_lock);
1113 			panic("pool_get: %s: page empty", pp->pr_wchan);
1114 		}
1115 #endif
1116 		v = pr_item_notouch_get(pp, ph);
1117 #ifdef POOL_DIAGNOSTIC
1118 		pr_log(pp, v, PRLOG_GET, file, line);
1119 #endif
1120 	} else {
1121 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1122 		if (__predict_false(v == NULL)) {
1123 			pr_leave(pp);
1124 			mutex_exit(&pp->pr_lock);
1125 			panic("pool_get: %s: page empty", pp->pr_wchan);
1126 		}
1127 #ifdef DIAGNOSTIC
1128 		if (__predict_false(pp->pr_nitems == 0)) {
1129 			pr_leave(pp);
1130 			mutex_exit(&pp->pr_lock);
1131 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1132 			    pp->pr_wchan, pp->pr_nitems);
1133 			panic("pool_get: nitems inconsistent");
1134 		}
1135 #endif
1136 
1137 #ifdef POOL_DIAGNOSTIC
1138 		pr_log(pp, v, PRLOG_GET, file, line);
1139 #endif
1140 
1141 #ifdef DIAGNOSTIC
1142 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1143 			pr_printlog(pp, pi, printf);
1144 			panic("pool_get(%s): free list modified: "
1145 			    "magic=%x; page %p; item addr %p\n",
1146 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1147 		}
1148 #endif
1149 
1150 		/*
1151 		 * Remove from item list.
1152 		 */
1153 		LIST_REMOVE(pi, pi_list);
1154 	}
1155 	pp->pr_nitems--;
1156 	pp->pr_nout++;
1157 	if (ph->ph_nmissing == 0) {
1158 #ifdef DIAGNOSTIC
1159 		if (__predict_false(pp->pr_nidle == 0))
1160 			panic("pool_get: nidle inconsistent");
1161 #endif
1162 		pp->pr_nidle--;
1163 
1164 		/*
1165 		 * This page was previously empty.  Move it to the list of
1166 		 * partially-full pages.  This page is already curpage.
1167 		 */
1168 		LIST_REMOVE(ph, ph_pagelist);
1169 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1170 	}
1171 	ph->ph_nmissing++;
1172 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1173 #ifdef DIAGNOSTIC
1174 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1175 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1176 			pr_leave(pp);
1177 			mutex_exit(&pp->pr_lock);
1178 			panic("pool_get: %s: nmissing inconsistent",
1179 			    pp->pr_wchan);
1180 		}
1181 #endif
1182 		/*
1183 		 * This page is now full.  Move it to the full list
1184 		 * and select a new current page.
1185 		 */
1186 		LIST_REMOVE(ph, ph_pagelist);
1187 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1188 		pool_update_curpage(pp);
1189 	}
1190 
1191 	pp->pr_nget++;
1192 	pr_leave(pp);
1193 
1194 	/*
1195 	 * If we have a low water mark and we are now below that low
1196 	 * water mark, add more items to the pool.
1197 	 */
1198 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1199 		/*
1200 		 * XXX: Should we log a warning?  Should we set up a timeout
1201 		 * to try again in a second or so?  The latter could break
1202 		 * a caller's assumptions about interrupt protection, etc.
1203 		 */
1204 	}
1205 
1206 	mutex_exit(&pp->pr_lock);
1207 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1208 	FREECHECK_OUT(&pp->pr_freecheck, v);
1209 	return (v);
1210 }
1211 
1212 /*
1213  * Internal version of pool_put().  Pool is already locked/entered.
1214  */
1215 static void
1216 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1217 {
1218 	struct pool_item *pi = v;
1219 	struct pool_item_header *ph;
1220 
1221 	KASSERT(mutex_owned(&pp->pr_lock));
1222 	FREECHECK_IN(&pp->pr_freecheck, v);
1223 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1224 
1225 #ifdef DIAGNOSTIC
1226 	if (__predict_false(pp->pr_nout == 0)) {
1227 		printf("pool %s: putting with none out\n",
1228 		    pp->pr_wchan);
1229 		panic("pool_put");
1230 	}
1231 #endif
1232 
1233 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1234 		pr_printlog(pp, NULL, printf);
1235 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1236 	}
1237 
1238 	/*
1239 	 * Return to item list.
1240 	 */
1241 	if (pp->pr_roflags & PR_NOTOUCH) {
1242 		pr_item_notouch_put(pp, ph, v);
1243 	} else {
1244 #ifdef DIAGNOSTIC
1245 		pi->pi_magic = PI_MAGIC;
1246 #endif
1247 #ifdef DEBUG
1248 		{
1249 			int i, *ip = v;
1250 
1251 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1252 				*ip++ = PI_MAGIC;
1253 			}
1254 		}
1255 #endif
1256 
1257 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1258 	}
1259 	KDASSERT(ph->ph_nmissing != 0);
1260 	ph->ph_nmissing--;
1261 	pp->pr_nput++;
1262 	pp->pr_nitems++;
1263 	pp->pr_nout--;
1264 
1265 	/* Cancel "pool empty" condition if it exists */
1266 	if (pp->pr_curpage == NULL)
1267 		pp->pr_curpage = ph;
1268 
1269 	if (pp->pr_flags & PR_WANTED) {
1270 		pp->pr_flags &= ~PR_WANTED;
1271 		cv_broadcast(&pp->pr_cv);
1272 	}
1273 
1274 	/*
1275 	 * If this page is now empty, do one of two things:
1276 	 *
1277 	 *	(1) If we have more pages than the page high water mark,
1278 	 *	    free the page back to the system.  ONLY CONSIDER
1279 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1280 	 *	    CLAIM.
1281 	 *
1282 	 *	(2) Otherwise, move the page to the empty page list.
1283 	 *
1284 	 * Either way, select a new current page (so we use a partially-full
1285 	 * page if one is available).
1286 	 */
1287 	if (ph->ph_nmissing == 0) {
1288 		pp->pr_nidle++;
1289 		if (pp->pr_npages > pp->pr_minpages &&
1290 		    pp->pr_npages > pp->pr_maxpages) {
1291 			pr_rmpage(pp, ph, pq);
1292 		} else {
1293 			LIST_REMOVE(ph, ph_pagelist);
1294 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1295 
1296 			/*
1297 			 * Update the timestamp on the page.  A page must
1298 			 * be idle for some period of time before it can
1299 			 * be reclaimed by the pagedaemon.  This minimizes
1300 			 * ping-pong'ing for memory.
1301 			 *
1302 			 * note for 64-bit time_t: truncating to 32-bit is not
1303 			 * a problem for our usage.
1304 			 */
1305 			ph->ph_time = time_uptime;
1306 		}
1307 		pool_update_curpage(pp);
1308 	}
1309 
1310 	/*
1311 	 * If the page was previously completely full, move it to the
1312 	 * partially-full list and make it the current page.  The next
1313 	 * allocation will get the item from this page, instead of
1314 	 * further fragmenting the pool.
1315 	 */
1316 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1317 		LIST_REMOVE(ph, ph_pagelist);
1318 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1319 		pp->pr_curpage = ph;
1320 	}
1321 }
1322 
1323 /*
1324  * Return resource to the pool.
1325  */
1326 #ifdef POOL_DIAGNOSTIC
1327 void
1328 _pool_put(struct pool *pp, void *v, const char *file, long line)
1329 {
1330 	struct pool_pagelist pq;
1331 
1332 	LIST_INIT(&pq);
1333 
1334 	mutex_enter(&pp->pr_lock);
1335 	pr_enter(pp, file, line);
1336 
1337 	pr_log(pp, v, PRLOG_PUT, file, line);
1338 
1339 	pool_do_put(pp, v, &pq);
1340 
1341 	pr_leave(pp);
1342 	mutex_exit(&pp->pr_lock);
1343 
1344 	pr_pagelist_free(pp, &pq);
1345 }
1346 #undef pool_put
1347 #endif /* POOL_DIAGNOSTIC */
1348 
1349 void
1350 pool_put(struct pool *pp, void *v)
1351 {
1352 	struct pool_pagelist pq;
1353 
1354 	LIST_INIT(&pq);
1355 
1356 	mutex_enter(&pp->pr_lock);
1357 	pool_do_put(pp, v, &pq);
1358 	mutex_exit(&pp->pr_lock);
1359 
1360 	pr_pagelist_free(pp, &pq);
1361 }
1362 
1363 #ifdef POOL_DIAGNOSTIC
1364 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1365 #endif
1366 
1367 /*
1368  * pool_grow: grow a pool by a page.
1369  *
1370  * => called with pool locked.
1371  * => unlock and relock the pool.
1372  * => return with pool locked.
1373  */
1374 
1375 static int
1376 pool_grow(struct pool *pp, int flags)
1377 {
1378 	struct pool_item_header *ph = NULL;
1379 	char *cp;
1380 
1381 	mutex_exit(&pp->pr_lock);
1382 	cp = pool_allocator_alloc(pp, flags);
1383 	if (__predict_true(cp != NULL)) {
1384 		ph = pool_alloc_item_header(pp, cp, flags);
1385 	}
1386 	if (__predict_false(cp == NULL || ph == NULL)) {
1387 		if (cp != NULL) {
1388 			pool_allocator_free(pp, cp);
1389 		}
1390 		mutex_enter(&pp->pr_lock);
1391 		return ENOMEM;
1392 	}
1393 
1394 	mutex_enter(&pp->pr_lock);
1395 	pool_prime_page(pp, cp, ph);
1396 	pp->pr_npagealloc++;
1397 	return 0;
1398 }
1399 
1400 /*
1401  * Add N items to the pool.
1402  */
1403 int
1404 pool_prime(struct pool *pp, int n)
1405 {
1406 	int newpages;
1407 	int error = 0;
1408 
1409 	mutex_enter(&pp->pr_lock);
1410 
1411 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1412 
1413 	while (newpages-- > 0) {
1414 		error = pool_grow(pp, PR_NOWAIT);
1415 		if (error) {
1416 			break;
1417 		}
1418 		pp->pr_minpages++;
1419 	}
1420 
1421 	if (pp->pr_minpages >= pp->pr_maxpages)
1422 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1423 
1424 	mutex_exit(&pp->pr_lock);
1425 	return error;
1426 }
1427 
1428 /*
1429  * Add a page worth of items to the pool.
1430  *
1431  * Note, we must be called with the pool descriptor LOCKED.
1432  */
1433 static void
1434 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1435 {
1436 	struct pool_item *pi;
1437 	void *cp = storage;
1438 	const unsigned int align = pp->pr_align;
1439 	const unsigned int ioff = pp->pr_itemoffset;
1440 	int n;
1441 
1442 	KASSERT(mutex_owned(&pp->pr_lock));
1443 
1444 #ifdef DIAGNOSTIC
1445 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1446 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1447 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1448 #endif
1449 
1450 	/*
1451 	 * Insert page header.
1452 	 */
1453 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1454 	LIST_INIT(&ph->ph_itemlist);
1455 	ph->ph_page = storage;
1456 	ph->ph_nmissing = 0;
1457 	ph->ph_time = time_uptime;
1458 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1459 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1460 
1461 	pp->pr_nidle++;
1462 
1463 	/*
1464 	 * Color this page.
1465 	 */
1466 	ph->ph_off = pp->pr_curcolor;
1467 	cp = (char *)cp + ph->ph_off;
1468 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1469 		pp->pr_curcolor = 0;
1470 
1471 	/*
1472 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1473 	 */
1474 	if (ioff != 0)
1475 		cp = (char *)cp + align - ioff;
1476 
1477 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1478 
1479 	/*
1480 	 * Insert remaining chunks on the bucket list.
1481 	 */
1482 	n = pp->pr_itemsperpage;
1483 	pp->pr_nitems += n;
1484 
1485 	if (pp->pr_roflags & PR_NOTOUCH) {
1486 		pr_item_notouch_init(pp, ph);
1487 	} else {
1488 		while (n--) {
1489 			pi = (struct pool_item *)cp;
1490 
1491 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1492 
1493 			/* Insert on page list */
1494 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1495 #ifdef DIAGNOSTIC
1496 			pi->pi_magic = PI_MAGIC;
1497 #endif
1498 			cp = (char *)cp + pp->pr_size;
1499 
1500 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * If the pool was depleted, point at the new page.
1506 	 */
1507 	if (pp->pr_curpage == NULL)
1508 		pp->pr_curpage = ph;
1509 
1510 	if (++pp->pr_npages > pp->pr_hiwat)
1511 		pp->pr_hiwat = pp->pr_npages;
1512 }
1513 
1514 /*
1515  * Used by pool_get() when nitems drops below the low water mark.  This
1516  * is used to catch up pr_nitems with the low water mark.
1517  *
1518  * Note 1, we never wait for memory here, we let the caller decide what to do.
1519  *
1520  * Note 2, we must be called with the pool already locked, and we return
1521  * with it locked.
1522  */
1523 static int
1524 pool_catchup(struct pool *pp)
1525 {
1526 	int error = 0;
1527 
1528 	while (POOL_NEEDS_CATCHUP(pp)) {
1529 		error = pool_grow(pp, PR_NOWAIT);
1530 		if (error) {
1531 			break;
1532 		}
1533 	}
1534 	return error;
1535 }
1536 
1537 static void
1538 pool_update_curpage(struct pool *pp)
1539 {
1540 
1541 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1542 	if (pp->pr_curpage == NULL) {
1543 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1544 	}
1545 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1546 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1547 }
1548 
1549 void
1550 pool_setlowat(struct pool *pp, int n)
1551 {
1552 
1553 	mutex_enter(&pp->pr_lock);
1554 
1555 	pp->pr_minitems = n;
1556 	pp->pr_minpages = (n == 0)
1557 		? 0
1558 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1559 
1560 	/* Make sure we're caught up with the newly-set low water mark. */
1561 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1562 		/*
1563 		 * XXX: Should we log a warning?  Should we set up a timeout
1564 		 * to try again in a second or so?  The latter could break
1565 		 * a caller's assumptions about interrupt protection, etc.
1566 		 */
1567 	}
1568 
1569 	mutex_exit(&pp->pr_lock);
1570 }
1571 
1572 void
1573 pool_sethiwat(struct pool *pp, int n)
1574 {
1575 
1576 	mutex_enter(&pp->pr_lock);
1577 
1578 	pp->pr_maxpages = (n == 0)
1579 		? 0
1580 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1581 
1582 	mutex_exit(&pp->pr_lock);
1583 }
1584 
1585 void
1586 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1587 {
1588 
1589 	mutex_enter(&pp->pr_lock);
1590 
1591 	pp->pr_hardlimit = n;
1592 	pp->pr_hardlimit_warning = warnmess;
1593 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1594 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1595 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1596 
1597 	/*
1598 	 * In-line version of pool_sethiwat(), because we don't want to
1599 	 * release the lock.
1600 	 */
1601 	pp->pr_maxpages = (n == 0)
1602 		? 0
1603 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1604 
1605 	mutex_exit(&pp->pr_lock);
1606 }
1607 
1608 /*
1609  * Release all complete pages that have not been used recently.
1610  *
1611  * Might be called from interrupt context.
1612  */
1613 int
1614 #ifdef POOL_DIAGNOSTIC
1615 _pool_reclaim(struct pool *pp, const char *file, long line)
1616 #else
1617 pool_reclaim(struct pool *pp)
1618 #endif
1619 {
1620 	struct pool_item_header *ph, *phnext;
1621 	struct pool_pagelist pq;
1622 	uint32_t curtime;
1623 	bool klock;
1624 	int rv;
1625 
1626 	if (cpu_intr_p() || cpu_softintr_p()) {
1627 		KASSERT(pp->pr_ipl != IPL_NONE);
1628 	}
1629 
1630 	if (pp->pr_drain_hook != NULL) {
1631 		/*
1632 		 * The drain hook must be called with the pool unlocked.
1633 		 */
1634 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1635 	}
1636 
1637 	/*
1638 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1639 	 * to block.
1640 	 */
1641 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1642 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1643 		KERNEL_LOCK(1, NULL);
1644 		klock = true;
1645 	} else
1646 		klock = false;
1647 
1648 	/* Reclaim items from the pool's cache (if any). */
1649 	if (pp->pr_cache != NULL)
1650 		pool_cache_invalidate(pp->pr_cache);
1651 
1652 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1653 		if (klock) {
1654 			KERNEL_UNLOCK_ONE(NULL);
1655 		}
1656 		return (0);
1657 	}
1658 	pr_enter(pp, file, line);
1659 
1660 	LIST_INIT(&pq);
1661 
1662 	curtime = time_uptime;
1663 
1664 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1665 		phnext = LIST_NEXT(ph, ph_pagelist);
1666 
1667 		/* Check our minimum page claim */
1668 		if (pp->pr_npages <= pp->pr_minpages)
1669 			break;
1670 
1671 		KASSERT(ph->ph_nmissing == 0);
1672 		if (curtime - ph->ph_time < pool_inactive_time
1673 		    && !pa_starved_p(pp->pr_alloc))
1674 			continue;
1675 
1676 		/*
1677 		 * If freeing this page would put us below
1678 		 * the low water mark, stop now.
1679 		 */
1680 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1681 		    pp->pr_minitems)
1682 			break;
1683 
1684 		pr_rmpage(pp, ph, &pq);
1685 	}
1686 
1687 	pr_leave(pp);
1688 	mutex_exit(&pp->pr_lock);
1689 
1690 	if (LIST_EMPTY(&pq))
1691 		rv = 0;
1692 	else {
1693 		pr_pagelist_free(pp, &pq);
1694 		rv = 1;
1695 	}
1696 
1697 	if (klock) {
1698 		KERNEL_UNLOCK_ONE(NULL);
1699 	}
1700 
1701 	return (rv);
1702 }
1703 
1704 /*
1705  * Drain pools, one at a time.  This is a two stage process;
1706  * drain_start kicks off a cross call to drain CPU-level caches
1707  * if the pool has an associated pool_cache.  drain_end waits
1708  * for those cross calls to finish, and then drains the cache
1709  * (if any) and pool.
1710  *
1711  * Note, must never be called from interrupt context.
1712  */
1713 void
1714 pool_drain_start(struct pool **ppp, uint64_t *wp)
1715 {
1716 	struct pool *pp;
1717 
1718 	KASSERT(!TAILQ_EMPTY(&pool_head));
1719 
1720 	pp = NULL;
1721 
1722 	/* Find next pool to drain, and add a reference. */
1723 	mutex_enter(&pool_head_lock);
1724 	do {
1725 		if (drainpp == NULL) {
1726 			drainpp = TAILQ_FIRST(&pool_head);
1727 		}
1728 		if (drainpp != NULL) {
1729 			pp = drainpp;
1730 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1731 		}
1732 		/*
1733 		 * Skip completely idle pools.  We depend on at least
1734 		 * one pool in the system being active.
1735 		 */
1736 	} while (pp == NULL || pp->pr_npages == 0);
1737 	pp->pr_refcnt++;
1738 	mutex_exit(&pool_head_lock);
1739 
1740 	/* If there is a pool_cache, drain CPU level caches. */
1741 	*ppp = pp;
1742 	if (pp->pr_cache != NULL) {
1743 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1744 		    pp->pr_cache, NULL);
1745 	}
1746 }
1747 
1748 bool
1749 pool_drain_end(struct pool *pp, uint64_t where)
1750 {
1751 	bool reclaimed;
1752 
1753 	if (pp == NULL)
1754 		return false;
1755 
1756 	KASSERT(pp->pr_refcnt > 0);
1757 
1758 	/* Wait for remote draining to complete. */
1759 	if (pp->pr_cache != NULL)
1760 		xc_wait(where);
1761 
1762 	/* Drain the cache (if any) and pool.. */
1763 	reclaimed = pool_reclaim(pp);
1764 
1765 	/* Finally, unlock the pool. */
1766 	mutex_enter(&pool_head_lock);
1767 	pp->pr_refcnt--;
1768 	cv_broadcast(&pool_busy);
1769 	mutex_exit(&pool_head_lock);
1770 
1771 	return reclaimed;
1772 }
1773 
1774 /*
1775  * Diagnostic helpers.
1776  */
1777 void
1778 pool_print(struct pool *pp, const char *modif)
1779 {
1780 
1781 	pool_print1(pp, modif, printf);
1782 }
1783 
1784 void
1785 pool_printall(const char *modif, void (*pr)(const char *, ...))
1786 {
1787 	struct pool *pp;
1788 
1789 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1790 		pool_printit(pp, modif, pr);
1791 	}
1792 }
1793 
1794 void
1795 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1796 {
1797 
1798 	if (pp == NULL) {
1799 		(*pr)("Must specify a pool to print.\n");
1800 		return;
1801 	}
1802 
1803 	pool_print1(pp, modif, pr);
1804 }
1805 
1806 static void
1807 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1808     void (*pr)(const char *, ...))
1809 {
1810 	struct pool_item_header *ph;
1811 #ifdef DIAGNOSTIC
1812 	struct pool_item *pi;
1813 #endif
1814 
1815 	LIST_FOREACH(ph, pl, ph_pagelist) {
1816 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1817 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1818 #ifdef DIAGNOSTIC
1819 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1820 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1821 				if (pi->pi_magic != PI_MAGIC) {
1822 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1823 					    pi, pi->pi_magic);
1824 				}
1825 			}
1826 		}
1827 #endif
1828 	}
1829 }
1830 
1831 static void
1832 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1833 {
1834 	struct pool_item_header *ph;
1835 	pool_cache_t pc;
1836 	pcg_t *pcg;
1837 	pool_cache_cpu_t *cc;
1838 	uint64_t cpuhit, cpumiss;
1839 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1840 	char c;
1841 
1842 	while ((c = *modif++) != '\0') {
1843 		if (c == 'l')
1844 			print_log = 1;
1845 		if (c == 'p')
1846 			print_pagelist = 1;
1847 		if (c == 'c')
1848 			print_cache = 1;
1849 	}
1850 
1851 	if ((pc = pp->pr_cache) != NULL) {
1852 		(*pr)("POOL CACHE");
1853 	} else {
1854 		(*pr)("POOL");
1855 	}
1856 
1857 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1858 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1859 	    pp->pr_roflags);
1860 	(*pr)("\talloc %p\n", pp->pr_alloc);
1861 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1862 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1863 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1864 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1865 
1866 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1867 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1868 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1869 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1870 
1871 	if (print_pagelist == 0)
1872 		goto skip_pagelist;
1873 
1874 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1875 		(*pr)("\n\tempty page list:\n");
1876 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1877 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1878 		(*pr)("\n\tfull page list:\n");
1879 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1880 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1881 		(*pr)("\n\tpartial-page list:\n");
1882 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1883 
1884 	if (pp->pr_curpage == NULL)
1885 		(*pr)("\tno current page\n");
1886 	else
1887 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1888 
1889  skip_pagelist:
1890 	if (print_log == 0)
1891 		goto skip_log;
1892 
1893 	(*pr)("\n");
1894 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1895 		(*pr)("\tno log\n");
1896 	else {
1897 		pr_printlog(pp, NULL, pr);
1898 	}
1899 
1900  skip_log:
1901 
1902 #define PR_GROUPLIST(pcg)						\
1903 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1904 	for (i = 0; i < pcg->pcg_size; i++) {				\
1905 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1906 		    POOL_PADDR_INVALID) {				\
1907 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1908 			    pcg->pcg_objects[i].pcgo_va,		\
1909 			    (unsigned long long)			\
1910 			    pcg->pcg_objects[i].pcgo_pa);		\
1911 		} else {						\
1912 			(*pr)("\t\t\t%p\n",				\
1913 			    pcg->pcg_objects[i].pcgo_va);		\
1914 		}							\
1915 	}
1916 
1917 	if (pc != NULL) {
1918 		cpuhit = 0;
1919 		cpumiss = 0;
1920 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1921 			if ((cc = pc->pc_cpus[i]) == NULL)
1922 				continue;
1923 			cpuhit += cc->cc_hits;
1924 			cpumiss += cc->cc_misses;
1925 		}
1926 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1927 		(*pr)("\tcache layer hits %llu misses %llu\n",
1928 		    pc->pc_hits, pc->pc_misses);
1929 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1930 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1931 		    pc->pc_contended);
1932 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1933 		    pc->pc_nempty, pc->pc_nfull);
1934 		if (print_cache) {
1935 			(*pr)("\tfull cache groups:\n");
1936 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1937 			    pcg = pcg->pcg_next) {
1938 				PR_GROUPLIST(pcg);
1939 			}
1940 			(*pr)("\tempty cache groups:\n");
1941 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1942 			    pcg = pcg->pcg_next) {
1943 				PR_GROUPLIST(pcg);
1944 			}
1945 		}
1946 	}
1947 #undef PR_GROUPLIST
1948 
1949 	pr_enter_check(pp, pr);
1950 }
1951 
1952 static int
1953 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1954 {
1955 	struct pool_item *pi;
1956 	void *page;
1957 	int n;
1958 
1959 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1960 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1961 		if (page != ph->ph_page &&
1962 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1963 			if (label != NULL)
1964 				printf("%s: ", label);
1965 			printf("pool(%p:%s): page inconsistency: page %p;"
1966 			       " at page head addr %p (p %p)\n", pp,
1967 				pp->pr_wchan, ph->ph_page,
1968 				ph, page);
1969 			return 1;
1970 		}
1971 	}
1972 
1973 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1974 		return 0;
1975 
1976 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1977 	     pi != NULL;
1978 	     pi = LIST_NEXT(pi,pi_list), n++) {
1979 
1980 #ifdef DIAGNOSTIC
1981 		if (pi->pi_magic != PI_MAGIC) {
1982 			if (label != NULL)
1983 				printf("%s: ", label);
1984 			printf("pool(%s): free list modified: magic=%x;"
1985 			       " page %p; item ordinal %d; addr %p\n",
1986 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1987 				n, pi);
1988 			panic("pool");
1989 		}
1990 #endif
1991 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1992 			continue;
1993 		}
1994 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1995 		if (page == ph->ph_page)
1996 			continue;
1997 
1998 		if (label != NULL)
1999 			printf("%s: ", label);
2000 		printf("pool(%p:%s): page inconsistency: page %p;"
2001 		       " item ordinal %d; addr %p (p %p)\n", pp,
2002 			pp->pr_wchan, ph->ph_page,
2003 			n, pi, page);
2004 		return 1;
2005 	}
2006 	return 0;
2007 }
2008 
2009 
2010 int
2011 pool_chk(struct pool *pp, const char *label)
2012 {
2013 	struct pool_item_header *ph;
2014 	int r = 0;
2015 
2016 	mutex_enter(&pp->pr_lock);
2017 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2018 		r = pool_chk_page(pp, label, ph);
2019 		if (r) {
2020 			goto out;
2021 		}
2022 	}
2023 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2024 		r = pool_chk_page(pp, label, ph);
2025 		if (r) {
2026 			goto out;
2027 		}
2028 	}
2029 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2030 		r = pool_chk_page(pp, label, ph);
2031 		if (r) {
2032 			goto out;
2033 		}
2034 	}
2035 
2036 out:
2037 	mutex_exit(&pp->pr_lock);
2038 	return (r);
2039 }
2040 
2041 /*
2042  * pool_cache_init:
2043  *
2044  *	Initialize a pool cache.
2045  */
2046 pool_cache_t
2047 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2048     const char *wchan, struct pool_allocator *palloc, int ipl,
2049     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2050 {
2051 	pool_cache_t pc;
2052 
2053 	pc = pool_get(&cache_pool, PR_WAITOK);
2054 	if (pc == NULL)
2055 		return NULL;
2056 
2057 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2058 	   palloc, ipl, ctor, dtor, arg);
2059 
2060 	return pc;
2061 }
2062 
2063 /*
2064  * pool_cache_bootstrap:
2065  *
2066  *	Kernel-private version of pool_cache_init().  The caller
2067  *	provides initial storage.
2068  */
2069 void
2070 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2071     u_int align_offset, u_int flags, const char *wchan,
2072     struct pool_allocator *palloc, int ipl,
2073     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2074     void *arg)
2075 {
2076 	CPU_INFO_ITERATOR cii;
2077 	pool_cache_t pc1;
2078 	struct cpu_info *ci;
2079 	struct pool *pp;
2080 
2081 	pp = &pc->pc_pool;
2082 	if (palloc == NULL && ipl == IPL_NONE)
2083 		palloc = &pool_allocator_nointr;
2084 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2085 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2086 
2087 	if (ctor == NULL) {
2088 		ctor = (int (*)(void *, void *, int))nullop;
2089 	}
2090 	if (dtor == NULL) {
2091 		dtor = (void (*)(void *, void *))nullop;
2092 	}
2093 
2094 	pc->pc_emptygroups = NULL;
2095 	pc->pc_fullgroups = NULL;
2096 	pc->pc_partgroups = NULL;
2097 	pc->pc_ctor = ctor;
2098 	pc->pc_dtor = dtor;
2099 	pc->pc_arg  = arg;
2100 	pc->pc_hits  = 0;
2101 	pc->pc_misses = 0;
2102 	pc->pc_nempty = 0;
2103 	pc->pc_npart = 0;
2104 	pc->pc_nfull = 0;
2105 	pc->pc_contended = 0;
2106 	pc->pc_refcnt = 0;
2107 	pc->pc_freecheck = NULL;
2108 
2109 	if ((flags & PR_LARGECACHE) != 0) {
2110 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2111 		pc->pc_pcgpool = &pcg_large_pool;
2112 	} else {
2113 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2114 		pc->pc_pcgpool = &pcg_normal_pool;
2115 	}
2116 
2117 	/* Allocate per-CPU caches. */
2118 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2119 	pc->pc_ncpu = 0;
2120 	if (ncpu < 2) {
2121 		/* XXX For sparc: boot CPU is not attached yet. */
2122 		pool_cache_cpu_init1(curcpu(), pc);
2123 	} else {
2124 		for (CPU_INFO_FOREACH(cii, ci)) {
2125 			pool_cache_cpu_init1(ci, pc);
2126 		}
2127 	}
2128 
2129 	/* Add to list of all pools. */
2130 	if (__predict_true(!cold))
2131 		mutex_enter(&pool_head_lock);
2132 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2133 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2134 			break;
2135 	}
2136 	if (pc1 == NULL)
2137 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2138 	else
2139 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2140 	if (__predict_true(!cold))
2141 		mutex_exit(&pool_head_lock);
2142 
2143 	membar_sync();
2144 	pp->pr_cache = pc;
2145 }
2146 
2147 /*
2148  * pool_cache_destroy:
2149  *
2150  *	Destroy a pool cache.
2151  */
2152 void
2153 pool_cache_destroy(pool_cache_t pc)
2154 {
2155 	struct pool *pp = &pc->pc_pool;
2156 	u_int i;
2157 
2158 	/* Remove it from the global list. */
2159 	mutex_enter(&pool_head_lock);
2160 	while (pc->pc_refcnt != 0)
2161 		cv_wait(&pool_busy, &pool_head_lock);
2162 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2163 	mutex_exit(&pool_head_lock);
2164 
2165 	/* First, invalidate the entire cache. */
2166 	pool_cache_invalidate(pc);
2167 
2168 	/* Disassociate it from the pool. */
2169 	mutex_enter(&pp->pr_lock);
2170 	pp->pr_cache = NULL;
2171 	mutex_exit(&pp->pr_lock);
2172 
2173 	/* Destroy per-CPU data */
2174 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2175 		pool_cache_invalidate_cpu(pc, i);
2176 
2177 	/* Finally, destroy it. */
2178 	mutex_destroy(&pc->pc_lock);
2179 	pool_destroy(pp);
2180 	pool_put(&cache_pool, pc);
2181 }
2182 
2183 /*
2184  * pool_cache_cpu_init1:
2185  *
2186  *	Called for each pool_cache whenever a new CPU is attached.
2187  */
2188 static void
2189 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2190 {
2191 	pool_cache_cpu_t *cc;
2192 	int index;
2193 
2194 	index = ci->ci_index;
2195 
2196 	KASSERT(index < __arraycount(pc->pc_cpus));
2197 
2198 	if ((cc = pc->pc_cpus[index]) != NULL) {
2199 		KASSERT(cc->cc_cpuindex == index);
2200 		return;
2201 	}
2202 
2203 	/*
2204 	 * The first CPU is 'free'.  This needs to be the case for
2205 	 * bootstrap - we may not be able to allocate yet.
2206 	 */
2207 	if (pc->pc_ncpu == 0) {
2208 		cc = &pc->pc_cpu0;
2209 		pc->pc_ncpu = 1;
2210 	} else {
2211 		mutex_enter(&pc->pc_lock);
2212 		pc->pc_ncpu++;
2213 		mutex_exit(&pc->pc_lock);
2214 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2215 	}
2216 
2217 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2218 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2219 	cc->cc_cache = pc;
2220 	cc->cc_cpuindex = index;
2221 	cc->cc_hits = 0;
2222 	cc->cc_misses = 0;
2223 	cc->cc_current = __UNCONST(&pcg_dummy);
2224 	cc->cc_previous = __UNCONST(&pcg_dummy);
2225 
2226 	pc->pc_cpus[index] = cc;
2227 }
2228 
2229 /*
2230  * pool_cache_cpu_init:
2231  *
2232  *	Called whenever a new CPU is attached.
2233  */
2234 void
2235 pool_cache_cpu_init(struct cpu_info *ci)
2236 {
2237 	pool_cache_t pc;
2238 
2239 	mutex_enter(&pool_head_lock);
2240 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2241 		pc->pc_refcnt++;
2242 		mutex_exit(&pool_head_lock);
2243 
2244 		pool_cache_cpu_init1(ci, pc);
2245 
2246 		mutex_enter(&pool_head_lock);
2247 		pc->pc_refcnt--;
2248 		cv_broadcast(&pool_busy);
2249 	}
2250 	mutex_exit(&pool_head_lock);
2251 }
2252 
2253 /*
2254  * pool_cache_reclaim:
2255  *
2256  *	Reclaim memory from a pool cache.
2257  */
2258 bool
2259 pool_cache_reclaim(pool_cache_t pc)
2260 {
2261 
2262 	return pool_reclaim(&pc->pc_pool);
2263 }
2264 
2265 static void
2266 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2267 {
2268 
2269 	(*pc->pc_dtor)(pc->pc_arg, object);
2270 	pool_put(&pc->pc_pool, object);
2271 }
2272 
2273 /*
2274  * pool_cache_destruct_object:
2275  *
2276  *	Force destruction of an object and its release back into
2277  *	the pool.
2278  */
2279 void
2280 pool_cache_destruct_object(pool_cache_t pc, void *object)
2281 {
2282 
2283 	FREECHECK_IN(&pc->pc_freecheck, object);
2284 
2285 	pool_cache_destruct_object1(pc, object);
2286 }
2287 
2288 /*
2289  * pool_cache_invalidate_groups:
2290  *
2291  *	Invalidate a chain of groups and destruct all objects.
2292  */
2293 static void
2294 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2295 {
2296 	void *object;
2297 	pcg_t *next;
2298 	int i;
2299 
2300 	for (; pcg != NULL; pcg = next) {
2301 		next = pcg->pcg_next;
2302 
2303 		for (i = 0; i < pcg->pcg_avail; i++) {
2304 			object = pcg->pcg_objects[i].pcgo_va;
2305 			pool_cache_destruct_object1(pc, object);
2306 		}
2307 
2308 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2309 			pool_put(&pcg_large_pool, pcg);
2310 		} else {
2311 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2312 			pool_put(&pcg_normal_pool, pcg);
2313 		}
2314 	}
2315 }
2316 
2317 /*
2318  * pool_cache_invalidate:
2319  *
2320  *	Invalidate a pool cache (destruct and release all of the
2321  *	cached objects).  Does not reclaim objects from the pool.
2322  *
2323  *	Note: For pool caches that provide constructed objects, there
2324  *	is an assumption that another level of synchronization is occurring
2325  *	between the input to the constructor and the cache invalidation.
2326  */
2327 void
2328 pool_cache_invalidate(pool_cache_t pc)
2329 {
2330 	pcg_t *full, *empty, *part;
2331 #if 0
2332 	uint64_t where;
2333 
2334 	if (ncpu < 2 || !mp_online) {
2335 		/*
2336 		 * We might be called early enough in the boot process
2337 		 * for the CPU data structures to not be fully initialized.
2338 		 * In this case, simply gather the local CPU's cache now
2339 		 * since it will be the only one running.
2340 		 */
2341 		pool_cache_xcall(pc);
2342 	} else {
2343 		/*
2344 		 * Gather all of the CPU-specific caches into the
2345 		 * global cache.
2346 		 */
2347 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2348 		xc_wait(where);
2349 	}
2350 #endif
2351 	mutex_enter(&pc->pc_lock);
2352 	full = pc->pc_fullgroups;
2353 	empty = pc->pc_emptygroups;
2354 	part = pc->pc_partgroups;
2355 	pc->pc_fullgroups = NULL;
2356 	pc->pc_emptygroups = NULL;
2357 	pc->pc_partgroups = NULL;
2358 	pc->pc_nfull = 0;
2359 	pc->pc_nempty = 0;
2360 	pc->pc_npart = 0;
2361 	mutex_exit(&pc->pc_lock);
2362 
2363 	pool_cache_invalidate_groups(pc, full);
2364 	pool_cache_invalidate_groups(pc, empty);
2365 	pool_cache_invalidate_groups(pc, part);
2366 }
2367 
2368 /*
2369  * pool_cache_invalidate_cpu:
2370  *
2371  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2372  *	identified by its associated index.
2373  *	It is caller's responsibility to ensure that no operation is
2374  *	taking place on this pool cache while doing this invalidation.
2375  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2376  *	pool cached objects from a CPU different from the one currently running
2377  *	may result in an undefined behaviour.
2378  */
2379 static void
2380 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2381 {
2382 
2383 	pool_cache_cpu_t *cc;
2384 	pcg_t *pcg;
2385 
2386 	if ((cc = pc->pc_cpus[index]) == NULL)
2387 		return;
2388 
2389 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2390 		pcg->pcg_next = NULL;
2391 		pool_cache_invalidate_groups(pc, pcg);
2392 	}
2393 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2394 		pcg->pcg_next = NULL;
2395 		pool_cache_invalidate_groups(pc, pcg);
2396 	}
2397 	if (cc != &pc->pc_cpu0)
2398 		pool_put(&cache_cpu_pool, cc);
2399 
2400 }
2401 
2402 void
2403 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2404 {
2405 
2406 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2407 }
2408 
2409 void
2410 pool_cache_setlowat(pool_cache_t pc, int n)
2411 {
2412 
2413 	pool_setlowat(&pc->pc_pool, n);
2414 }
2415 
2416 void
2417 pool_cache_sethiwat(pool_cache_t pc, int n)
2418 {
2419 
2420 	pool_sethiwat(&pc->pc_pool, n);
2421 }
2422 
2423 void
2424 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2425 {
2426 
2427 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2428 }
2429 
2430 static bool __noinline
2431 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2432 		    paddr_t *pap, int flags)
2433 {
2434 	pcg_t *pcg, *cur;
2435 	uint64_t ncsw;
2436 	pool_cache_t pc;
2437 	void *object;
2438 
2439 	KASSERT(cc->cc_current->pcg_avail == 0);
2440 	KASSERT(cc->cc_previous->pcg_avail == 0);
2441 
2442 	pc = cc->cc_cache;
2443 	cc->cc_misses++;
2444 
2445 	/*
2446 	 * Nothing was available locally.  Try and grab a group
2447 	 * from the cache.
2448 	 */
2449 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2450 		ncsw = curlwp->l_ncsw;
2451 		mutex_enter(&pc->pc_lock);
2452 		pc->pc_contended++;
2453 
2454 		/*
2455 		 * If we context switched while locking, then
2456 		 * our view of the per-CPU data is invalid:
2457 		 * retry.
2458 		 */
2459 		if (curlwp->l_ncsw != ncsw) {
2460 			mutex_exit(&pc->pc_lock);
2461 			return true;
2462 		}
2463 	}
2464 
2465 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2466 		/*
2467 		 * If there's a full group, release our empty
2468 		 * group back to the cache.  Install the full
2469 		 * group as cc_current and return.
2470 		 */
2471 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2472 			KASSERT(cur->pcg_avail == 0);
2473 			cur->pcg_next = pc->pc_emptygroups;
2474 			pc->pc_emptygroups = cur;
2475 			pc->pc_nempty++;
2476 		}
2477 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2478 		cc->cc_current = pcg;
2479 		pc->pc_fullgroups = pcg->pcg_next;
2480 		pc->pc_hits++;
2481 		pc->pc_nfull--;
2482 		mutex_exit(&pc->pc_lock);
2483 		return true;
2484 	}
2485 
2486 	/*
2487 	 * Nothing available locally or in cache.  Take the slow
2488 	 * path: fetch a new object from the pool and construct
2489 	 * it.
2490 	 */
2491 	pc->pc_misses++;
2492 	mutex_exit(&pc->pc_lock);
2493 	splx(s);
2494 
2495 	object = pool_get(&pc->pc_pool, flags);
2496 	*objectp = object;
2497 	if (__predict_false(object == NULL))
2498 		return false;
2499 
2500 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2501 		pool_put(&pc->pc_pool, object);
2502 		*objectp = NULL;
2503 		return false;
2504 	}
2505 
2506 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2507 	    (pc->pc_pool.pr_align - 1)) == 0);
2508 
2509 	if (pap != NULL) {
2510 #ifdef POOL_VTOPHYS
2511 		*pap = POOL_VTOPHYS(object);
2512 #else
2513 		*pap = POOL_PADDR_INVALID;
2514 #endif
2515 	}
2516 
2517 	FREECHECK_OUT(&pc->pc_freecheck, object);
2518 	return false;
2519 }
2520 
2521 /*
2522  * pool_cache_get{,_paddr}:
2523  *
2524  *	Get an object from a pool cache (optionally returning
2525  *	the physical address of the object).
2526  */
2527 void *
2528 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2529 {
2530 	pool_cache_cpu_t *cc;
2531 	pcg_t *pcg;
2532 	void *object;
2533 	int s;
2534 
2535 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2536 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2537 	    ("pool '%s' is IPL_NONE, but called from interrupt context\n",
2538 	    pc->pc_pool.pr_wchan));
2539 
2540 	if (flags & PR_WAITOK) {
2541 		ASSERT_SLEEPABLE();
2542 	}
2543 
2544 	/* Lock out interrupts and disable preemption. */
2545 	s = splvm();
2546 	while (/* CONSTCOND */ true) {
2547 		/* Try and allocate an object from the current group. */
2548 		cc = pc->pc_cpus[curcpu()->ci_index];
2549 		KASSERT(cc->cc_cache == pc);
2550 	 	pcg = cc->cc_current;
2551 		if (__predict_true(pcg->pcg_avail > 0)) {
2552 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2553 			if (__predict_false(pap != NULL))
2554 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2555 #if defined(DIAGNOSTIC)
2556 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2557 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2558 			KASSERT(object != NULL);
2559 #endif
2560 			cc->cc_hits++;
2561 			splx(s);
2562 			FREECHECK_OUT(&pc->pc_freecheck, object);
2563 			return object;
2564 		}
2565 
2566 		/*
2567 		 * That failed.  If the previous group isn't empty, swap
2568 		 * it with the current group and allocate from there.
2569 		 */
2570 		pcg = cc->cc_previous;
2571 		if (__predict_true(pcg->pcg_avail > 0)) {
2572 			cc->cc_previous = cc->cc_current;
2573 			cc->cc_current = pcg;
2574 			continue;
2575 		}
2576 
2577 		/*
2578 		 * Can't allocate from either group: try the slow path.
2579 		 * If get_slow() allocated an object for us, or if
2580 		 * no more objects are available, it will return false.
2581 		 * Otherwise, we need to retry.
2582 		 */
2583 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2584 			break;
2585 	}
2586 
2587 	return object;
2588 }
2589 
2590 static bool __noinline
2591 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2592 {
2593 	pcg_t *pcg, *cur;
2594 	uint64_t ncsw;
2595 	pool_cache_t pc;
2596 
2597 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2598 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2599 
2600 	pc = cc->cc_cache;
2601 	pcg = NULL;
2602 	cc->cc_misses++;
2603 
2604 	/*
2605 	 * If there are no empty groups in the cache then allocate one
2606 	 * while still unlocked.
2607 	 */
2608 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2609 		if (__predict_true(!pool_cache_disable)) {
2610 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2611 		}
2612 		if (__predict_true(pcg != NULL)) {
2613 			pcg->pcg_avail = 0;
2614 			pcg->pcg_size = pc->pc_pcgsize;
2615 		}
2616 	}
2617 
2618 	/* Lock the cache. */
2619 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2620 		ncsw = curlwp->l_ncsw;
2621 		mutex_enter(&pc->pc_lock);
2622 		pc->pc_contended++;
2623 
2624 		/*
2625 		 * If we context switched while locking, then our view of
2626 		 * the per-CPU data is invalid: retry.
2627 		 */
2628 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
2629 			mutex_exit(&pc->pc_lock);
2630 			if (pcg != NULL) {
2631 				pool_put(pc->pc_pcgpool, pcg);
2632 			}
2633 			return true;
2634 		}
2635 	}
2636 
2637 	/* If there are no empty groups in the cache then allocate one. */
2638 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2639 		pcg = pc->pc_emptygroups;
2640 		pc->pc_emptygroups = pcg->pcg_next;
2641 		pc->pc_nempty--;
2642 	}
2643 
2644 	/*
2645 	 * If there's a empty group, release our full group back
2646 	 * to the cache.  Install the empty group to the local CPU
2647 	 * and return.
2648 	 */
2649 	if (pcg != NULL) {
2650 		KASSERT(pcg->pcg_avail == 0);
2651 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2652 			cc->cc_previous = pcg;
2653 		} else {
2654 			cur = cc->cc_current;
2655 			if (__predict_true(cur != &pcg_dummy)) {
2656 				KASSERT(cur->pcg_avail == cur->pcg_size);
2657 				cur->pcg_next = pc->pc_fullgroups;
2658 				pc->pc_fullgroups = cur;
2659 				pc->pc_nfull++;
2660 			}
2661 			cc->cc_current = pcg;
2662 		}
2663 		pc->pc_hits++;
2664 		mutex_exit(&pc->pc_lock);
2665 		return true;
2666 	}
2667 
2668 	/*
2669 	 * Nothing available locally or in cache, and we didn't
2670 	 * allocate an empty group.  Take the slow path and destroy
2671 	 * the object here and now.
2672 	 */
2673 	pc->pc_misses++;
2674 	mutex_exit(&pc->pc_lock);
2675 	splx(s);
2676 	pool_cache_destruct_object(pc, object);
2677 
2678 	return false;
2679 }
2680 
2681 /*
2682  * pool_cache_put{,_paddr}:
2683  *
2684  *	Put an object back to the pool cache (optionally caching the
2685  *	physical address of the object).
2686  */
2687 void
2688 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2689 {
2690 	pool_cache_cpu_t *cc;
2691 	pcg_t *pcg;
2692 	int s;
2693 
2694 	KASSERT(object != NULL);
2695 	FREECHECK_IN(&pc->pc_freecheck, object);
2696 
2697 	/* Lock out interrupts and disable preemption. */
2698 	s = splvm();
2699 	while (/* CONSTCOND */ true) {
2700 		/* If the current group isn't full, release it there. */
2701 		cc = pc->pc_cpus[curcpu()->ci_index];
2702 		KASSERT(cc->cc_cache == pc);
2703 	 	pcg = cc->cc_current;
2704 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2705 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2706 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2707 			pcg->pcg_avail++;
2708 			cc->cc_hits++;
2709 			splx(s);
2710 			return;
2711 		}
2712 
2713 		/*
2714 		 * That failed.  If the previous group isn't full, swap
2715 		 * it with the current group and try again.
2716 		 */
2717 		pcg = cc->cc_previous;
2718 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2719 			cc->cc_previous = cc->cc_current;
2720 			cc->cc_current = pcg;
2721 			continue;
2722 		}
2723 
2724 		/*
2725 		 * Can't free to either group: try the slow path.
2726 		 * If put_slow() releases the object for us, it
2727 		 * will return false.  Otherwise we need to retry.
2728 		 */
2729 		if (!pool_cache_put_slow(cc, s, object))
2730 			break;
2731 	}
2732 }
2733 
2734 /*
2735  * pool_cache_xcall:
2736  *
2737  *	Transfer objects from the per-CPU cache to the global cache.
2738  *	Run within a cross-call thread.
2739  */
2740 static void
2741 pool_cache_xcall(pool_cache_t pc)
2742 {
2743 	pool_cache_cpu_t *cc;
2744 	pcg_t *prev, *cur, **list;
2745 	int s;
2746 
2747 	s = splvm();
2748 	mutex_enter(&pc->pc_lock);
2749 	cc = pc->pc_cpus[curcpu()->ci_index];
2750 	cur = cc->cc_current;
2751 	cc->cc_current = __UNCONST(&pcg_dummy);
2752 	prev = cc->cc_previous;
2753 	cc->cc_previous = __UNCONST(&pcg_dummy);
2754 	if (cur != &pcg_dummy) {
2755 		if (cur->pcg_avail == cur->pcg_size) {
2756 			list = &pc->pc_fullgroups;
2757 			pc->pc_nfull++;
2758 		} else if (cur->pcg_avail == 0) {
2759 			list = &pc->pc_emptygroups;
2760 			pc->pc_nempty++;
2761 		} else {
2762 			list = &pc->pc_partgroups;
2763 			pc->pc_npart++;
2764 		}
2765 		cur->pcg_next = *list;
2766 		*list = cur;
2767 	}
2768 	if (prev != &pcg_dummy) {
2769 		if (prev->pcg_avail == prev->pcg_size) {
2770 			list = &pc->pc_fullgroups;
2771 			pc->pc_nfull++;
2772 		} else if (prev->pcg_avail == 0) {
2773 			list = &pc->pc_emptygroups;
2774 			pc->pc_nempty++;
2775 		} else {
2776 			list = &pc->pc_partgroups;
2777 			pc->pc_npart++;
2778 		}
2779 		prev->pcg_next = *list;
2780 		*list = prev;
2781 	}
2782 	mutex_exit(&pc->pc_lock);
2783 	splx(s);
2784 }
2785 
2786 /*
2787  * Pool backend allocators.
2788  *
2789  * Each pool has a backend allocator that handles allocation, deallocation,
2790  * and any additional draining that might be needed.
2791  *
2792  * We provide two standard allocators:
2793  *
2794  *	pool_allocator_kmem - the default when no allocator is specified
2795  *
2796  *	pool_allocator_nointr - used for pools that will not be accessed
2797  *	in interrupt context.
2798  */
2799 void	*pool_page_alloc(struct pool *, int);
2800 void	pool_page_free(struct pool *, void *);
2801 
2802 #ifdef POOL_SUBPAGE
2803 struct pool_allocator pool_allocator_kmem_fullpage = {
2804 	pool_page_alloc, pool_page_free, 0,
2805 	.pa_backingmapptr = &kmem_map,
2806 };
2807 #else
2808 struct pool_allocator pool_allocator_kmem = {
2809 	pool_page_alloc, pool_page_free, 0,
2810 	.pa_backingmapptr = &kmem_map,
2811 };
2812 #endif
2813 
2814 void	*pool_page_alloc_nointr(struct pool *, int);
2815 void	pool_page_free_nointr(struct pool *, void *);
2816 
2817 #ifdef POOL_SUBPAGE
2818 struct pool_allocator pool_allocator_nointr_fullpage = {
2819 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2820 	.pa_backingmapptr = &kernel_map,
2821 };
2822 #else
2823 struct pool_allocator pool_allocator_nointr = {
2824 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2825 	.pa_backingmapptr = &kernel_map,
2826 };
2827 #endif
2828 
2829 #ifdef POOL_SUBPAGE
2830 void	*pool_subpage_alloc(struct pool *, int);
2831 void	pool_subpage_free(struct pool *, void *);
2832 
2833 struct pool_allocator pool_allocator_kmem = {
2834 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2835 	.pa_backingmapptr = &kmem_map,
2836 };
2837 
2838 void	*pool_subpage_alloc_nointr(struct pool *, int);
2839 void	pool_subpage_free_nointr(struct pool *, void *);
2840 
2841 struct pool_allocator pool_allocator_nointr = {
2842 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2843 	.pa_backingmapptr = &kmem_map,
2844 };
2845 #endif /* POOL_SUBPAGE */
2846 
2847 static void *
2848 pool_allocator_alloc(struct pool *pp, int flags)
2849 {
2850 	struct pool_allocator *pa = pp->pr_alloc;
2851 	void *res;
2852 
2853 	res = (*pa->pa_alloc)(pp, flags);
2854 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2855 		/*
2856 		 * We only run the drain hook here if PR_NOWAIT.
2857 		 * In other cases, the hook will be run in
2858 		 * pool_reclaim().
2859 		 */
2860 		if (pp->pr_drain_hook != NULL) {
2861 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2862 			res = (*pa->pa_alloc)(pp, flags);
2863 		}
2864 	}
2865 	return res;
2866 }
2867 
2868 static void
2869 pool_allocator_free(struct pool *pp, void *v)
2870 {
2871 	struct pool_allocator *pa = pp->pr_alloc;
2872 
2873 	(*pa->pa_free)(pp, v);
2874 }
2875 
2876 void *
2877 pool_page_alloc(struct pool *pp, int flags)
2878 {
2879 	bool waitok = (flags & PR_WAITOK) ? true : false;
2880 
2881 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2882 }
2883 
2884 void
2885 pool_page_free(struct pool *pp, void *v)
2886 {
2887 
2888 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2889 }
2890 
2891 static void *
2892 pool_page_alloc_meta(struct pool *pp, int flags)
2893 {
2894 	bool waitok = (flags & PR_WAITOK) ? true : false;
2895 
2896 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2897 }
2898 
2899 static void
2900 pool_page_free_meta(struct pool *pp, void *v)
2901 {
2902 
2903 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2904 }
2905 
2906 #ifdef POOL_SUBPAGE
2907 /* Sub-page allocator, for machines with large hardware pages. */
2908 void *
2909 pool_subpage_alloc(struct pool *pp, int flags)
2910 {
2911 	return pool_get(&psppool, flags);
2912 }
2913 
2914 void
2915 pool_subpage_free(struct pool *pp, void *v)
2916 {
2917 	pool_put(&psppool, v);
2918 }
2919 
2920 /* We don't provide a real nointr allocator.  Maybe later. */
2921 void *
2922 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2923 {
2924 
2925 	return (pool_subpage_alloc(pp, flags));
2926 }
2927 
2928 void
2929 pool_subpage_free_nointr(struct pool *pp, void *v)
2930 {
2931 
2932 	pool_subpage_free(pp, v);
2933 }
2934 #endif /* POOL_SUBPAGE */
2935 void *
2936 pool_page_alloc_nointr(struct pool *pp, int flags)
2937 {
2938 	bool waitok = (flags & PR_WAITOK) ? true : false;
2939 
2940 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2941 }
2942 
2943 void
2944 pool_page_free_nointr(struct pool *pp, void *v)
2945 {
2946 
2947 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2948 }
2949 
2950 #if defined(DDB)
2951 static bool
2952 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2953 {
2954 
2955 	return (uintptr_t)ph->ph_page <= addr &&
2956 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2957 }
2958 
2959 static bool
2960 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2961 {
2962 
2963 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2964 }
2965 
2966 static bool
2967 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2968 {
2969 	int i;
2970 
2971 	if (pcg == NULL) {
2972 		return false;
2973 	}
2974 	for (i = 0; i < pcg->pcg_avail; i++) {
2975 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2976 			return true;
2977 		}
2978 	}
2979 	return false;
2980 }
2981 
2982 static bool
2983 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2984 {
2985 
2986 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2987 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2988 		pool_item_bitmap_t *bitmap =
2989 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2990 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2991 
2992 		return (*bitmap & mask) == 0;
2993 	} else {
2994 		struct pool_item *pi;
2995 
2996 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2997 			if (pool_in_item(pp, pi, addr)) {
2998 				return false;
2999 			}
3000 		}
3001 		return true;
3002 	}
3003 }
3004 
3005 void
3006 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3007 {
3008 	struct pool *pp;
3009 
3010 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3011 		struct pool_item_header *ph;
3012 		uintptr_t item;
3013 		bool allocated = true;
3014 		bool incache = false;
3015 		bool incpucache = false;
3016 		char cpucachestr[32];
3017 
3018 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3019 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3020 				if (pool_in_page(pp, ph, addr)) {
3021 					goto found;
3022 				}
3023 			}
3024 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3025 				if (pool_in_page(pp, ph, addr)) {
3026 					allocated =
3027 					    pool_allocated(pp, ph, addr);
3028 					goto found;
3029 				}
3030 			}
3031 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3032 				if (pool_in_page(pp, ph, addr)) {
3033 					allocated = false;
3034 					goto found;
3035 				}
3036 			}
3037 			continue;
3038 		} else {
3039 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3040 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3041 				continue;
3042 			}
3043 			allocated = pool_allocated(pp, ph, addr);
3044 		}
3045 found:
3046 		if (allocated && pp->pr_cache) {
3047 			pool_cache_t pc = pp->pr_cache;
3048 			struct pool_cache_group *pcg;
3049 			int i;
3050 
3051 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3052 			    pcg = pcg->pcg_next) {
3053 				if (pool_in_cg(pp, pcg, addr)) {
3054 					incache = true;
3055 					goto print;
3056 				}
3057 			}
3058 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3059 				pool_cache_cpu_t *cc;
3060 
3061 				if ((cc = pc->pc_cpus[i]) == NULL) {
3062 					continue;
3063 				}
3064 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3065 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3066 					struct cpu_info *ci =
3067 					    cpu_lookup(i);
3068 
3069 					incpucache = true;
3070 					snprintf(cpucachestr,
3071 					    sizeof(cpucachestr),
3072 					    "cached by CPU %u",
3073 					    ci->ci_index);
3074 					goto print;
3075 				}
3076 			}
3077 		}
3078 print:
3079 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3080 		item = item + rounddown(addr - item, pp->pr_size);
3081 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3082 		    (void *)addr, item, (size_t)(addr - item),
3083 		    pp->pr_wchan,
3084 		    incpucache ? cpucachestr :
3085 		    incache ? "cached" : allocated ? "allocated" : "free");
3086 	}
3087 }
3088 #endif /* defined(DDB) */
3089