xref: /netbsd-src/sys/kern/subr_pool.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: subr_pool.c,v 1.157 2008/04/24 11:38:36 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.157 2008/04/24 11:38:36 ad Exp $");
42 
43 #include "opt_ddb.h"
44 #include "opt_pool.h"
45 #include "opt_poollog.h"
46 #include "opt_lockdebug.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bitops.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/syslog.h>
57 #include <sys/debug.h>
58 #include <sys/lockdebug.h>
59 #include <sys/xcall.h>
60 #include <sys/cpu.h>
61 #include <sys/atomic.h>
62 
63 #include <uvm/uvm.h>
64 
65 /*
66  * Pool resource management utility.
67  *
68  * Memory is allocated in pages which are split into pieces according to
69  * the pool item size. Each page is kept on one of three lists in the
70  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
71  * for empty, full and partially-full pages respectively. The individual
72  * pool items are on a linked list headed by `ph_itemlist' in each page
73  * header. The memory for building the page list is either taken from
74  * the allocated pages themselves (for small pool items) or taken from
75  * an internal pool of page headers (`phpool').
76  */
77 
78 /* List of all pools */
79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
80 
81 /* Private pool for page header structures */
82 #define	PHPOOL_MAX	8
83 static struct pool phpool[PHPOOL_MAX];
84 #define	PHPOOL_FREELIST_NELEM(idx) \
85 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
86 
87 #ifdef POOL_SUBPAGE
88 /* Pool of subpages for use by normal pools. */
89 static struct pool psppool;
90 #endif
91 
92 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
93     SLIST_HEAD_INITIALIZER(pa_deferinitq);
94 
95 static void *pool_page_alloc_meta(struct pool *, int);
96 static void pool_page_free_meta(struct pool *, void *);
97 
98 /* allocator for pool metadata */
99 struct pool_allocator pool_allocator_meta = {
100 	pool_page_alloc_meta, pool_page_free_meta,
101 	.pa_backingmapptr = &kmem_map,
102 };
103 
104 /* # of seconds to retain page after last use */
105 int pool_inactive_time = 10;
106 
107 /* Next candidate for drainage (see pool_drain()) */
108 static struct pool	*drainpp;
109 
110 /* This lock protects both pool_head and drainpp. */
111 static kmutex_t pool_head_lock;
112 static kcondvar_t pool_busy;
113 
114 typedef uint32_t pool_item_bitmap_t;
115 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
116 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
117 
118 struct pool_item_header {
119 	/* Page headers */
120 	LIST_ENTRY(pool_item_header)
121 				ph_pagelist;	/* pool page list */
122 	SPLAY_ENTRY(pool_item_header)
123 				ph_node;	/* Off-page page headers */
124 	void *			ph_page;	/* this page's address */
125 	uint32_t		ph_time;	/* last referenced */
126 	uint16_t		ph_nmissing;	/* # of chunks in use */
127 	uint16_t		ph_off;		/* start offset in page */
128 	union {
129 		/* !PR_NOTOUCH */
130 		struct {
131 			LIST_HEAD(, pool_item)
132 				phu_itemlist;	/* chunk list for this page */
133 		} phu_normal;
134 		/* PR_NOTOUCH */
135 		struct {
136 			pool_item_bitmap_t phu_bitmap[1];
137 		} phu_notouch;
138 	} ph_u;
139 };
140 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
141 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
142 
143 struct pool_item {
144 #ifdef DIAGNOSTIC
145 	u_int pi_magic;
146 #endif
147 #define	PI_MAGIC 0xdeaddeadU
148 	/* Other entries use only this list entry */
149 	LIST_ENTRY(pool_item)	pi_list;
150 };
151 
152 #define	POOL_NEEDS_CATCHUP(pp)						\
153 	((pp)->pr_nitems < (pp)->pr_minitems)
154 
155 /*
156  * Pool cache management.
157  *
158  * Pool caches provide a way for constructed objects to be cached by the
159  * pool subsystem.  This can lead to performance improvements by avoiding
160  * needless object construction/destruction; it is deferred until absolutely
161  * necessary.
162  *
163  * Caches are grouped into cache groups.  Each cache group references up
164  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
165  * object from the pool, it calls the object's constructor and places it
166  * into a cache group.  When a cache group frees an object back to the
167  * pool, it first calls the object's destructor.  This allows the object
168  * to persist in constructed form while freed to the cache.
169  *
170  * The pool references each cache, so that when a pool is drained by the
171  * pagedaemon, it can drain each individual cache as well.  Each time a
172  * cache is drained, the most idle cache group is freed to the pool in
173  * its entirety.
174  *
175  * Pool caches are layed on top of pools.  By layering them, we can avoid
176  * the complexity of cache management for pools which would not benefit
177  * from it.
178  */
179 
180 static struct pool pcg_normal_pool;
181 static struct pool pcg_large_pool;
182 static struct pool cache_pool;
183 static struct pool cache_cpu_pool;
184 
185 /* List of all caches. */
186 TAILQ_HEAD(,pool_cache) pool_cache_head =
187     TAILQ_HEAD_INITIALIZER(pool_cache_head);
188 
189 int pool_cache_disable;
190 
191 
192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
193 					     void *, paddr_t);
194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
195 					     void **, paddr_t *, int);
196 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
197 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
198 static void	pool_cache_xcall(pool_cache_t);
199 
200 static int	pool_catchup(struct pool *);
201 static void	pool_prime_page(struct pool *, void *,
202 		    struct pool_item_header *);
203 static void	pool_update_curpage(struct pool *);
204 
205 static int	pool_grow(struct pool *, int);
206 static void	*pool_allocator_alloc(struct pool *, int);
207 static void	pool_allocator_free(struct pool *, void *);
208 
209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
210 	void (*)(const char *, ...));
211 static void pool_print1(struct pool *, const char *,
212 	void (*)(const char *, ...));
213 
214 static int pool_chk_page(struct pool *, const char *,
215 			 struct pool_item_header *);
216 
217 /*
218  * Pool log entry. An array of these is allocated in pool_init().
219  */
220 struct pool_log {
221 	const char	*pl_file;
222 	long		pl_line;
223 	int		pl_action;
224 #define	PRLOG_GET	1
225 #define	PRLOG_PUT	2
226 	void		*pl_addr;
227 };
228 
229 #ifdef POOL_DIAGNOSTIC
230 /* Number of entries in pool log buffers */
231 #ifndef POOL_LOGSIZE
232 #define	POOL_LOGSIZE	10
233 #endif
234 
235 int pool_logsize = POOL_LOGSIZE;
236 
237 static inline void
238 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
239 {
240 	int n = pp->pr_curlogentry;
241 	struct pool_log *pl;
242 
243 	if ((pp->pr_roflags & PR_LOGGING) == 0)
244 		return;
245 
246 	/*
247 	 * Fill in the current entry. Wrap around and overwrite
248 	 * the oldest entry if necessary.
249 	 */
250 	pl = &pp->pr_log[n];
251 	pl->pl_file = file;
252 	pl->pl_line = line;
253 	pl->pl_action = action;
254 	pl->pl_addr = v;
255 	if (++n >= pp->pr_logsize)
256 		n = 0;
257 	pp->pr_curlogentry = n;
258 }
259 
260 static void
261 pr_printlog(struct pool *pp, struct pool_item *pi,
262     void (*pr)(const char *, ...))
263 {
264 	int i = pp->pr_logsize;
265 	int n = pp->pr_curlogentry;
266 
267 	if ((pp->pr_roflags & PR_LOGGING) == 0)
268 		return;
269 
270 	/*
271 	 * Print all entries in this pool's log.
272 	 */
273 	while (i-- > 0) {
274 		struct pool_log *pl = &pp->pr_log[n];
275 		if (pl->pl_action != 0) {
276 			if (pi == NULL || pi == pl->pl_addr) {
277 				(*pr)("\tlog entry %d:\n", i);
278 				(*pr)("\t\taction = %s, addr = %p\n",
279 				    pl->pl_action == PRLOG_GET ? "get" : "put",
280 				    pl->pl_addr);
281 				(*pr)("\t\tfile: %s at line %lu\n",
282 				    pl->pl_file, pl->pl_line);
283 			}
284 		}
285 		if (++n >= pp->pr_logsize)
286 			n = 0;
287 	}
288 }
289 
290 static inline void
291 pr_enter(struct pool *pp, const char *file, long line)
292 {
293 
294 	if (__predict_false(pp->pr_entered_file != NULL)) {
295 		printf("pool %s: reentrancy at file %s line %ld\n",
296 		    pp->pr_wchan, file, line);
297 		printf("         previous entry at file %s line %ld\n",
298 		    pp->pr_entered_file, pp->pr_entered_line);
299 		panic("pr_enter");
300 	}
301 
302 	pp->pr_entered_file = file;
303 	pp->pr_entered_line = line;
304 }
305 
306 static inline void
307 pr_leave(struct pool *pp)
308 {
309 
310 	if (__predict_false(pp->pr_entered_file == NULL)) {
311 		printf("pool %s not entered?\n", pp->pr_wchan);
312 		panic("pr_leave");
313 	}
314 
315 	pp->pr_entered_file = NULL;
316 	pp->pr_entered_line = 0;
317 }
318 
319 static inline void
320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
321 {
322 
323 	if (pp->pr_entered_file != NULL)
324 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
325 		    pp->pr_entered_file, pp->pr_entered_line);
326 }
327 #else
328 #define	pr_log(pp, v, action, file, line)
329 #define	pr_printlog(pp, pi, pr)
330 #define	pr_enter(pp, file, line)
331 #define	pr_leave(pp)
332 #define	pr_enter_check(pp, pr)
333 #endif /* POOL_DIAGNOSTIC */
334 
335 static inline unsigned int
336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
337     const void *v)
338 {
339 	const char *cp = v;
340 	unsigned int idx;
341 
342 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
343 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
344 	KASSERT(idx < pp->pr_itemsperpage);
345 	return idx;
346 }
347 
348 static inline void
349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
350     void *obj)
351 {
352 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
353 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
354 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
355 
356 	KASSERT((*bitmap & mask) == 0);
357 	*bitmap |= mask;
358 }
359 
360 static inline void *
361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
362 {
363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
364 	unsigned int idx;
365 	int i;
366 
367 	for (i = 0; ; i++) {
368 		int bit;
369 
370 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
371 		bit = ffs32(bitmap[i]);
372 		if (bit) {
373 			pool_item_bitmap_t mask;
374 
375 			bit--;
376 			idx = (i * BITMAP_SIZE) + bit;
377 			mask = 1 << bit;
378 			KASSERT((bitmap[i] & mask) != 0);
379 			bitmap[i] &= ~mask;
380 			break;
381 		}
382 	}
383 	KASSERT(idx < pp->pr_itemsperpage);
384 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
385 }
386 
387 static inline void
388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
389 {
390 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
391 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
392 	int i;
393 
394 	for (i = 0; i < n; i++) {
395 		bitmap[i] = (pool_item_bitmap_t)-1;
396 	}
397 }
398 
399 static inline int
400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
401 {
402 
403 	/*
404 	 * we consider pool_item_header with smaller ph_page bigger.
405 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
406 	 */
407 
408 	if (a->ph_page < b->ph_page)
409 		return (1);
410 	else if (a->ph_page > b->ph_page)
411 		return (-1);
412 	else
413 		return (0);
414 }
415 
416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
418 
419 static inline struct pool_item_header *
420 pr_find_pagehead_noalign(struct pool *pp, void *v)
421 {
422 	struct pool_item_header *ph, tmp;
423 
424 	tmp.ph_page = (void *)(uintptr_t)v;
425 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
426 	if (ph == NULL) {
427 		ph = SPLAY_ROOT(&pp->pr_phtree);
428 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
429 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
430 		}
431 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
432 	}
433 
434 	return ph;
435 }
436 
437 /*
438  * Return the pool page header based on item address.
439  */
440 static inline struct pool_item_header *
441 pr_find_pagehead(struct pool *pp, void *v)
442 {
443 	struct pool_item_header *ph, tmp;
444 
445 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
446 		ph = pr_find_pagehead_noalign(pp, v);
447 	} else {
448 		void *page =
449 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
450 
451 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
452 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
453 		} else {
454 			tmp.ph_page = page;
455 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
456 		}
457 	}
458 
459 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
460 	    ((char *)ph->ph_page <= (char *)v &&
461 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
462 	return ph;
463 }
464 
465 static void
466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
467 {
468 	struct pool_item_header *ph;
469 
470 	while ((ph = LIST_FIRST(pq)) != NULL) {
471 		LIST_REMOVE(ph, ph_pagelist);
472 		pool_allocator_free(pp, ph->ph_page);
473 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
474 			pool_put(pp->pr_phpool, ph);
475 	}
476 }
477 
478 /*
479  * Remove a page from the pool.
480  */
481 static inline void
482 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
483      struct pool_pagelist *pq)
484 {
485 
486 	KASSERT(mutex_owned(&pp->pr_lock));
487 
488 	/*
489 	 * If the page was idle, decrement the idle page count.
490 	 */
491 	if (ph->ph_nmissing == 0) {
492 #ifdef DIAGNOSTIC
493 		if (pp->pr_nidle == 0)
494 			panic("pr_rmpage: nidle inconsistent");
495 		if (pp->pr_nitems < pp->pr_itemsperpage)
496 			panic("pr_rmpage: nitems inconsistent");
497 #endif
498 		pp->pr_nidle--;
499 	}
500 
501 	pp->pr_nitems -= pp->pr_itemsperpage;
502 
503 	/*
504 	 * Unlink the page from the pool and queue it for release.
505 	 */
506 	LIST_REMOVE(ph, ph_pagelist);
507 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
508 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
509 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
510 
511 	pp->pr_npages--;
512 	pp->pr_npagefree++;
513 
514 	pool_update_curpage(pp);
515 }
516 
517 static bool
518 pa_starved_p(struct pool_allocator *pa)
519 {
520 
521 	if (pa->pa_backingmap != NULL) {
522 		return vm_map_starved_p(pa->pa_backingmap);
523 	}
524 	return false;
525 }
526 
527 static int
528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
529 {
530 	struct pool *pp = obj;
531 	struct pool_allocator *pa = pp->pr_alloc;
532 
533 	KASSERT(&pp->pr_reclaimerentry == ce);
534 	pool_reclaim(pp);
535 	if (!pa_starved_p(pa)) {
536 		return CALLBACK_CHAIN_ABORT;
537 	}
538 	return CALLBACK_CHAIN_CONTINUE;
539 }
540 
541 static void
542 pool_reclaim_register(struct pool *pp)
543 {
544 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
545 	int s;
546 
547 	if (map == NULL) {
548 		return;
549 	}
550 
551 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
552 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
553 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
554 	splx(s);
555 }
556 
557 static void
558 pool_reclaim_unregister(struct pool *pp)
559 {
560 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
561 	int s;
562 
563 	if (map == NULL) {
564 		return;
565 	}
566 
567 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
568 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
569 	    &pp->pr_reclaimerentry);
570 	splx(s);
571 }
572 
573 static void
574 pa_reclaim_register(struct pool_allocator *pa)
575 {
576 	struct vm_map *map = *pa->pa_backingmapptr;
577 	struct pool *pp;
578 
579 	KASSERT(pa->pa_backingmap == NULL);
580 	if (map == NULL) {
581 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
582 		return;
583 	}
584 	pa->pa_backingmap = map;
585 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
586 		pool_reclaim_register(pp);
587 	}
588 }
589 
590 /*
591  * Initialize all the pools listed in the "pools" link set.
592  */
593 void
594 pool_subsystem_init(void)
595 {
596 	struct pool_allocator *pa;
597 	__link_set_decl(pools, struct link_pool_init);
598 	struct link_pool_init * const *pi;
599 
600 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
601 	cv_init(&pool_busy, "poolbusy");
602 
603 	__link_set_foreach(pi, pools)
604 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
605 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
606 		    (*pi)->palloc, (*pi)->ipl);
607 
608 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
609 		KASSERT(pa->pa_backingmapptr != NULL);
610 		KASSERT(*pa->pa_backingmapptr != NULL);
611 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
612 		pa_reclaim_register(pa);
613 	}
614 
615 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
616 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
617 
618 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
619 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
620 }
621 
622 /*
623  * Initialize the given pool resource structure.
624  *
625  * We export this routine to allow other kernel parts to declare
626  * static pools that must be initialized before malloc() is available.
627  */
628 void
629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
630     const char *wchan, struct pool_allocator *palloc, int ipl)
631 {
632 	struct pool *pp1;
633 	size_t trysize, phsize;
634 	int off, slack;
635 
636 #ifdef DEBUG
637 	/*
638 	 * Check that the pool hasn't already been initialised and
639 	 * added to the list of all pools.
640 	 */
641 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
642 		if (pp == pp1)
643 			panic("pool_init: pool %s already initialised",
644 			    wchan);
645 	}
646 #endif
647 
648 #ifdef POOL_DIAGNOSTIC
649 	/*
650 	 * Always log if POOL_DIAGNOSTIC is defined.
651 	 */
652 	if (pool_logsize != 0)
653 		flags |= PR_LOGGING;
654 #endif
655 
656 	if (palloc == NULL)
657 		palloc = &pool_allocator_kmem;
658 #ifdef POOL_SUBPAGE
659 	if (size > palloc->pa_pagesz) {
660 		if (palloc == &pool_allocator_kmem)
661 			palloc = &pool_allocator_kmem_fullpage;
662 		else if (palloc == &pool_allocator_nointr)
663 			palloc = &pool_allocator_nointr_fullpage;
664 	}
665 #endif /* POOL_SUBPAGE */
666 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
667 		if (palloc->pa_pagesz == 0)
668 			palloc->pa_pagesz = PAGE_SIZE;
669 
670 		TAILQ_INIT(&palloc->pa_list);
671 
672 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
673 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
674 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
675 
676 		if (palloc->pa_backingmapptr != NULL) {
677 			pa_reclaim_register(palloc);
678 		}
679 		palloc->pa_flags |= PA_INITIALIZED;
680 	}
681 
682 	if (align == 0)
683 		align = ALIGN(1);
684 
685 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
686 		size = sizeof(struct pool_item);
687 
688 	size = roundup(size, align);
689 #ifdef DIAGNOSTIC
690 	if (size > palloc->pa_pagesz)
691 		panic("pool_init: pool item size (%zu) too large", size);
692 #endif
693 
694 	/*
695 	 * Initialize the pool structure.
696 	 */
697 	LIST_INIT(&pp->pr_emptypages);
698 	LIST_INIT(&pp->pr_fullpages);
699 	LIST_INIT(&pp->pr_partpages);
700 	pp->pr_cache = NULL;
701 	pp->pr_curpage = NULL;
702 	pp->pr_npages = 0;
703 	pp->pr_minitems = 0;
704 	pp->pr_minpages = 0;
705 	pp->pr_maxpages = UINT_MAX;
706 	pp->pr_roflags = flags;
707 	pp->pr_flags = 0;
708 	pp->pr_size = size;
709 	pp->pr_align = align;
710 	pp->pr_wchan = wchan;
711 	pp->pr_alloc = palloc;
712 	pp->pr_nitems = 0;
713 	pp->pr_nout = 0;
714 	pp->pr_hardlimit = UINT_MAX;
715 	pp->pr_hardlimit_warning = NULL;
716 	pp->pr_hardlimit_ratecap.tv_sec = 0;
717 	pp->pr_hardlimit_ratecap.tv_usec = 0;
718 	pp->pr_hardlimit_warning_last.tv_sec = 0;
719 	pp->pr_hardlimit_warning_last.tv_usec = 0;
720 	pp->pr_drain_hook = NULL;
721 	pp->pr_drain_hook_arg = NULL;
722 	pp->pr_freecheck = NULL;
723 
724 	/*
725 	 * Decide whether to put the page header off page to avoid
726 	 * wasting too large a part of the page or too big item.
727 	 * Off-page page headers go on a hash table, so we can match
728 	 * a returned item with its header based on the page address.
729 	 * We use 1/16 of the page size and about 8 times of the item
730 	 * size as the threshold (XXX: tune)
731 	 *
732 	 * However, we'll put the header into the page if we can put
733 	 * it without wasting any items.
734 	 *
735 	 * Silently enforce `0 <= ioff < align'.
736 	 */
737 	pp->pr_itemoffset = ioff %= align;
738 	/* See the comment below about reserved bytes. */
739 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
740 	phsize = ALIGN(sizeof(struct pool_item_header));
741 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
742 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
743 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
744 		/* Use the end of the page for the page header */
745 		pp->pr_roflags |= PR_PHINPAGE;
746 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
747 	} else {
748 		/* The page header will be taken from our page header pool */
749 		pp->pr_phoffset = 0;
750 		off = palloc->pa_pagesz;
751 		SPLAY_INIT(&pp->pr_phtree);
752 	}
753 
754 	/*
755 	 * Alignment is to take place at `ioff' within the item. This means
756 	 * we must reserve up to `align - 1' bytes on the page to allow
757 	 * appropriate positioning of each item.
758 	 */
759 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
760 	KASSERT(pp->pr_itemsperpage != 0);
761 	if ((pp->pr_roflags & PR_NOTOUCH)) {
762 		int idx;
763 
764 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
765 		    idx++) {
766 			/* nothing */
767 		}
768 		if (idx >= PHPOOL_MAX) {
769 			/*
770 			 * if you see this panic, consider to tweak
771 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
772 			 */
773 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
774 			    pp->pr_wchan, pp->pr_itemsperpage);
775 		}
776 		pp->pr_phpool = &phpool[idx];
777 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
778 		pp->pr_phpool = &phpool[0];
779 	}
780 #if defined(DIAGNOSTIC)
781 	else {
782 		pp->pr_phpool = NULL;
783 	}
784 #endif
785 
786 	/*
787 	 * Use the slack between the chunks and the page header
788 	 * for "cache coloring".
789 	 */
790 	slack = off - pp->pr_itemsperpage * pp->pr_size;
791 	pp->pr_maxcolor = (slack / align) * align;
792 	pp->pr_curcolor = 0;
793 
794 	pp->pr_nget = 0;
795 	pp->pr_nfail = 0;
796 	pp->pr_nput = 0;
797 	pp->pr_npagealloc = 0;
798 	pp->pr_npagefree = 0;
799 	pp->pr_hiwat = 0;
800 	pp->pr_nidle = 0;
801 	pp->pr_refcnt = 0;
802 
803 #ifdef POOL_DIAGNOSTIC
804 	if (flags & PR_LOGGING) {
805 		if (kmem_map == NULL ||
806 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
807 		     M_TEMP, M_NOWAIT)) == NULL)
808 			pp->pr_roflags &= ~PR_LOGGING;
809 		pp->pr_curlogentry = 0;
810 		pp->pr_logsize = pool_logsize;
811 	}
812 #endif
813 
814 	pp->pr_entered_file = NULL;
815 	pp->pr_entered_line = 0;
816 
817 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
818 	cv_init(&pp->pr_cv, wchan);
819 	pp->pr_ipl = ipl;
820 
821 	/*
822 	 * Initialize private page header pool and cache magazine pool if we
823 	 * haven't done so yet.
824 	 * XXX LOCKING.
825 	 */
826 	if (phpool[0].pr_size == 0) {
827 		int idx;
828 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
829 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
830 			int nelem;
831 			size_t sz;
832 
833 			nelem = PHPOOL_FREELIST_NELEM(idx);
834 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
835 			    "phpool-%d", nelem);
836 			sz = sizeof(struct pool_item_header);
837 			if (nelem) {
838 				sz = offsetof(struct pool_item_header,
839 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
840 			}
841 			pool_init(&phpool[idx], sz, 0, 0, 0,
842 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
843 		}
844 #ifdef POOL_SUBPAGE
845 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
846 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
847 #endif
848 
849 		size = sizeof(pcg_t) +
850 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
851 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
852 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
853 
854 		size = sizeof(pcg_t) +
855 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
856 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
857 		    "pcglarge", &pool_allocator_meta, IPL_VM);
858 	}
859 
860 	/* Insert into the list of all pools. */
861 	if (__predict_true(!cold))
862 		mutex_enter(&pool_head_lock);
863 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
864 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
865 			break;
866 	}
867 	if (pp1 == NULL)
868 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
869 	else
870 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
871 	if (__predict_true(!cold))
872 		mutex_exit(&pool_head_lock);
873 
874 		/* Insert this into the list of pools using this allocator. */
875 	if (__predict_true(!cold))
876 		mutex_enter(&palloc->pa_lock);
877 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
878 	if (__predict_true(!cold))
879 		mutex_exit(&palloc->pa_lock);
880 
881 	pool_reclaim_register(pp);
882 }
883 
884 /*
885  * De-commision a pool resource.
886  */
887 void
888 pool_destroy(struct pool *pp)
889 {
890 	struct pool_pagelist pq;
891 	struct pool_item_header *ph;
892 
893 	/* Remove from global pool list */
894 	mutex_enter(&pool_head_lock);
895 	while (pp->pr_refcnt != 0)
896 		cv_wait(&pool_busy, &pool_head_lock);
897 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
898 	if (drainpp == pp)
899 		drainpp = NULL;
900 	mutex_exit(&pool_head_lock);
901 
902 	/* Remove this pool from its allocator's list of pools. */
903 	pool_reclaim_unregister(pp);
904 	mutex_enter(&pp->pr_alloc->pa_lock);
905 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
906 	mutex_exit(&pp->pr_alloc->pa_lock);
907 
908 	mutex_enter(&pp->pr_lock);
909 
910 	KASSERT(pp->pr_cache == NULL);
911 
912 #ifdef DIAGNOSTIC
913 	if (pp->pr_nout != 0) {
914 		pr_printlog(pp, NULL, printf);
915 		panic("pool_destroy: pool busy: still out: %u",
916 		    pp->pr_nout);
917 	}
918 #endif
919 
920 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
921 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
922 
923 	/* Remove all pages */
924 	LIST_INIT(&pq);
925 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
926 		pr_rmpage(pp, ph, &pq);
927 
928 	mutex_exit(&pp->pr_lock);
929 
930 	pr_pagelist_free(pp, &pq);
931 
932 #ifdef POOL_DIAGNOSTIC
933 	if ((pp->pr_roflags & PR_LOGGING) != 0)
934 		free(pp->pr_log, M_TEMP);
935 #endif
936 
937 	cv_destroy(&pp->pr_cv);
938 	mutex_destroy(&pp->pr_lock);
939 }
940 
941 void
942 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
943 {
944 
945 	/* XXX no locking -- must be used just after pool_init() */
946 #ifdef DIAGNOSTIC
947 	if (pp->pr_drain_hook != NULL)
948 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
949 #endif
950 	pp->pr_drain_hook = fn;
951 	pp->pr_drain_hook_arg = arg;
952 }
953 
954 static struct pool_item_header *
955 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
956 {
957 	struct pool_item_header *ph;
958 
959 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
960 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
961 	else
962 		ph = pool_get(pp->pr_phpool, flags);
963 
964 	return (ph);
965 }
966 
967 /*
968  * Grab an item from the pool.
969  */
970 void *
971 #ifdef POOL_DIAGNOSTIC
972 _pool_get(struct pool *pp, int flags, const char *file, long line)
973 #else
974 pool_get(struct pool *pp, int flags)
975 #endif
976 {
977 	struct pool_item *pi;
978 	struct pool_item_header *ph;
979 	void *v;
980 
981 #ifdef DIAGNOSTIC
982 	if (__predict_false(pp->pr_itemsperpage == 0))
983 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
984 		    "pool not initialized?", pp);
985 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
986 			    (flags & PR_WAITOK) != 0))
987 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
988 
989 #endif /* DIAGNOSTIC */
990 #ifdef LOCKDEBUG
991 	if (flags & PR_WAITOK) {
992 		ASSERT_SLEEPABLE();
993 	}
994 #endif
995 
996 	mutex_enter(&pp->pr_lock);
997 	pr_enter(pp, file, line);
998 
999  startover:
1000 	/*
1001 	 * Check to see if we've reached the hard limit.  If we have,
1002 	 * and we can wait, then wait until an item has been returned to
1003 	 * the pool.
1004 	 */
1005 #ifdef DIAGNOSTIC
1006 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1007 		pr_leave(pp);
1008 		mutex_exit(&pp->pr_lock);
1009 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1010 	}
1011 #endif
1012 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1013 		if (pp->pr_drain_hook != NULL) {
1014 			/*
1015 			 * Since the drain hook is going to free things
1016 			 * back to the pool, unlock, call the hook, re-lock,
1017 			 * and check the hardlimit condition again.
1018 			 */
1019 			pr_leave(pp);
1020 			mutex_exit(&pp->pr_lock);
1021 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1022 			mutex_enter(&pp->pr_lock);
1023 			pr_enter(pp, file, line);
1024 			if (pp->pr_nout < pp->pr_hardlimit)
1025 				goto startover;
1026 		}
1027 
1028 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1029 			/*
1030 			 * XXX: A warning isn't logged in this case.  Should
1031 			 * it be?
1032 			 */
1033 			pp->pr_flags |= PR_WANTED;
1034 			pr_leave(pp);
1035 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1036 			pr_enter(pp, file, line);
1037 			goto startover;
1038 		}
1039 
1040 		/*
1041 		 * Log a message that the hard limit has been hit.
1042 		 */
1043 		if (pp->pr_hardlimit_warning != NULL &&
1044 		    ratecheck(&pp->pr_hardlimit_warning_last,
1045 			      &pp->pr_hardlimit_ratecap))
1046 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1047 
1048 		pp->pr_nfail++;
1049 
1050 		pr_leave(pp);
1051 		mutex_exit(&pp->pr_lock);
1052 		return (NULL);
1053 	}
1054 
1055 	/*
1056 	 * The convention we use is that if `curpage' is not NULL, then
1057 	 * it points at a non-empty bucket. In particular, `curpage'
1058 	 * never points at a page header which has PR_PHINPAGE set and
1059 	 * has no items in its bucket.
1060 	 */
1061 	if ((ph = pp->pr_curpage) == NULL) {
1062 		int error;
1063 
1064 #ifdef DIAGNOSTIC
1065 		if (pp->pr_nitems != 0) {
1066 			mutex_exit(&pp->pr_lock);
1067 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1068 			    pp->pr_wchan, pp->pr_nitems);
1069 			panic("pool_get: nitems inconsistent");
1070 		}
1071 #endif
1072 
1073 		/*
1074 		 * Call the back-end page allocator for more memory.
1075 		 * Release the pool lock, as the back-end page allocator
1076 		 * may block.
1077 		 */
1078 		pr_leave(pp);
1079 		error = pool_grow(pp, flags);
1080 		pr_enter(pp, file, line);
1081 		if (error != 0) {
1082 			/*
1083 			 * We were unable to allocate a page or item
1084 			 * header, but we released the lock during
1085 			 * allocation, so perhaps items were freed
1086 			 * back to the pool.  Check for this case.
1087 			 */
1088 			if (pp->pr_curpage != NULL)
1089 				goto startover;
1090 
1091 			pp->pr_nfail++;
1092 			pr_leave(pp);
1093 			mutex_exit(&pp->pr_lock);
1094 			return (NULL);
1095 		}
1096 
1097 		/* Start the allocation process over. */
1098 		goto startover;
1099 	}
1100 	if (pp->pr_roflags & PR_NOTOUCH) {
1101 #ifdef DIAGNOSTIC
1102 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1103 			pr_leave(pp);
1104 			mutex_exit(&pp->pr_lock);
1105 			panic("pool_get: %s: page empty", pp->pr_wchan);
1106 		}
1107 #endif
1108 		v = pr_item_notouch_get(pp, ph);
1109 #ifdef POOL_DIAGNOSTIC
1110 		pr_log(pp, v, PRLOG_GET, file, line);
1111 #endif
1112 	} else {
1113 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1114 		if (__predict_false(v == NULL)) {
1115 			pr_leave(pp);
1116 			mutex_exit(&pp->pr_lock);
1117 			panic("pool_get: %s: page empty", pp->pr_wchan);
1118 		}
1119 #ifdef DIAGNOSTIC
1120 		if (__predict_false(pp->pr_nitems == 0)) {
1121 			pr_leave(pp);
1122 			mutex_exit(&pp->pr_lock);
1123 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1124 			    pp->pr_wchan, pp->pr_nitems);
1125 			panic("pool_get: nitems inconsistent");
1126 		}
1127 #endif
1128 
1129 #ifdef POOL_DIAGNOSTIC
1130 		pr_log(pp, v, PRLOG_GET, file, line);
1131 #endif
1132 
1133 #ifdef DIAGNOSTIC
1134 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1135 			pr_printlog(pp, pi, printf);
1136 			panic("pool_get(%s): free list modified: "
1137 			    "magic=%x; page %p; item addr %p\n",
1138 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1139 		}
1140 #endif
1141 
1142 		/*
1143 		 * Remove from item list.
1144 		 */
1145 		LIST_REMOVE(pi, pi_list);
1146 	}
1147 	pp->pr_nitems--;
1148 	pp->pr_nout++;
1149 	if (ph->ph_nmissing == 0) {
1150 #ifdef DIAGNOSTIC
1151 		if (__predict_false(pp->pr_nidle == 0))
1152 			panic("pool_get: nidle inconsistent");
1153 #endif
1154 		pp->pr_nidle--;
1155 
1156 		/*
1157 		 * This page was previously empty.  Move it to the list of
1158 		 * partially-full pages.  This page is already curpage.
1159 		 */
1160 		LIST_REMOVE(ph, ph_pagelist);
1161 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1162 	}
1163 	ph->ph_nmissing++;
1164 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1165 #ifdef DIAGNOSTIC
1166 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1167 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1168 			pr_leave(pp);
1169 			mutex_exit(&pp->pr_lock);
1170 			panic("pool_get: %s: nmissing inconsistent",
1171 			    pp->pr_wchan);
1172 		}
1173 #endif
1174 		/*
1175 		 * This page is now full.  Move it to the full list
1176 		 * and select a new current page.
1177 		 */
1178 		LIST_REMOVE(ph, ph_pagelist);
1179 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1180 		pool_update_curpage(pp);
1181 	}
1182 
1183 	pp->pr_nget++;
1184 	pr_leave(pp);
1185 
1186 	/*
1187 	 * If we have a low water mark and we are now below that low
1188 	 * water mark, add more items to the pool.
1189 	 */
1190 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1191 		/*
1192 		 * XXX: Should we log a warning?  Should we set up a timeout
1193 		 * to try again in a second or so?  The latter could break
1194 		 * a caller's assumptions about interrupt protection, etc.
1195 		 */
1196 	}
1197 
1198 	mutex_exit(&pp->pr_lock);
1199 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1200 	FREECHECK_OUT(&pp->pr_freecheck, v);
1201 	return (v);
1202 }
1203 
1204 /*
1205  * Internal version of pool_put().  Pool is already locked/entered.
1206  */
1207 static void
1208 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1209 {
1210 	struct pool_item *pi = v;
1211 	struct pool_item_header *ph;
1212 
1213 	KASSERT(mutex_owned(&pp->pr_lock));
1214 	FREECHECK_IN(&pp->pr_freecheck, v);
1215 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1216 
1217 #ifdef DIAGNOSTIC
1218 	if (__predict_false(pp->pr_nout == 0)) {
1219 		printf("pool %s: putting with none out\n",
1220 		    pp->pr_wchan);
1221 		panic("pool_put");
1222 	}
1223 #endif
1224 
1225 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1226 		pr_printlog(pp, NULL, printf);
1227 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1228 	}
1229 
1230 	/*
1231 	 * Return to item list.
1232 	 */
1233 	if (pp->pr_roflags & PR_NOTOUCH) {
1234 		pr_item_notouch_put(pp, ph, v);
1235 	} else {
1236 #ifdef DIAGNOSTIC
1237 		pi->pi_magic = PI_MAGIC;
1238 #endif
1239 #ifdef DEBUG
1240 		{
1241 			int i, *ip = v;
1242 
1243 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1244 				*ip++ = PI_MAGIC;
1245 			}
1246 		}
1247 #endif
1248 
1249 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1250 	}
1251 	KDASSERT(ph->ph_nmissing != 0);
1252 	ph->ph_nmissing--;
1253 	pp->pr_nput++;
1254 	pp->pr_nitems++;
1255 	pp->pr_nout--;
1256 
1257 	/* Cancel "pool empty" condition if it exists */
1258 	if (pp->pr_curpage == NULL)
1259 		pp->pr_curpage = ph;
1260 
1261 	if (pp->pr_flags & PR_WANTED) {
1262 		pp->pr_flags &= ~PR_WANTED;
1263 		if (ph->ph_nmissing == 0)
1264 			pp->pr_nidle++;
1265 		cv_broadcast(&pp->pr_cv);
1266 		return;
1267 	}
1268 
1269 	/*
1270 	 * If this page is now empty, do one of two things:
1271 	 *
1272 	 *	(1) If we have more pages than the page high water mark,
1273 	 *	    free the page back to the system.  ONLY CONSIDER
1274 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1275 	 *	    CLAIM.
1276 	 *
1277 	 *	(2) Otherwise, move the page to the empty page list.
1278 	 *
1279 	 * Either way, select a new current page (so we use a partially-full
1280 	 * page if one is available).
1281 	 */
1282 	if (ph->ph_nmissing == 0) {
1283 		pp->pr_nidle++;
1284 		if (pp->pr_npages > pp->pr_minpages &&
1285 		    pp->pr_npages > pp->pr_maxpages) {
1286 			pr_rmpage(pp, ph, pq);
1287 		} else {
1288 			LIST_REMOVE(ph, ph_pagelist);
1289 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1290 
1291 			/*
1292 			 * Update the timestamp on the page.  A page must
1293 			 * be idle for some period of time before it can
1294 			 * be reclaimed by the pagedaemon.  This minimizes
1295 			 * ping-pong'ing for memory.
1296 			 *
1297 			 * note for 64-bit time_t: truncating to 32-bit is not
1298 			 * a problem for our usage.
1299 			 */
1300 			ph->ph_time = time_uptime;
1301 		}
1302 		pool_update_curpage(pp);
1303 	}
1304 
1305 	/*
1306 	 * If the page was previously completely full, move it to the
1307 	 * partially-full list and make it the current page.  The next
1308 	 * allocation will get the item from this page, instead of
1309 	 * further fragmenting the pool.
1310 	 */
1311 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1312 		LIST_REMOVE(ph, ph_pagelist);
1313 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1314 		pp->pr_curpage = ph;
1315 	}
1316 }
1317 
1318 /*
1319  * Return resource to the pool.
1320  */
1321 #ifdef POOL_DIAGNOSTIC
1322 void
1323 _pool_put(struct pool *pp, void *v, const char *file, long line)
1324 {
1325 	struct pool_pagelist pq;
1326 
1327 	LIST_INIT(&pq);
1328 
1329 	mutex_enter(&pp->pr_lock);
1330 	pr_enter(pp, file, line);
1331 
1332 	pr_log(pp, v, PRLOG_PUT, file, line);
1333 
1334 	pool_do_put(pp, v, &pq);
1335 
1336 	pr_leave(pp);
1337 	mutex_exit(&pp->pr_lock);
1338 
1339 	pr_pagelist_free(pp, &pq);
1340 }
1341 #undef pool_put
1342 #endif /* POOL_DIAGNOSTIC */
1343 
1344 void
1345 pool_put(struct pool *pp, void *v)
1346 {
1347 	struct pool_pagelist pq;
1348 
1349 	LIST_INIT(&pq);
1350 
1351 	mutex_enter(&pp->pr_lock);
1352 	pool_do_put(pp, v, &pq);
1353 	mutex_exit(&pp->pr_lock);
1354 
1355 	pr_pagelist_free(pp, &pq);
1356 }
1357 
1358 #ifdef POOL_DIAGNOSTIC
1359 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1360 #endif
1361 
1362 /*
1363  * pool_grow: grow a pool by a page.
1364  *
1365  * => called with pool locked.
1366  * => unlock and relock the pool.
1367  * => return with pool locked.
1368  */
1369 
1370 static int
1371 pool_grow(struct pool *pp, int flags)
1372 {
1373 	struct pool_item_header *ph = NULL;
1374 	char *cp;
1375 
1376 	mutex_exit(&pp->pr_lock);
1377 	cp = pool_allocator_alloc(pp, flags);
1378 	if (__predict_true(cp != NULL)) {
1379 		ph = pool_alloc_item_header(pp, cp, flags);
1380 	}
1381 	if (__predict_false(cp == NULL || ph == NULL)) {
1382 		if (cp != NULL) {
1383 			pool_allocator_free(pp, cp);
1384 		}
1385 		mutex_enter(&pp->pr_lock);
1386 		return ENOMEM;
1387 	}
1388 
1389 	mutex_enter(&pp->pr_lock);
1390 	pool_prime_page(pp, cp, ph);
1391 	pp->pr_npagealloc++;
1392 	return 0;
1393 }
1394 
1395 /*
1396  * Add N items to the pool.
1397  */
1398 int
1399 pool_prime(struct pool *pp, int n)
1400 {
1401 	int newpages;
1402 	int error = 0;
1403 
1404 	mutex_enter(&pp->pr_lock);
1405 
1406 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1407 
1408 	while (newpages-- > 0) {
1409 		error = pool_grow(pp, PR_NOWAIT);
1410 		if (error) {
1411 			break;
1412 		}
1413 		pp->pr_minpages++;
1414 	}
1415 
1416 	if (pp->pr_minpages >= pp->pr_maxpages)
1417 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1418 
1419 	mutex_exit(&pp->pr_lock);
1420 	return error;
1421 }
1422 
1423 /*
1424  * Add a page worth of items to the pool.
1425  *
1426  * Note, we must be called with the pool descriptor LOCKED.
1427  */
1428 static void
1429 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1430 {
1431 	struct pool_item *pi;
1432 	void *cp = storage;
1433 	const unsigned int align = pp->pr_align;
1434 	const unsigned int ioff = pp->pr_itemoffset;
1435 	int n;
1436 
1437 	KASSERT(mutex_owned(&pp->pr_lock));
1438 
1439 #ifdef DIAGNOSTIC
1440 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1441 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1442 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1443 #endif
1444 
1445 	/*
1446 	 * Insert page header.
1447 	 */
1448 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1449 	LIST_INIT(&ph->ph_itemlist);
1450 	ph->ph_page = storage;
1451 	ph->ph_nmissing = 0;
1452 	ph->ph_time = time_uptime;
1453 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1454 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1455 
1456 	pp->pr_nidle++;
1457 
1458 	/*
1459 	 * Color this page.
1460 	 */
1461 	ph->ph_off = pp->pr_curcolor;
1462 	cp = (char *)cp + ph->ph_off;
1463 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1464 		pp->pr_curcolor = 0;
1465 
1466 	/*
1467 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1468 	 */
1469 	if (ioff != 0)
1470 		cp = (char *)cp + align - ioff;
1471 
1472 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1473 
1474 	/*
1475 	 * Insert remaining chunks on the bucket list.
1476 	 */
1477 	n = pp->pr_itemsperpage;
1478 	pp->pr_nitems += n;
1479 
1480 	if (pp->pr_roflags & PR_NOTOUCH) {
1481 		pr_item_notouch_init(pp, ph);
1482 	} else {
1483 		while (n--) {
1484 			pi = (struct pool_item *)cp;
1485 
1486 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1487 
1488 			/* Insert on page list */
1489 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1490 #ifdef DIAGNOSTIC
1491 			pi->pi_magic = PI_MAGIC;
1492 #endif
1493 			cp = (char *)cp + pp->pr_size;
1494 
1495 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1496 		}
1497 	}
1498 
1499 	/*
1500 	 * If the pool was depleted, point at the new page.
1501 	 */
1502 	if (pp->pr_curpage == NULL)
1503 		pp->pr_curpage = ph;
1504 
1505 	if (++pp->pr_npages > pp->pr_hiwat)
1506 		pp->pr_hiwat = pp->pr_npages;
1507 }
1508 
1509 /*
1510  * Used by pool_get() when nitems drops below the low water mark.  This
1511  * is used to catch up pr_nitems with the low water mark.
1512  *
1513  * Note 1, we never wait for memory here, we let the caller decide what to do.
1514  *
1515  * Note 2, we must be called with the pool already locked, and we return
1516  * with it locked.
1517  */
1518 static int
1519 pool_catchup(struct pool *pp)
1520 {
1521 	int error = 0;
1522 
1523 	while (POOL_NEEDS_CATCHUP(pp)) {
1524 		error = pool_grow(pp, PR_NOWAIT);
1525 		if (error) {
1526 			break;
1527 		}
1528 	}
1529 	return error;
1530 }
1531 
1532 static void
1533 pool_update_curpage(struct pool *pp)
1534 {
1535 
1536 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1537 	if (pp->pr_curpage == NULL) {
1538 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1539 	}
1540 }
1541 
1542 void
1543 pool_setlowat(struct pool *pp, int n)
1544 {
1545 
1546 	mutex_enter(&pp->pr_lock);
1547 
1548 	pp->pr_minitems = n;
1549 	pp->pr_minpages = (n == 0)
1550 		? 0
1551 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1552 
1553 	/* Make sure we're caught up with the newly-set low water mark. */
1554 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1555 		/*
1556 		 * XXX: Should we log a warning?  Should we set up a timeout
1557 		 * to try again in a second or so?  The latter could break
1558 		 * a caller's assumptions about interrupt protection, etc.
1559 		 */
1560 	}
1561 
1562 	mutex_exit(&pp->pr_lock);
1563 }
1564 
1565 void
1566 pool_sethiwat(struct pool *pp, int n)
1567 {
1568 
1569 	mutex_enter(&pp->pr_lock);
1570 
1571 	pp->pr_maxpages = (n == 0)
1572 		? 0
1573 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1574 
1575 	mutex_exit(&pp->pr_lock);
1576 }
1577 
1578 void
1579 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1580 {
1581 
1582 	mutex_enter(&pp->pr_lock);
1583 
1584 	pp->pr_hardlimit = n;
1585 	pp->pr_hardlimit_warning = warnmess;
1586 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1587 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1588 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1589 
1590 	/*
1591 	 * In-line version of pool_sethiwat(), because we don't want to
1592 	 * release the lock.
1593 	 */
1594 	pp->pr_maxpages = (n == 0)
1595 		? 0
1596 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1597 
1598 	mutex_exit(&pp->pr_lock);
1599 }
1600 
1601 /*
1602  * Release all complete pages that have not been used recently.
1603  */
1604 int
1605 #ifdef POOL_DIAGNOSTIC
1606 _pool_reclaim(struct pool *pp, const char *file, long line)
1607 #else
1608 pool_reclaim(struct pool *pp)
1609 #endif
1610 {
1611 	struct pool_item_header *ph, *phnext;
1612 	struct pool_pagelist pq;
1613 	uint32_t curtime;
1614 	bool klock;
1615 	int rv;
1616 
1617 	if (pp->pr_drain_hook != NULL) {
1618 		/*
1619 		 * The drain hook must be called with the pool unlocked.
1620 		 */
1621 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1622 	}
1623 
1624 	/*
1625 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1626 	 * to block.
1627 	 */
1628 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1629 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1630 		KERNEL_LOCK(1, NULL);
1631 		klock = true;
1632 	} else
1633 		klock = false;
1634 
1635 	/* Reclaim items from the pool's cache (if any). */
1636 	if (pp->pr_cache != NULL)
1637 		pool_cache_invalidate(pp->pr_cache);
1638 
1639 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1640 		if (klock) {
1641 			KERNEL_UNLOCK_ONE(NULL);
1642 		}
1643 		return (0);
1644 	}
1645 	pr_enter(pp, file, line);
1646 
1647 	LIST_INIT(&pq);
1648 
1649 	curtime = time_uptime;
1650 
1651 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1652 		phnext = LIST_NEXT(ph, ph_pagelist);
1653 
1654 		/* Check our minimum page claim */
1655 		if (pp->pr_npages <= pp->pr_minpages)
1656 			break;
1657 
1658 		KASSERT(ph->ph_nmissing == 0);
1659 		if (curtime - ph->ph_time < pool_inactive_time
1660 		    && !pa_starved_p(pp->pr_alloc))
1661 			continue;
1662 
1663 		/*
1664 		 * If freeing this page would put us below
1665 		 * the low water mark, stop now.
1666 		 */
1667 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1668 		    pp->pr_minitems)
1669 			break;
1670 
1671 		pr_rmpage(pp, ph, &pq);
1672 	}
1673 
1674 	pr_leave(pp);
1675 	mutex_exit(&pp->pr_lock);
1676 
1677 	if (LIST_EMPTY(&pq))
1678 		rv = 0;
1679 	else {
1680 		pr_pagelist_free(pp, &pq);
1681 		rv = 1;
1682 	}
1683 
1684 	if (klock) {
1685 		KERNEL_UNLOCK_ONE(NULL);
1686 	}
1687 
1688 	return (rv);
1689 }
1690 
1691 /*
1692  * Drain pools, one at a time.  This is a two stage process;
1693  * drain_start kicks off a cross call to drain CPU-level caches
1694  * if the pool has an associated pool_cache.  drain_end waits
1695  * for those cross calls to finish, and then drains the cache
1696  * (if any) and pool.
1697  *
1698  * Note, must never be called from interrupt context.
1699  */
1700 void
1701 pool_drain_start(struct pool **ppp, uint64_t *wp)
1702 {
1703 	struct pool *pp;
1704 
1705 	KASSERT(!TAILQ_EMPTY(&pool_head));
1706 
1707 	pp = NULL;
1708 
1709 	/* Find next pool to drain, and add a reference. */
1710 	mutex_enter(&pool_head_lock);
1711 	do {
1712 		if (drainpp == NULL) {
1713 			drainpp = TAILQ_FIRST(&pool_head);
1714 		}
1715 		if (drainpp != NULL) {
1716 			pp = drainpp;
1717 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1718 		}
1719 		/*
1720 		 * Skip completely idle pools.  We depend on at least
1721 		 * one pool in the system being active.
1722 		 */
1723 	} while (pp == NULL || pp->pr_npages == 0);
1724 	pp->pr_refcnt++;
1725 	mutex_exit(&pool_head_lock);
1726 
1727 	/* If there is a pool_cache, drain CPU level caches. */
1728 	*ppp = pp;
1729 	if (pp->pr_cache != NULL) {
1730 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1731 		    pp->pr_cache, NULL);
1732 	}
1733 }
1734 
1735 void
1736 pool_drain_end(struct pool *pp, uint64_t where)
1737 {
1738 
1739 	if (pp == NULL)
1740 		return;
1741 
1742 	KASSERT(pp->pr_refcnt > 0);
1743 
1744 	/* Wait for remote draining to complete. */
1745 	if (pp->pr_cache != NULL)
1746 		xc_wait(where);
1747 
1748 	/* Drain the cache (if any) and pool.. */
1749 	pool_reclaim(pp);
1750 
1751 	/* Finally, unlock the pool. */
1752 	mutex_enter(&pool_head_lock);
1753 	pp->pr_refcnt--;
1754 	cv_broadcast(&pool_busy);
1755 	mutex_exit(&pool_head_lock);
1756 }
1757 
1758 /*
1759  * Diagnostic helpers.
1760  */
1761 void
1762 pool_print(struct pool *pp, const char *modif)
1763 {
1764 
1765 	pool_print1(pp, modif, printf);
1766 }
1767 
1768 void
1769 pool_printall(const char *modif, void (*pr)(const char *, ...))
1770 {
1771 	struct pool *pp;
1772 
1773 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1774 		pool_printit(pp, modif, pr);
1775 	}
1776 }
1777 
1778 void
1779 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1780 {
1781 
1782 	if (pp == NULL) {
1783 		(*pr)("Must specify a pool to print.\n");
1784 		return;
1785 	}
1786 
1787 	pool_print1(pp, modif, pr);
1788 }
1789 
1790 static void
1791 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1792     void (*pr)(const char *, ...))
1793 {
1794 	struct pool_item_header *ph;
1795 #ifdef DIAGNOSTIC
1796 	struct pool_item *pi;
1797 #endif
1798 
1799 	LIST_FOREACH(ph, pl, ph_pagelist) {
1800 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1801 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1802 #ifdef DIAGNOSTIC
1803 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1804 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1805 				if (pi->pi_magic != PI_MAGIC) {
1806 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1807 					    pi, pi->pi_magic);
1808 				}
1809 			}
1810 		}
1811 #endif
1812 	}
1813 }
1814 
1815 static void
1816 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1817 {
1818 	struct pool_item_header *ph;
1819 	pool_cache_t pc;
1820 	pcg_t *pcg;
1821 	pool_cache_cpu_t *cc;
1822 	uint64_t cpuhit, cpumiss;
1823 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1824 	char c;
1825 
1826 	while ((c = *modif++) != '\0') {
1827 		if (c == 'l')
1828 			print_log = 1;
1829 		if (c == 'p')
1830 			print_pagelist = 1;
1831 		if (c == 'c')
1832 			print_cache = 1;
1833 	}
1834 
1835 	if ((pc = pp->pr_cache) != NULL) {
1836 		(*pr)("POOL CACHE");
1837 	} else {
1838 		(*pr)("POOL");
1839 	}
1840 
1841 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1842 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1843 	    pp->pr_roflags);
1844 	(*pr)("\talloc %p\n", pp->pr_alloc);
1845 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1846 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1847 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1848 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1849 
1850 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1851 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1852 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1853 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1854 
1855 	if (print_pagelist == 0)
1856 		goto skip_pagelist;
1857 
1858 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1859 		(*pr)("\n\tempty page list:\n");
1860 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1861 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1862 		(*pr)("\n\tfull page list:\n");
1863 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1864 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1865 		(*pr)("\n\tpartial-page list:\n");
1866 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1867 
1868 	if (pp->pr_curpage == NULL)
1869 		(*pr)("\tno current page\n");
1870 	else
1871 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1872 
1873  skip_pagelist:
1874 	if (print_log == 0)
1875 		goto skip_log;
1876 
1877 	(*pr)("\n");
1878 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1879 		(*pr)("\tno log\n");
1880 	else {
1881 		pr_printlog(pp, NULL, pr);
1882 	}
1883 
1884  skip_log:
1885 
1886 #define PR_GROUPLIST(pcg)						\
1887 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1888 	for (i = 0; i < pcg->pcg_size; i++) {				\
1889 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1890 		    POOL_PADDR_INVALID) {				\
1891 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1892 			    pcg->pcg_objects[i].pcgo_va,		\
1893 			    (unsigned long long)			\
1894 			    pcg->pcg_objects[i].pcgo_pa);		\
1895 		} else {						\
1896 			(*pr)("\t\t\t%p\n",				\
1897 			    pcg->pcg_objects[i].pcgo_va);		\
1898 		}							\
1899 	}
1900 
1901 	if (pc != NULL) {
1902 		cpuhit = 0;
1903 		cpumiss = 0;
1904 		for (i = 0; i < MAXCPUS; i++) {
1905 			if ((cc = pc->pc_cpus[i]) == NULL)
1906 				continue;
1907 			cpuhit += cc->cc_hits;
1908 			cpumiss += cc->cc_misses;
1909 		}
1910 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1911 		(*pr)("\tcache layer hits %llu misses %llu\n",
1912 		    pc->pc_hits, pc->pc_misses);
1913 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1914 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1915 		    pc->pc_contended);
1916 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1917 		    pc->pc_nempty, pc->pc_nfull);
1918 		if (print_cache) {
1919 			(*pr)("\tfull cache groups:\n");
1920 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1921 			    pcg = pcg->pcg_next) {
1922 				PR_GROUPLIST(pcg);
1923 			}
1924 			(*pr)("\tempty cache groups:\n");
1925 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1926 			    pcg = pcg->pcg_next) {
1927 				PR_GROUPLIST(pcg);
1928 			}
1929 		}
1930 	}
1931 #undef PR_GROUPLIST
1932 
1933 	pr_enter_check(pp, pr);
1934 }
1935 
1936 static int
1937 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1938 {
1939 	struct pool_item *pi;
1940 	void *page;
1941 	int n;
1942 
1943 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1944 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1945 		if (page != ph->ph_page &&
1946 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1947 			if (label != NULL)
1948 				printf("%s: ", label);
1949 			printf("pool(%p:%s): page inconsistency: page %p;"
1950 			       " at page head addr %p (p %p)\n", pp,
1951 				pp->pr_wchan, ph->ph_page,
1952 				ph, page);
1953 			return 1;
1954 		}
1955 	}
1956 
1957 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1958 		return 0;
1959 
1960 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1961 	     pi != NULL;
1962 	     pi = LIST_NEXT(pi,pi_list), n++) {
1963 
1964 #ifdef DIAGNOSTIC
1965 		if (pi->pi_magic != PI_MAGIC) {
1966 			if (label != NULL)
1967 				printf("%s: ", label);
1968 			printf("pool(%s): free list modified: magic=%x;"
1969 			       " page %p; item ordinal %d; addr %p\n",
1970 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1971 				n, pi);
1972 			panic("pool");
1973 		}
1974 #endif
1975 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1976 			continue;
1977 		}
1978 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1979 		if (page == ph->ph_page)
1980 			continue;
1981 
1982 		if (label != NULL)
1983 			printf("%s: ", label);
1984 		printf("pool(%p:%s): page inconsistency: page %p;"
1985 		       " item ordinal %d; addr %p (p %p)\n", pp,
1986 			pp->pr_wchan, ph->ph_page,
1987 			n, pi, page);
1988 		return 1;
1989 	}
1990 	return 0;
1991 }
1992 
1993 
1994 int
1995 pool_chk(struct pool *pp, const char *label)
1996 {
1997 	struct pool_item_header *ph;
1998 	int r = 0;
1999 
2000 	mutex_enter(&pp->pr_lock);
2001 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2002 		r = pool_chk_page(pp, label, ph);
2003 		if (r) {
2004 			goto out;
2005 		}
2006 	}
2007 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2008 		r = pool_chk_page(pp, label, ph);
2009 		if (r) {
2010 			goto out;
2011 		}
2012 	}
2013 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2014 		r = pool_chk_page(pp, label, ph);
2015 		if (r) {
2016 			goto out;
2017 		}
2018 	}
2019 
2020 out:
2021 	mutex_exit(&pp->pr_lock);
2022 	return (r);
2023 }
2024 
2025 /*
2026  * pool_cache_init:
2027  *
2028  *	Initialize a pool cache.
2029  */
2030 pool_cache_t
2031 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2032     const char *wchan, struct pool_allocator *palloc, int ipl,
2033     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2034 {
2035 	pool_cache_t pc;
2036 
2037 	pc = pool_get(&cache_pool, PR_WAITOK);
2038 	if (pc == NULL)
2039 		return NULL;
2040 
2041 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2042 	   palloc, ipl, ctor, dtor, arg);
2043 
2044 	return pc;
2045 }
2046 
2047 /*
2048  * pool_cache_bootstrap:
2049  *
2050  *	Kernel-private version of pool_cache_init().  The caller
2051  *	provides initial storage.
2052  */
2053 void
2054 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2055     u_int align_offset, u_int flags, const char *wchan,
2056     struct pool_allocator *palloc, int ipl,
2057     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2058     void *arg)
2059 {
2060 	CPU_INFO_ITERATOR cii;
2061 	pool_cache_t pc1;
2062 	struct cpu_info *ci;
2063 	struct pool *pp;
2064 
2065 	pp = &pc->pc_pool;
2066 	if (palloc == NULL && ipl == IPL_NONE)
2067 		palloc = &pool_allocator_nointr;
2068 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2069 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2070 
2071 	if (ctor == NULL) {
2072 		ctor = (int (*)(void *, void *, int))nullop;
2073 	}
2074 	if (dtor == NULL) {
2075 		dtor = (void (*)(void *, void *))nullop;
2076 	}
2077 
2078 	pc->pc_emptygroups = NULL;
2079 	pc->pc_fullgroups = NULL;
2080 	pc->pc_partgroups = NULL;
2081 	pc->pc_ctor = ctor;
2082 	pc->pc_dtor = dtor;
2083 	pc->pc_arg  = arg;
2084 	pc->pc_hits  = 0;
2085 	pc->pc_misses = 0;
2086 	pc->pc_nempty = 0;
2087 	pc->pc_npart = 0;
2088 	pc->pc_nfull = 0;
2089 	pc->pc_contended = 0;
2090 	pc->pc_refcnt = 0;
2091 	pc->pc_freecheck = NULL;
2092 
2093 	if ((flags & PR_LARGECACHE) != 0) {
2094 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2095 	} else {
2096 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2097 	}
2098 
2099 	/* Allocate per-CPU caches. */
2100 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2101 	pc->pc_ncpu = 0;
2102 	if (ncpu < 2) {
2103 		/* XXX For sparc: boot CPU is not attached yet. */
2104 		pool_cache_cpu_init1(curcpu(), pc);
2105 	} else {
2106 		for (CPU_INFO_FOREACH(cii, ci)) {
2107 			pool_cache_cpu_init1(ci, pc);
2108 		}
2109 	}
2110 
2111 	/* Add to list of all pools. */
2112 	if (__predict_true(!cold))
2113 		mutex_enter(&pool_head_lock);
2114 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2115 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2116 			break;
2117 	}
2118 	if (pc1 == NULL)
2119 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2120 	else
2121 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2122 	if (__predict_true(!cold))
2123 		mutex_exit(&pool_head_lock);
2124 
2125 	membar_sync();
2126 	pp->pr_cache = pc;
2127 }
2128 
2129 /*
2130  * pool_cache_destroy:
2131  *
2132  *	Destroy a pool cache.
2133  */
2134 void
2135 pool_cache_destroy(pool_cache_t pc)
2136 {
2137 	struct pool *pp = &pc->pc_pool;
2138 	pool_cache_cpu_t *cc;
2139 	pcg_t *pcg;
2140 	int i;
2141 
2142 	/* Remove it from the global list. */
2143 	mutex_enter(&pool_head_lock);
2144 	while (pc->pc_refcnt != 0)
2145 		cv_wait(&pool_busy, &pool_head_lock);
2146 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2147 	mutex_exit(&pool_head_lock);
2148 
2149 	/* First, invalidate the entire cache. */
2150 	pool_cache_invalidate(pc);
2151 
2152 	/* Disassociate it from the pool. */
2153 	mutex_enter(&pp->pr_lock);
2154 	pp->pr_cache = NULL;
2155 	mutex_exit(&pp->pr_lock);
2156 
2157 	/* Destroy per-CPU data */
2158 	for (i = 0; i < MAXCPUS; i++) {
2159 		if ((cc = pc->pc_cpus[i]) == NULL)
2160 			continue;
2161 		if ((pcg = cc->cc_current) != NULL) {
2162 			pcg->pcg_next = NULL;
2163 			pool_cache_invalidate_groups(pc, pcg);
2164 		}
2165 		if ((pcg = cc->cc_previous) != NULL) {
2166 			pcg->pcg_next = NULL;
2167 			pool_cache_invalidate_groups(pc, pcg);
2168 		}
2169 		if (cc != &pc->pc_cpu0)
2170 			pool_put(&cache_cpu_pool, cc);
2171 	}
2172 
2173 	/* Finally, destroy it. */
2174 	mutex_destroy(&pc->pc_lock);
2175 	pool_destroy(pp);
2176 	pool_put(&cache_pool, pc);
2177 }
2178 
2179 /*
2180  * pool_cache_cpu_init1:
2181  *
2182  *	Called for each pool_cache whenever a new CPU is attached.
2183  */
2184 static void
2185 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2186 {
2187 	pool_cache_cpu_t *cc;
2188 	int index;
2189 
2190 	index = ci->ci_index;
2191 
2192 	KASSERT(index < MAXCPUS);
2193 
2194 	if ((cc = pc->pc_cpus[index]) != NULL) {
2195 		KASSERT(cc->cc_cpuindex == index);
2196 		return;
2197 	}
2198 
2199 	/*
2200 	 * The first CPU is 'free'.  This needs to be the case for
2201 	 * bootstrap - we may not be able to allocate yet.
2202 	 */
2203 	if (pc->pc_ncpu == 0) {
2204 		cc = &pc->pc_cpu0;
2205 		pc->pc_ncpu = 1;
2206 	} else {
2207 		mutex_enter(&pc->pc_lock);
2208 		pc->pc_ncpu++;
2209 		mutex_exit(&pc->pc_lock);
2210 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2211 	}
2212 
2213 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2214 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2215 	cc->cc_cache = pc;
2216 	cc->cc_cpuindex = index;
2217 	cc->cc_hits = 0;
2218 	cc->cc_misses = 0;
2219 	cc->cc_current = NULL;
2220 	cc->cc_previous = NULL;
2221 
2222 	pc->pc_cpus[index] = cc;
2223 }
2224 
2225 /*
2226  * pool_cache_cpu_init:
2227  *
2228  *	Called whenever a new CPU is attached.
2229  */
2230 void
2231 pool_cache_cpu_init(struct cpu_info *ci)
2232 {
2233 	pool_cache_t pc;
2234 
2235 	mutex_enter(&pool_head_lock);
2236 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2237 		pc->pc_refcnt++;
2238 		mutex_exit(&pool_head_lock);
2239 
2240 		pool_cache_cpu_init1(ci, pc);
2241 
2242 		mutex_enter(&pool_head_lock);
2243 		pc->pc_refcnt--;
2244 		cv_broadcast(&pool_busy);
2245 	}
2246 	mutex_exit(&pool_head_lock);
2247 }
2248 
2249 /*
2250  * pool_cache_reclaim:
2251  *
2252  *	Reclaim memory from a pool cache.
2253  */
2254 bool
2255 pool_cache_reclaim(pool_cache_t pc)
2256 {
2257 
2258 	return pool_reclaim(&pc->pc_pool);
2259 }
2260 
2261 static void
2262 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2263 {
2264 
2265 	(*pc->pc_dtor)(pc->pc_arg, object);
2266 	pool_put(&pc->pc_pool, object);
2267 }
2268 
2269 /*
2270  * pool_cache_destruct_object:
2271  *
2272  *	Force destruction of an object and its release back into
2273  *	the pool.
2274  */
2275 void
2276 pool_cache_destruct_object(pool_cache_t pc, void *object)
2277 {
2278 
2279 	FREECHECK_IN(&pc->pc_freecheck, object);
2280 
2281 	pool_cache_destruct_object1(pc, object);
2282 }
2283 
2284 /*
2285  * pool_cache_invalidate_groups:
2286  *
2287  *	Invalidate a chain of groups and destruct all objects.
2288  */
2289 static void
2290 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2291 {
2292 	void *object;
2293 	pcg_t *next;
2294 	int i;
2295 
2296 	for (; pcg != NULL; pcg = next) {
2297 		next = pcg->pcg_next;
2298 
2299 		for (i = 0; i < pcg->pcg_avail; i++) {
2300 			object = pcg->pcg_objects[i].pcgo_va;
2301 			pool_cache_destruct_object1(pc, object);
2302 		}
2303 
2304 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2305 			pool_put(&pcg_large_pool, pcg);
2306 		} else {
2307 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2308 			pool_put(&pcg_normal_pool, pcg);
2309 		}
2310 	}
2311 }
2312 
2313 /*
2314  * pool_cache_invalidate:
2315  *
2316  *	Invalidate a pool cache (destruct and release all of the
2317  *	cached objects).  Does not reclaim objects from the pool.
2318  */
2319 void
2320 pool_cache_invalidate(pool_cache_t pc)
2321 {
2322 	pcg_t *full, *empty, *part;
2323 
2324 	mutex_enter(&pc->pc_lock);
2325 	full = pc->pc_fullgroups;
2326 	empty = pc->pc_emptygroups;
2327 	part = pc->pc_partgroups;
2328 	pc->pc_fullgroups = NULL;
2329 	pc->pc_emptygroups = NULL;
2330 	pc->pc_partgroups = NULL;
2331 	pc->pc_nfull = 0;
2332 	pc->pc_nempty = 0;
2333 	pc->pc_npart = 0;
2334 	mutex_exit(&pc->pc_lock);
2335 
2336 	pool_cache_invalidate_groups(pc, full);
2337 	pool_cache_invalidate_groups(pc, empty);
2338 	pool_cache_invalidate_groups(pc, part);
2339 }
2340 
2341 void
2342 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2343 {
2344 
2345 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2346 }
2347 
2348 void
2349 pool_cache_setlowat(pool_cache_t pc, int n)
2350 {
2351 
2352 	pool_setlowat(&pc->pc_pool, n);
2353 }
2354 
2355 void
2356 pool_cache_sethiwat(pool_cache_t pc, int n)
2357 {
2358 
2359 	pool_sethiwat(&pc->pc_pool, n);
2360 }
2361 
2362 void
2363 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2364 {
2365 
2366 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2367 }
2368 
2369 static inline pool_cache_cpu_t *
2370 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2371 {
2372 	pool_cache_cpu_t *cc;
2373 
2374 	/*
2375 	 * Prevent other users of the cache from accessing our
2376 	 * CPU-local data.  To avoid touching shared state, we
2377 	 * pull the neccessary information from CPU local data.
2378 	 */
2379 	crit_enter();
2380 	cc = pc->pc_cpus[curcpu()->ci_index];
2381 	KASSERT(cc->cc_cache == pc);
2382 	if (cc->cc_ipl != IPL_NONE) {
2383 		*s = splraiseipl(cc->cc_iplcookie);
2384 	}
2385 
2386 	return cc;
2387 }
2388 
2389 static inline void
2390 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2391 {
2392 
2393 	/* No longer need exclusive access to the per-CPU data. */
2394 	if (cc->cc_ipl != IPL_NONE) {
2395 		splx(*s);
2396 	}
2397 	crit_exit();
2398 }
2399 
2400 #if __GNUC_PREREQ__(3, 0)
2401 __attribute ((noinline))
2402 #endif
2403 pool_cache_cpu_t *
2404 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2405 		    paddr_t *pap, int flags)
2406 {
2407 	pcg_t *pcg, *cur;
2408 	uint64_t ncsw;
2409 	pool_cache_t pc;
2410 	void *object;
2411 
2412 	pc = cc->cc_cache;
2413 	cc->cc_misses++;
2414 
2415 	/*
2416 	 * Nothing was available locally.  Try and grab a group
2417 	 * from the cache.
2418 	 */
2419 	if (!mutex_tryenter(&pc->pc_lock)) {
2420 		ncsw = curlwp->l_ncsw;
2421 		mutex_enter(&pc->pc_lock);
2422 		pc->pc_contended++;
2423 
2424 		/*
2425 		 * If we context switched while locking, then
2426 		 * our view of the per-CPU data is invalid:
2427 		 * retry.
2428 		 */
2429 		if (curlwp->l_ncsw != ncsw) {
2430 			mutex_exit(&pc->pc_lock);
2431 			pool_cache_cpu_exit(cc, s);
2432 			return pool_cache_cpu_enter(pc, s);
2433 		}
2434 	}
2435 
2436 	if ((pcg = pc->pc_fullgroups) != NULL) {
2437 		/*
2438 		 * If there's a full group, release our empty
2439 		 * group back to the cache.  Install the full
2440 		 * group as cc_current and return.
2441 		 */
2442 		if ((cur = cc->cc_current) != NULL) {
2443 			KASSERT(cur->pcg_avail == 0);
2444 			cur->pcg_next = pc->pc_emptygroups;
2445 			pc->pc_emptygroups = cur;
2446 			pc->pc_nempty++;
2447 		}
2448 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2449 		cc->cc_current = pcg;
2450 		pc->pc_fullgroups = pcg->pcg_next;
2451 		pc->pc_hits++;
2452 		pc->pc_nfull--;
2453 		mutex_exit(&pc->pc_lock);
2454 		return cc;
2455 	}
2456 
2457 	/*
2458 	 * Nothing available locally or in cache.  Take the slow
2459 	 * path: fetch a new object from the pool and construct
2460 	 * it.
2461 	 */
2462 	pc->pc_misses++;
2463 	mutex_exit(&pc->pc_lock);
2464 	pool_cache_cpu_exit(cc, s);
2465 
2466 	object = pool_get(&pc->pc_pool, flags);
2467 	*objectp = object;
2468 	if (object == NULL)
2469 		return NULL;
2470 
2471 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2472 		pool_put(&pc->pc_pool, object);
2473 		*objectp = NULL;
2474 		return NULL;
2475 	}
2476 
2477 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2478 	    (pc->pc_pool.pr_align - 1)) == 0);
2479 
2480 	if (pap != NULL) {
2481 #ifdef POOL_VTOPHYS
2482 		*pap = POOL_VTOPHYS(object);
2483 #else
2484 		*pap = POOL_PADDR_INVALID;
2485 #endif
2486 	}
2487 
2488 	FREECHECK_OUT(&pc->pc_freecheck, object);
2489 	return NULL;
2490 }
2491 
2492 /*
2493  * pool_cache_get{,_paddr}:
2494  *
2495  *	Get an object from a pool cache (optionally returning
2496  *	the physical address of the object).
2497  */
2498 void *
2499 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2500 {
2501 	pool_cache_cpu_t *cc;
2502 	pcg_t *pcg;
2503 	void *object;
2504 	int s;
2505 
2506 #ifdef LOCKDEBUG
2507 	if (flags & PR_WAITOK) {
2508 		ASSERT_SLEEPABLE();
2509 	}
2510 #endif
2511 
2512 	cc = pool_cache_cpu_enter(pc, &s);
2513 	do {
2514 		/* Try and allocate an object from the current group. */
2515 	 	pcg = cc->cc_current;
2516 		if (pcg != NULL && pcg->pcg_avail > 0) {
2517 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2518 			if (pap != NULL)
2519 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2520 #if defined(DIAGNOSTIC)
2521 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2522 #endif /* defined(DIAGNOSTIC) */
2523 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
2524 			KASSERT(object != NULL);
2525 			cc->cc_hits++;
2526 			pool_cache_cpu_exit(cc, &s);
2527 			FREECHECK_OUT(&pc->pc_freecheck, object);
2528 			return object;
2529 		}
2530 
2531 		/*
2532 		 * That failed.  If the previous group isn't empty, swap
2533 		 * it with the current group and allocate from there.
2534 		 */
2535 		pcg = cc->cc_previous;
2536 		if (pcg != NULL && pcg->pcg_avail > 0) {
2537 			cc->cc_previous = cc->cc_current;
2538 			cc->cc_current = pcg;
2539 			continue;
2540 		}
2541 
2542 		/*
2543 		 * Can't allocate from either group: try the slow path.
2544 		 * If get_slow() allocated an object for us, or if
2545 		 * no more objects are available, it will return NULL.
2546 		 * Otherwise, we need to retry.
2547 		 */
2548 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2549 	} while (cc != NULL);
2550 
2551 	return object;
2552 }
2553 
2554 #if __GNUC_PREREQ__(3, 0)
2555 __attribute ((noinline))
2556 #endif
2557 pool_cache_cpu_t *
2558 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2559 {
2560 	pcg_t *pcg, *cur;
2561 	uint64_t ncsw;
2562 	pool_cache_t pc;
2563 	u_int nobj;
2564 
2565 	pc = cc->cc_cache;
2566 	cc->cc_misses++;
2567 
2568 	/*
2569 	 * No free slots locally.  Try to grab an empty, unused
2570 	 * group from the cache.
2571 	 */
2572 	if (!mutex_tryenter(&pc->pc_lock)) {
2573 		ncsw = curlwp->l_ncsw;
2574 		mutex_enter(&pc->pc_lock);
2575 		pc->pc_contended++;
2576 
2577 		/*
2578 		 * If we context switched while locking, then
2579 		 * our view of the per-CPU data is invalid:
2580 		 * retry.
2581 		 */
2582 		if (curlwp->l_ncsw != ncsw) {
2583 			mutex_exit(&pc->pc_lock);
2584 			pool_cache_cpu_exit(cc, s);
2585 			return pool_cache_cpu_enter(pc, s);
2586 		}
2587 	}
2588 
2589 	if ((pcg = pc->pc_emptygroups) != NULL) {
2590 		/*
2591 		 * If there's a empty group, release our full
2592 		 * group back to the cache.  Install the empty
2593 		 * group and return.
2594 		 */
2595 		KASSERT(pcg->pcg_avail == 0);
2596 		pc->pc_emptygroups = pcg->pcg_next;
2597 		if (cc->cc_previous == NULL) {
2598 			cc->cc_previous = pcg;
2599 		} else {
2600 			if ((cur = cc->cc_current) != NULL) {
2601 				KASSERT(cur->pcg_avail == pcg->pcg_size);
2602 				cur->pcg_next = pc->pc_fullgroups;
2603 				pc->pc_fullgroups = cur;
2604 				pc->pc_nfull++;
2605 			}
2606 			cc->cc_current = pcg;
2607 		}
2608 		pc->pc_hits++;
2609 		pc->pc_nempty--;
2610 		mutex_exit(&pc->pc_lock);
2611 		return cc;
2612 	}
2613 
2614 	/*
2615 	 * Nothing available locally or in cache.  Take the
2616 	 * slow path and try to allocate a new group that we
2617 	 * can release to.
2618 	 */
2619 	pc->pc_misses++;
2620 	mutex_exit(&pc->pc_lock);
2621 	pool_cache_cpu_exit(cc, s);
2622 
2623 	/*
2624 	 * If we can't allocate a new group, just throw the
2625 	 * object away.
2626 	 */
2627 	nobj = pc->pc_pcgsize;
2628 	if (pool_cache_disable) {
2629 		pcg = NULL;
2630 	} else if (nobj == PCG_NOBJECTS_LARGE) {
2631 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
2632 	} else {
2633 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
2634 	}
2635 	if (pcg == NULL) {
2636 		pool_cache_destruct_object(pc, object);
2637 		return NULL;
2638 	}
2639 	pcg->pcg_avail = 0;
2640 	pcg->pcg_size = nobj;
2641 
2642 	/*
2643 	 * Add the empty group to the cache and try again.
2644 	 */
2645 	mutex_enter(&pc->pc_lock);
2646 	pcg->pcg_next = pc->pc_emptygroups;
2647 	pc->pc_emptygroups = pcg;
2648 	pc->pc_nempty++;
2649 	mutex_exit(&pc->pc_lock);
2650 
2651 	return pool_cache_cpu_enter(pc, s);
2652 }
2653 
2654 /*
2655  * pool_cache_put{,_paddr}:
2656  *
2657  *	Put an object back to the pool cache (optionally caching the
2658  *	physical address of the object).
2659  */
2660 void
2661 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2662 {
2663 	pool_cache_cpu_t *cc;
2664 	pcg_t *pcg;
2665 	int s;
2666 
2667 	FREECHECK_IN(&pc->pc_freecheck, object);
2668 
2669 	cc = pool_cache_cpu_enter(pc, &s);
2670 	do {
2671 		/* If the current group isn't full, release it there. */
2672 	 	pcg = cc->cc_current;
2673 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
2674 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2675 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2676 			pcg->pcg_avail++;
2677 			cc->cc_hits++;
2678 			pool_cache_cpu_exit(cc, &s);
2679 			return;
2680 		}
2681 
2682 		/*
2683 		 * That failed.  If the previous group is empty, swap
2684 		 * it with the current group and try again.
2685 		 */
2686 		pcg = cc->cc_previous;
2687 		if (pcg != NULL && pcg->pcg_avail == 0) {
2688 			cc->cc_previous = cc->cc_current;
2689 			cc->cc_current = pcg;
2690 			continue;
2691 		}
2692 
2693 		/*
2694 		 * Can't free to either group: try the slow path.
2695 		 * If put_slow() releases the object for us, it
2696 		 * will return NULL.  Otherwise we need to retry.
2697 		 */
2698 		cc = pool_cache_put_slow(cc, &s, object, pa);
2699 	} while (cc != NULL);
2700 }
2701 
2702 /*
2703  * pool_cache_xcall:
2704  *
2705  *	Transfer objects from the per-CPU cache to the global cache.
2706  *	Run within a cross-call thread.
2707  */
2708 static void
2709 pool_cache_xcall(pool_cache_t pc)
2710 {
2711 	pool_cache_cpu_t *cc;
2712 	pcg_t *prev, *cur, **list;
2713 	int s = 0; /* XXXgcc */
2714 
2715 	cc = pool_cache_cpu_enter(pc, &s);
2716 	cur = cc->cc_current;
2717 	cc->cc_current = NULL;
2718 	prev = cc->cc_previous;
2719 	cc->cc_previous = NULL;
2720 	pool_cache_cpu_exit(cc, &s);
2721 
2722 	/*
2723 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2724 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
2725 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
2726 	 * kernel_lock.
2727 	 */
2728 	s = splvm();
2729 	mutex_enter(&pc->pc_lock);
2730 	if (cur != NULL) {
2731 		if (cur->pcg_avail == cur->pcg_size) {
2732 			list = &pc->pc_fullgroups;
2733 			pc->pc_nfull++;
2734 		} else if (cur->pcg_avail == 0) {
2735 			list = &pc->pc_emptygroups;
2736 			pc->pc_nempty++;
2737 		} else {
2738 			list = &pc->pc_partgroups;
2739 			pc->pc_npart++;
2740 		}
2741 		cur->pcg_next = *list;
2742 		*list = cur;
2743 	}
2744 	if (prev != NULL) {
2745 		if (prev->pcg_avail == prev->pcg_size) {
2746 			list = &pc->pc_fullgroups;
2747 			pc->pc_nfull++;
2748 		} else if (prev->pcg_avail == 0) {
2749 			list = &pc->pc_emptygroups;
2750 			pc->pc_nempty++;
2751 		} else {
2752 			list = &pc->pc_partgroups;
2753 			pc->pc_npart++;
2754 		}
2755 		prev->pcg_next = *list;
2756 		*list = prev;
2757 	}
2758 	mutex_exit(&pc->pc_lock);
2759 	splx(s);
2760 }
2761 
2762 /*
2763  * Pool backend allocators.
2764  *
2765  * Each pool has a backend allocator that handles allocation, deallocation,
2766  * and any additional draining that might be needed.
2767  *
2768  * We provide two standard allocators:
2769  *
2770  *	pool_allocator_kmem - the default when no allocator is specified
2771  *
2772  *	pool_allocator_nointr - used for pools that will not be accessed
2773  *	in interrupt context.
2774  */
2775 void	*pool_page_alloc(struct pool *, int);
2776 void	pool_page_free(struct pool *, void *);
2777 
2778 #ifdef POOL_SUBPAGE
2779 struct pool_allocator pool_allocator_kmem_fullpage = {
2780 	pool_page_alloc, pool_page_free, 0,
2781 	.pa_backingmapptr = &kmem_map,
2782 };
2783 #else
2784 struct pool_allocator pool_allocator_kmem = {
2785 	pool_page_alloc, pool_page_free, 0,
2786 	.pa_backingmapptr = &kmem_map,
2787 };
2788 #endif
2789 
2790 void	*pool_page_alloc_nointr(struct pool *, int);
2791 void	pool_page_free_nointr(struct pool *, void *);
2792 
2793 #ifdef POOL_SUBPAGE
2794 struct pool_allocator pool_allocator_nointr_fullpage = {
2795 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2796 	.pa_backingmapptr = &kernel_map,
2797 };
2798 #else
2799 struct pool_allocator pool_allocator_nointr = {
2800 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2801 	.pa_backingmapptr = &kernel_map,
2802 };
2803 #endif
2804 
2805 #ifdef POOL_SUBPAGE
2806 void	*pool_subpage_alloc(struct pool *, int);
2807 void	pool_subpage_free(struct pool *, void *);
2808 
2809 struct pool_allocator pool_allocator_kmem = {
2810 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2811 	.pa_backingmapptr = &kmem_map,
2812 };
2813 
2814 void	*pool_subpage_alloc_nointr(struct pool *, int);
2815 void	pool_subpage_free_nointr(struct pool *, void *);
2816 
2817 struct pool_allocator pool_allocator_nointr = {
2818 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2819 	.pa_backingmapptr = &kmem_map,
2820 };
2821 #endif /* POOL_SUBPAGE */
2822 
2823 static void *
2824 pool_allocator_alloc(struct pool *pp, int flags)
2825 {
2826 	struct pool_allocator *pa = pp->pr_alloc;
2827 	void *res;
2828 
2829 	res = (*pa->pa_alloc)(pp, flags);
2830 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2831 		/*
2832 		 * We only run the drain hook here if PR_NOWAIT.
2833 		 * In other cases, the hook will be run in
2834 		 * pool_reclaim().
2835 		 */
2836 		if (pp->pr_drain_hook != NULL) {
2837 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2838 			res = (*pa->pa_alloc)(pp, flags);
2839 		}
2840 	}
2841 	return res;
2842 }
2843 
2844 static void
2845 pool_allocator_free(struct pool *pp, void *v)
2846 {
2847 	struct pool_allocator *pa = pp->pr_alloc;
2848 
2849 	(*pa->pa_free)(pp, v);
2850 }
2851 
2852 void *
2853 pool_page_alloc(struct pool *pp, int flags)
2854 {
2855 	bool waitok = (flags & PR_WAITOK) ? true : false;
2856 
2857 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2858 }
2859 
2860 void
2861 pool_page_free(struct pool *pp, void *v)
2862 {
2863 
2864 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2865 }
2866 
2867 static void *
2868 pool_page_alloc_meta(struct pool *pp, int flags)
2869 {
2870 	bool waitok = (flags & PR_WAITOK) ? true : false;
2871 
2872 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2873 }
2874 
2875 static void
2876 pool_page_free_meta(struct pool *pp, void *v)
2877 {
2878 
2879 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2880 }
2881 
2882 #ifdef POOL_SUBPAGE
2883 /* Sub-page allocator, for machines with large hardware pages. */
2884 void *
2885 pool_subpage_alloc(struct pool *pp, int flags)
2886 {
2887 	return pool_get(&psppool, flags);
2888 }
2889 
2890 void
2891 pool_subpage_free(struct pool *pp, void *v)
2892 {
2893 	pool_put(&psppool, v);
2894 }
2895 
2896 /* We don't provide a real nointr allocator.  Maybe later. */
2897 void *
2898 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2899 {
2900 
2901 	return (pool_subpage_alloc(pp, flags));
2902 }
2903 
2904 void
2905 pool_subpage_free_nointr(struct pool *pp, void *v)
2906 {
2907 
2908 	pool_subpage_free(pp, v);
2909 }
2910 #endif /* POOL_SUBPAGE */
2911 void *
2912 pool_page_alloc_nointr(struct pool *pp, int flags)
2913 {
2914 	bool waitok = (flags & PR_WAITOK) ? true : false;
2915 
2916 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2917 }
2918 
2919 void
2920 pool_page_free_nointr(struct pool *pp, void *v)
2921 {
2922 
2923 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2924 }
2925 
2926 #if defined(DDB)
2927 static bool
2928 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2929 {
2930 
2931 	return (uintptr_t)ph->ph_page <= addr &&
2932 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2933 }
2934 
2935 static bool
2936 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2937 {
2938 
2939 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2940 }
2941 
2942 static bool
2943 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2944 {
2945 	int i;
2946 
2947 	if (pcg == NULL) {
2948 		return false;
2949 	}
2950 	for (i = 0; i < pcg->pcg_avail; i++) {
2951 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2952 			return true;
2953 		}
2954 	}
2955 	return false;
2956 }
2957 
2958 static bool
2959 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2960 {
2961 
2962 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2963 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2964 		pool_item_bitmap_t *bitmap =
2965 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2966 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2967 
2968 		return (*bitmap & mask) == 0;
2969 	} else {
2970 		struct pool_item *pi;
2971 
2972 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2973 			if (pool_in_item(pp, pi, addr)) {
2974 				return false;
2975 			}
2976 		}
2977 		return true;
2978 	}
2979 }
2980 
2981 void
2982 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2983 {
2984 	struct pool *pp;
2985 
2986 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2987 		struct pool_item_header *ph;
2988 		uintptr_t item;
2989 		bool allocated = true;
2990 		bool incache = false;
2991 		bool incpucache = false;
2992 		char cpucachestr[32];
2993 
2994 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2995 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2996 				if (pool_in_page(pp, ph, addr)) {
2997 					goto found;
2998 				}
2999 			}
3000 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3001 				if (pool_in_page(pp, ph, addr)) {
3002 					allocated =
3003 					    pool_allocated(pp, ph, addr);
3004 					goto found;
3005 				}
3006 			}
3007 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3008 				if (pool_in_page(pp, ph, addr)) {
3009 					allocated = false;
3010 					goto found;
3011 				}
3012 			}
3013 			continue;
3014 		} else {
3015 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3016 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3017 				continue;
3018 			}
3019 			allocated = pool_allocated(pp, ph, addr);
3020 		}
3021 found:
3022 		if (allocated && pp->pr_cache) {
3023 			pool_cache_t pc = pp->pr_cache;
3024 			struct pool_cache_group *pcg;
3025 			int i;
3026 
3027 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3028 			    pcg = pcg->pcg_next) {
3029 				if (pool_in_cg(pp, pcg, addr)) {
3030 					incache = true;
3031 					goto print;
3032 				}
3033 			}
3034 			for (i = 0; i < MAXCPUS; i++) {
3035 				pool_cache_cpu_t *cc;
3036 
3037 				if ((cc = pc->pc_cpus[i]) == NULL) {
3038 					continue;
3039 				}
3040 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3041 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3042 					struct cpu_info *ci =
3043 					    cpu_lookup_byindex(i);
3044 
3045 					incpucache = true;
3046 					snprintf(cpucachestr,
3047 					    sizeof(cpucachestr),
3048 					    "cached by CPU %u",
3049 					    ci->ci_index);
3050 					goto print;
3051 				}
3052 			}
3053 		}
3054 print:
3055 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3056 		item = item + rounddown(addr - item, pp->pr_size);
3057 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3058 		    (void *)addr, item, (size_t)(addr - item),
3059 		    pp->pr_wchan,
3060 		    incpucache ? cpucachestr :
3061 		    incache ? "cached" : allocated ? "allocated" : "free");
3062 	}
3063 }
3064 #endif /* defined(DDB) */
3065