xref: /netbsd-src/sys/kern/subr_pool.c (revision a0698ed9d41653d7a2378819ad501a285ca0d401)
1 /*	$NetBSD: subr_pool.c,v 1.233 2019/02/11 11:12:58 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.233 2019/02/11 11:12:58 maxv Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_kleak.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 /*
64  * Pool resource management utility.
65  *
66  * Memory is allocated in pages which are split into pieces according to
67  * the pool item size. Each page is kept on one of three lists in the
68  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69  * for empty, full and partially-full pages respectively. The individual
70  * pool items are on a linked list headed by `ph_itemlist' in each page
71  * header. The memory for building the page list is either taken from
72  * the allocated pages themselves (for small pool items) or taken from
73  * an internal pool of page headers (`phpool').
74  */
75 
76 /* List of all pools. Non static as needed by 'vmstat -m' */
77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78 
79 /* Private pool for page header structures */
80 #define	PHPOOL_MAX	8
81 static struct pool phpool[PHPOOL_MAX];
82 #define	PHPOOL_FREELIST_NELEM(idx) \
83 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84 
85 #ifdef POOL_SUBPAGE
86 /* Pool of subpages for use by normal pools. */
87 static struct pool psppool;
88 #endif
89 
90 #if defined(KASAN)
91 #define POOL_REDZONE
92 #endif
93 
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 #  define POOL_REDZONE_SIZE 8
97 # else
98 #  define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 static void pool_cache_redzone_check(pool_cache_t, void *);
104 #else
105 # define pool_redzone_init(pp, sz)		__nothing
106 # define pool_redzone_fill(pp, ptr)		__nothing
107 # define pool_redzone_check(pp, ptr)		__nothing
108 # define pool_cache_redzone_check(pc, ptr)	__nothing
109 #endif
110 
111 #ifdef KLEAK
112 static void pool_kleak_fill(struct pool *, void *);
113 static void pool_cache_kleak_fill(pool_cache_t, void *);
114 #else
115 #define pool_kleak_fill(pp, ptr)	__nothing
116 #define pool_cache_kleak_fill(pc, ptr)	__nothing
117 #endif
118 
119 #define pc_has_ctor(pc) \
120 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
121 #define pc_has_dtor(pc) \
122 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
123 
124 static void *pool_page_alloc_meta(struct pool *, int);
125 static void pool_page_free_meta(struct pool *, void *);
126 
127 /* allocator for pool metadata */
128 struct pool_allocator pool_allocator_meta = {
129 	.pa_alloc = pool_page_alloc_meta,
130 	.pa_free = pool_page_free_meta,
131 	.pa_pagesz = 0
132 };
133 
134 #define POOL_ALLOCATOR_BIG_BASE 13
135 extern struct pool_allocator pool_allocator_big[];
136 static int pool_bigidx(size_t);
137 
138 /* # of seconds to retain page after last use */
139 int pool_inactive_time = 10;
140 
141 /* Next candidate for drainage (see pool_drain()) */
142 static struct pool	*drainpp;
143 
144 /* This lock protects both pool_head and drainpp. */
145 static kmutex_t pool_head_lock;
146 static kcondvar_t pool_busy;
147 
148 /* This lock protects initialization of a potentially shared pool allocator */
149 static kmutex_t pool_allocator_lock;
150 
151 typedef uint32_t pool_item_bitmap_t;
152 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
153 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
154 
155 struct pool_item_header {
156 	/* Page headers */
157 	LIST_ENTRY(pool_item_header)
158 				ph_pagelist;	/* pool page list */
159 	SPLAY_ENTRY(pool_item_header)
160 				ph_node;	/* Off-page page headers */
161 	void *			ph_page;	/* this page's address */
162 	uint32_t		ph_time;	/* last referenced */
163 	uint16_t		ph_nmissing;	/* # of chunks in use */
164 	uint16_t		ph_off;		/* start offset in page */
165 	union {
166 		/* !PR_NOTOUCH */
167 		struct {
168 			LIST_HEAD(, pool_item)
169 				phu_itemlist;	/* chunk list for this page */
170 		} phu_normal;
171 		/* PR_NOTOUCH */
172 		struct {
173 			pool_item_bitmap_t phu_bitmap[1];
174 		} phu_notouch;
175 	} ph_u;
176 };
177 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
178 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
179 
180 #if defined(DIAGNOSTIC) && !defined(KASAN)
181 #define POOL_CHECK_MAGIC
182 #endif
183 
184 struct pool_item {
185 #ifdef POOL_CHECK_MAGIC
186 	u_int pi_magic;
187 #endif
188 #define	PI_MAGIC 0xdeaddeadU
189 	/* Other entries use only this list entry */
190 	LIST_ENTRY(pool_item)	pi_list;
191 };
192 
193 #define	POOL_NEEDS_CATCHUP(pp)						\
194 	((pp)->pr_nitems < (pp)->pr_minitems)
195 
196 /*
197  * Pool cache management.
198  *
199  * Pool caches provide a way for constructed objects to be cached by the
200  * pool subsystem.  This can lead to performance improvements by avoiding
201  * needless object construction/destruction; it is deferred until absolutely
202  * necessary.
203  *
204  * Caches are grouped into cache groups.  Each cache group references up
205  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
206  * object from the pool, it calls the object's constructor and places it
207  * into a cache group.  When a cache group frees an object back to the
208  * pool, it first calls the object's destructor.  This allows the object
209  * to persist in constructed form while freed to the cache.
210  *
211  * The pool references each cache, so that when a pool is drained by the
212  * pagedaemon, it can drain each individual cache as well.  Each time a
213  * cache is drained, the most idle cache group is freed to the pool in
214  * its entirety.
215  *
216  * Pool caches are layed on top of pools.  By layering them, we can avoid
217  * the complexity of cache management for pools which would not benefit
218  * from it.
219  */
220 
221 static struct pool pcg_normal_pool;
222 static struct pool pcg_large_pool;
223 static struct pool cache_pool;
224 static struct pool cache_cpu_pool;
225 
226 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
227 
228 /* List of all caches. */
229 TAILQ_HEAD(,pool_cache) pool_cache_head =
230     TAILQ_HEAD_INITIALIZER(pool_cache_head);
231 
232 int pool_cache_disable;		/* global disable for caching */
233 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
234 
235 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
236 				    void *);
237 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
238 				    void **, paddr_t *, int);
239 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
240 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
241 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
242 static void	pool_cache_transfer(pool_cache_t);
243 
244 static int	pool_catchup(struct pool *);
245 static void	pool_prime_page(struct pool *, void *,
246 		    struct pool_item_header *);
247 static void	pool_update_curpage(struct pool *);
248 
249 static int	pool_grow(struct pool *, int);
250 static void	*pool_allocator_alloc(struct pool *, int);
251 static void	pool_allocator_free(struct pool *, void *);
252 
253 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
254 	void (*)(const char *, ...) __printflike(1, 2));
255 static void pool_print1(struct pool *, const char *,
256 	void (*)(const char *, ...) __printflike(1, 2));
257 
258 static int pool_chk_page(struct pool *, const char *,
259 			 struct pool_item_header *);
260 
261 static inline unsigned int
262 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
263     const void *v)
264 {
265 	const char *cp = v;
266 	unsigned int idx;
267 
268 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
269 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
270 	KASSERT(idx < pp->pr_itemsperpage);
271 	return idx;
272 }
273 
274 static inline void
275 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
276     void *obj)
277 {
278 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
279 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
280 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
281 
282 	KASSERT((*bitmap & mask) == 0);
283 	*bitmap |= mask;
284 }
285 
286 static inline void *
287 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
288 {
289 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
290 	unsigned int idx;
291 	int i;
292 
293 	for (i = 0; ; i++) {
294 		int bit;
295 
296 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
297 		bit = ffs32(bitmap[i]);
298 		if (bit) {
299 			pool_item_bitmap_t mask;
300 
301 			bit--;
302 			idx = (i * BITMAP_SIZE) + bit;
303 			mask = 1U << bit;
304 			KASSERT((bitmap[i] & mask) != 0);
305 			bitmap[i] &= ~mask;
306 			break;
307 		}
308 	}
309 	KASSERT(idx < pp->pr_itemsperpage);
310 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
311 }
312 
313 static inline void
314 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
315 {
316 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
317 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
318 	int i;
319 
320 	for (i = 0; i < n; i++) {
321 		bitmap[i] = (pool_item_bitmap_t)-1;
322 	}
323 }
324 
325 static inline int
326 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
327 {
328 
329 	/*
330 	 * we consider pool_item_header with smaller ph_page bigger.
331 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
332 	 */
333 
334 	if (a->ph_page < b->ph_page)
335 		return (1);
336 	else if (a->ph_page > b->ph_page)
337 		return (-1);
338 	else
339 		return (0);
340 }
341 
342 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
343 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
344 
345 static inline struct pool_item_header *
346 pr_find_pagehead_noalign(struct pool *pp, void *v)
347 {
348 	struct pool_item_header *ph, tmp;
349 
350 	tmp.ph_page = (void *)(uintptr_t)v;
351 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
352 	if (ph == NULL) {
353 		ph = SPLAY_ROOT(&pp->pr_phtree);
354 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
355 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
356 		}
357 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
358 	}
359 
360 	return ph;
361 }
362 
363 /*
364  * Return the pool page header based on item address.
365  */
366 static inline struct pool_item_header *
367 pr_find_pagehead(struct pool *pp, void *v)
368 {
369 	struct pool_item_header *ph, tmp;
370 
371 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
372 		ph = pr_find_pagehead_noalign(pp, v);
373 	} else {
374 		void *page =
375 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
376 
377 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
378 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
379 		} else {
380 			tmp.ph_page = page;
381 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
382 		}
383 	}
384 
385 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
386 	    ((char *)ph->ph_page <= (char *)v &&
387 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
388 	return ph;
389 }
390 
391 static void
392 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
393 {
394 	struct pool_item_header *ph;
395 
396 	while ((ph = LIST_FIRST(pq)) != NULL) {
397 		LIST_REMOVE(ph, ph_pagelist);
398 		pool_allocator_free(pp, ph->ph_page);
399 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
400 			pool_put(pp->pr_phpool, ph);
401 	}
402 }
403 
404 /*
405  * Remove a page from the pool.
406  */
407 static inline void
408 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
409      struct pool_pagelist *pq)
410 {
411 
412 	KASSERT(mutex_owned(&pp->pr_lock));
413 
414 	/*
415 	 * If the page was idle, decrement the idle page count.
416 	 */
417 	if (ph->ph_nmissing == 0) {
418 		KASSERT(pp->pr_nidle != 0);
419 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
420 		    "nitems=%u < itemsperpage=%u",
421 		    pp->pr_nitems, pp->pr_itemsperpage);
422 		pp->pr_nidle--;
423 	}
424 
425 	pp->pr_nitems -= pp->pr_itemsperpage;
426 
427 	/*
428 	 * Unlink the page from the pool and queue it for release.
429 	 */
430 	LIST_REMOVE(ph, ph_pagelist);
431 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
432 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
433 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
434 
435 	pp->pr_npages--;
436 	pp->pr_npagefree++;
437 
438 	pool_update_curpage(pp);
439 }
440 
441 /*
442  * Initialize all the pools listed in the "pools" link set.
443  */
444 void
445 pool_subsystem_init(void)
446 {
447 	size_t size;
448 	int idx;
449 
450 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
451 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
452 	cv_init(&pool_busy, "poolbusy");
453 
454 	/*
455 	 * Initialize private page header pool and cache magazine pool if we
456 	 * haven't done so yet.
457 	 */
458 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
459 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
460 		int nelem;
461 		size_t sz;
462 
463 		nelem = PHPOOL_FREELIST_NELEM(idx);
464 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
465 		    "phpool-%d", nelem);
466 		sz = sizeof(struct pool_item_header);
467 		if (nelem) {
468 			sz = offsetof(struct pool_item_header,
469 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
470 		}
471 		pool_init(&phpool[idx], sz, 0, 0, 0,
472 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
473 	}
474 #ifdef POOL_SUBPAGE
475 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
476 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
477 #endif
478 
479 	size = sizeof(pcg_t) +
480 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
481 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
482 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
483 
484 	size = sizeof(pcg_t) +
485 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
486 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
487 	    "pcglarge", &pool_allocator_meta, IPL_VM);
488 
489 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
490 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
491 
492 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
493 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
494 }
495 
496 /*
497  * Initialize the given pool resource structure.
498  *
499  * We export this routine to allow other kernel parts to declare
500  * static pools that must be initialized before kmem(9) is available.
501  */
502 void
503 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
504     const char *wchan, struct pool_allocator *palloc, int ipl)
505 {
506 	struct pool *pp1;
507 	size_t trysize, phsize, prsize;
508 	int off, slack;
509 
510 #ifdef DEBUG
511 	if (__predict_true(!cold))
512 		mutex_enter(&pool_head_lock);
513 	/*
514 	 * Check that the pool hasn't already been initialised and
515 	 * added to the list of all pools.
516 	 */
517 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
518 		if (pp == pp1)
519 			panic("%s: [%s] already initialised", __func__,
520 			    wchan);
521 	}
522 	if (__predict_true(!cold))
523 		mutex_exit(&pool_head_lock);
524 #endif
525 
526 	if (palloc == NULL)
527 		palloc = &pool_allocator_kmem;
528 #ifdef POOL_SUBPAGE
529 	if (size > palloc->pa_pagesz) {
530 		if (palloc == &pool_allocator_kmem)
531 			palloc = &pool_allocator_kmem_fullpage;
532 		else if (palloc == &pool_allocator_nointr)
533 			palloc = &pool_allocator_nointr_fullpage;
534 	}
535 #endif /* POOL_SUBPAGE */
536 	if (!cold)
537 		mutex_enter(&pool_allocator_lock);
538 	if (palloc->pa_refcnt++ == 0) {
539 		if (palloc->pa_pagesz == 0)
540 			palloc->pa_pagesz = PAGE_SIZE;
541 
542 		TAILQ_INIT(&palloc->pa_list);
543 
544 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
545 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
546 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
547 	}
548 	if (!cold)
549 		mutex_exit(&pool_allocator_lock);
550 
551 	if (align == 0)
552 		align = ALIGN(1);
553 
554 	prsize = size;
555 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
556 		prsize = sizeof(struct pool_item);
557 
558 	prsize = roundup(prsize, align);
559 	KASSERTMSG((prsize <= palloc->pa_pagesz),
560 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
561 	    __func__, wchan, prsize, palloc->pa_pagesz);
562 
563 	/*
564 	 * Initialize the pool structure.
565 	 */
566 	LIST_INIT(&pp->pr_emptypages);
567 	LIST_INIT(&pp->pr_fullpages);
568 	LIST_INIT(&pp->pr_partpages);
569 	pp->pr_cache = NULL;
570 	pp->pr_curpage = NULL;
571 	pp->pr_npages = 0;
572 	pp->pr_minitems = 0;
573 	pp->pr_minpages = 0;
574 	pp->pr_maxpages = UINT_MAX;
575 	pp->pr_roflags = flags;
576 	pp->pr_flags = 0;
577 	pp->pr_size = prsize;
578 	pp->pr_reqsize = size;
579 	pp->pr_align = align;
580 	pp->pr_wchan = wchan;
581 	pp->pr_alloc = palloc;
582 	pp->pr_nitems = 0;
583 	pp->pr_nout = 0;
584 	pp->pr_hardlimit = UINT_MAX;
585 	pp->pr_hardlimit_warning = NULL;
586 	pp->pr_hardlimit_ratecap.tv_sec = 0;
587 	pp->pr_hardlimit_ratecap.tv_usec = 0;
588 	pp->pr_hardlimit_warning_last.tv_sec = 0;
589 	pp->pr_hardlimit_warning_last.tv_usec = 0;
590 	pp->pr_drain_hook = NULL;
591 	pp->pr_drain_hook_arg = NULL;
592 	pp->pr_freecheck = NULL;
593 	pool_redzone_init(pp, size);
594 
595 	/*
596 	 * Decide whether to put the page header off page to avoid
597 	 * wasting too large a part of the page or too big item.
598 	 * Off-page page headers go on a hash table, so we can match
599 	 * a returned item with its header based on the page address.
600 	 * We use 1/16 of the page size and about 8 times of the item
601 	 * size as the threshold (XXX: tune)
602 	 *
603 	 * However, we'll put the header into the page if we can put
604 	 * it without wasting any items.
605 	 *
606 	 * Silently enforce `0 <= ioff < align'.
607 	 */
608 	pp->pr_itemoffset = ioff %= align;
609 	/* See the comment below about reserved bytes. */
610 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
611 	phsize = ALIGN(sizeof(struct pool_item_header));
612 	if (pp->pr_roflags & PR_PHINPAGE ||
613 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
614 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
615 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
616 		/* Use the end of the page for the page header */
617 		pp->pr_roflags |= PR_PHINPAGE;
618 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
619 	} else {
620 		/* The page header will be taken from our page header pool */
621 		pp->pr_phoffset = 0;
622 		off = palloc->pa_pagesz;
623 		SPLAY_INIT(&pp->pr_phtree);
624 	}
625 
626 	/*
627 	 * Alignment is to take place at `ioff' within the item. This means
628 	 * we must reserve up to `align - 1' bytes on the page to allow
629 	 * appropriate positioning of each item.
630 	 */
631 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
632 	KASSERT(pp->pr_itemsperpage != 0);
633 	if ((pp->pr_roflags & PR_NOTOUCH)) {
634 		int idx;
635 
636 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
637 		    idx++) {
638 			/* nothing */
639 		}
640 		if (idx >= PHPOOL_MAX) {
641 			/*
642 			 * if you see this panic, consider to tweak
643 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
644 			 */
645 			panic("%s: [%s] too large itemsperpage(%d) for "
646 			    "PR_NOTOUCH", __func__,
647 			    pp->pr_wchan, pp->pr_itemsperpage);
648 		}
649 		pp->pr_phpool = &phpool[idx];
650 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
651 		pp->pr_phpool = &phpool[0];
652 	}
653 #if defined(DIAGNOSTIC)
654 	else {
655 		pp->pr_phpool = NULL;
656 	}
657 #endif
658 
659 	/*
660 	 * Use the slack between the chunks and the page header
661 	 * for "cache coloring".
662 	 */
663 	slack = off - pp->pr_itemsperpage * pp->pr_size;
664 	pp->pr_maxcolor = (slack / align) * align;
665 	pp->pr_curcolor = 0;
666 
667 	pp->pr_nget = 0;
668 	pp->pr_nfail = 0;
669 	pp->pr_nput = 0;
670 	pp->pr_npagealloc = 0;
671 	pp->pr_npagefree = 0;
672 	pp->pr_hiwat = 0;
673 	pp->pr_nidle = 0;
674 	pp->pr_refcnt = 0;
675 
676 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
677 	cv_init(&pp->pr_cv, wchan);
678 	pp->pr_ipl = ipl;
679 
680 	/* Insert into the list of all pools. */
681 	if (!cold)
682 		mutex_enter(&pool_head_lock);
683 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
684 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
685 			break;
686 	}
687 	if (pp1 == NULL)
688 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
689 	else
690 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
691 	if (!cold)
692 		mutex_exit(&pool_head_lock);
693 
694 	/* Insert this into the list of pools using this allocator. */
695 	if (!cold)
696 		mutex_enter(&palloc->pa_lock);
697 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
698 	if (!cold)
699 		mutex_exit(&palloc->pa_lock);
700 }
701 
702 /*
703  * De-commision a pool resource.
704  */
705 void
706 pool_destroy(struct pool *pp)
707 {
708 	struct pool_pagelist pq;
709 	struct pool_item_header *ph;
710 
711 	/* Remove from global pool list */
712 	mutex_enter(&pool_head_lock);
713 	while (pp->pr_refcnt != 0)
714 		cv_wait(&pool_busy, &pool_head_lock);
715 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
716 	if (drainpp == pp)
717 		drainpp = NULL;
718 	mutex_exit(&pool_head_lock);
719 
720 	/* Remove this pool from its allocator's list of pools. */
721 	mutex_enter(&pp->pr_alloc->pa_lock);
722 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
723 	mutex_exit(&pp->pr_alloc->pa_lock);
724 
725 	mutex_enter(&pool_allocator_lock);
726 	if (--pp->pr_alloc->pa_refcnt == 0)
727 		mutex_destroy(&pp->pr_alloc->pa_lock);
728 	mutex_exit(&pool_allocator_lock);
729 
730 	mutex_enter(&pp->pr_lock);
731 
732 	KASSERT(pp->pr_cache == NULL);
733 	KASSERTMSG((pp->pr_nout == 0),
734 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
735 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
736 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
737 
738 	/* Remove all pages */
739 	LIST_INIT(&pq);
740 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
741 		pr_rmpage(pp, ph, &pq);
742 
743 	mutex_exit(&pp->pr_lock);
744 
745 	pr_pagelist_free(pp, &pq);
746 	cv_destroy(&pp->pr_cv);
747 	mutex_destroy(&pp->pr_lock);
748 }
749 
750 void
751 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
752 {
753 
754 	/* XXX no locking -- must be used just after pool_init() */
755 	KASSERTMSG((pp->pr_drain_hook == NULL),
756 	    "%s: [%s] already set", __func__, pp->pr_wchan);
757 	pp->pr_drain_hook = fn;
758 	pp->pr_drain_hook_arg = arg;
759 }
760 
761 static struct pool_item_header *
762 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
763 {
764 	struct pool_item_header *ph;
765 
766 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
767 		ph = (void *)((char *)storage + pp->pr_phoffset);
768 	else
769 		ph = pool_get(pp->pr_phpool, flags);
770 
771 	return (ph);
772 }
773 
774 /*
775  * Grab an item from the pool.
776  */
777 void *
778 pool_get(struct pool *pp, int flags)
779 {
780 	struct pool_item *pi;
781 	struct pool_item_header *ph;
782 	void *v;
783 
784 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
785 	KASSERTMSG((pp->pr_itemsperpage != 0),
786 	    "%s: [%s] pr_itemsperpage is zero, "
787 	    "pool not initialized?", __func__, pp->pr_wchan);
788 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
789 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
790 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
791 	    __func__, pp->pr_wchan);
792 	if (flags & PR_WAITOK) {
793 		ASSERT_SLEEPABLE();
794 	}
795 
796 	mutex_enter(&pp->pr_lock);
797  startover:
798 	/*
799 	 * Check to see if we've reached the hard limit.  If we have,
800 	 * and we can wait, then wait until an item has been returned to
801 	 * the pool.
802 	 */
803 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
804 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
805 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
806 		if (pp->pr_drain_hook != NULL) {
807 			/*
808 			 * Since the drain hook is going to free things
809 			 * back to the pool, unlock, call the hook, re-lock,
810 			 * and check the hardlimit condition again.
811 			 */
812 			mutex_exit(&pp->pr_lock);
813 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
814 			mutex_enter(&pp->pr_lock);
815 			if (pp->pr_nout < pp->pr_hardlimit)
816 				goto startover;
817 		}
818 
819 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
820 			/*
821 			 * XXX: A warning isn't logged in this case.  Should
822 			 * it be?
823 			 */
824 			pp->pr_flags |= PR_WANTED;
825 			do {
826 				cv_wait(&pp->pr_cv, &pp->pr_lock);
827 			} while (pp->pr_flags & PR_WANTED);
828 			goto startover;
829 		}
830 
831 		/*
832 		 * Log a message that the hard limit has been hit.
833 		 */
834 		if (pp->pr_hardlimit_warning != NULL &&
835 		    ratecheck(&pp->pr_hardlimit_warning_last,
836 			      &pp->pr_hardlimit_ratecap))
837 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
838 
839 		pp->pr_nfail++;
840 
841 		mutex_exit(&pp->pr_lock);
842 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
843 		return (NULL);
844 	}
845 
846 	/*
847 	 * The convention we use is that if `curpage' is not NULL, then
848 	 * it points at a non-empty bucket. In particular, `curpage'
849 	 * never points at a page header which has PR_PHINPAGE set and
850 	 * has no items in its bucket.
851 	 */
852 	if ((ph = pp->pr_curpage) == NULL) {
853 		int error;
854 
855 		KASSERTMSG((pp->pr_nitems == 0),
856 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
857 		    __func__, pp->pr_wchan, pp->pr_nitems);
858 
859 		/*
860 		 * Call the back-end page allocator for more memory.
861 		 * Release the pool lock, as the back-end page allocator
862 		 * may block.
863 		 */
864 		error = pool_grow(pp, flags);
865 		if (error != 0) {
866 			/*
867 			 * pool_grow aborts when another thread
868 			 * is allocating a new page. Retry if it
869 			 * waited for it.
870 			 */
871 			if (error == ERESTART)
872 				goto startover;
873 
874 			/*
875 			 * We were unable to allocate a page or item
876 			 * header, but we released the lock during
877 			 * allocation, so perhaps items were freed
878 			 * back to the pool.  Check for this case.
879 			 */
880 			if (pp->pr_curpage != NULL)
881 				goto startover;
882 
883 			pp->pr_nfail++;
884 			mutex_exit(&pp->pr_lock);
885 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
886 			return (NULL);
887 		}
888 
889 		/* Start the allocation process over. */
890 		goto startover;
891 	}
892 	if (pp->pr_roflags & PR_NOTOUCH) {
893 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
894 		    "%s: %s: page empty", __func__, pp->pr_wchan);
895 		v = pr_item_notouch_get(pp, ph);
896 	} else {
897 		v = pi = LIST_FIRST(&ph->ph_itemlist);
898 		if (__predict_false(v == NULL)) {
899 			mutex_exit(&pp->pr_lock);
900 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
901 		}
902 		KASSERTMSG((pp->pr_nitems > 0),
903 		    "%s: [%s] nitems %u inconsistent on itemlist",
904 		    __func__, pp->pr_wchan, pp->pr_nitems);
905 #ifdef POOL_CHECK_MAGIC
906 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
907 		    "%s: [%s] free list modified: "
908 		    "magic=%x; page %p; item addr %p", __func__,
909 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
910 #endif
911 
912 		/*
913 		 * Remove from item list.
914 		 */
915 		LIST_REMOVE(pi, pi_list);
916 	}
917 	pp->pr_nitems--;
918 	pp->pr_nout++;
919 	if (ph->ph_nmissing == 0) {
920 		KASSERT(pp->pr_nidle > 0);
921 		pp->pr_nidle--;
922 
923 		/*
924 		 * This page was previously empty.  Move it to the list of
925 		 * partially-full pages.  This page is already curpage.
926 		 */
927 		LIST_REMOVE(ph, ph_pagelist);
928 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
929 	}
930 	ph->ph_nmissing++;
931 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
932 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
933 			LIST_EMPTY(&ph->ph_itemlist)),
934 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
935 			pp->pr_wchan, ph->ph_nmissing);
936 		/*
937 		 * This page is now full.  Move it to the full list
938 		 * and select a new current page.
939 		 */
940 		LIST_REMOVE(ph, ph_pagelist);
941 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
942 		pool_update_curpage(pp);
943 	}
944 
945 	pp->pr_nget++;
946 
947 	/*
948 	 * If we have a low water mark and we are now below that low
949 	 * water mark, add more items to the pool.
950 	 */
951 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
952 		/*
953 		 * XXX: Should we log a warning?  Should we set up a timeout
954 		 * to try again in a second or so?  The latter could break
955 		 * a caller's assumptions about interrupt protection, etc.
956 		 */
957 	}
958 
959 	mutex_exit(&pp->pr_lock);
960 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
961 	FREECHECK_OUT(&pp->pr_freecheck, v);
962 	pool_redzone_fill(pp, v);
963 	if (flags & PR_ZERO)
964 		memset(v, 0, pp->pr_reqsize);
965 	else
966 		pool_kleak_fill(pp, v);
967 	return v;
968 }
969 
970 /*
971  * Internal version of pool_put().  Pool is already locked/entered.
972  */
973 static void
974 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
975 {
976 	struct pool_item *pi = v;
977 	struct pool_item_header *ph;
978 
979 	KASSERT(mutex_owned(&pp->pr_lock));
980 	pool_redzone_check(pp, v);
981 	FREECHECK_IN(&pp->pr_freecheck, v);
982 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
983 
984 	KASSERTMSG((pp->pr_nout > 0),
985 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
986 
987 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
988 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
989 	}
990 
991 	/*
992 	 * Return to item list.
993 	 */
994 	if (pp->pr_roflags & PR_NOTOUCH) {
995 		pr_item_notouch_put(pp, ph, v);
996 	} else {
997 #ifdef POOL_CHECK_MAGIC
998 		pi->pi_magic = PI_MAGIC;
999 #endif
1000 
1001 		if (pp->pr_redzone) {
1002 			/*
1003 			 * Mark the pool_item as valid. The rest is already
1004 			 * invalid.
1005 			 */
1006 			kasan_mark(pi, sizeof(*pi), sizeof(*pi));
1007 		}
1008 
1009 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1010 	}
1011 	KDASSERT(ph->ph_nmissing != 0);
1012 	ph->ph_nmissing--;
1013 	pp->pr_nput++;
1014 	pp->pr_nitems++;
1015 	pp->pr_nout--;
1016 
1017 	/* Cancel "pool empty" condition if it exists */
1018 	if (pp->pr_curpage == NULL)
1019 		pp->pr_curpage = ph;
1020 
1021 	if (pp->pr_flags & PR_WANTED) {
1022 		pp->pr_flags &= ~PR_WANTED;
1023 		cv_broadcast(&pp->pr_cv);
1024 	}
1025 
1026 	/*
1027 	 * If this page is now empty, do one of two things:
1028 	 *
1029 	 *	(1) If we have more pages than the page high water mark,
1030 	 *	    free the page back to the system.  ONLY CONSIDER
1031 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1032 	 *	    CLAIM.
1033 	 *
1034 	 *	(2) Otherwise, move the page to the empty page list.
1035 	 *
1036 	 * Either way, select a new current page (so we use a partially-full
1037 	 * page if one is available).
1038 	 */
1039 	if (ph->ph_nmissing == 0) {
1040 		pp->pr_nidle++;
1041 		if (pp->pr_npages > pp->pr_minpages &&
1042 		    pp->pr_npages > pp->pr_maxpages) {
1043 			pr_rmpage(pp, ph, pq);
1044 		} else {
1045 			LIST_REMOVE(ph, ph_pagelist);
1046 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1047 
1048 			/*
1049 			 * Update the timestamp on the page.  A page must
1050 			 * be idle for some period of time before it can
1051 			 * be reclaimed by the pagedaemon.  This minimizes
1052 			 * ping-pong'ing for memory.
1053 			 *
1054 			 * note for 64-bit time_t: truncating to 32-bit is not
1055 			 * a problem for our usage.
1056 			 */
1057 			ph->ph_time = time_uptime;
1058 		}
1059 		pool_update_curpage(pp);
1060 	}
1061 
1062 	/*
1063 	 * If the page was previously completely full, move it to the
1064 	 * partially-full list and make it the current page.  The next
1065 	 * allocation will get the item from this page, instead of
1066 	 * further fragmenting the pool.
1067 	 */
1068 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1069 		LIST_REMOVE(ph, ph_pagelist);
1070 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1071 		pp->pr_curpage = ph;
1072 	}
1073 }
1074 
1075 void
1076 pool_put(struct pool *pp, void *v)
1077 {
1078 	struct pool_pagelist pq;
1079 
1080 	LIST_INIT(&pq);
1081 
1082 	mutex_enter(&pp->pr_lock);
1083 	pool_do_put(pp, v, &pq);
1084 	mutex_exit(&pp->pr_lock);
1085 
1086 	pr_pagelist_free(pp, &pq);
1087 }
1088 
1089 /*
1090  * pool_grow: grow a pool by a page.
1091  *
1092  * => called with pool locked.
1093  * => unlock and relock the pool.
1094  * => return with pool locked.
1095  */
1096 
1097 static int
1098 pool_grow(struct pool *pp, int flags)
1099 {
1100 	/*
1101 	 * If there's a pool_grow in progress, wait for it to complete
1102 	 * and try again from the top.
1103 	 */
1104 	if (pp->pr_flags & PR_GROWING) {
1105 		if (flags & PR_WAITOK) {
1106 			do {
1107 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1108 			} while (pp->pr_flags & PR_GROWING);
1109 			return ERESTART;
1110 		} else {
1111 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1112 				/*
1113 				 * This needs an unlock/relock dance so
1114 				 * that the other caller has a chance to
1115 				 * run and actually do the thing.  Note
1116 				 * that this is effectively a busy-wait.
1117 				 */
1118 				mutex_exit(&pp->pr_lock);
1119 				mutex_enter(&pp->pr_lock);
1120 				return ERESTART;
1121 			}
1122 			return EWOULDBLOCK;
1123 		}
1124 	}
1125 	pp->pr_flags |= PR_GROWING;
1126 	if (flags & PR_WAITOK)
1127 		mutex_exit(&pp->pr_lock);
1128 	else
1129 		pp->pr_flags |= PR_GROWINGNOWAIT;
1130 
1131 	char *cp = pool_allocator_alloc(pp, flags);
1132 	if (__predict_false(cp == NULL))
1133 		goto out;
1134 
1135 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
1136 	if (__predict_false(ph == NULL)) {
1137 		pool_allocator_free(pp, cp);
1138 		goto out;
1139 	}
1140 
1141 	if (flags & PR_WAITOK)
1142 		mutex_enter(&pp->pr_lock);
1143 	pool_prime_page(pp, cp, ph);
1144 	pp->pr_npagealloc++;
1145 	KASSERT(pp->pr_flags & PR_GROWING);
1146 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1147 	/*
1148 	 * If anyone was waiting for pool_grow, notify them that we
1149 	 * may have just done it.
1150 	 */
1151 	cv_broadcast(&pp->pr_cv);
1152 	return 0;
1153 out:
1154 	if (flags & PR_WAITOK)
1155 		mutex_enter(&pp->pr_lock);
1156 	KASSERT(pp->pr_flags & PR_GROWING);
1157 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1158 	return ENOMEM;
1159 }
1160 
1161 /*
1162  * Add N items to the pool.
1163  */
1164 int
1165 pool_prime(struct pool *pp, int n)
1166 {
1167 	int newpages;
1168 	int error = 0;
1169 
1170 	mutex_enter(&pp->pr_lock);
1171 
1172 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1173 
1174 	while (newpages > 0) {
1175 		error = pool_grow(pp, PR_NOWAIT);
1176 		if (error) {
1177 			if (error == ERESTART)
1178 				continue;
1179 			break;
1180 		}
1181 		pp->pr_minpages++;
1182 		newpages--;
1183 	}
1184 
1185 	if (pp->pr_minpages >= pp->pr_maxpages)
1186 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1187 
1188 	mutex_exit(&pp->pr_lock);
1189 	return error;
1190 }
1191 
1192 /*
1193  * Add a page worth of items to the pool.
1194  *
1195  * Note, we must be called with the pool descriptor LOCKED.
1196  */
1197 static void
1198 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1199 {
1200 	struct pool_item *pi;
1201 	void *cp = storage;
1202 	const unsigned int align = pp->pr_align;
1203 	const unsigned int ioff = pp->pr_itemoffset;
1204 	int n;
1205 
1206 	KASSERT(mutex_owned(&pp->pr_lock));
1207 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1208 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1209 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1210 
1211 	/*
1212 	 * Insert page header.
1213 	 */
1214 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1215 	LIST_INIT(&ph->ph_itemlist);
1216 	ph->ph_page = storage;
1217 	ph->ph_nmissing = 0;
1218 	ph->ph_time = time_uptime;
1219 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1220 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1221 
1222 	pp->pr_nidle++;
1223 
1224 	/*
1225 	 * Color this page.
1226 	 */
1227 	ph->ph_off = pp->pr_curcolor;
1228 	cp = (char *)cp + ph->ph_off;
1229 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1230 		pp->pr_curcolor = 0;
1231 
1232 	/*
1233 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1234 	 */
1235 	if (ioff != 0)
1236 		cp = (char *)cp + align - ioff;
1237 
1238 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1239 
1240 	/*
1241 	 * Insert remaining chunks on the bucket list.
1242 	 */
1243 	n = pp->pr_itemsperpage;
1244 	pp->pr_nitems += n;
1245 
1246 	if (pp->pr_roflags & PR_NOTOUCH) {
1247 		pr_item_notouch_init(pp, ph);
1248 	} else {
1249 		while (n--) {
1250 			pi = (struct pool_item *)cp;
1251 
1252 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1253 
1254 			/* Insert on page list */
1255 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1256 #ifdef POOL_CHECK_MAGIC
1257 			pi->pi_magic = PI_MAGIC;
1258 #endif
1259 			cp = (char *)cp + pp->pr_size;
1260 
1261 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * If the pool was depleted, point at the new page.
1267 	 */
1268 	if (pp->pr_curpage == NULL)
1269 		pp->pr_curpage = ph;
1270 
1271 	if (++pp->pr_npages > pp->pr_hiwat)
1272 		pp->pr_hiwat = pp->pr_npages;
1273 }
1274 
1275 /*
1276  * Used by pool_get() when nitems drops below the low water mark.  This
1277  * is used to catch up pr_nitems with the low water mark.
1278  *
1279  * Note 1, we never wait for memory here, we let the caller decide what to do.
1280  *
1281  * Note 2, we must be called with the pool already locked, and we return
1282  * with it locked.
1283  */
1284 static int
1285 pool_catchup(struct pool *pp)
1286 {
1287 	int error = 0;
1288 
1289 	while (POOL_NEEDS_CATCHUP(pp)) {
1290 		error = pool_grow(pp, PR_NOWAIT);
1291 		if (error) {
1292 			if (error == ERESTART)
1293 				continue;
1294 			break;
1295 		}
1296 	}
1297 	return error;
1298 }
1299 
1300 static void
1301 pool_update_curpage(struct pool *pp)
1302 {
1303 
1304 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1305 	if (pp->pr_curpage == NULL) {
1306 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1307 	}
1308 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1309 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1310 }
1311 
1312 void
1313 pool_setlowat(struct pool *pp, int n)
1314 {
1315 
1316 	mutex_enter(&pp->pr_lock);
1317 
1318 	pp->pr_minitems = n;
1319 	pp->pr_minpages = (n == 0)
1320 		? 0
1321 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1322 
1323 	/* Make sure we're caught up with the newly-set low water mark. */
1324 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1325 		/*
1326 		 * XXX: Should we log a warning?  Should we set up a timeout
1327 		 * to try again in a second or so?  The latter could break
1328 		 * a caller's assumptions about interrupt protection, etc.
1329 		 */
1330 	}
1331 
1332 	mutex_exit(&pp->pr_lock);
1333 }
1334 
1335 void
1336 pool_sethiwat(struct pool *pp, int n)
1337 {
1338 
1339 	mutex_enter(&pp->pr_lock);
1340 
1341 	pp->pr_maxpages = (n == 0)
1342 		? 0
1343 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1344 
1345 	mutex_exit(&pp->pr_lock);
1346 }
1347 
1348 void
1349 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1350 {
1351 
1352 	mutex_enter(&pp->pr_lock);
1353 
1354 	pp->pr_hardlimit = n;
1355 	pp->pr_hardlimit_warning = warnmess;
1356 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1357 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1358 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1359 
1360 	/*
1361 	 * In-line version of pool_sethiwat(), because we don't want to
1362 	 * release the lock.
1363 	 */
1364 	pp->pr_maxpages = (n == 0)
1365 		? 0
1366 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1367 
1368 	mutex_exit(&pp->pr_lock);
1369 }
1370 
1371 /*
1372  * Release all complete pages that have not been used recently.
1373  *
1374  * Must not be called from interrupt context.
1375  */
1376 int
1377 pool_reclaim(struct pool *pp)
1378 {
1379 	struct pool_item_header *ph, *phnext;
1380 	struct pool_pagelist pq;
1381 	uint32_t curtime;
1382 	bool klock;
1383 	int rv;
1384 
1385 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1386 
1387 	if (pp->pr_drain_hook != NULL) {
1388 		/*
1389 		 * The drain hook must be called with the pool unlocked.
1390 		 */
1391 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1392 	}
1393 
1394 	/*
1395 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1396 	 * to block.
1397 	 */
1398 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1399 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1400 		KERNEL_LOCK(1, NULL);
1401 		klock = true;
1402 	} else
1403 		klock = false;
1404 
1405 	/* Reclaim items from the pool's cache (if any). */
1406 	if (pp->pr_cache != NULL)
1407 		pool_cache_invalidate(pp->pr_cache);
1408 
1409 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1410 		if (klock) {
1411 			KERNEL_UNLOCK_ONE(NULL);
1412 		}
1413 		return (0);
1414 	}
1415 
1416 	LIST_INIT(&pq);
1417 
1418 	curtime = time_uptime;
1419 
1420 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1421 		phnext = LIST_NEXT(ph, ph_pagelist);
1422 
1423 		/* Check our minimum page claim */
1424 		if (pp->pr_npages <= pp->pr_minpages)
1425 			break;
1426 
1427 		KASSERT(ph->ph_nmissing == 0);
1428 		if (curtime - ph->ph_time < pool_inactive_time)
1429 			continue;
1430 
1431 		/*
1432 		 * If freeing this page would put us below
1433 		 * the low water mark, stop now.
1434 		 */
1435 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1436 		    pp->pr_minitems)
1437 			break;
1438 
1439 		pr_rmpage(pp, ph, &pq);
1440 	}
1441 
1442 	mutex_exit(&pp->pr_lock);
1443 
1444 	if (LIST_EMPTY(&pq))
1445 		rv = 0;
1446 	else {
1447 		pr_pagelist_free(pp, &pq);
1448 		rv = 1;
1449 	}
1450 
1451 	if (klock) {
1452 		KERNEL_UNLOCK_ONE(NULL);
1453 	}
1454 
1455 	return (rv);
1456 }
1457 
1458 /*
1459  * Drain pools, one at a time. The drained pool is returned within ppp.
1460  *
1461  * Note, must never be called from interrupt context.
1462  */
1463 bool
1464 pool_drain(struct pool **ppp)
1465 {
1466 	bool reclaimed;
1467 	struct pool *pp;
1468 
1469 	KASSERT(!TAILQ_EMPTY(&pool_head));
1470 
1471 	pp = NULL;
1472 
1473 	/* Find next pool to drain, and add a reference. */
1474 	mutex_enter(&pool_head_lock);
1475 	do {
1476 		if (drainpp == NULL) {
1477 			drainpp = TAILQ_FIRST(&pool_head);
1478 		}
1479 		if (drainpp != NULL) {
1480 			pp = drainpp;
1481 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1482 		}
1483 		/*
1484 		 * Skip completely idle pools.  We depend on at least
1485 		 * one pool in the system being active.
1486 		 */
1487 	} while (pp == NULL || pp->pr_npages == 0);
1488 	pp->pr_refcnt++;
1489 	mutex_exit(&pool_head_lock);
1490 
1491 	/* Drain the cache (if any) and pool.. */
1492 	reclaimed = pool_reclaim(pp);
1493 
1494 	/* Finally, unlock the pool. */
1495 	mutex_enter(&pool_head_lock);
1496 	pp->pr_refcnt--;
1497 	cv_broadcast(&pool_busy);
1498 	mutex_exit(&pool_head_lock);
1499 
1500 	if (ppp != NULL)
1501 		*ppp = pp;
1502 
1503 	return reclaimed;
1504 }
1505 
1506 /*
1507  * Calculate the total number of pages consumed by pools.
1508  */
1509 int
1510 pool_totalpages(void)
1511 {
1512 	struct pool *pp;
1513 	uint64_t total = 0;
1514 
1515 	mutex_enter(&pool_head_lock);
1516 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1517 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1518 
1519 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1520 			bytes -= (pp->pr_nout * pp->pr_size);
1521 		total += bytes;
1522 	}
1523 	mutex_exit(&pool_head_lock);
1524 
1525 	return atop(total);
1526 }
1527 
1528 /*
1529  * Diagnostic helpers.
1530  */
1531 
1532 void
1533 pool_printall(const char *modif, void (*pr)(const char *, ...))
1534 {
1535 	struct pool *pp;
1536 
1537 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1538 		pool_printit(pp, modif, pr);
1539 	}
1540 }
1541 
1542 void
1543 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1544 {
1545 
1546 	if (pp == NULL) {
1547 		(*pr)("Must specify a pool to print.\n");
1548 		return;
1549 	}
1550 
1551 	pool_print1(pp, modif, pr);
1552 }
1553 
1554 static void
1555 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1556     void (*pr)(const char *, ...))
1557 {
1558 	struct pool_item_header *ph;
1559 
1560 	LIST_FOREACH(ph, pl, ph_pagelist) {
1561 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1562 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1563 #ifdef POOL_CHECK_MAGIC
1564 		struct pool_item *pi;
1565 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1566 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1567 				if (pi->pi_magic != PI_MAGIC) {
1568 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1569 					    pi, pi->pi_magic);
1570 				}
1571 			}
1572 		}
1573 #endif
1574 	}
1575 }
1576 
1577 static void
1578 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1579 {
1580 	struct pool_item_header *ph;
1581 	pool_cache_t pc;
1582 	pcg_t *pcg;
1583 	pool_cache_cpu_t *cc;
1584 	uint64_t cpuhit, cpumiss;
1585 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1586 	char c;
1587 
1588 	while ((c = *modif++) != '\0') {
1589 		if (c == 'l')
1590 			print_log = 1;
1591 		if (c == 'p')
1592 			print_pagelist = 1;
1593 		if (c == 'c')
1594 			print_cache = 1;
1595 	}
1596 
1597 	if ((pc = pp->pr_cache) != NULL) {
1598 		(*pr)("POOL CACHE");
1599 	} else {
1600 		(*pr)("POOL");
1601 	}
1602 
1603 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1604 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1605 	    pp->pr_roflags);
1606 	(*pr)("\talloc %p\n", pp->pr_alloc);
1607 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1608 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1609 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1610 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1611 
1612 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1613 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1614 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1615 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1616 
1617 	if (print_pagelist == 0)
1618 		goto skip_pagelist;
1619 
1620 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1621 		(*pr)("\n\tempty page list:\n");
1622 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1623 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1624 		(*pr)("\n\tfull page list:\n");
1625 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1626 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1627 		(*pr)("\n\tpartial-page list:\n");
1628 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1629 
1630 	if (pp->pr_curpage == NULL)
1631 		(*pr)("\tno current page\n");
1632 	else
1633 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1634 
1635  skip_pagelist:
1636 	if (print_log == 0)
1637 		goto skip_log;
1638 
1639 	(*pr)("\n");
1640 
1641  skip_log:
1642 
1643 #define PR_GROUPLIST(pcg)						\
1644 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1645 	for (i = 0; i < pcg->pcg_size; i++) {				\
1646 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1647 		    POOL_PADDR_INVALID) {				\
1648 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1649 			    pcg->pcg_objects[i].pcgo_va,		\
1650 			    (unsigned long long)			\
1651 			    pcg->pcg_objects[i].pcgo_pa);		\
1652 		} else {						\
1653 			(*pr)("\t\t\t%p\n",				\
1654 			    pcg->pcg_objects[i].pcgo_va);		\
1655 		}							\
1656 	}
1657 
1658 	if (pc != NULL) {
1659 		cpuhit = 0;
1660 		cpumiss = 0;
1661 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1662 			if ((cc = pc->pc_cpus[i]) == NULL)
1663 				continue;
1664 			cpuhit += cc->cc_hits;
1665 			cpumiss += cc->cc_misses;
1666 		}
1667 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1668 		(*pr)("\tcache layer hits %llu misses %llu\n",
1669 		    pc->pc_hits, pc->pc_misses);
1670 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1671 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1672 		    pc->pc_contended);
1673 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1674 		    pc->pc_nempty, pc->pc_nfull);
1675 		if (print_cache) {
1676 			(*pr)("\tfull cache groups:\n");
1677 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1678 			    pcg = pcg->pcg_next) {
1679 				PR_GROUPLIST(pcg);
1680 			}
1681 			(*pr)("\tempty cache groups:\n");
1682 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1683 			    pcg = pcg->pcg_next) {
1684 				PR_GROUPLIST(pcg);
1685 			}
1686 		}
1687 	}
1688 #undef PR_GROUPLIST
1689 }
1690 
1691 static int
1692 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1693 {
1694 	struct pool_item *pi;
1695 	void *page;
1696 	int n;
1697 
1698 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1699 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1700 		if (page != ph->ph_page &&
1701 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1702 			if (label != NULL)
1703 				printf("%s: ", label);
1704 			printf("pool(%p:%s): page inconsistency: page %p;"
1705 			       " at page head addr %p (p %p)\n", pp,
1706 				pp->pr_wchan, ph->ph_page,
1707 				ph, page);
1708 			return 1;
1709 		}
1710 	}
1711 
1712 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1713 		return 0;
1714 
1715 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1716 	     pi != NULL;
1717 	     pi = LIST_NEXT(pi,pi_list), n++) {
1718 
1719 #ifdef POOL_CHECK_MAGIC
1720 		if (pi->pi_magic != PI_MAGIC) {
1721 			if (label != NULL)
1722 				printf("%s: ", label);
1723 			printf("pool(%s): free list modified: magic=%x;"
1724 			       " page %p; item ordinal %d; addr %p\n",
1725 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1726 				n, pi);
1727 			panic("pool");
1728 		}
1729 #endif
1730 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1731 			continue;
1732 		}
1733 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1734 		if (page == ph->ph_page)
1735 			continue;
1736 
1737 		if (label != NULL)
1738 			printf("%s: ", label);
1739 		printf("pool(%p:%s): page inconsistency: page %p;"
1740 		       " item ordinal %d; addr %p (p %p)\n", pp,
1741 			pp->pr_wchan, ph->ph_page,
1742 			n, pi, page);
1743 		return 1;
1744 	}
1745 	return 0;
1746 }
1747 
1748 
1749 int
1750 pool_chk(struct pool *pp, const char *label)
1751 {
1752 	struct pool_item_header *ph;
1753 	int r = 0;
1754 
1755 	mutex_enter(&pp->pr_lock);
1756 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1757 		r = pool_chk_page(pp, label, ph);
1758 		if (r) {
1759 			goto out;
1760 		}
1761 	}
1762 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1763 		r = pool_chk_page(pp, label, ph);
1764 		if (r) {
1765 			goto out;
1766 		}
1767 	}
1768 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1769 		r = pool_chk_page(pp, label, ph);
1770 		if (r) {
1771 			goto out;
1772 		}
1773 	}
1774 
1775 out:
1776 	mutex_exit(&pp->pr_lock);
1777 	return (r);
1778 }
1779 
1780 /*
1781  * pool_cache_init:
1782  *
1783  *	Initialize a pool cache.
1784  */
1785 pool_cache_t
1786 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1787     const char *wchan, struct pool_allocator *palloc, int ipl,
1788     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1789 {
1790 	pool_cache_t pc;
1791 
1792 	pc = pool_get(&cache_pool, PR_WAITOK);
1793 	if (pc == NULL)
1794 		return NULL;
1795 
1796 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1797 	   palloc, ipl, ctor, dtor, arg);
1798 
1799 	return pc;
1800 }
1801 
1802 /*
1803  * pool_cache_bootstrap:
1804  *
1805  *	Kernel-private version of pool_cache_init().  The caller
1806  *	provides initial storage.
1807  */
1808 void
1809 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1810     u_int align_offset, u_int flags, const char *wchan,
1811     struct pool_allocator *palloc, int ipl,
1812     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1813     void *arg)
1814 {
1815 	CPU_INFO_ITERATOR cii;
1816 	pool_cache_t pc1;
1817 	struct cpu_info *ci;
1818 	struct pool *pp;
1819 
1820 	pp = &pc->pc_pool;
1821 	if (palloc == NULL && ipl == IPL_NONE) {
1822 		if (size > PAGE_SIZE) {
1823 			int bigidx = pool_bigidx(size);
1824 
1825 			palloc = &pool_allocator_big[bigidx];
1826 		} else
1827 			palloc = &pool_allocator_nointr;
1828 	}
1829 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1830 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1831 
1832 	if (ctor == NULL) {
1833 		ctor = (int (*)(void *, void *, int))nullop;
1834 	}
1835 	if (dtor == NULL) {
1836 		dtor = (void (*)(void *, void *))nullop;
1837 	}
1838 
1839 	pc->pc_emptygroups = NULL;
1840 	pc->pc_fullgroups = NULL;
1841 	pc->pc_partgroups = NULL;
1842 	pc->pc_ctor = ctor;
1843 	pc->pc_dtor = dtor;
1844 	pc->pc_arg  = arg;
1845 	pc->pc_hits  = 0;
1846 	pc->pc_misses = 0;
1847 	pc->pc_nempty = 0;
1848 	pc->pc_npart = 0;
1849 	pc->pc_nfull = 0;
1850 	pc->pc_contended = 0;
1851 	pc->pc_refcnt = 0;
1852 	pc->pc_freecheck = NULL;
1853 
1854 	if ((flags & PR_LARGECACHE) != 0) {
1855 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1856 		pc->pc_pcgpool = &pcg_large_pool;
1857 	} else {
1858 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1859 		pc->pc_pcgpool = &pcg_normal_pool;
1860 	}
1861 
1862 	/* Allocate per-CPU caches. */
1863 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1864 	pc->pc_ncpu = 0;
1865 	if (ncpu < 2) {
1866 		/* XXX For sparc: boot CPU is not attached yet. */
1867 		pool_cache_cpu_init1(curcpu(), pc);
1868 	} else {
1869 		for (CPU_INFO_FOREACH(cii, ci)) {
1870 			pool_cache_cpu_init1(ci, pc);
1871 		}
1872 	}
1873 
1874 	/* Add to list of all pools. */
1875 	if (__predict_true(!cold))
1876 		mutex_enter(&pool_head_lock);
1877 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1878 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1879 			break;
1880 	}
1881 	if (pc1 == NULL)
1882 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1883 	else
1884 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1885 	if (__predict_true(!cold))
1886 		mutex_exit(&pool_head_lock);
1887 
1888 	membar_sync();
1889 	pp->pr_cache = pc;
1890 }
1891 
1892 /*
1893  * pool_cache_destroy:
1894  *
1895  *	Destroy a pool cache.
1896  */
1897 void
1898 pool_cache_destroy(pool_cache_t pc)
1899 {
1900 
1901 	pool_cache_bootstrap_destroy(pc);
1902 	pool_put(&cache_pool, pc);
1903 }
1904 
1905 /*
1906  * pool_cache_bootstrap_destroy:
1907  *
1908  *	Destroy a pool cache.
1909  */
1910 void
1911 pool_cache_bootstrap_destroy(pool_cache_t pc)
1912 {
1913 	struct pool *pp = &pc->pc_pool;
1914 	u_int i;
1915 
1916 	/* Remove it from the global list. */
1917 	mutex_enter(&pool_head_lock);
1918 	while (pc->pc_refcnt != 0)
1919 		cv_wait(&pool_busy, &pool_head_lock);
1920 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1921 	mutex_exit(&pool_head_lock);
1922 
1923 	/* First, invalidate the entire cache. */
1924 	pool_cache_invalidate(pc);
1925 
1926 	/* Disassociate it from the pool. */
1927 	mutex_enter(&pp->pr_lock);
1928 	pp->pr_cache = NULL;
1929 	mutex_exit(&pp->pr_lock);
1930 
1931 	/* Destroy per-CPU data */
1932 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1933 		pool_cache_invalidate_cpu(pc, i);
1934 
1935 	/* Finally, destroy it. */
1936 	mutex_destroy(&pc->pc_lock);
1937 	pool_destroy(pp);
1938 }
1939 
1940 /*
1941  * pool_cache_cpu_init1:
1942  *
1943  *	Called for each pool_cache whenever a new CPU is attached.
1944  */
1945 static void
1946 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1947 {
1948 	pool_cache_cpu_t *cc;
1949 	int index;
1950 
1951 	index = ci->ci_index;
1952 
1953 	KASSERT(index < __arraycount(pc->pc_cpus));
1954 
1955 	if ((cc = pc->pc_cpus[index]) != NULL) {
1956 		KASSERT(cc->cc_cpuindex == index);
1957 		return;
1958 	}
1959 
1960 	/*
1961 	 * The first CPU is 'free'.  This needs to be the case for
1962 	 * bootstrap - we may not be able to allocate yet.
1963 	 */
1964 	if (pc->pc_ncpu == 0) {
1965 		cc = &pc->pc_cpu0;
1966 		pc->pc_ncpu = 1;
1967 	} else {
1968 		mutex_enter(&pc->pc_lock);
1969 		pc->pc_ncpu++;
1970 		mutex_exit(&pc->pc_lock);
1971 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1972 	}
1973 
1974 	cc->cc_ipl = pc->pc_pool.pr_ipl;
1975 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1976 	cc->cc_cache = pc;
1977 	cc->cc_cpuindex = index;
1978 	cc->cc_hits = 0;
1979 	cc->cc_misses = 0;
1980 	cc->cc_current = __UNCONST(&pcg_dummy);
1981 	cc->cc_previous = __UNCONST(&pcg_dummy);
1982 
1983 	pc->pc_cpus[index] = cc;
1984 }
1985 
1986 /*
1987  * pool_cache_cpu_init:
1988  *
1989  *	Called whenever a new CPU is attached.
1990  */
1991 void
1992 pool_cache_cpu_init(struct cpu_info *ci)
1993 {
1994 	pool_cache_t pc;
1995 
1996 	mutex_enter(&pool_head_lock);
1997 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1998 		pc->pc_refcnt++;
1999 		mutex_exit(&pool_head_lock);
2000 
2001 		pool_cache_cpu_init1(ci, pc);
2002 
2003 		mutex_enter(&pool_head_lock);
2004 		pc->pc_refcnt--;
2005 		cv_broadcast(&pool_busy);
2006 	}
2007 	mutex_exit(&pool_head_lock);
2008 }
2009 
2010 /*
2011  * pool_cache_reclaim:
2012  *
2013  *	Reclaim memory from a pool cache.
2014  */
2015 bool
2016 pool_cache_reclaim(pool_cache_t pc)
2017 {
2018 
2019 	return pool_reclaim(&pc->pc_pool);
2020 }
2021 
2022 static void
2023 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2024 {
2025 	if (pc->pc_pool.pr_redzone) {
2026 		/*
2027 		 * The object is marked as invalid. Temporarily mark it as
2028 		 * valid for the destructor. pool_put below will re-mark it
2029 		 * as invalid.
2030 		 */
2031 		kasan_mark(object, pc->pc_pool.pr_reqsize,
2032 		    pc->pc_pool.pr_reqsize_with_redzone);
2033 	}
2034 
2035 	(*pc->pc_dtor)(pc->pc_arg, object);
2036 	pool_put(&pc->pc_pool, object);
2037 }
2038 
2039 /*
2040  * pool_cache_destruct_object:
2041  *
2042  *	Force destruction of an object and its release back into
2043  *	the pool.
2044  */
2045 void
2046 pool_cache_destruct_object(pool_cache_t pc, void *object)
2047 {
2048 
2049 	FREECHECK_IN(&pc->pc_freecheck, object);
2050 
2051 	pool_cache_destruct_object1(pc, object);
2052 }
2053 
2054 /*
2055  * pool_cache_invalidate_groups:
2056  *
2057  *	Invalidate a chain of groups and destruct all objects.
2058  */
2059 static void
2060 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2061 {
2062 	void *object;
2063 	pcg_t *next;
2064 	int i;
2065 
2066 	for (; pcg != NULL; pcg = next) {
2067 		next = pcg->pcg_next;
2068 
2069 		for (i = 0; i < pcg->pcg_avail; i++) {
2070 			object = pcg->pcg_objects[i].pcgo_va;
2071 			pool_cache_destruct_object1(pc, object);
2072 		}
2073 
2074 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2075 			pool_put(&pcg_large_pool, pcg);
2076 		} else {
2077 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2078 			pool_put(&pcg_normal_pool, pcg);
2079 		}
2080 	}
2081 }
2082 
2083 /*
2084  * pool_cache_invalidate:
2085  *
2086  *	Invalidate a pool cache (destruct and release all of the
2087  *	cached objects).  Does not reclaim objects from the pool.
2088  *
2089  *	Note: For pool caches that provide constructed objects, there
2090  *	is an assumption that another level of synchronization is occurring
2091  *	between the input to the constructor and the cache invalidation.
2092  *
2093  *	Invalidation is a costly process and should not be called from
2094  *	interrupt context.
2095  */
2096 void
2097 pool_cache_invalidate(pool_cache_t pc)
2098 {
2099 	uint64_t where;
2100 	pcg_t *full, *empty, *part;
2101 
2102 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2103 
2104 	if (ncpu < 2 || !mp_online) {
2105 		/*
2106 		 * We might be called early enough in the boot process
2107 		 * for the CPU data structures to not be fully initialized.
2108 		 * In this case, transfer the content of the local CPU's
2109 		 * cache back into global cache as only this CPU is currently
2110 		 * running.
2111 		 */
2112 		pool_cache_transfer(pc);
2113 	} else {
2114 		/*
2115 		 * Signal all CPUs that they must transfer their local
2116 		 * cache back to the global pool then wait for the xcall to
2117 		 * complete.
2118 		 */
2119 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2120 		    pc, NULL);
2121 		xc_wait(where);
2122 	}
2123 
2124 	/* Empty pool caches, then invalidate objects */
2125 	mutex_enter(&pc->pc_lock);
2126 	full = pc->pc_fullgroups;
2127 	empty = pc->pc_emptygroups;
2128 	part = pc->pc_partgroups;
2129 	pc->pc_fullgroups = NULL;
2130 	pc->pc_emptygroups = NULL;
2131 	pc->pc_partgroups = NULL;
2132 	pc->pc_nfull = 0;
2133 	pc->pc_nempty = 0;
2134 	pc->pc_npart = 0;
2135 	mutex_exit(&pc->pc_lock);
2136 
2137 	pool_cache_invalidate_groups(pc, full);
2138 	pool_cache_invalidate_groups(pc, empty);
2139 	pool_cache_invalidate_groups(pc, part);
2140 }
2141 
2142 /*
2143  * pool_cache_invalidate_cpu:
2144  *
2145  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2146  *	identified by its associated index.
2147  *	It is caller's responsibility to ensure that no operation is
2148  *	taking place on this pool cache while doing this invalidation.
2149  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2150  *	pool cached objects from a CPU different from the one currently running
2151  *	may result in an undefined behaviour.
2152  */
2153 static void
2154 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2155 {
2156 	pool_cache_cpu_t *cc;
2157 	pcg_t *pcg;
2158 
2159 	if ((cc = pc->pc_cpus[index]) == NULL)
2160 		return;
2161 
2162 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2163 		pcg->pcg_next = NULL;
2164 		pool_cache_invalidate_groups(pc, pcg);
2165 	}
2166 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2167 		pcg->pcg_next = NULL;
2168 		pool_cache_invalidate_groups(pc, pcg);
2169 	}
2170 	if (cc != &pc->pc_cpu0)
2171 		pool_put(&cache_cpu_pool, cc);
2172 
2173 }
2174 
2175 void
2176 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2177 {
2178 
2179 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2180 }
2181 
2182 void
2183 pool_cache_setlowat(pool_cache_t pc, int n)
2184 {
2185 
2186 	pool_setlowat(&pc->pc_pool, n);
2187 }
2188 
2189 void
2190 pool_cache_sethiwat(pool_cache_t pc, int n)
2191 {
2192 
2193 	pool_sethiwat(&pc->pc_pool, n);
2194 }
2195 
2196 void
2197 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2198 {
2199 
2200 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2201 }
2202 
2203 static bool __noinline
2204 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2205 		    paddr_t *pap, int flags)
2206 {
2207 	pcg_t *pcg, *cur;
2208 	uint64_t ncsw;
2209 	pool_cache_t pc;
2210 	void *object;
2211 
2212 	KASSERT(cc->cc_current->pcg_avail == 0);
2213 	KASSERT(cc->cc_previous->pcg_avail == 0);
2214 
2215 	pc = cc->cc_cache;
2216 	cc->cc_misses++;
2217 
2218 	/*
2219 	 * Nothing was available locally.  Try and grab a group
2220 	 * from the cache.
2221 	 */
2222 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2223 		ncsw = curlwp->l_ncsw;
2224 		mutex_enter(&pc->pc_lock);
2225 		pc->pc_contended++;
2226 
2227 		/*
2228 		 * If we context switched while locking, then
2229 		 * our view of the per-CPU data is invalid:
2230 		 * retry.
2231 		 */
2232 		if (curlwp->l_ncsw != ncsw) {
2233 			mutex_exit(&pc->pc_lock);
2234 			return true;
2235 		}
2236 	}
2237 
2238 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2239 		/*
2240 		 * If there's a full group, release our empty
2241 		 * group back to the cache.  Install the full
2242 		 * group as cc_current and return.
2243 		 */
2244 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2245 			KASSERT(cur->pcg_avail == 0);
2246 			cur->pcg_next = pc->pc_emptygroups;
2247 			pc->pc_emptygroups = cur;
2248 			pc->pc_nempty++;
2249 		}
2250 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2251 		cc->cc_current = pcg;
2252 		pc->pc_fullgroups = pcg->pcg_next;
2253 		pc->pc_hits++;
2254 		pc->pc_nfull--;
2255 		mutex_exit(&pc->pc_lock);
2256 		return true;
2257 	}
2258 
2259 	/*
2260 	 * Nothing available locally or in cache.  Take the slow
2261 	 * path: fetch a new object from the pool and construct
2262 	 * it.
2263 	 */
2264 	pc->pc_misses++;
2265 	mutex_exit(&pc->pc_lock);
2266 	splx(s);
2267 
2268 	object = pool_get(&pc->pc_pool, flags);
2269 	*objectp = object;
2270 	if (__predict_false(object == NULL)) {
2271 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2272 		return false;
2273 	}
2274 
2275 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2276 		pool_put(&pc->pc_pool, object);
2277 		*objectp = NULL;
2278 		return false;
2279 	}
2280 
2281 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2282 	    (pc->pc_pool.pr_align - 1)) == 0);
2283 
2284 	if (pap != NULL) {
2285 #ifdef POOL_VTOPHYS
2286 		*pap = POOL_VTOPHYS(object);
2287 #else
2288 		*pap = POOL_PADDR_INVALID;
2289 #endif
2290 	}
2291 
2292 	FREECHECK_OUT(&pc->pc_freecheck, object);
2293 	pool_redzone_fill(&pc->pc_pool, object);
2294 	pool_cache_kleak_fill(pc, object);
2295 	return false;
2296 }
2297 
2298 /*
2299  * pool_cache_get{,_paddr}:
2300  *
2301  *	Get an object from a pool cache (optionally returning
2302  *	the physical address of the object).
2303  */
2304 void *
2305 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2306 {
2307 	pool_cache_cpu_t *cc;
2308 	pcg_t *pcg;
2309 	void *object;
2310 	int s;
2311 
2312 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2313 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2314 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2315 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
2316 	    __func__, pc->pc_pool.pr_wchan);
2317 
2318 	if (flags & PR_WAITOK) {
2319 		ASSERT_SLEEPABLE();
2320 	}
2321 
2322 	/* Lock out interrupts and disable preemption. */
2323 	s = splvm();
2324 	while (/* CONSTCOND */ true) {
2325 		/* Try and allocate an object from the current group. */
2326 		cc = pc->pc_cpus[curcpu()->ci_index];
2327 		KASSERT(cc->cc_cache == pc);
2328 	 	pcg = cc->cc_current;
2329 		if (__predict_true(pcg->pcg_avail > 0)) {
2330 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2331 			if (__predict_false(pap != NULL))
2332 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2333 #if defined(DIAGNOSTIC)
2334 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2335 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2336 			KASSERT(object != NULL);
2337 #endif
2338 			cc->cc_hits++;
2339 			splx(s);
2340 			FREECHECK_OUT(&pc->pc_freecheck, object);
2341 			pool_redzone_fill(&pc->pc_pool, object);
2342 			pool_cache_kleak_fill(pc, object);
2343 			return object;
2344 		}
2345 
2346 		/*
2347 		 * That failed.  If the previous group isn't empty, swap
2348 		 * it with the current group and allocate from there.
2349 		 */
2350 		pcg = cc->cc_previous;
2351 		if (__predict_true(pcg->pcg_avail > 0)) {
2352 			cc->cc_previous = cc->cc_current;
2353 			cc->cc_current = pcg;
2354 			continue;
2355 		}
2356 
2357 		/*
2358 		 * Can't allocate from either group: try the slow path.
2359 		 * If get_slow() allocated an object for us, or if
2360 		 * no more objects are available, it will return false.
2361 		 * Otherwise, we need to retry.
2362 		 */
2363 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2364 			break;
2365 	}
2366 
2367 	/*
2368 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2369 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2370 	 * constructor fails.
2371 	 */
2372 	return object;
2373 }
2374 
2375 static bool __noinline
2376 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2377 {
2378 	struct lwp *l = curlwp;
2379 	pcg_t *pcg, *cur;
2380 	uint64_t ncsw;
2381 	pool_cache_t pc;
2382 
2383 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2384 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2385 
2386 	pc = cc->cc_cache;
2387 	pcg = NULL;
2388 	cc->cc_misses++;
2389 	ncsw = l->l_ncsw;
2390 
2391 	/*
2392 	 * If there are no empty groups in the cache then allocate one
2393 	 * while still unlocked.
2394 	 */
2395 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2396 		if (__predict_true(!pool_cache_disable)) {
2397 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2398 		}
2399 		/*
2400 		 * If pool_get() blocked, then our view of
2401 		 * the per-CPU data is invalid: retry.
2402 		 */
2403 		if (__predict_false(l->l_ncsw != ncsw)) {
2404 			if (pcg != NULL) {
2405 				pool_put(pc->pc_pcgpool, pcg);
2406 			}
2407 			return true;
2408 		}
2409 		if (__predict_true(pcg != NULL)) {
2410 			pcg->pcg_avail = 0;
2411 			pcg->pcg_size = pc->pc_pcgsize;
2412 		}
2413 	}
2414 
2415 	/* Lock the cache. */
2416 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2417 		mutex_enter(&pc->pc_lock);
2418 		pc->pc_contended++;
2419 
2420 		/*
2421 		 * If we context switched while locking, then our view of
2422 		 * the per-CPU data is invalid: retry.
2423 		 */
2424 		if (__predict_false(l->l_ncsw != ncsw)) {
2425 			mutex_exit(&pc->pc_lock);
2426 			if (pcg != NULL) {
2427 				pool_put(pc->pc_pcgpool, pcg);
2428 			}
2429 			return true;
2430 		}
2431 	}
2432 
2433 	/* If there are no empty groups in the cache then allocate one. */
2434 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2435 		pcg = pc->pc_emptygroups;
2436 		pc->pc_emptygroups = pcg->pcg_next;
2437 		pc->pc_nempty--;
2438 	}
2439 
2440 	/*
2441 	 * If there's a empty group, release our full group back
2442 	 * to the cache.  Install the empty group to the local CPU
2443 	 * and return.
2444 	 */
2445 	if (pcg != NULL) {
2446 		KASSERT(pcg->pcg_avail == 0);
2447 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2448 			cc->cc_previous = pcg;
2449 		} else {
2450 			cur = cc->cc_current;
2451 			if (__predict_true(cur != &pcg_dummy)) {
2452 				KASSERT(cur->pcg_avail == cur->pcg_size);
2453 				cur->pcg_next = pc->pc_fullgroups;
2454 				pc->pc_fullgroups = cur;
2455 				pc->pc_nfull++;
2456 			}
2457 			cc->cc_current = pcg;
2458 		}
2459 		pc->pc_hits++;
2460 		mutex_exit(&pc->pc_lock);
2461 		return true;
2462 	}
2463 
2464 	/*
2465 	 * Nothing available locally or in cache, and we didn't
2466 	 * allocate an empty group.  Take the slow path and destroy
2467 	 * the object here and now.
2468 	 */
2469 	pc->pc_misses++;
2470 	mutex_exit(&pc->pc_lock);
2471 	splx(s);
2472 	pool_cache_destruct_object(pc, object);
2473 
2474 	return false;
2475 }
2476 
2477 /*
2478  * pool_cache_put{,_paddr}:
2479  *
2480  *	Put an object back to the pool cache (optionally caching the
2481  *	physical address of the object).
2482  */
2483 void
2484 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2485 {
2486 	pool_cache_cpu_t *cc;
2487 	pcg_t *pcg;
2488 	int s;
2489 
2490 	KASSERT(object != NULL);
2491 	pool_cache_redzone_check(pc, object);
2492 	FREECHECK_IN(&pc->pc_freecheck, object);
2493 
2494 	/* Lock out interrupts and disable preemption. */
2495 	s = splvm();
2496 	while (/* CONSTCOND */ true) {
2497 		/* If the current group isn't full, release it there. */
2498 		cc = pc->pc_cpus[curcpu()->ci_index];
2499 		KASSERT(cc->cc_cache == pc);
2500 	 	pcg = cc->cc_current;
2501 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2502 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2503 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2504 			pcg->pcg_avail++;
2505 			cc->cc_hits++;
2506 			splx(s);
2507 			return;
2508 		}
2509 
2510 		/*
2511 		 * That failed.  If the previous group isn't full, swap
2512 		 * it with the current group and try again.
2513 		 */
2514 		pcg = cc->cc_previous;
2515 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2516 			cc->cc_previous = cc->cc_current;
2517 			cc->cc_current = pcg;
2518 			continue;
2519 		}
2520 
2521 		/*
2522 		 * Can't free to either group: try the slow path.
2523 		 * If put_slow() releases the object for us, it
2524 		 * will return false.  Otherwise we need to retry.
2525 		 */
2526 		if (!pool_cache_put_slow(cc, s, object))
2527 			break;
2528 	}
2529 }
2530 
2531 /*
2532  * pool_cache_transfer:
2533  *
2534  *	Transfer objects from the per-CPU cache to the global cache.
2535  *	Run within a cross-call thread.
2536  */
2537 static void
2538 pool_cache_transfer(pool_cache_t pc)
2539 {
2540 	pool_cache_cpu_t *cc;
2541 	pcg_t *prev, *cur, **list;
2542 	int s;
2543 
2544 	s = splvm();
2545 	mutex_enter(&pc->pc_lock);
2546 	cc = pc->pc_cpus[curcpu()->ci_index];
2547 	cur = cc->cc_current;
2548 	cc->cc_current = __UNCONST(&pcg_dummy);
2549 	prev = cc->cc_previous;
2550 	cc->cc_previous = __UNCONST(&pcg_dummy);
2551 	if (cur != &pcg_dummy) {
2552 		if (cur->pcg_avail == cur->pcg_size) {
2553 			list = &pc->pc_fullgroups;
2554 			pc->pc_nfull++;
2555 		} else if (cur->pcg_avail == 0) {
2556 			list = &pc->pc_emptygroups;
2557 			pc->pc_nempty++;
2558 		} else {
2559 			list = &pc->pc_partgroups;
2560 			pc->pc_npart++;
2561 		}
2562 		cur->pcg_next = *list;
2563 		*list = cur;
2564 	}
2565 	if (prev != &pcg_dummy) {
2566 		if (prev->pcg_avail == prev->pcg_size) {
2567 			list = &pc->pc_fullgroups;
2568 			pc->pc_nfull++;
2569 		} else if (prev->pcg_avail == 0) {
2570 			list = &pc->pc_emptygroups;
2571 			pc->pc_nempty++;
2572 		} else {
2573 			list = &pc->pc_partgroups;
2574 			pc->pc_npart++;
2575 		}
2576 		prev->pcg_next = *list;
2577 		*list = prev;
2578 	}
2579 	mutex_exit(&pc->pc_lock);
2580 	splx(s);
2581 }
2582 
2583 /*
2584  * Pool backend allocators.
2585  *
2586  * Each pool has a backend allocator that handles allocation, deallocation,
2587  * and any additional draining that might be needed.
2588  *
2589  * We provide two standard allocators:
2590  *
2591  *	pool_allocator_kmem - the default when no allocator is specified
2592  *
2593  *	pool_allocator_nointr - used for pools that will not be accessed
2594  *	in interrupt context.
2595  */
2596 void	*pool_page_alloc(struct pool *, int);
2597 void	pool_page_free(struct pool *, void *);
2598 
2599 #ifdef POOL_SUBPAGE
2600 struct pool_allocator pool_allocator_kmem_fullpage = {
2601 	.pa_alloc = pool_page_alloc,
2602 	.pa_free = pool_page_free,
2603 	.pa_pagesz = 0
2604 };
2605 #else
2606 struct pool_allocator pool_allocator_kmem = {
2607 	.pa_alloc = pool_page_alloc,
2608 	.pa_free = pool_page_free,
2609 	.pa_pagesz = 0
2610 };
2611 #endif
2612 
2613 #ifdef POOL_SUBPAGE
2614 struct pool_allocator pool_allocator_nointr_fullpage = {
2615 	.pa_alloc = pool_page_alloc,
2616 	.pa_free = pool_page_free,
2617 	.pa_pagesz = 0
2618 };
2619 #else
2620 struct pool_allocator pool_allocator_nointr = {
2621 	.pa_alloc = pool_page_alloc,
2622 	.pa_free = pool_page_free,
2623 	.pa_pagesz = 0
2624 };
2625 #endif
2626 
2627 #ifdef POOL_SUBPAGE
2628 void	*pool_subpage_alloc(struct pool *, int);
2629 void	pool_subpage_free(struct pool *, void *);
2630 
2631 struct pool_allocator pool_allocator_kmem = {
2632 	.pa_alloc = pool_subpage_alloc,
2633 	.pa_free = pool_subpage_free,
2634 	.pa_pagesz = POOL_SUBPAGE
2635 };
2636 
2637 struct pool_allocator pool_allocator_nointr = {
2638 	.pa_alloc = pool_subpage_alloc,
2639 	.pa_free = pool_subpage_free,
2640 	.pa_pagesz = POOL_SUBPAGE
2641 };
2642 #endif /* POOL_SUBPAGE */
2643 
2644 struct pool_allocator pool_allocator_big[] = {
2645 	{
2646 		.pa_alloc = pool_page_alloc,
2647 		.pa_free = pool_page_free,
2648 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2649 	},
2650 	{
2651 		.pa_alloc = pool_page_alloc,
2652 		.pa_free = pool_page_free,
2653 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2654 	},
2655 	{
2656 		.pa_alloc = pool_page_alloc,
2657 		.pa_free = pool_page_free,
2658 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2659 	},
2660 	{
2661 		.pa_alloc = pool_page_alloc,
2662 		.pa_free = pool_page_free,
2663 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2664 	},
2665 	{
2666 		.pa_alloc = pool_page_alloc,
2667 		.pa_free = pool_page_free,
2668 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2669 	},
2670 	{
2671 		.pa_alloc = pool_page_alloc,
2672 		.pa_free = pool_page_free,
2673 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2674 	},
2675 	{
2676 		.pa_alloc = pool_page_alloc,
2677 		.pa_free = pool_page_free,
2678 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2679 	},
2680 	{
2681 		.pa_alloc = pool_page_alloc,
2682 		.pa_free = pool_page_free,
2683 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2684 	}
2685 };
2686 
2687 static int
2688 pool_bigidx(size_t size)
2689 {
2690 	int i;
2691 
2692 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2693 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2694 			return i;
2695 	}
2696 	panic("pool item size %zu too large, use a custom allocator", size);
2697 }
2698 
2699 static void *
2700 pool_allocator_alloc(struct pool *pp, int flags)
2701 {
2702 	struct pool_allocator *pa = pp->pr_alloc;
2703 	void *res;
2704 
2705 	res = (*pa->pa_alloc)(pp, flags);
2706 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2707 		/*
2708 		 * We only run the drain hook here if PR_NOWAIT.
2709 		 * In other cases, the hook will be run in
2710 		 * pool_reclaim().
2711 		 */
2712 		if (pp->pr_drain_hook != NULL) {
2713 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2714 			res = (*pa->pa_alloc)(pp, flags);
2715 		}
2716 	}
2717 	return res;
2718 }
2719 
2720 static void
2721 pool_allocator_free(struct pool *pp, void *v)
2722 {
2723 	struct pool_allocator *pa = pp->pr_alloc;
2724 
2725 	if (pp->pr_redzone) {
2726 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
2727 	}
2728 	(*pa->pa_free)(pp, v);
2729 }
2730 
2731 void *
2732 pool_page_alloc(struct pool *pp, int flags)
2733 {
2734 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2735 	vmem_addr_t va;
2736 	int ret;
2737 
2738 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2739 	    vflags | VM_INSTANTFIT, &va);
2740 
2741 	return ret ? NULL : (void *)va;
2742 }
2743 
2744 void
2745 pool_page_free(struct pool *pp, void *v)
2746 {
2747 
2748 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2749 }
2750 
2751 static void *
2752 pool_page_alloc_meta(struct pool *pp, int flags)
2753 {
2754 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2755 	vmem_addr_t va;
2756 	int ret;
2757 
2758 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2759 	    vflags | VM_INSTANTFIT, &va);
2760 
2761 	return ret ? NULL : (void *)va;
2762 }
2763 
2764 static void
2765 pool_page_free_meta(struct pool *pp, void *v)
2766 {
2767 
2768 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2769 }
2770 
2771 #ifdef KLEAK
2772 static void
2773 pool_kleak_fill(struct pool *pp, void *p)
2774 {
2775 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2776 		return;
2777 	}
2778 	kleak_fill_area(p, pp->pr_size);
2779 }
2780 
2781 static void
2782 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2783 {
2784 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2785 		return;
2786 	}
2787 	pool_kleak_fill(&pc->pc_pool, p);
2788 }
2789 #endif
2790 
2791 #ifdef POOL_REDZONE
2792 #if defined(_LP64)
2793 # define PRIME 0x9e37fffffffc0000UL
2794 #else /* defined(_LP64) */
2795 # define PRIME 0x9e3779b1
2796 #endif /* defined(_LP64) */
2797 #define STATIC_BYTE	0xFE
2798 CTASSERT(POOL_REDZONE_SIZE > 1);
2799 
2800 #ifndef KASAN
2801 static inline uint8_t
2802 pool_pattern_generate(const void *p)
2803 {
2804 	return (uint8_t)(((uintptr_t)p) * PRIME
2805 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2806 }
2807 #endif
2808 
2809 static void
2810 pool_redzone_init(struct pool *pp, size_t requested_size)
2811 {
2812 	size_t redzsz;
2813 	size_t nsz;
2814 
2815 #ifdef KASAN
2816 	redzsz = requested_size;
2817 	kasan_add_redzone(&redzsz);
2818 	redzsz -= requested_size;
2819 #else
2820 	redzsz = POOL_REDZONE_SIZE;
2821 #endif
2822 
2823 	if (pp->pr_roflags & PR_NOTOUCH) {
2824 		pp->pr_redzone = false;
2825 		return;
2826 	}
2827 
2828 	/*
2829 	 * We may have extended the requested size earlier; check if
2830 	 * there's naturally space in the padding for a red zone.
2831 	 */
2832 	if (pp->pr_size - requested_size >= redzsz) {
2833 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
2834 		pp->pr_redzone = true;
2835 		return;
2836 	}
2837 
2838 	/*
2839 	 * No space in the natural padding; check if we can extend a
2840 	 * bit the size of the pool.
2841 	 */
2842 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2843 	if (nsz <= pp->pr_alloc->pa_pagesz) {
2844 		/* Ok, we can */
2845 		pp->pr_size = nsz;
2846 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
2847 		pp->pr_redzone = true;
2848 	} else {
2849 		/* No space for a red zone... snif :'( */
2850 		pp->pr_redzone = false;
2851 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2852 	}
2853 }
2854 
2855 static void
2856 pool_redzone_fill(struct pool *pp, void *p)
2857 {
2858 	if (!pp->pr_redzone)
2859 		return;
2860 #ifdef KASAN
2861 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
2862 #else
2863 	uint8_t *cp, pat;
2864 	const uint8_t *ep;
2865 
2866 	cp = (uint8_t *)p + pp->pr_reqsize;
2867 	ep = cp + POOL_REDZONE_SIZE;
2868 
2869 	/*
2870 	 * We really don't want the first byte of the red zone to be '\0';
2871 	 * an off-by-one in a string may not be properly detected.
2872 	 */
2873 	pat = pool_pattern_generate(cp);
2874 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
2875 	cp++;
2876 
2877 	while (cp < ep) {
2878 		*cp = pool_pattern_generate(cp);
2879 		cp++;
2880 	}
2881 #endif
2882 }
2883 
2884 static void
2885 pool_redzone_check(struct pool *pp, void *p)
2886 {
2887 	if (!pp->pr_redzone)
2888 		return;
2889 #ifdef KASAN
2890 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
2891 #else
2892 	uint8_t *cp, pat, expected;
2893 	const uint8_t *ep;
2894 
2895 	cp = (uint8_t *)p + pp->pr_reqsize;
2896 	ep = cp + POOL_REDZONE_SIZE;
2897 
2898 	pat = pool_pattern_generate(cp);
2899 	expected = (pat == '\0') ? STATIC_BYTE: pat;
2900 	if (__predict_false(expected != *cp)) {
2901 		printf("%s: %p: 0x%02x != 0x%02x\n",
2902 		   __func__, cp, *cp, expected);
2903 	}
2904 	cp++;
2905 
2906 	while (cp < ep) {
2907 		expected = pool_pattern_generate(cp);
2908 		if (__predict_false(*cp != expected)) {
2909 			printf("%s: %p: 0x%02x != 0x%02x\n",
2910 			   __func__, cp, *cp, expected);
2911 		}
2912 		cp++;
2913 	}
2914 #endif
2915 }
2916 
2917 static void
2918 pool_cache_redzone_check(pool_cache_t pc, void *p)
2919 {
2920 #ifdef KASAN
2921 	/* If there is a ctor/dtor, leave the data as valid. */
2922 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2923 		return;
2924 	}
2925 #endif
2926 	pool_redzone_check(&pc->pc_pool, p);
2927 }
2928 
2929 #endif /* POOL_REDZONE */
2930 
2931 
2932 #ifdef POOL_SUBPAGE
2933 /* Sub-page allocator, for machines with large hardware pages. */
2934 void *
2935 pool_subpage_alloc(struct pool *pp, int flags)
2936 {
2937 	return pool_get(&psppool, flags);
2938 }
2939 
2940 void
2941 pool_subpage_free(struct pool *pp, void *v)
2942 {
2943 	pool_put(&psppool, v);
2944 }
2945 
2946 #endif /* POOL_SUBPAGE */
2947 
2948 #if defined(DDB)
2949 static bool
2950 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2951 {
2952 
2953 	return (uintptr_t)ph->ph_page <= addr &&
2954 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2955 }
2956 
2957 static bool
2958 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2959 {
2960 
2961 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2962 }
2963 
2964 static bool
2965 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2966 {
2967 	int i;
2968 
2969 	if (pcg == NULL) {
2970 		return false;
2971 	}
2972 	for (i = 0; i < pcg->pcg_avail; i++) {
2973 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2974 			return true;
2975 		}
2976 	}
2977 	return false;
2978 }
2979 
2980 static bool
2981 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2982 {
2983 
2984 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2985 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2986 		pool_item_bitmap_t *bitmap =
2987 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2988 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2989 
2990 		return (*bitmap & mask) == 0;
2991 	} else {
2992 		struct pool_item *pi;
2993 
2994 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2995 			if (pool_in_item(pp, pi, addr)) {
2996 				return false;
2997 			}
2998 		}
2999 		return true;
3000 	}
3001 }
3002 
3003 void
3004 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3005 {
3006 	struct pool *pp;
3007 
3008 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3009 		struct pool_item_header *ph;
3010 		uintptr_t item;
3011 		bool allocated = true;
3012 		bool incache = false;
3013 		bool incpucache = false;
3014 		char cpucachestr[32];
3015 
3016 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3017 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3018 				if (pool_in_page(pp, ph, addr)) {
3019 					goto found;
3020 				}
3021 			}
3022 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3023 				if (pool_in_page(pp, ph, addr)) {
3024 					allocated =
3025 					    pool_allocated(pp, ph, addr);
3026 					goto found;
3027 				}
3028 			}
3029 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3030 				if (pool_in_page(pp, ph, addr)) {
3031 					allocated = false;
3032 					goto found;
3033 				}
3034 			}
3035 			continue;
3036 		} else {
3037 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3038 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3039 				continue;
3040 			}
3041 			allocated = pool_allocated(pp, ph, addr);
3042 		}
3043 found:
3044 		if (allocated && pp->pr_cache) {
3045 			pool_cache_t pc = pp->pr_cache;
3046 			struct pool_cache_group *pcg;
3047 			int i;
3048 
3049 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3050 			    pcg = pcg->pcg_next) {
3051 				if (pool_in_cg(pp, pcg, addr)) {
3052 					incache = true;
3053 					goto print;
3054 				}
3055 			}
3056 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3057 				pool_cache_cpu_t *cc;
3058 
3059 				if ((cc = pc->pc_cpus[i]) == NULL) {
3060 					continue;
3061 				}
3062 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3063 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3064 					struct cpu_info *ci =
3065 					    cpu_lookup(i);
3066 
3067 					incpucache = true;
3068 					snprintf(cpucachestr,
3069 					    sizeof(cpucachestr),
3070 					    "cached by CPU %u",
3071 					    ci->ci_index);
3072 					goto print;
3073 				}
3074 			}
3075 		}
3076 print:
3077 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3078 		item = item + rounddown(addr - item, pp->pr_size);
3079 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3080 		    (void *)addr, item, (size_t)(addr - item),
3081 		    pp->pr_wchan,
3082 		    incpucache ? cpucachestr :
3083 		    incache ? "cached" : allocated ? "allocated" : "free");
3084 	}
3085 }
3086 #endif /* defined(DDB) */
3087 
3088 static int
3089 pool_sysctl(SYSCTLFN_ARGS)
3090 {
3091 	struct pool_sysctl data;
3092 	struct pool *pp;
3093 	struct pool_cache *pc;
3094 	pool_cache_cpu_t *cc;
3095 	int error;
3096 	size_t i, written;
3097 
3098 	if (oldp == NULL) {
3099 		*oldlenp = 0;
3100 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3101 			*oldlenp += sizeof(data);
3102 		return 0;
3103 	}
3104 
3105 	memset(&data, 0, sizeof(data));
3106 	error = 0;
3107 	written = 0;
3108 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3109 		if (written + sizeof(data) > *oldlenp)
3110 			break;
3111 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3112 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3113 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3114 #define COPY(field) data.field = pp->field
3115 		COPY(pr_size);
3116 
3117 		COPY(pr_itemsperpage);
3118 		COPY(pr_nitems);
3119 		COPY(pr_nout);
3120 		COPY(pr_hardlimit);
3121 		COPY(pr_npages);
3122 		COPY(pr_minpages);
3123 		COPY(pr_maxpages);
3124 
3125 		COPY(pr_nget);
3126 		COPY(pr_nfail);
3127 		COPY(pr_nput);
3128 		COPY(pr_npagealloc);
3129 		COPY(pr_npagefree);
3130 		COPY(pr_hiwat);
3131 		COPY(pr_nidle);
3132 #undef COPY
3133 
3134 		data.pr_cache_nmiss_pcpu = 0;
3135 		data.pr_cache_nhit_pcpu = 0;
3136 		if (pp->pr_cache) {
3137 			pc = pp->pr_cache;
3138 			data.pr_cache_meta_size = pc->pc_pcgsize;
3139 			data.pr_cache_nfull = pc->pc_nfull;
3140 			data.pr_cache_npartial = pc->pc_npart;
3141 			data.pr_cache_nempty = pc->pc_nempty;
3142 			data.pr_cache_ncontended = pc->pc_contended;
3143 			data.pr_cache_nmiss_global = pc->pc_misses;
3144 			data.pr_cache_nhit_global = pc->pc_hits;
3145 			for (i = 0; i < pc->pc_ncpu; ++i) {
3146 				cc = pc->pc_cpus[i];
3147 				if (cc == NULL)
3148 					continue;
3149 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3150 				data.pr_cache_nhit_pcpu += cc->cc_hits;
3151 			}
3152 		} else {
3153 			data.pr_cache_meta_size = 0;
3154 			data.pr_cache_nfull = 0;
3155 			data.pr_cache_npartial = 0;
3156 			data.pr_cache_nempty = 0;
3157 			data.pr_cache_ncontended = 0;
3158 			data.pr_cache_nmiss_global = 0;
3159 			data.pr_cache_nhit_global = 0;
3160 		}
3161 
3162 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3163 		if (error)
3164 			break;
3165 		written += sizeof(data);
3166 		oldp = (char *)oldp + sizeof(data);
3167 	}
3168 
3169 	*oldlenp = written;
3170 	return error;
3171 }
3172 
3173 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3174 {
3175 	const struct sysctlnode *rnode = NULL;
3176 
3177 	sysctl_createv(clog, 0, NULL, &rnode,
3178 		       CTLFLAG_PERMANENT,
3179 		       CTLTYPE_STRUCT, "pool",
3180 		       SYSCTL_DESCR("Get pool statistics"),
3181 		       pool_sysctl, 0, NULL, 0,
3182 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3183 }
3184