1 /* $NetBSD: subr_pool.c,v 1.157 2008/04/24 11:38:36 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.157 2008/04/24 11:38:36 ad Exp $"); 42 43 #include "opt_ddb.h" 44 #include "opt_pool.h" 45 #include "opt_poollog.h" 46 #include "opt_lockdebug.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bitops.h> 51 #include <sys/proc.h> 52 #include <sys/errno.h> 53 #include <sys/kernel.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/syslog.h> 57 #include <sys/debug.h> 58 #include <sys/lockdebug.h> 59 #include <sys/xcall.h> 60 #include <sys/cpu.h> 61 #include <sys/atomic.h> 62 63 #include <uvm/uvm.h> 64 65 /* 66 * Pool resource management utility. 67 * 68 * Memory is allocated in pages which are split into pieces according to 69 * the pool item size. Each page is kept on one of three lists in the 70 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 71 * for empty, full and partially-full pages respectively. The individual 72 * pool items are on a linked list headed by `ph_itemlist' in each page 73 * header. The memory for building the page list is either taken from 74 * the allocated pages themselves (for small pool items) or taken from 75 * an internal pool of page headers (`phpool'). 76 */ 77 78 /* List of all pools */ 79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 80 81 /* Private pool for page header structures */ 82 #define PHPOOL_MAX 8 83 static struct pool phpool[PHPOOL_MAX]; 84 #define PHPOOL_FREELIST_NELEM(idx) \ 85 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 86 87 #ifdef POOL_SUBPAGE 88 /* Pool of subpages for use by normal pools. */ 89 static struct pool psppool; 90 #endif 91 92 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 93 SLIST_HEAD_INITIALIZER(pa_deferinitq); 94 95 static void *pool_page_alloc_meta(struct pool *, int); 96 static void pool_page_free_meta(struct pool *, void *); 97 98 /* allocator for pool metadata */ 99 struct pool_allocator pool_allocator_meta = { 100 pool_page_alloc_meta, pool_page_free_meta, 101 .pa_backingmapptr = &kmem_map, 102 }; 103 104 /* # of seconds to retain page after last use */ 105 int pool_inactive_time = 10; 106 107 /* Next candidate for drainage (see pool_drain()) */ 108 static struct pool *drainpp; 109 110 /* This lock protects both pool_head and drainpp. */ 111 static kmutex_t pool_head_lock; 112 static kcondvar_t pool_busy; 113 114 typedef uint32_t pool_item_bitmap_t; 115 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 116 #define BITMAP_MASK (BITMAP_SIZE - 1) 117 118 struct pool_item_header { 119 /* Page headers */ 120 LIST_ENTRY(pool_item_header) 121 ph_pagelist; /* pool page list */ 122 SPLAY_ENTRY(pool_item_header) 123 ph_node; /* Off-page page headers */ 124 void * ph_page; /* this page's address */ 125 uint32_t ph_time; /* last referenced */ 126 uint16_t ph_nmissing; /* # of chunks in use */ 127 uint16_t ph_off; /* start offset in page */ 128 union { 129 /* !PR_NOTOUCH */ 130 struct { 131 LIST_HEAD(, pool_item) 132 phu_itemlist; /* chunk list for this page */ 133 } phu_normal; 134 /* PR_NOTOUCH */ 135 struct { 136 pool_item_bitmap_t phu_bitmap[1]; 137 } phu_notouch; 138 } ph_u; 139 }; 140 #define ph_itemlist ph_u.phu_normal.phu_itemlist 141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 142 143 struct pool_item { 144 #ifdef DIAGNOSTIC 145 u_int pi_magic; 146 #endif 147 #define PI_MAGIC 0xdeaddeadU 148 /* Other entries use only this list entry */ 149 LIST_ENTRY(pool_item) pi_list; 150 }; 151 152 #define POOL_NEEDS_CATCHUP(pp) \ 153 ((pp)->pr_nitems < (pp)->pr_minitems) 154 155 /* 156 * Pool cache management. 157 * 158 * Pool caches provide a way for constructed objects to be cached by the 159 * pool subsystem. This can lead to performance improvements by avoiding 160 * needless object construction/destruction; it is deferred until absolutely 161 * necessary. 162 * 163 * Caches are grouped into cache groups. Each cache group references up 164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 165 * object from the pool, it calls the object's constructor and places it 166 * into a cache group. When a cache group frees an object back to the 167 * pool, it first calls the object's destructor. This allows the object 168 * to persist in constructed form while freed to the cache. 169 * 170 * The pool references each cache, so that when a pool is drained by the 171 * pagedaemon, it can drain each individual cache as well. Each time a 172 * cache is drained, the most idle cache group is freed to the pool in 173 * its entirety. 174 * 175 * Pool caches are layed on top of pools. By layering them, we can avoid 176 * the complexity of cache management for pools which would not benefit 177 * from it. 178 */ 179 180 static struct pool pcg_normal_pool; 181 static struct pool pcg_large_pool; 182 static struct pool cache_pool; 183 static struct pool cache_cpu_pool; 184 185 /* List of all caches. */ 186 TAILQ_HEAD(,pool_cache) pool_cache_head = 187 TAILQ_HEAD_INITIALIZER(pool_cache_head); 188 189 int pool_cache_disable; 190 191 192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *, 193 void *, paddr_t); 194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *, 195 void **, paddr_t *, int); 196 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 197 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 198 static void pool_cache_xcall(pool_cache_t); 199 200 static int pool_catchup(struct pool *); 201 static void pool_prime_page(struct pool *, void *, 202 struct pool_item_header *); 203 static void pool_update_curpage(struct pool *); 204 205 static int pool_grow(struct pool *, int); 206 static void *pool_allocator_alloc(struct pool *, int); 207 static void pool_allocator_free(struct pool *, void *); 208 209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 210 void (*)(const char *, ...)); 211 static void pool_print1(struct pool *, const char *, 212 void (*)(const char *, ...)); 213 214 static int pool_chk_page(struct pool *, const char *, 215 struct pool_item_header *); 216 217 /* 218 * Pool log entry. An array of these is allocated in pool_init(). 219 */ 220 struct pool_log { 221 const char *pl_file; 222 long pl_line; 223 int pl_action; 224 #define PRLOG_GET 1 225 #define PRLOG_PUT 2 226 void *pl_addr; 227 }; 228 229 #ifdef POOL_DIAGNOSTIC 230 /* Number of entries in pool log buffers */ 231 #ifndef POOL_LOGSIZE 232 #define POOL_LOGSIZE 10 233 #endif 234 235 int pool_logsize = POOL_LOGSIZE; 236 237 static inline void 238 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 239 { 240 int n = pp->pr_curlogentry; 241 struct pool_log *pl; 242 243 if ((pp->pr_roflags & PR_LOGGING) == 0) 244 return; 245 246 /* 247 * Fill in the current entry. Wrap around and overwrite 248 * the oldest entry if necessary. 249 */ 250 pl = &pp->pr_log[n]; 251 pl->pl_file = file; 252 pl->pl_line = line; 253 pl->pl_action = action; 254 pl->pl_addr = v; 255 if (++n >= pp->pr_logsize) 256 n = 0; 257 pp->pr_curlogentry = n; 258 } 259 260 static void 261 pr_printlog(struct pool *pp, struct pool_item *pi, 262 void (*pr)(const char *, ...)) 263 { 264 int i = pp->pr_logsize; 265 int n = pp->pr_curlogentry; 266 267 if ((pp->pr_roflags & PR_LOGGING) == 0) 268 return; 269 270 /* 271 * Print all entries in this pool's log. 272 */ 273 while (i-- > 0) { 274 struct pool_log *pl = &pp->pr_log[n]; 275 if (pl->pl_action != 0) { 276 if (pi == NULL || pi == pl->pl_addr) { 277 (*pr)("\tlog entry %d:\n", i); 278 (*pr)("\t\taction = %s, addr = %p\n", 279 pl->pl_action == PRLOG_GET ? "get" : "put", 280 pl->pl_addr); 281 (*pr)("\t\tfile: %s at line %lu\n", 282 pl->pl_file, pl->pl_line); 283 } 284 } 285 if (++n >= pp->pr_logsize) 286 n = 0; 287 } 288 } 289 290 static inline void 291 pr_enter(struct pool *pp, const char *file, long line) 292 { 293 294 if (__predict_false(pp->pr_entered_file != NULL)) { 295 printf("pool %s: reentrancy at file %s line %ld\n", 296 pp->pr_wchan, file, line); 297 printf(" previous entry at file %s line %ld\n", 298 pp->pr_entered_file, pp->pr_entered_line); 299 panic("pr_enter"); 300 } 301 302 pp->pr_entered_file = file; 303 pp->pr_entered_line = line; 304 } 305 306 static inline void 307 pr_leave(struct pool *pp) 308 { 309 310 if (__predict_false(pp->pr_entered_file == NULL)) { 311 printf("pool %s not entered?\n", pp->pr_wchan); 312 panic("pr_leave"); 313 } 314 315 pp->pr_entered_file = NULL; 316 pp->pr_entered_line = 0; 317 } 318 319 static inline void 320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 321 { 322 323 if (pp->pr_entered_file != NULL) 324 (*pr)("\n\tcurrently entered from file %s line %ld\n", 325 pp->pr_entered_file, pp->pr_entered_line); 326 } 327 #else 328 #define pr_log(pp, v, action, file, line) 329 #define pr_printlog(pp, pi, pr) 330 #define pr_enter(pp, file, line) 331 #define pr_leave(pp) 332 #define pr_enter_check(pp, pr) 333 #endif /* POOL_DIAGNOSTIC */ 334 335 static inline unsigned int 336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 337 const void *v) 338 { 339 const char *cp = v; 340 unsigned int idx; 341 342 KASSERT(pp->pr_roflags & PR_NOTOUCH); 343 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 344 KASSERT(idx < pp->pr_itemsperpage); 345 return idx; 346 } 347 348 static inline void 349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 350 void *obj) 351 { 352 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 353 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 354 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 355 356 KASSERT((*bitmap & mask) == 0); 357 *bitmap |= mask; 358 } 359 360 static inline void * 361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 362 { 363 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 364 unsigned int idx; 365 int i; 366 367 for (i = 0; ; i++) { 368 int bit; 369 370 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 371 bit = ffs32(bitmap[i]); 372 if (bit) { 373 pool_item_bitmap_t mask; 374 375 bit--; 376 idx = (i * BITMAP_SIZE) + bit; 377 mask = 1 << bit; 378 KASSERT((bitmap[i] & mask) != 0); 379 bitmap[i] &= ~mask; 380 break; 381 } 382 } 383 KASSERT(idx < pp->pr_itemsperpage); 384 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 385 } 386 387 static inline void 388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 389 { 390 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 391 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 392 int i; 393 394 for (i = 0; i < n; i++) { 395 bitmap[i] = (pool_item_bitmap_t)-1; 396 } 397 } 398 399 static inline int 400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 401 { 402 403 /* 404 * we consider pool_item_header with smaller ph_page bigger. 405 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 406 */ 407 408 if (a->ph_page < b->ph_page) 409 return (1); 410 else if (a->ph_page > b->ph_page) 411 return (-1); 412 else 413 return (0); 414 } 415 416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 418 419 static inline struct pool_item_header * 420 pr_find_pagehead_noalign(struct pool *pp, void *v) 421 { 422 struct pool_item_header *ph, tmp; 423 424 tmp.ph_page = (void *)(uintptr_t)v; 425 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 426 if (ph == NULL) { 427 ph = SPLAY_ROOT(&pp->pr_phtree); 428 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 429 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 430 } 431 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 432 } 433 434 return ph; 435 } 436 437 /* 438 * Return the pool page header based on item address. 439 */ 440 static inline struct pool_item_header * 441 pr_find_pagehead(struct pool *pp, void *v) 442 { 443 struct pool_item_header *ph, tmp; 444 445 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 446 ph = pr_find_pagehead_noalign(pp, v); 447 } else { 448 void *page = 449 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 450 451 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 452 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 453 } else { 454 tmp.ph_page = page; 455 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 456 } 457 } 458 459 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 460 ((char *)ph->ph_page <= (char *)v && 461 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 462 return ph; 463 } 464 465 static void 466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 467 { 468 struct pool_item_header *ph; 469 470 while ((ph = LIST_FIRST(pq)) != NULL) { 471 LIST_REMOVE(ph, ph_pagelist); 472 pool_allocator_free(pp, ph->ph_page); 473 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 474 pool_put(pp->pr_phpool, ph); 475 } 476 } 477 478 /* 479 * Remove a page from the pool. 480 */ 481 static inline void 482 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 483 struct pool_pagelist *pq) 484 { 485 486 KASSERT(mutex_owned(&pp->pr_lock)); 487 488 /* 489 * If the page was idle, decrement the idle page count. 490 */ 491 if (ph->ph_nmissing == 0) { 492 #ifdef DIAGNOSTIC 493 if (pp->pr_nidle == 0) 494 panic("pr_rmpage: nidle inconsistent"); 495 if (pp->pr_nitems < pp->pr_itemsperpage) 496 panic("pr_rmpage: nitems inconsistent"); 497 #endif 498 pp->pr_nidle--; 499 } 500 501 pp->pr_nitems -= pp->pr_itemsperpage; 502 503 /* 504 * Unlink the page from the pool and queue it for release. 505 */ 506 LIST_REMOVE(ph, ph_pagelist); 507 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 508 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 509 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 510 511 pp->pr_npages--; 512 pp->pr_npagefree++; 513 514 pool_update_curpage(pp); 515 } 516 517 static bool 518 pa_starved_p(struct pool_allocator *pa) 519 { 520 521 if (pa->pa_backingmap != NULL) { 522 return vm_map_starved_p(pa->pa_backingmap); 523 } 524 return false; 525 } 526 527 static int 528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 529 { 530 struct pool *pp = obj; 531 struct pool_allocator *pa = pp->pr_alloc; 532 533 KASSERT(&pp->pr_reclaimerentry == ce); 534 pool_reclaim(pp); 535 if (!pa_starved_p(pa)) { 536 return CALLBACK_CHAIN_ABORT; 537 } 538 return CALLBACK_CHAIN_CONTINUE; 539 } 540 541 static void 542 pool_reclaim_register(struct pool *pp) 543 { 544 struct vm_map *map = pp->pr_alloc->pa_backingmap; 545 int s; 546 547 if (map == NULL) { 548 return; 549 } 550 551 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 552 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 553 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 554 splx(s); 555 } 556 557 static void 558 pool_reclaim_unregister(struct pool *pp) 559 { 560 struct vm_map *map = pp->pr_alloc->pa_backingmap; 561 int s; 562 563 if (map == NULL) { 564 return; 565 } 566 567 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 568 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 569 &pp->pr_reclaimerentry); 570 splx(s); 571 } 572 573 static void 574 pa_reclaim_register(struct pool_allocator *pa) 575 { 576 struct vm_map *map = *pa->pa_backingmapptr; 577 struct pool *pp; 578 579 KASSERT(pa->pa_backingmap == NULL); 580 if (map == NULL) { 581 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 582 return; 583 } 584 pa->pa_backingmap = map; 585 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 586 pool_reclaim_register(pp); 587 } 588 } 589 590 /* 591 * Initialize all the pools listed in the "pools" link set. 592 */ 593 void 594 pool_subsystem_init(void) 595 { 596 struct pool_allocator *pa; 597 __link_set_decl(pools, struct link_pool_init); 598 struct link_pool_init * const *pi; 599 600 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 601 cv_init(&pool_busy, "poolbusy"); 602 603 __link_set_foreach(pi, pools) 604 pool_init((*pi)->pp, (*pi)->size, (*pi)->align, 605 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan, 606 (*pi)->palloc, (*pi)->ipl); 607 608 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 609 KASSERT(pa->pa_backingmapptr != NULL); 610 KASSERT(*pa->pa_backingmapptr != NULL); 611 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 612 pa_reclaim_register(pa); 613 } 614 615 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 616 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 617 618 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 619 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 620 } 621 622 /* 623 * Initialize the given pool resource structure. 624 * 625 * We export this routine to allow other kernel parts to declare 626 * static pools that must be initialized before malloc() is available. 627 */ 628 void 629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 630 const char *wchan, struct pool_allocator *palloc, int ipl) 631 { 632 struct pool *pp1; 633 size_t trysize, phsize; 634 int off, slack; 635 636 #ifdef DEBUG 637 /* 638 * Check that the pool hasn't already been initialised and 639 * added to the list of all pools. 640 */ 641 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 642 if (pp == pp1) 643 panic("pool_init: pool %s already initialised", 644 wchan); 645 } 646 #endif 647 648 #ifdef POOL_DIAGNOSTIC 649 /* 650 * Always log if POOL_DIAGNOSTIC is defined. 651 */ 652 if (pool_logsize != 0) 653 flags |= PR_LOGGING; 654 #endif 655 656 if (palloc == NULL) 657 palloc = &pool_allocator_kmem; 658 #ifdef POOL_SUBPAGE 659 if (size > palloc->pa_pagesz) { 660 if (palloc == &pool_allocator_kmem) 661 palloc = &pool_allocator_kmem_fullpage; 662 else if (palloc == &pool_allocator_nointr) 663 palloc = &pool_allocator_nointr_fullpage; 664 } 665 #endif /* POOL_SUBPAGE */ 666 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 667 if (palloc->pa_pagesz == 0) 668 palloc->pa_pagesz = PAGE_SIZE; 669 670 TAILQ_INIT(&palloc->pa_list); 671 672 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 673 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 674 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 675 676 if (palloc->pa_backingmapptr != NULL) { 677 pa_reclaim_register(palloc); 678 } 679 palloc->pa_flags |= PA_INITIALIZED; 680 } 681 682 if (align == 0) 683 align = ALIGN(1); 684 685 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 686 size = sizeof(struct pool_item); 687 688 size = roundup(size, align); 689 #ifdef DIAGNOSTIC 690 if (size > palloc->pa_pagesz) 691 panic("pool_init: pool item size (%zu) too large", size); 692 #endif 693 694 /* 695 * Initialize the pool structure. 696 */ 697 LIST_INIT(&pp->pr_emptypages); 698 LIST_INIT(&pp->pr_fullpages); 699 LIST_INIT(&pp->pr_partpages); 700 pp->pr_cache = NULL; 701 pp->pr_curpage = NULL; 702 pp->pr_npages = 0; 703 pp->pr_minitems = 0; 704 pp->pr_minpages = 0; 705 pp->pr_maxpages = UINT_MAX; 706 pp->pr_roflags = flags; 707 pp->pr_flags = 0; 708 pp->pr_size = size; 709 pp->pr_align = align; 710 pp->pr_wchan = wchan; 711 pp->pr_alloc = palloc; 712 pp->pr_nitems = 0; 713 pp->pr_nout = 0; 714 pp->pr_hardlimit = UINT_MAX; 715 pp->pr_hardlimit_warning = NULL; 716 pp->pr_hardlimit_ratecap.tv_sec = 0; 717 pp->pr_hardlimit_ratecap.tv_usec = 0; 718 pp->pr_hardlimit_warning_last.tv_sec = 0; 719 pp->pr_hardlimit_warning_last.tv_usec = 0; 720 pp->pr_drain_hook = NULL; 721 pp->pr_drain_hook_arg = NULL; 722 pp->pr_freecheck = NULL; 723 724 /* 725 * Decide whether to put the page header off page to avoid 726 * wasting too large a part of the page or too big item. 727 * Off-page page headers go on a hash table, so we can match 728 * a returned item with its header based on the page address. 729 * We use 1/16 of the page size and about 8 times of the item 730 * size as the threshold (XXX: tune) 731 * 732 * However, we'll put the header into the page if we can put 733 * it without wasting any items. 734 * 735 * Silently enforce `0 <= ioff < align'. 736 */ 737 pp->pr_itemoffset = ioff %= align; 738 /* See the comment below about reserved bytes. */ 739 trysize = palloc->pa_pagesz - ((align - ioff) % align); 740 phsize = ALIGN(sizeof(struct pool_item_header)); 741 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 742 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 743 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 744 /* Use the end of the page for the page header */ 745 pp->pr_roflags |= PR_PHINPAGE; 746 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 747 } else { 748 /* The page header will be taken from our page header pool */ 749 pp->pr_phoffset = 0; 750 off = palloc->pa_pagesz; 751 SPLAY_INIT(&pp->pr_phtree); 752 } 753 754 /* 755 * Alignment is to take place at `ioff' within the item. This means 756 * we must reserve up to `align - 1' bytes on the page to allow 757 * appropriate positioning of each item. 758 */ 759 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 760 KASSERT(pp->pr_itemsperpage != 0); 761 if ((pp->pr_roflags & PR_NOTOUCH)) { 762 int idx; 763 764 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 765 idx++) { 766 /* nothing */ 767 } 768 if (idx >= PHPOOL_MAX) { 769 /* 770 * if you see this panic, consider to tweak 771 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 772 */ 773 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 774 pp->pr_wchan, pp->pr_itemsperpage); 775 } 776 pp->pr_phpool = &phpool[idx]; 777 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 778 pp->pr_phpool = &phpool[0]; 779 } 780 #if defined(DIAGNOSTIC) 781 else { 782 pp->pr_phpool = NULL; 783 } 784 #endif 785 786 /* 787 * Use the slack between the chunks and the page header 788 * for "cache coloring". 789 */ 790 slack = off - pp->pr_itemsperpage * pp->pr_size; 791 pp->pr_maxcolor = (slack / align) * align; 792 pp->pr_curcolor = 0; 793 794 pp->pr_nget = 0; 795 pp->pr_nfail = 0; 796 pp->pr_nput = 0; 797 pp->pr_npagealloc = 0; 798 pp->pr_npagefree = 0; 799 pp->pr_hiwat = 0; 800 pp->pr_nidle = 0; 801 pp->pr_refcnt = 0; 802 803 #ifdef POOL_DIAGNOSTIC 804 if (flags & PR_LOGGING) { 805 if (kmem_map == NULL || 806 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 807 M_TEMP, M_NOWAIT)) == NULL) 808 pp->pr_roflags &= ~PR_LOGGING; 809 pp->pr_curlogentry = 0; 810 pp->pr_logsize = pool_logsize; 811 } 812 #endif 813 814 pp->pr_entered_file = NULL; 815 pp->pr_entered_line = 0; 816 817 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 818 cv_init(&pp->pr_cv, wchan); 819 pp->pr_ipl = ipl; 820 821 /* 822 * Initialize private page header pool and cache magazine pool if we 823 * haven't done so yet. 824 * XXX LOCKING. 825 */ 826 if (phpool[0].pr_size == 0) { 827 int idx; 828 for (idx = 0; idx < PHPOOL_MAX; idx++) { 829 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 830 int nelem; 831 size_t sz; 832 833 nelem = PHPOOL_FREELIST_NELEM(idx); 834 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 835 "phpool-%d", nelem); 836 sz = sizeof(struct pool_item_header); 837 if (nelem) { 838 sz = offsetof(struct pool_item_header, 839 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 840 } 841 pool_init(&phpool[idx], sz, 0, 0, 0, 842 phpool_names[idx], &pool_allocator_meta, IPL_VM); 843 } 844 #ifdef POOL_SUBPAGE 845 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 846 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 847 #endif 848 849 size = sizeof(pcg_t) + 850 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 851 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 852 "pcgnormal", &pool_allocator_meta, IPL_VM); 853 854 size = sizeof(pcg_t) + 855 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 856 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 857 "pcglarge", &pool_allocator_meta, IPL_VM); 858 } 859 860 /* Insert into the list of all pools. */ 861 if (__predict_true(!cold)) 862 mutex_enter(&pool_head_lock); 863 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 864 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 865 break; 866 } 867 if (pp1 == NULL) 868 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 869 else 870 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 871 if (__predict_true(!cold)) 872 mutex_exit(&pool_head_lock); 873 874 /* Insert this into the list of pools using this allocator. */ 875 if (__predict_true(!cold)) 876 mutex_enter(&palloc->pa_lock); 877 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 878 if (__predict_true(!cold)) 879 mutex_exit(&palloc->pa_lock); 880 881 pool_reclaim_register(pp); 882 } 883 884 /* 885 * De-commision a pool resource. 886 */ 887 void 888 pool_destroy(struct pool *pp) 889 { 890 struct pool_pagelist pq; 891 struct pool_item_header *ph; 892 893 /* Remove from global pool list */ 894 mutex_enter(&pool_head_lock); 895 while (pp->pr_refcnt != 0) 896 cv_wait(&pool_busy, &pool_head_lock); 897 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 898 if (drainpp == pp) 899 drainpp = NULL; 900 mutex_exit(&pool_head_lock); 901 902 /* Remove this pool from its allocator's list of pools. */ 903 pool_reclaim_unregister(pp); 904 mutex_enter(&pp->pr_alloc->pa_lock); 905 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 906 mutex_exit(&pp->pr_alloc->pa_lock); 907 908 mutex_enter(&pp->pr_lock); 909 910 KASSERT(pp->pr_cache == NULL); 911 912 #ifdef DIAGNOSTIC 913 if (pp->pr_nout != 0) { 914 pr_printlog(pp, NULL, printf); 915 panic("pool_destroy: pool busy: still out: %u", 916 pp->pr_nout); 917 } 918 #endif 919 920 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 921 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 922 923 /* Remove all pages */ 924 LIST_INIT(&pq); 925 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 926 pr_rmpage(pp, ph, &pq); 927 928 mutex_exit(&pp->pr_lock); 929 930 pr_pagelist_free(pp, &pq); 931 932 #ifdef POOL_DIAGNOSTIC 933 if ((pp->pr_roflags & PR_LOGGING) != 0) 934 free(pp->pr_log, M_TEMP); 935 #endif 936 937 cv_destroy(&pp->pr_cv); 938 mutex_destroy(&pp->pr_lock); 939 } 940 941 void 942 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 943 { 944 945 /* XXX no locking -- must be used just after pool_init() */ 946 #ifdef DIAGNOSTIC 947 if (pp->pr_drain_hook != NULL) 948 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 949 #endif 950 pp->pr_drain_hook = fn; 951 pp->pr_drain_hook_arg = arg; 952 } 953 954 static struct pool_item_header * 955 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 956 { 957 struct pool_item_header *ph; 958 959 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 960 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 961 else 962 ph = pool_get(pp->pr_phpool, flags); 963 964 return (ph); 965 } 966 967 /* 968 * Grab an item from the pool. 969 */ 970 void * 971 #ifdef POOL_DIAGNOSTIC 972 _pool_get(struct pool *pp, int flags, const char *file, long line) 973 #else 974 pool_get(struct pool *pp, int flags) 975 #endif 976 { 977 struct pool_item *pi; 978 struct pool_item_header *ph; 979 void *v; 980 981 #ifdef DIAGNOSTIC 982 if (__predict_false(pp->pr_itemsperpage == 0)) 983 panic("pool_get: pool %p: pr_itemsperpage is zero, " 984 "pool not initialized?", pp); 985 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 986 (flags & PR_WAITOK) != 0)) 987 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 988 989 #endif /* DIAGNOSTIC */ 990 #ifdef LOCKDEBUG 991 if (flags & PR_WAITOK) { 992 ASSERT_SLEEPABLE(); 993 } 994 #endif 995 996 mutex_enter(&pp->pr_lock); 997 pr_enter(pp, file, line); 998 999 startover: 1000 /* 1001 * Check to see if we've reached the hard limit. If we have, 1002 * and we can wait, then wait until an item has been returned to 1003 * the pool. 1004 */ 1005 #ifdef DIAGNOSTIC 1006 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 1007 pr_leave(pp); 1008 mutex_exit(&pp->pr_lock); 1009 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 1010 } 1011 #endif 1012 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1013 if (pp->pr_drain_hook != NULL) { 1014 /* 1015 * Since the drain hook is going to free things 1016 * back to the pool, unlock, call the hook, re-lock, 1017 * and check the hardlimit condition again. 1018 */ 1019 pr_leave(pp); 1020 mutex_exit(&pp->pr_lock); 1021 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1022 mutex_enter(&pp->pr_lock); 1023 pr_enter(pp, file, line); 1024 if (pp->pr_nout < pp->pr_hardlimit) 1025 goto startover; 1026 } 1027 1028 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1029 /* 1030 * XXX: A warning isn't logged in this case. Should 1031 * it be? 1032 */ 1033 pp->pr_flags |= PR_WANTED; 1034 pr_leave(pp); 1035 cv_wait(&pp->pr_cv, &pp->pr_lock); 1036 pr_enter(pp, file, line); 1037 goto startover; 1038 } 1039 1040 /* 1041 * Log a message that the hard limit has been hit. 1042 */ 1043 if (pp->pr_hardlimit_warning != NULL && 1044 ratecheck(&pp->pr_hardlimit_warning_last, 1045 &pp->pr_hardlimit_ratecap)) 1046 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1047 1048 pp->pr_nfail++; 1049 1050 pr_leave(pp); 1051 mutex_exit(&pp->pr_lock); 1052 return (NULL); 1053 } 1054 1055 /* 1056 * The convention we use is that if `curpage' is not NULL, then 1057 * it points at a non-empty bucket. In particular, `curpage' 1058 * never points at a page header which has PR_PHINPAGE set and 1059 * has no items in its bucket. 1060 */ 1061 if ((ph = pp->pr_curpage) == NULL) { 1062 int error; 1063 1064 #ifdef DIAGNOSTIC 1065 if (pp->pr_nitems != 0) { 1066 mutex_exit(&pp->pr_lock); 1067 printf("pool_get: %s: curpage NULL, nitems %u\n", 1068 pp->pr_wchan, pp->pr_nitems); 1069 panic("pool_get: nitems inconsistent"); 1070 } 1071 #endif 1072 1073 /* 1074 * Call the back-end page allocator for more memory. 1075 * Release the pool lock, as the back-end page allocator 1076 * may block. 1077 */ 1078 pr_leave(pp); 1079 error = pool_grow(pp, flags); 1080 pr_enter(pp, file, line); 1081 if (error != 0) { 1082 /* 1083 * We were unable to allocate a page or item 1084 * header, but we released the lock during 1085 * allocation, so perhaps items were freed 1086 * back to the pool. Check for this case. 1087 */ 1088 if (pp->pr_curpage != NULL) 1089 goto startover; 1090 1091 pp->pr_nfail++; 1092 pr_leave(pp); 1093 mutex_exit(&pp->pr_lock); 1094 return (NULL); 1095 } 1096 1097 /* Start the allocation process over. */ 1098 goto startover; 1099 } 1100 if (pp->pr_roflags & PR_NOTOUCH) { 1101 #ifdef DIAGNOSTIC 1102 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1103 pr_leave(pp); 1104 mutex_exit(&pp->pr_lock); 1105 panic("pool_get: %s: page empty", pp->pr_wchan); 1106 } 1107 #endif 1108 v = pr_item_notouch_get(pp, ph); 1109 #ifdef POOL_DIAGNOSTIC 1110 pr_log(pp, v, PRLOG_GET, file, line); 1111 #endif 1112 } else { 1113 v = pi = LIST_FIRST(&ph->ph_itemlist); 1114 if (__predict_false(v == NULL)) { 1115 pr_leave(pp); 1116 mutex_exit(&pp->pr_lock); 1117 panic("pool_get: %s: page empty", pp->pr_wchan); 1118 } 1119 #ifdef DIAGNOSTIC 1120 if (__predict_false(pp->pr_nitems == 0)) { 1121 pr_leave(pp); 1122 mutex_exit(&pp->pr_lock); 1123 printf("pool_get: %s: items on itemlist, nitems %u\n", 1124 pp->pr_wchan, pp->pr_nitems); 1125 panic("pool_get: nitems inconsistent"); 1126 } 1127 #endif 1128 1129 #ifdef POOL_DIAGNOSTIC 1130 pr_log(pp, v, PRLOG_GET, file, line); 1131 #endif 1132 1133 #ifdef DIAGNOSTIC 1134 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1135 pr_printlog(pp, pi, printf); 1136 panic("pool_get(%s): free list modified: " 1137 "magic=%x; page %p; item addr %p\n", 1138 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1139 } 1140 #endif 1141 1142 /* 1143 * Remove from item list. 1144 */ 1145 LIST_REMOVE(pi, pi_list); 1146 } 1147 pp->pr_nitems--; 1148 pp->pr_nout++; 1149 if (ph->ph_nmissing == 0) { 1150 #ifdef DIAGNOSTIC 1151 if (__predict_false(pp->pr_nidle == 0)) 1152 panic("pool_get: nidle inconsistent"); 1153 #endif 1154 pp->pr_nidle--; 1155 1156 /* 1157 * This page was previously empty. Move it to the list of 1158 * partially-full pages. This page is already curpage. 1159 */ 1160 LIST_REMOVE(ph, ph_pagelist); 1161 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1162 } 1163 ph->ph_nmissing++; 1164 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1165 #ifdef DIAGNOSTIC 1166 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1167 !LIST_EMPTY(&ph->ph_itemlist))) { 1168 pr_leave(pp); 1169 mutex_exit(&pp->pr_lock); 1170 panic("pool_get: %s: nmissing inconsistent", 1171 pp->pr_wchan); 1172 } 1173 #endif 1174 /* 1175 * This page is now full. Move it to the full list 1176 * and select a new current page. 1177 */ 1178 LIST_REMOVE(ph, ph_pagelist); 1179 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1180 pool_update_curpage(pp); 1181 } 1182 1183 pp->pr_nget++; 1184 pr_leave(pp); 1185 1186 /* 1187 * If we have a low water mark and we are now below that low 1188 * water mark, add more items to the pool. 1189 */ 1190 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1191 /* 1192 * XXX: Should we log a warning? Should we set up a timeout 1193 * to try again in a second or so? The latter could break 1194 * a caller's assumptions about interrupt protection, etc. 1195 */ 1196 } 1197 1198 mutex_exit(&pp->pr_lock); 1199 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1200 FREECHECK_OUT(&pp->pr_freecheck, v); 1201 return (v); 1202 } 1203 1204 /* 1205 * Internal version of pool_put(). Pool is already locked/entered. 1206 */ 1207 static void 1208 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1209 { 1210 struct pool_item *pi = v; 1211 struct pool_item_header *ph; 1212 1213 KASSERT(mutex_owned(&pp->pr_lock)); 1214 FREECHECK_IN(&pp->pr_freecheck, v); 1215 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1216 1217 #ifdef DIAGNOSTIC 1218 if (__predict_false(pp->pr_nout == 0)) { 1219 printf("pool %s: putting with none out\n", 1220 pp->pr_wchan); 1221 panic("pool_put"); 1222 } 1223 #endif 1224 1225 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1226 pr_printlog(pp, NULL, printf); 1227 panic("pool_put: %s: page header missing", pp->pr_wchan); 1228 } 1229 1230 /* 1231 * Return to item list. 1232 */ 1233 if (pp->pr_roflags & PR_NOTOUCH) { 1234 pr_item_notouch_put(pp, ph, v); 1235 } else { 1236 #ifdef DIAGNOSTIC 1237 pi->pi_magic = PI_MAGIC; 1238 #endif 1239 #ifdef DEBUG 1240 { 1241 int i, *ip = v; 1242 1243 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1244 *ip++ = PI_MAGIC; 1245 } 1246 } 1247 #endif 1248 1249 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1250 } 1251 KDASSERT(ph->ph_nmissing != 0); 1252 ph->ph_nmissing--; 1253 pp->pr_nput++; 1254 pp->pr_nitems++; 1255 pp->pr_nout--; 1256 1257 /* Cancel "pool empty" condition if it exists */ 1258 if (pp->pr_curpage == NULL) 1259 pp->pr_curpage = ph; 1260 1261 if (pp->pr_flags & PR_WANTED) { 1262 pp->pr_flags &= ~PR_WANTED; 1263 if (ph->ph_nmissing == 0) 1264 pp->pr_nidle++; 1265 cv_broadcast(&pp->pr_cv); 1266 return; 1267 } 1268 1269 /* 1270 * If this page is now empty, do one of two things: 1271 * 1272 * (1) If we have more pages than the page high water mark, 1273 * free the page back to the system. ONLY CONSIDER 1274 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1275 * CLAIM. 1276 * 1277 * (2) Otherwise, move the page to the empty page list. 1278 * 1279 * Either way, select a new current page (so we use a partially-full 1280 * page if one is available). 1281 */ 1282 if (ph->ph_nmissing == 0) { 1283 pp->pr_nidle++; 1284 if (pp->pr_npages > pp->pr_minpages && 1285 pp->pr_npages > pp->pr_maxpages) { 1286 pr_rmpage(pp, ph, pq); 1287 } else { 1288 LIST_REMOVE(ph, ph_pagelist); 1289 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1290 1291 /* 1292 * Update the timestamp on the page. A page must 1293 * be idle for some period of time before it can 1294 * be reclaimed by the pagedaemon. This minimizes 1295 * ping-pong'ing for memory. 1296 * 1297 * note for 64-bit time_t: truncating to 32-bit is not 1298 * a problem for our usage. 1299 */ 1300 ph->ph_time = time_uptime; 1301 } 1302 pool_update_curpage(pp); 1303 } 1304 1305 /* 1306 * If the page was previously completely full, move it to the 1307 * partially-full list and make it the current page. The next 1308 * allocation will get the item from this page, instead of 1309 * further fragmenting the pool. 1310 */ 1311 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1312 LIST_REMOVE(ph, ph_pagelist); 1313 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1314 pp->pr_curpage = ph; 1315 } 1316 } 1317 1318 /* 1319 * Return resource to the pool. 1320 */ 1321 #ifdef POOL_DIAGNOSTIC 1322 void 1323 _pool_put(struct pool *pp, void *v, const char *file, long line) 1324 { 1325 struct pool_pagelist pq; 1326 1327 LIST_INIT(&pq); 1328 1329 mutex_enter(&pp->pr_lock); 1330 pr_enter(pp, file, line); 1331 1332 pr_log(pp, v, PRLOG_PUT, file, line); 1333 1334 pool_do_put(pp, v, &pq); 1335 1336 pr_leave(pp); 1337 mutex_exit(&pp->pr_lock); 1338 1339 pr_pagelist_free(pp, &pq); 1340 } 1341 #undef pool_put 1342 #endif /* POOL_DIAGNOSTIC */ 1343 1344 void 1345 pool_put(struct pool *pp, void *v) 1346 { 1347 struct pool_pagelist pq; 1348 1349 LIST_INIT(&pq); 1350 1351 mutex_enter(&pp->pr_lock); 1352 pool_do_put(pp, v, &pq); 1353 mutex_exit(&pp->pr_lock); 1354 1355 pr_pagelist_free(pp, &pq); 1356 } 1357 1358 #ifdef POOL_DIAGNOSTIC 1359 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1360 #endif 1361 1362 /* 1363 * pool_grow: grow a pool by a page. 1364 * 1365 * => called with pool locked. 1366 * => unlock and relock the pool. 1367 * => return with pool locked. 1368 */ 1369 1370 static int 1371 pool_grow(struct pool *pp, int flags) 1372 { 1373 struct pool_item_header *ph = NULL; 1374 char *cp; 1375 1376 mutex_exit(&pp->pr_lock); 1377 cp = pool_allocator_alloc(pp, flags); 1378 if (__predict_true(cp != NULL)) { 1379 ph = pool_alloc_item_header(pp, cp, flags); 1380 } 1381 if (__predict_false(cp == NULL || ph == NULL)) { 1382 if (cp != NULL) { 1383 pool_allocator_free(pp, cp); 1384 } 1385 mutex_enter(&pp->pr_lock); 1386 return ENOMEM; 1387 } 1388 1389 mutex_enter(&pp->pr_lock); 1390 pool_prime_page(pp, cp, ph); 1391 pp->pr_npagealloc++; 1392 return 0; 1393 } 1394 1395 /* 1396 * Add N items to the pool. 1397 */ 1398 int 1399 pool_prime(struct pool *pp, int n) 1400 { 1401 int newpages; 1402 int error = 0; 1403 1404 mutex_enter(&pp->pr_lock); 1405 1406 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1407 1408 while (newpages-- > 0) { 1409 error = pool_grow(pp, PR_NOWAIT); 1410 if (error) { 1411 break; 1412 } 1413 pp->pr_minpages++; 1414 } 1415 1416 if (pp->pr_minpages >= pp->pr_maxpages) 1417 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1418 1419 mutex_exit(&pp->pr_lock); 1420 return error; 1421 } 1422 1423 /* 1424 * Add a page worth of items to the pool. 1425 * 1426 * Note, we must be called with the pool descriptor LOCKED. 1427 */ 1428 static void 1429 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1430 { 1431 struct pool_item *pi; 1432 void *cp = storage; 1433 const unsigned int align = pp->pr_align; 1434 const unsigned int ioff = pp->pr_itemoffset; 1435 int n; 1436 1437 KASSERT(mutex_owned(&pp->pr_lock)); 1438 1439 #ifdef DIAGNOSTIC 1440 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1441 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1442 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1443 #endif 1444 1445 /* 1446 * Insert page header. 1447 */ 1448 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1449 LIST_INIT(&ph->ph_itemlist); 1450 ph->ph_page = storage; 1451 ph->ph_nmissing = 0; 1452 ph->ph_time = time_uptime; 1453 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1454 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1455 1456 pp->pr_nidle++; 1457 1458 /* 1459 * Color this page. 1460 */ 1461 ph->ph_off = pp->pr_curcolor; 1462 cp = (char *)cp + ph->ph_off; 1463 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1464 pp->pr_curcolor = 0; 1465 1466 /* 1467 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1468 */ 1469 if (ioff != 0) 1470 cp = (char *)cp + align - ioff; 1471 1472 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1473 1474 /* 1475 * Insert remaining chunks on the bucket list. 1476 */ 1477 n = pp->pr_itemsperpage; 1478 pp->pr_nitems += n; 1479 1480 if (pp->pr_roflags & PR_NOTOUCH) { 1481 pr_item_notouch_init(pp, ph); 1482 } else { 1483 while (n--) { 1484 pi = (struct pool_item *)cp; 1485 1486 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1487 1488 /* Insert on page list */ 1489 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1490 #ifdef DIAGNOSTIC 1491 pi->pi_magic = PI_MAGIC; 1492 #endif 1493 cp = (char *)cp + pp->pr_size; 1494 1495 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1496 } 1497 } 1498 1499 /* 1500 * If the pool was depleted, point at the new page. 1501 */ 1502 if (pp->pr_curpage == NULL) 1503 pp->pr_curpage = ph; 1504 1505 if (++pp->pr_npages > pp->pr_hiwat) 1506 pp->pr_hiwat = pp->pr_npages; 1507 } 1508 1509 /* 1510 * Used by pool_get() when nitems drops below the low water mark. This 1511 * is used to catch up pr_nitems with the low water mark. 1512 * 1513 * Note 1, we never wait for memory here, we let the caller decide what to do. 1514 * 1515 * Note 2, we must be called with the pool already locked, and we return 1516 * with it locked. 1517 */ 1518 static int 1519 pool_catchup(struct pool *pp) 1520 { 1521 int error = 0; 1522 1523 while (POOL_NEEDS_CATCHUP(pp)) { 1524 error = pool_grow(pp, PR_NOWAIT); 1525 if (error) { 1526 break; 1527 } 1528 } 1529 return error; 1530 } 1531 1532 static void 1533 pool_update_curpage(struct pool *pp) 1534 { 1535 1536 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1537 if (pp->pr_curpage == NULL) { 1538 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1539 } 1540 } 1541 1542 void 1543 pool_setlowat(struct pool *pp, int n) 1544 { 1545 1546 mutex_enter(&pp->pr_lock); 1547 1548 pp->pr_minitems = n; 1549 pp->pr_minpages = (n == 0) 1550 ? 0 1551 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1552 1553 /* Make sure we're caught up with the newly-set low water mark. */ 1554 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1555 /* 1556 * XXX: Should we log a warning? Should we set up a timeout 1557 * to try again in a second or so? The latter could break 1558 * a caller's assumptions about interrupt protection, etc. 1559 */ 1560 } 1561 1562 mutex_exit(&pp->pr_lock); 1563 } 1564 1565 void 1566 pool_sethiwat(struct pool *pp, int n) 1567 { 1568 1569 mutex_enter(&pp->pr_lock); 1570 1571 pp->pr_maxpages = (n == 0) 1572 ? 0 1573 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1574 1575 mutex_exit(&pp->pr_lock); 1576 } 1577 1578 void 1579 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1580 { 1581 1582 mutex_enter(&pp->pr_lock); 1583 1584 pp->pr_hardlimit = n; 1585 pp->pr_hardlimit_warning = warnmess; 1586 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1587 pp->pr_hardlimit_warning_last.tv_sec = 0; 1588 pp->pr_hardlimit_warning_last.tv_usec = 0; 1589 1590 /* 1591 * In-line version of pool_sethiwat(), because we don't want to 1592 * release the lock. 1593 */ 1594 pp->pr_maxpages = (n == 0) 1595 ? 0 1596 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1597 1598 mutex_exit(&pp->pr_lock); 1599 } 1600 1601 /* 1602 * Release all complete pages that have not been used recently. 1603 */ 1604 int 1605 #ifdef POOL_DIAGNOSTIC 1606 _pool_reclaim(struct pool *pp, const char *file, long line) 1607 #else 1608 pool_reclaim(struct pool *pp) 1609 #endif 1610 { 1611 struct pool_item_header *ph, *phnext; 1612 struct pool_pagelist pq; 1613 uint32_t curtime; 1614 bool klock; 1615 int rv; 1616 1617 if (pp->pr_drain_hook != NULL) { 1618 /* 1619 * The drain hook must be called with the pool unlocked. 1620 */ 1621 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1622 } 1623 1624 /* 1625 * XXXSMP Because we do not want to cause non-MPSAFE code 1626 * to block. 1627 */ 1628 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1629 pp->pr_ipl == IPL_SOFTSERIAL) { 1630 KERNEL_LOCK(1, NULL); 1631 klock = true; 1632 } else 1633 klock = false; 1634 1635 /* Reclaim items from the pool's cache (if any). */ 1636 if (pp->pr_cache != NULL) 1637 pool_cache_invalidate(pp->pr_cache); 1638 1639 if (mutex_tryenter(&pp->pr_lock) == 0) { 1640 if (klock) { 1641 KERNEL_UNLOCK_ONE(NULL); 1642 } 1643 return (0); 1644 } 1645 pr_enter(pp, file, line); 1646 1647 LIST_INIT(&pq); 1648 1649 curtime = time_uptime; 1650 1651 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1652 phnext = LIST_NEXT(ph, ph_pagelist); 1653 1654 /* Check our minimum page claim */ 1655 if (pp->pr_npages <= pp->pr_minpages) 1656 break; 1657 1658 KASSERT(ph->ph_nmissing == 0); 1659 if (curtime - ph->ph_time < pool_inactive_time 1660 && !pa_starved_p(pp->pr_alloc)) 1661 continue; 1662 1663 /* 1664 * If freeing this page would put us below 1665 * the low water mark, stop now. 1666 */ 1667 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1668 pp->pr_minitems) 1669 break; 1670 1671 pr_rmpage(pp, ph, &pq); 1672 } 1673 1674 pr_leave(pp); 1675 mutex_exit(&pp->pr_lock); 1676 1677 if (LIST_EMPTY(&pq)) 1678 rv = 0; 1679 else { 1680 pr_pagelist_free(pp, &pq); 1681 rv = 1; 1682 } 1683 1684 if (klock) { 1685 KERNEL_UNLOCK_ONE(NULL); 1686 } 1687 1688 return (rv); 1689 } 1690 1691 /* 1692 * Drain pools, one at a time. This is a two stage process; 1693 * drain_start kicks off a cross call to drain CPU-level caches 1694 * if the pool has an associated pool_cache. drain_end waits 1695 * for those cross calls to finish, and then drains the cache 1696 * (if any) and pool. 1697 * 1698 * Note, must never be called from interrupt context. 1699 */ 1700 void 1701 pool_drain_start(struct pool **ppp, uint64_t *wp) 1702 { 1703 struct pool *pp; 1704 1705 KASSERT(!TAILQ_EMPTY(&pool_head)); 1706 1707 pp = NULL; 1708 1709 /* Find next pool to drain, and add a reference. */ 1710 mutex_enter(&pool_head_lock); 1711 do { 1712 if (drainpp == NULL) { 1713 drainpp = TAILQ_FIRST(&pool_head); 1714 } 1715 if (drainpp != NULL) { 1716 pp = drainpp; 1717 drainpp = TAILQ_NEXT(pp, pr_poollist); 1718 } 1719 /* 1720 * Skip completely idle pools. We depend on at least 1721 * one pool in the system being active. 1722 */ 1723 } while (pp == NULL || pp->pr_npages == 0); 1724 pp->pr_refcnt++; 1725 mutex_exit(&pool_head_lock); 1726 1727 /* If there is a pool_cache, drain CPU level caches. */ 1728 *ppp = pp; 1729 if (pp->pr_cache != NULL) { 1730 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1731 pp->pr_cache, NULL); 1732 } 1733 } 1734 1735 void 1736 pool_drain_end(struct pool *pp, uint64_t where) 1737 { 1738 1739 if (pp == NULL) 1740 return; 1741 1742 KASSERT(pp->pr_refcnt > 0); 1743 1744 /* Wait for remote draining to complete. */ 1745 if (pp->pr_cache != NULL) 1746 xc_wait(where); 1747 1748 /* Drain the cache (if any) and pool.. */ 1749 pool_reclaim(pp); 1750 1751 /* Finally, unlock the pool. */ 1752 mutex_enter(&pool_head_lock); 1753 pp->pr_refcnt--; 1754 cv_broadcast(&pool_busy); 1755 mutex_exit(&pool_head_lock); 1756 } 1757 1758 /* 1759 * Diagnostic helpers. 1760 */ 1761 void 1762 pool_print(struct pool *pp, const char *modif) 1763 { 1764 1765 pool_print1(pp, modif, printf); 1766 } 1767 1768 void 1769 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1770 { 1771 struct pool *pp; 1772 1773 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1774 pool_printit(pp, modif, pr); 1775 } 1776 } 1777 1778 void 1779 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1780 { 1781 1782 if (pp == NULL) { 1783 (*pr)("Must specify a pool to print.\n"); 1784 return; 1785 } 1786 1787 pool_print1(pp, modif, pr); 1788 } 1789 1790 static void 1791 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1792 void (*pr)(const char *, ...)) 1793 { 1794 struct pool_item_header *ph; 1795 #ifdef DIAGNOSTIC 1796 struct pool_item *pi; 1797 #endif 1798 1799 LIST_FOREACH(ph, pl, ph_pagelist) { 1800 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1801 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1802 #ifdef DIAGNOSTIC 1803 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1804 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1805 if (pi->pi_magic != PI_MAGIC) { 1806 (*pr)("\t\t\titem %p, magic 0x%x\n", 1807 pi, pi->pi_magic); 1808 } 1809 } 1810 } 1811 #endif 1812 } 1813 } 1814 1815 static void 1816 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1817 { 1818 struct pool_item_header *ph; 1819 pool_cache_t pc; 1820 pcg_t *pcg; 1821 pool_cache_cpu_t *cc; 1822 uint64_t cpuhit, cpumiss; 1823 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1824 char c; 1825 1826 while ((c = *modif++) != '\0') { 1827 if (c == 'l') 1828 print_log = 1; 1829 if (c == 'p') 1830 print_pagelist = 1; 1831 if (c == 'c') 1832 print_cache = 1; 1833 } 1834 1835 if ((pc = pp->pr_cache) != NULL) { 1836 (*pr)("POOL CACHE"); 1837 } else { 1838 (*pr)("POOL"); 1839 } 1840 1841 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1842 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1843 pp->pr_roflags); 1844 (*pr)("\talloc %p\n", pp->pr_alloc); 1845 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1846 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1847 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1848 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1849 1850 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1851 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1852 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1853 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1854 1855 if (print_pagelist == 0) 1856 goto skip_pagelist; 1857 1858 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1859 (*pr)("\n\tempty page list:\n"); 1860 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1861 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1862 (*pr)("\n\tfull page list:\n"); 1863 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1864 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1865 (*pr)("\n\tpartial-page list:\n"); 1866 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1867 1868 if (pp->pr_curpage == NULL) 1869 (*pr)("\tno current page\n"); 1870 else 1871 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1872 1873 skip_pagelist: 1874 if (print_log == 0) 1875 goto skip_log; 1876 1877 (*pr)("\n"); 1878 if ((pp->pr_roflags & PR_LOGGING) == 0) 1879 (*pr)("\tno log\n"); 1880 else { 1881 pr_printlog(pp, NULL, pr); 1882 } 1883 1884 skip_log: 1885 1886 #define PR_GROUPLIST(pcg) \ 1887 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1888 for (i = 0; i < pcg->pcg_size; i++) { \ 1889 if (pcg->pcg_objects[i].pcgo_pa != \ 1890 POOL_PADDR_INVALID) { \ 1891 (*pr)("\t\t\t%p, 0x%llx\n", \ 1892 pcg->pcg_objects[i].pcgo_va, \ 1893 (unsigned long long) \ 1894 pcg->pcg_objects[i].pcgo_pa); \ 1895 } else { \ 1896 (*pr)("\t\t\t%p\n", \ 1897 pcg->pcg_objects[i].pcgo_va); \ 1898 } \ 1899 } 1900 1901 if (pc != NULL) { 1902 cpuhit = 0; 1903 cpumiss = 0; 1904 for (i = 0; i < MAXCPUS; i++) { 1905 if ((cc = pc->pc_cpus[i]) == NULL) 1906 continue; 1907 cpuhit += cc->cc_hits; 1908 cpumiss += cc->cc_misses; 1909 } 1910 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1911 (*pr)("\tcache layer hits %llu misses %llu\n", 1912 pc->pc_hits, pc->pc_misses); 1913 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1914 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1915 pc->pc_contended); 1916 (*pr)("\tcache layer empty groups %u full groups %u\n", 1917 pc->pc_nempty, pc->pc_nfull); 1918 if (print_cache) { 1919 (*pr)("\tfull cache groups:\n"); 1920 for (pcg = pc->pc_fullgroups; pcg != NULL; 1921 pcg = pcg->pcg_next) { 1922 PR_GROUPLIST(pcg); 1923 } 1924 (*pr)("\tempty cache groups:\n"); 1925 for (pcg = pc->pc_emptygroups; pcg != NULL; 1926 pcg = pcg->pcg_next) { 1927 PR_GROUPLIST(pcg); 1928 } 1929 } 1930 } 1931 #undef PR_GROUPLIST 1932 1933 pr_enter_check(pp, pr); 1934 } 1935 1936 static int 1937 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1938 { 1939 struct pool_item *pi; 1940 void *page; 1941 int n; 1942 1943 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1944 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1945 if (page != ph->ph_page && 1946 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1947 if (label != NULL) 1948 printf("%s: ", label); 1949 printf("pool(%p:%s): page inconsistency: page %p;" 1950 " at page head addr %p (p %p)\n", pp, 1951 pp->pr_wchan, ph->ph_page, 1952 ph, page); 1953 return 1; 1954 } 1955 } 1956 1957 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1958 return 0; 1959 1960 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1961 pi != NULL; 1962 pi = LIST_NEXT(pi,pi_list), n++) { 1963 1964 #ifdef DIAGNOSTIC 1965 if (pi->pi_magic != PI_MAGIC) { 1966 if (label != NULL) 1967 printf("%s: ", label); 1968 printf("pool(%s): free list modified: magic=%x;" 1969 " page %p; item ordinal %d; addr %p\n", 1970 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1971 n, pi); 1972 panic("pool"); 1973 } 1974 #endif 1975 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1976 continue; 1977 } 1978 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1979 if (page == ph->ph_page) 1980 continue; 1981 1982 if (label != NULL) 1983 printf("%s: ", label); 1984 printf("pool(%p:%s): page inconsistency: page %p;" 1985 " item ordinal %d; addr %p (p %p)\n", pp, 1986 pp->pr_wchan, ph->ph_page, 1987 n, pi, page); 1988 return 1; 1989 } 1990 return 0; 1991 } 1992 1993 1994 int 1995 pool_chk(struct pool *pp, const char *label) 1996 { 1997 struct pool_item_header *ph; 1998 int r = 0; 1999 2000 mutex_enter(&pp->pr_lock); 2001 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2002 r = pool_chk_page(pp, label, ph); 2003 if (r) { 2004 goto out; 2005 } 2006 } 2007 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2008 r = pool_chk_page(pp, label, ph); 2009 if (r) { 2010 goto out; 2011 } 2012 } 2013 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2014 r = pool_chk_page(pp, label, ph); 2015 if (r) { 2016 goto out; 2017 } 2018 } 2019 2020 out: 2021 mutex_exit(&pp->pr_lock); 2022 return (r); 2023 } 2024 2025 /* 2026 * pool_cache_init: 2027 * 2028 * Initialize a pool cache. 2029 */ 2030 pool_cache_t 2031 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2032 const char *wchan, struct pool_allocator *palloc, int ipl, 2033 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2034 { 2035 pool_cache_t pc; 2036 2037 pc = pool_get(&cache_pool, PR_WAITOK); 2038 if (pc == NULL) 2039 return NULL; 2040 2041 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2042 palloc, ipl, ctor, dtor, arg); 2043 2044 return pc; 2045 } 2046 2047 /* 2048 * pool_cache_bootstrap: 2049 * 2050 * Kernel-private version of pool_cache_init(). The caller 2051 * provides initial storage. 2052 */ 2053 void 2054 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2055 u_int align_offset, u_int flags, const char *wchan, 2056 struct pool_allocator *palloc, int ipl, 2057 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2058 void *arg) 2059 { 2060 CPU_INFO_ITERATOR cii; 2061 pool_cache_t pc1; 2062 struct cpu_info *ci; 2063 struct pool *pp; 2064 2065 pp = &pc->pc_pool; 2066 if (palloc == NULL && ipl == IPL_NONE) 2067 palloc = &pool_allocator_nointr; 2068 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2069 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2070 2071 if (ctor == NULL) { 2072 ctor = (int (*)(void *, void *, int))nullop; 2073 } 2074 if (dtor == NULL) { 2075 dtor = (void (*)(void *, void *))nullop; 2076 } 2077 2078 pc->pc_emptygroups = NULL; 2079 pc->pc_fullgroups = NULL; 2080 pc->pc_partgroups = NULL; 2081 pc->pc_ctor = ctor; 2082 pc->pc_dtor = dtor; 2083 pc->pc_arg = arg; 2084 pc->pc_hits = 0; 2085 pc->pc_misses = 0; 2086 pc->pc_nempty = 0; 2087 pc->pc_npart = 0; 2088 pc->pc_nfull = 0; 2089 pc->pc_contended = 0; 2090 pc->pc_refcnt = 0; 2091 pc->pc_freecheck = NULL; 2092 2093 if ((flags & PR_LARGECACHE) != 0) { 2094 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2095 } else { 2096 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2097 } 2098 2099 /* Allocate per-CPU caches. */ 2100 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2101 pc->pc_ncpu = 0; 2102 if (ncpu < 2) { 2103 /* XXX For sparc: boot CPU is not attached yet. */ 2104 pool_cache_cpu_init1(curcpu(), pc); 2105 } else { 2106 for (CPU_INFO_FOREACH(cii, ci)) { 2107 pool_cache_cpu_init1(ci, pc); 2108 } 2109 } 2110 2111 /* Add to list of all pools. */ 2112 if (__predict_true(!cold)) 2113 mutex_enter(&pool_head_lock); 2114 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2115 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2116 break; 2117 } 2118 if (pc1 == NULL) 2119 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2120 else 2121 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2122 if (__predict_true(!cold)) 2123 mutex_exit(&pool_head_lock); 2124 2125 membar_sync(); 2126 pp->pr_cache = pc; 2127 } 2128 2129 /* 2130 * pool_cache_destroy: 2131 * 2132 * Destroy a pool cache. 2133 */ 2134 void 2135 pool_cache_destroy(pool_cache_t pc) 2136 { 2137 struct pool *pp = &pc->pc_pool; 2138 pool_cache_cpu_t *cc; 2139 pcg_t *pcg; 2140 int i; 2141 2142 /* Remove it from the global list. */ 2143 mutex_enter(&pool_head_lock); 2144 while (pc->pc_refcnt != 0) 2145 cv_wait(&pool_busy, &pool_head_lock); 2146 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2147 mutex_exit(&pool_head_lock); 2148 2149 /* First, invalidate the entire cache. */ 2150 pool_cache_invalidate(pc); 2151 2152 /* Disassociate it from the pool. */ 2153 mutex_enter(&pp->pr_lock); 2154 pp->pr_cache = NULL; 2155 mutex_exit(&pp->pr_lock); 2156 2157 /* Destroy per-CPU data */ 2158 for (i = 0; i < MAXCPUS; i++) { 2159 if ((cc = pc->pc_cpus[i]) == NULL) 2160 continue; 2161 if ((pcg = cc->cc_current) != NULL) { 2162 pcg->pcg_next = NULL; 2163 pool_cache_invalidate_groups(pc, pcg); 2164 } 2165 if ((pcg = cc->cc_previous) != NULL) { 2166 pcg->pcg_next = NULL; 2167 pool_cache_invalidate_groups(pc, pcg); 2168 } 2169 if (cc != &pc->pc_cpu0) 2170 pool_put(&cache_cpu_pool, cc); 2171 } 2172 2173 /* Finally, destroy it. */ 2174 mutex_destroy(&pc->pc_lock); 2175 pool_destroy(pp); 2176 pool_put(&cache_pool, pc); 2177 } 2178 2179 /* 2180 * pool_cache_cpu_init1: 2181 * 2182 * Called for each pool_cache whenever a new CPU is attached. 2183 */ 2184 static void 2185 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2186 { 2187 pool_cache_cpu_t *cc; 2188 int index; 2189 2190 index = ci->ci_index; 2191 2192 KASSERT(index < MAXCPUS); 2193 2194 if ((cc = pc->pc_cpus[index]) != NULL) { 2195 KASSERT(cc->cc_cpuindex == index); 2196 return; 2197 } 2198 2199 /* 2200 * The first CPU is 'free'. This needs to be the case for 2201 * bootstrap - we may not be able to allocate yet. 2202 */ 2203 if (pc->pc_ncpu == 0) { 2204 cc = &pc->pc_cpu0; 2205 pc->pc_ncpu = 1; 2206 } else { 2207 mutex_enter(&pc->pc_lock); 2208 pc->pc_ncpu++; 2209 mutex_exit(&pc->pc_lock); 2210 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2211 } 2212 2213 cc->cc_ipl = pc->pc_pool.pr_ipl; 2214 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2215 cc->cc_cache = pc; 2216 cc->cc_cpuindex = index; 2217 cc->cc_hits = 0; 2218 cc->cc_misses = 0; 2219 cc->cc_current = NULL; 2220 cc->cc_previous = NULL; 2221 2222 pc->pc_cpus[index] = cc; 2223 } 2224 2225 /* 2226 * pool_cache_cpu_init: 2227 * 2228 * Called whenever a new CPU is attached. 2229 */ 2230 void 2231 pool_cache_cpu_init(struct cpu_info *ci) 2232 { 2233 pool_cache_t pc; 2234 2235 mutex_enter(&pool_head_lock); 2236 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2237 pc->pc_refcnt++; 2238 mutex_exit(&pool_head_lock); 2239 2240 pool_cache_cpu_init1(ci, pc); 2241 2242 mutex_enter(&pool_head_lock); 2243 pc->pc_refcnt--; 2244 cv_broadcast(&pool_busy); 2245 } 2246 mutex_exit(&pool_head_lock); 2247 } 2248 2249 /* 2250 * pool_cache_reclaim: 2251 * 2252 * Reclaim memory from a pool cache. 2253 */ 2254 bool 2255 pool_cache_reclaim(pool_cache_t pc) 2256 { 2257 2258 return pool_reclaim(&pc->pc_pool); 2259 } 2260 2261 static void 2262 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2263 { 2264 2265 (*pc->pc_dtor)(pc->pc_arg, object); 2266 pool_put(&pc->pc_pool, object); 2267 } 2268 2269 /* 2270 * pool_cache_destruct_object: 2271 * 2272 * Force destruction of an object and its release back into 2273 * the pool. 2274 */ 2275 void 2276 pool_cache_destruct_object(pool_cache_t pc, void *object) 2277 { 2278 2279 FREECHECK_IN(&pc->pc_freecheck, object); 2280 2281 pool_cache_destruct_object1(pc, object); 2282 } 2283 2284 /* 2285 * pool_cache_invalidate_groups: 2286 * 2287 * Invalidate a chain of groups and destruct all objects. 2288 */ 2289 static void 2290 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2291 { 2292 void *object; 2293 pcg_t *next; 2294 int i; 2295 2296 for (; pcg != NULL; pcg = next) { 2297 next = pcg->pcg_next; 2298 2299 for (i = 0; i < pcg->pcg_avail; i++) { 2300 object = pcg->pcg_objects[i].pcgo_va; 2301 pool_cache_destruct_object1(pc, object); 2302 } 2303 2304 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2305 pool_put(&pcg_large_pool, pcg); 2306 } else { 2307 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2308 pool_put(&pcg_normal_pool, pcg); 2309 } 2310 } 2311 } 2312 2313 /* 2314 * pool_cache_invalidate: 2315 * 2316 * Invalidate a pool cache (destruct and release all of the 2317 * cached objects). Does not reclaim objects from the pool. 2318 */ 2319 void 2320 pool_cache_invalidate(pool_cache_t pc) 2321 { 2322 pcg_t *full, *empty, *part; 2323 2324 mutex_enter(&pc->pc_lock); 2325 full = pc->pc_fullgroups; 2326 empty = pc->pc_emptygroups; 2327 part = pc->pc_partgroups; 2328 pc->pc_fullgroups = NULL; 2329 pc->pc_emptygroups = NULL; 2330 pc->pc_partgroups = NULL; 2331 pc->pc_nfull = 0; 2332 pc->pc_nempty = 0; 2333 pc->pc_npart = 0; 2334 mutex_exit(&pc->pc_lock); 2335 2336 pool_cache_invalidate_groups(pc, full); 2337 pool_cache_invalidate_groups(pc, empty); 2338 pool_cache_invalidate_groups(pc, part); 2339 } 2340 2341 void 2342 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2343 { 2344 2345 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2346 } 2347 2348 void 2349 pool_cache_setlowat(pool_cache_t pc, int n) 2350 { 2351 2352 pool_setlowat(&pc->pc_pool, n); 2353 } 2354 2355 void 2356 pool_cache_sethiwat(pool_cache_t pc, int n) 2357 { 2358 2359 pool_sethiwat(&pc->pc_pool, n); 2360 } 2361 2362 void 2363 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2364 { 2365 2366 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2367 } 2368 2369 static inline pool_cache_cpu_t * 2370 pool_cache_cpu_enter(pool_cache_t pc, int *s) 2371 { 2372 pool_cache_cpu_t *cc; 2373 2374 /* 2375 * Prevent other users of the cache from accessing our 2376 * CPU-local data. To avoid touching shared state, we 2377 * pull the neccessary information from CPU local data. 2378 */ 2379 crit_enter(); 2380 cc = pc->pc_cpus[curcpu()->ci_index]; 2381 KASSERT(cc->cc_cache == pc); 2382 if (cc->cc_ipl != IPL_NONE) { 2383 *s = splraiseipl(cc->cc_iplcookie); 2384 } 2385 2386 return cc; 2387 } 2388 2389 static inline void 2390 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s) 2391 { 2392 2393 /* No longer need exclusive access to the per-CPU data. */ 2394 if (cc->cc_ipl != IPL_NONE) { 2395 splx(*s); 2396 } 2397 crit_exit(); 2398 } 2399 2400 #if __GNUC_PREREQ__(3, 0) 2401 __attribute ((noinline)) 2402 #endif 2403 pool_cache_cpu_t * 2404 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp, 2405 paddr_t *pap, int flags) 2406 { 2407 pcg_t *pcg, *cur; 2408 uint64_t ncsw; 2409 pool_cache_t pc; 2410 void *object; 2411 2412 pc = cc->cc_cache; 2413 cc->cc_misses++; 2414 2415 /* 2416 * Nothing was available locally. Try and grab a group 2417 * from the cache. 2418 */ 2419 if (!mutex_tryenter(&pc->pc_lock)) { 2420 ncsw = curlwp->l_ncsw; 2421 mutex_enter(&pc->pc_lock); 2422 pc->pc_contended++; 2423 2424 /* 2425 * If we context switched while locking, then 2426 * our view of the per-CPU data is invalid: 2427 * retry. 2428 */ 2429 if (curlwp->l_ncsw != ncsw) { 2430 mutex_exit(&pc->pc_lock); 2431 pool_cache_cpu_exit(cc, s); 2432 return pool_cache_cpu_enter(pc, s); 2433 } 2434 } 2435 2436 if ((pcg = pc->pc_fullgroups) != NULL) { 2437 /* 2438 * If there's a full group, release our empty 2439 * group back to the cache. Install the full 2440 * group as cc_current and return. 2441 */ 2442 if ((cur = cc->cc_current) != NULL) { 2443 KASSERT(cur->pcg_avail == 0); 2444 cur->pcg_next = pc->pc_emptygroups; 2445 pc->pc_emptygroups = cur; 2446 pc->pc_nempty++; 2447 } 2448 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2449 cc->cc_current = pcg; 2450 pc->pc_fullgroups = pcg->pcg_next; 2451 pc->pc_hits++; 2452 pc->pc_nfull--; 2453 mutex_exit(&pc->pc_lock); 2454 return cc; 2455 } 2456 2457 /* 2458 * Nothing available locally or in cache. Take the slow 2459 * path: fetch a new object from the pool and construct 2460 * it. 2461 */ 2462 pc->pc_misses++; 2463 mutex_exit(&pc->pc_lock); 2464 pool_cache_cpu_exit(cc, s); 2465 2466 object = pool_get(&pc->pc_pool, flags); 2467 *objectp = object; 2468 if (object == NULL) 2469 return NULL; 2470 2471 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 2472 pool_put(&pc->pc_pool, object); 2473 *objectp = NULL; 2474 return NULL; 2475 } 2476 2477 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2478 (pc->pc_pool.pr_align - 1)) == 0); 2479 2480 if (pap != NULL) { 2481 #ifdef POOL_VTOPHYS 2482 *pap = POOL_VTOPHYS(object); 2483 #else 2484 *pap = POOL_PADDR_INVALID; 2485 #endif 2486 } 2487 2488 FREECHECK_OUT(&pc->pc_freecheck, object); 2489 return NULL; 2490 } 2491 2492 /* 2493 * pool_cache_get{,_paddr}: 2494 * 2495 * Get an object from a pool cache (optionally returning 2496 * the physical address of the object). 2497 */ 2498 void * 2499 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2500 { 2501 pool_cache_cpu_t *cc; 2502 pcg_t *pcg; 2503 void *object; 2504 int s; 2505 2506 #ifdef LOCKDEBUG 2507 if (flags & PR_WAITOK) { 2508 ASSERT_SLEEPABLE(); 2509 } 2510 #endif 2511 2512 cc = pool_cache_cpu_enter(pc, &s); 2513 do { 2514 /* Try and allocate an object from the current group. */ 2515 pcg = cc->cc_current; 2516 if (pcg != NULL && pcg->pcg_avail > 0) { 2517 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2518 if (pap != NULL) 2519 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2520 #if defined(DIAGNOSTIC) 2521 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2522 #endif /* defined(DIAGNOSTIC) */ 2523 KASSERT(pcg->pcg_avail <= pcg->pcg_size); 2524 KASSERT(object != NULL); 2525 cc->cc_hits++; 2526 pool_cache_cpu_exit(cc, &s); 2527 FREECHECK_OUT(&pc->pc_freecheck, object); 2528 return object; 2529 } 2530 2531 /* 2532 * That failed. If the previous group isn't empty, swap 2533 * it with the current group and allocate from there. 2534 */ 2535 pcg = cc->cc_previous; 2536 if (pcg != NULL && pcg->pcg_avail > 0) { 2537 cc->cc_previous = cc->cc_current; 2538 cc->cc_current = pcg; 2539 continue; 2540 } 2541 2542 /* 2543 * Can't allocate from either group: try the slow path. 2544 * If get_slow() allocated an object for us, or if 2545 * no more objects are available, it will return NULL. 2546 * Otherwise, we need to retry. 2547 */ 2548 cc = pool_cache_get_slow(cc, &s, &object, pap, flags); 2549 } while (cc != NULL); 2550 2551 return object; 2552 } 2553 2554 #if __GNUC_PREREQ__(3, 0) 2555 __attribute ((noinline)) 2556 #endif 2557 pool_cache_cpu_t * 2558 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa) 2559 { 2560 pcg_t *pcg, *cur; 2561 uint64_t ncsw; 2562 pool_cache_t pc; 2563 u_int nobj; 2564 2565 pc = cc->cc_cache; 2566 cc->cc_misses++; 2567 2568 /* 2569 * No free slots locally. Try to grab an empty, unused 2570 * group from the cache. 2571 */ 2572 if (!mutex_tryenter(&pc->pc_lock)) { 2573 ncsw = curlwp->l_ncsw; 2574 mutex_enter(&pc->pc_lock); 2575 pc->pc_contended++; 2576 2577 /* 2578 * If we context switched while locking, then 2579 * our view of the per-CPU data is invalid: 2580 * retry. 2581 */ 2582 if (curlwp->l_ncsw != ncsw) { 2583 mutex_exit(&pc->pc_lock); 2584 pool_cache_cpu_exit(cc, s); 2585 return pool_cache_cpu_enter(pc, s); 2586 } 2587 } 2588 2589 if ((pcg = pc->pc_emptygroups) != NULL) { 2590 /* 2591 * If there's a empty group, release our full 2592 * group back to the cache. Install the empty 2593 * group and return. 2594 */ 2595 KASSERT(pcg->pcg_avail == 0); 2596 pc->pc_emptygroups = pcg->pcg_next; 2597 if (cc->cc_previous == NULL) { 2598 cc->cc_previous = pcg; 2599 } else { 2600 if ((cur = cc->cc_current) != NULL) { 2601 KASSERT(cur->pcg_avail == pcg->pcg_size); 2602 cur->pcg_next = pc->pc_fullgroups; 2603 pc->pc_fullgroups = cur; 2604 pc->pc_nfull++; 2605 } 2606 cc->cc_current = pcg; 2607 } 2608 pc->pc_hits++; 2609 pc->pc_nempty--; 2610 mutex_exit(&pc->pc_lock); 2611 return cc; 2612 } 2613 2614 /* 2615 * Nothing available locally or in cache. Take the 2616 * slow path and try to allocate a new group that we 2617 * can release to. 2618 */ 2619 pc->pc_misses++; 2620 mutex_exit(&pc->pc_lock); 2621 pool_cache_cpu_exit(cc, s); 2622 2623 /* 2624 * If we can't allocate a new group, just throw the 2625 * object away. 2626 */ 2627 nobj = pc->pc_pcgsize; 2628 if (pool_cache_disable) { 2629 pcg = NULL; 2630 } else if (nobj == PCG_NOBJECTS_LARGE) { 2631 pcg = pool_get(&pcg_large_pool, PR_NOWAIT); 2632 } else { 2633 pcg = pool_get(&pcg_normal_pool, PR_NOWAIT); 2634 } 2635 if (pcg == NULL) { 2636 pool_cache_destruct_object(pc, object); 2637 return NULL; 2638 } 2639 pcg->pcg_avail = 0; 2640 pcg->pcg_size = nobj; 2641 2642 /* 2643 * Add the empty group to the cache and try again. 2644 */ 2645 mutex_enter(&pc->pc_lock); 2646 pcg->pcg_next = pc->pc_emptygroups; 2647 pc->pc_emptygroups = pcg; 2648 pc->pc_nempty++; 2649 mutex_exit(&pc->pc_lock); 2650 2651 return pool_cache_cpu_enter(pc, s); 2652 } 2653 2654 /* 2655 * pool_cache_put{,_paddr}: 2656 * 2657 * Put an object back to the pool cache (optionally caching the 2658 * physical address of the object). 2659 */ 2660 void 2661 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2662 { 2663 pool_cache_cpu_t *cc; 2664 pcg_t *pcg; 2665 int s; 2666 2667 FREECHECK_IN(&pc->pc_freecheck, object); 2668 2669 cc = pool_cache_cpu_enter(pc, &s); 2670 do { 2671 /* If the current group isn't full, release it there. */ 2672 pcg = cc->cc_current; 2673 if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) { 2674 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2675 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2676 pcg->pcg_avail++; 2677 cc->cc_hits++; 2678 pool_cache_cpu_exit(cc, &s); 2679 return; 2680 } 2681 2682 /* 2683 * That failed. If the previous group is empty, swap 2684 * it with the current group and try again. 2685 */ 2686 pcg = cc->cc_previous; 2687 if (pcg != NULL && pcg->pcg_avail == 0) { 2688 cc->cc_previous = cc->cc_current; 2689 cc->cc_current = pcg; 2690 continue; 2691 } 2692 2693 /* 2694 * Can't free to either group: try the slow path. 2695 * If put_slow() releases the object for us, it 2696 * will return NULL. Otherwise we need to retry. 2697 */ 2698 cc = pool_cache_put_slow(cc, &s, object, pa); 2699 } while (cc != NULL); 2700 } 2701 2702 /* 2703 * pool_cache_xcall: 2704 * 2705 * Transfer objects from the per-CPU cache to the global cache. 2706 * Run within a cross-call thread. 2707 */ 2708 static void 2709 pool_cache_xcall(pool_cache_t pc) 2710 { 2711 pool_cache_cpu_t *cc; 2712 pcg_t *prev, *cur, **list; 2713 int s = 0; /* XXXgcc */ 2714 2715 cc = pool_cache_cpu_enter(pc, &s); 2716 cur = cc->cc_current; 2717 cc->cc_current = NULL; 2718 prev = cc->cc_previous; 2719 cc->cc_previous = NULL; 2720 pool_cache_cpu_exit(cc, &s); 2721 2722 /* 2723 * XXXSMP Go to splvm to prevent kernel_lock from being taken, 2724 * because locks at IPL_SOFTXXX are still spinlocks. Does not 2725 * apply to IPL_SOFTBIO. Cross-call threads do not take the 2726 * kernel_lock. 2727 */ 2728 s = splvm(); 2729 mutex_enter(&pc->pc_lock); 2730 if (cur != NULL) { 2731 if (cur->pcg_avail == cur->pcg_size) { 2732 list = &pc->pc_fullgroups; 2733 pc->pc_nfull++; 2734 } else if (cur->pcg_avail == 0) { 2735 list = &pc->pc_emptygroups; 2736 pc->pc_nempty++; 2737 } else { 2738 list = &pc->pc_partgroups; 2739 pc->pc_npart++; 2740 } 2741 cur->pcg_next = *list; 2742 *list = cur; 2743 } 2744 if (prev != NULL) { 2745 if (prev->pcg_avail == prev->pcg_size) { 2746 list = &pc->pc_fullgroups; 2747 pc->pc_nfull++; 2748 } else if (prev->pcg_avail == 0) { 2749 list = &pc->pc_emptygroups; 2750 pc->pc_nempty++; 2751 } else { 2752 list = &pc->pc_partgroups; 2753 pc->pc_npart++; 2754 } 2755 prev->pcg_next = *list; 2756 *list = prev; 2757 } 2758 mutex_exit(&pc->pc_lock); 2759 splx(s); 2760 } 2761 2762 /* 2763 * Pool backend allocators. 2764 * 2765 * Each pool has a backend allocator that handles allocation, deallocation, 2766 * and any additional draining that might be needed. 2767 * 2768 * We provide two standard allocators: 2769 * 2770 * pool_allocator_kmem - the default when no allocator is specified 2771 * 2772 * pool_allocator_nointr - used for pools that will not be accessed 2773 * in interrupt context. 2774 */ 2775 void *pool_page_alloc(struct pool *, int); 2776 void pool_page_free(struct pool *, void *); 2777 2778 #ifdef POOL_SUBPAGE 2779 struct pool_allocator pool_allocator_kmem_fullpage = { 2780 pool_page_alloc, pool_page_free, 0, 2781 .pa_backingmapptr = &kmem_map, 2782 }; 2783 #else 2784 struct pool_allocator pool_allocator_kmem = { 2785 pool_page_alloc, pool_page_free, 0, 2786 .pa_backingmapptr = &kmem_map, 2787 }; 2788 #endif 2789 2790 void *pool_page_alloc_nointr(struct pool *, int); 2791 void pool_page_free_nointr(struct pool *, void *); 2792 2793 #ifdef POOL_SUBPAGE 2794 struct pool_allocator pool_allocator_nointr_fullpage = { 2795 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2796 .pa_backingmapptr = &kernel_map, 2797 }; 2798 #else 2799 struct pool_allocator pool_allocator_nointr = { 2800 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2801 .pa_backingmapptr = &kernel_map, 2802 }; 2803 #endif 2804 2805 #ifdef POOL_SUBPAGE 2806 void *pool_subpage_alloc(struct pool *, int); 2807 void pool_subpage_free(struct pool *, void *); 2808 2809 struct pool_allocator pool_allocator_kmem = { 2810 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2811 .pa_backingmapptr = &kmem_map, 2812 }; 2813 2814 void *pool_subpage_alloc_nointr(struct pool *, int); 2815 void pool_subpage_free_nointr(struct pool *, void *); 2816 2817 struct pool_allocator pool_allocator_nointr = { 2818 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2819 .pa_backingmapptr = &kmem_map, 2820 }; 2821 #endif /* POOL_SUBPAGE */ 2822 2823 static void * 2824 pool_allocator_alloc(struct pool *pp, int flags) 2825 { 2826 struct pool_allocator *pa = pp->pr_alloc; 2827 void *res; 2828 2829 res = (*pa->pa_alloc)(pp, flags); 2830 if (res == NULL && (flags & PR_WAITOK) == 0) { 2831 /* 2832 * We only run the drain hook here if PR_NOWAIT. 2833 * In other cases, the hook will be run in 2834 * pool_reclaim(). 2835 */ 2836 if (pp->pr_drain_hook != NULL) { 2837 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2838 res = (*pa->pa_alloc)(pp, flags); 2839 } 2840 } 2841 return res; 2842 } 2843 2844 static void 2845 pool_allocator_free(struct pool *pp, void *v) 2846 { 2847 struct pool_allocator *pa = pp->pr_alloc; 2848 2849 (*pa->pa_free)(pp, v); 2850 } 2851 2852 void * 2853 pool_page_alloc(struct pool *pp, int flags) 2854 { 2855 bool waitok = (flags & PR_WAITOK) ? true : false; 2856 2857 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2858 } 2859 2860 void 2861 pool_page_free(struct pool *pp, void *v) 2862 { 2863 2864 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2865 } 2866 2867 static void * 2868 pool_page_alloc_meta(struct pool *pp, int flags) 2869 { 2870 bool waitok = (flags & PR_WAITOK) ? true : false; 2871 2872 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2873 } 2874 2875 static void 2876 pool_page_free_meta(struct pool *pp, void *v) 2877 { 2878 2879 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2880 } 2881 2882 #ifdef POOL_SUBPAGE 2883 /* Sub-page allocator, for machines with large hardware pages. */ 2884 void * 2885 pool_subpage_alloc(struct pool *pp, int flags) 2886 { 2887 return pool_get(&psppool, flags); 2888 } 2889 2890 void 2891 pool_subpage_free(struct pool *pp, void *v) 2892 { 2893 pool_put(&psppool, v); 2894 } 2895 2896 /* We don't provide a real nointr allocator. Maybe later. */ 2897 void * 2898 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2899 { 2900 2901 return (pool_subpage_alloc(pp, flags)); 2902 } 2903 2904 void 2905 pool_subpage_free_nointr(struct pool *pp, void *v) 2906 { 2907 2908 pool_subpage_free(pp, v); 2909 } 2910 #endif /* POOL_SUBPAGE */ 2911 void * 2912 pool_page_alloc_nointr(struct pool *pp, int flags) 2913 { 2914 bool waitok = (flags & PR_WAITOK) ? true : false; 2915 2916 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2917 } 2918 2919 void 2920 pool_page_free_nointr(struct pool *pp, void *v) 2921 { 2922 2923 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2924 } 2925 2926 #if defined(DDB) 2927 static bool 2928 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2929 { 2930 2931 return (uintptr_t)ph->ph_page <= addr && 2932 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2933 } 2934 2935 static bool 2936 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2937 { 2938 2939 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2940 } 2941 2942 static bool 2943 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2944 { 2945 int i; 2946 2947 if (pcg == NULL) { 2948 return false; 2949 } 2950 for (i = 0; i < pcg->pcg_avail; i++) { 2951 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2952 return true; 2953 } 2954 } 2955 return false; 2956 } 2957 2958 static bool 2959 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2960 { 2961 2962 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2963 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2964 pool_item_bitmap_t *bitmap = 2965 ph->ph_bitmap + (idx / BITMAP_SIZE); 2966 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2967 2968 return (*bitmap & mask) == 0; 2969 } else { 2970 struct pool_item *pi; 2971 2972 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2973 if (pool_in_item(pp, pi, addr)) { 2974 return false; 2975 } 2976 } 2977 return true; 2978 } 2979 } 2980 2981 void 2982 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2983 { 2984 struct pool *pp; 2985 2986 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2987 struct pool_item_header *ph; 2988 uintptr_t item; 2989 bool allocated = true; 2990 bool incache = false; 2991 bool incpucache = false; 2992 char cpucachestr[32]; 2993 2994 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 2995 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2996 if (pool_in_page(pp, ph, addr)) { 2997 goto found; 2998 } 2999 } 3000 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3001 if (pool_in_page(pp, ph, addr)) { 3002 allocated = 3003 pool_allocated(pp, ph, addr); 3004 goto found; 3005 } 3006 } 3007 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3008 if (pool_in_page(pp, ph, addr)) { 3009 allocated = false; 3010 goto found; 3011 } 3012 } 3013 continue; 3014 } else { 3015 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3016 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3017 continue; 3018 } 3019 allocated = pool_allocated(pp, ph, addr); 3020 } 3021 found: 3022 if (allocated && pp->pr_cache) { 3023 pool_cache_t pc = pp->pr_cache; 3024 struct pool_cache_group *pcg; 3025 int i; 3026 3027 for (pcg = pc->pc_fullgroups; pcg != NULL; 3028 pcg = pcg->pcg_next) { 3029 if (pool_in_cg(pp, pcg, addr)) { 3030 incache = true; 3031 goto print; 3032 } 3033 } 3034 for (i = 0; i < MAXCPUS; i++) { 3035 pool_cache_cpu_t *cc; 3036 3037 if ((cc = pc->pc_cpus[i]) == NULL) { 3038 continue; 3039 } 3040 if (pool_in_cg(pp, cc->cc_current, addr) || 3041 pool_in_cg(pp, cc->cc_previous, addr)) { 3042 struct cpu_info *ci = 3043 cpu_lookup_byindex(i); 3044 3045 incpucache = true; 3046 snprintf(cpucachestr, 3047 sizeof(cpucachestr), 3048 "cached by CPU %u", 3049 ci->ci_index); 3050 goto print; 3051 } 3052 } 3053 } 3054 print: 3055 item = (uintptr_t)ph->ph_page + ph->ph_off; 3056 item = item + rounddown(addr - item, pp->pr_size); 3057 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3058 (void *)addr, item, (size_t)(addr - item), 3059 pp->pr_wchan, 3060 incpucache ? cpucachestr : 3061 incache ? "cached" : allocated ? "allocated" : "free"); 3062 } 3063 } 3064 #endif /* defined(DDB) */ 3065