xref: /netbsd-src/sys/kern/subr_pool.c (revision 8a8f936f250a330d54f8a24ed0e92aadf9743a7b)
1 /*	$NetBSD: subr_pool.c,v 1.62 2001/10/07 12:44:06 bjh21 Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 
54 #include <uvm/uvm.h>
55 
56 /*
57  * Pool resource management utility.
58  *
59  * Memory is allocated in pages which are split into pieces according
60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61  * in the pool structure and the individual pool items are on a linked list
62  * headed by `ph_itemlist' in each page header. The memory for building
63  * the page list is either taken from the allocated pages themselves (for
64  * small pool items) or taken from an internal pool of page headers (`phpool').
65  */
66 
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69 
70 /* Private pool for page header structures */
71 static struct pool phpool;
72 
73 #ifdef POOL_SUBPAGE
74 /* Pool of subpages for use by normal pools. */
75 static struct pool psppool;
76 #endif
77 
78 /* # of seconds to retain page after last use */
79 int pool_inactive_time = 10;
80 
81 /* Next candidate for drainage (see pool_drain()) */
82 static struct pool	*drainpp;
83 
84 /* This spin lock protects both pool_head and drainpp. */
85 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
86 
87 struct pool_item_header {
88 	/* Page headers */
89 	TAILQ_ENTRY(pool_item_header)
90 				ph_pagelist;	/* pool page list */
91 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
92 	LIST_ENTRY(pool_item_header)
93 				ph_hashlist;	/* Off-page page headers */
94 	int			ph_nmissing;	/* # of chunks in use */
95 	caddr_t			ph_page;	/* this page's address */
96 	struct timeval		ph_time;	/* last referenced */
97 };
98 TAILQ_HEAD(pool_pagelist,pool_item_header);
99 
100 struct pool_item {
101 #ifdef DIAGNOSTIC
102 	int pi_magic;
103 #endif
104 #define	PI_MAGIC 0xdeadbeef
105 	/* Other entries use only this list entry */
106 	TAILQ_ENTRY(pool_item)	pi_list;
107 };
108 
109 #define	PR_HASH_INDEX(pp,addr) \
110 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
111 
112 #define	POOL_NEEDS_CATCHUP(pp)						\
113 	((pp)->pr_nitems < (pp)->pr_minitems)
114 
115 /*
116  * Pool cache management.
117  *
118  * Pool caches provide a way for constructed objects to be cached by the
119  * pool subsystem.  This can lead to performance improvements by avoiding
120  * needless object construction/destruction; it is deferred until absolutely
121  * necessary.
122  *
123  * Caches are grouped into cache groups.  Each cache group references
124  * up to 16 constructed objects.  When a cache allocates an object
125  * from the pool, it calls the object's constructor and places it into
126  * a cache group.  When a cache group frees an object back to the pool,
127  * it first calls the object's destructor.  This allows the object to
128  * persist in constructed form while freed to the cache.
129  *
130  * Multiple caches may exist for each pool.  This allows a single
131  * object type to have multiple constructed forms.  The pool references
132  * each cache, so that when a pool is drained by the pagedaemon, it can
133  * drain each individual cache as well.  Each time a cache is drained,
134  * the most idle cache group is freed to the pool in its entirety.
135  *
136  * Pool caches are layed on top of pools.  By layering them, we can avoid
137  * the complexity of cache management for pools which would not benefit
138  * from it.
139  */
140 
141 /* The cache group pool. */
142 static struct pool pcgpool;
143 
144 /* The pool cache group. */
145 #define	PCG_NOBJECTS		16
146 struct pool_cache_group {
147 	TAILQ_ENTRY(pool_cache_group)
148 		pcg_list;	/* link in the pool cache's group list */
149 	u_int	pcg_avail;	/* # available objects */
150 				/* pointers to the objects */
151 	void	*pcg_objects[PCG_NOBJECTS];
152 };
153 
154 static void	pool_cache_reclaim(struct pool_cache *);
155 
156 static int	pool_catchup(struct pool *);
157 static void	pool_prime_page(struct pool *, caddr_t,
158 		    struct pool_item_header *);
159 static void	*pool_page_alloc(unsigned long, int, int);
160 static void	pool_page_free(void *, unsigned long, int);
161 #ifdef POOL_SUBPAGE
162 static void	*pool_subpage_alloc(unsigned long, int, int);
163 static void	pool_subpage_free(void *, unsigned long, int);
164 #endif
165 
166 static void pool_print1(struct pool *, const char *,
167 	void (*)(const char *, ...));
168 
169 /*
170  * Pool log entry. An array of these is allocated in pool_init().
171  */
172 struct pool_log {
173 	const char	*pl_file;
174 	long		pl_line;
175 	int		pl_action;
176 #define	PRLOG_GET	1
177 #define	PRLOG_PUT	2
178 	void		*pl_addr;
179 };
180 
181 /* Number of entries in pool log buffers */
182 #ifndef POOL_LOGSIZE
183 #define	POOL_LOGSIZE	10
184 #endif
185 
186 int pool_logsize = POOL_LOGSIZE;
187 
188 #ifdef POOL_DIAGNOSTIC
189 static __inline void
190 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
191 {
192 	int n = pp->pr_curlogentry;
193 	struct pool_log *pl;
194 
195 	if ((pp->pr_roflags & PR_LOGGING) == 0)
196 		return;
197 
198 	/*
199 	 * Fill in the current entry. Wrap around and overwrite
200 	 * the oldest entry if necessary.
201 	 */
202 	pl = &pp->pr_log[n];
203 	pl->pl_file = file;
204 	pl->pl_line = line;
205 	pl->pl_action = action;
206 	pl->pl_addr = v;
207 	if (++n >= pp->pr_logsize)
208 		n = 0;
209 	pp->pr_curlogentry = n;
210 }
211 
212 static void
213 pr_printlog(struct pool *pp, struct pool_item *pi,
214     void (*pr)(const char *, ...))
215 {
216 	int i = pp->pr_logsize;
217 	int n = pp->pr_curlogentry;
218 
219 	if ((pp->pr_roflags & PR_LOGGING) == 0)
220 		return;
221 
222 	/*
223 	 * Print all entries in this pool's log.
224 	 */
225 	while (i-- > 0) {
226 		struct pool_log *pl = &pp->pr_log[n];
227 		if (pl->pl_action != 0) {
228 			if (pi == NULL || pi == pl->pl_addr) {
229 				(*pr)("\tlog entry %d:\n", i);
230 				(*pr)("\t\taction = %s, addr = %p\n",
231 				    pl->pl_action == PRLOG_GET ? "get" : "put",
232 				    pl->pl_addr);
233 				(*pr)("\t\tfile: %s at line %lu\n",
234 				    pl->pl_file, pl->pl_line);
235 			}
236 		}
237 		if (++n >= pp->pr_logsize)
238 			n = 0;
239 	}
240 }
241 
242 static __inline void
243 pr_enter(struct pool *pp, const char *file, long line)
244 {
245 
246 	if (__predict_false(pp->pr_entered_file != NULL)) {
247 		printf("pool %s: reentrancy at file %s line %ld\n",
248 		    pp->pr_wchan, file, line);
249 		printf("         previous entry at file %s line %ld\n",
250 		    pp->pr_entered_file, pp->pr_entered_line);
251 		panic("pr_enter");
252 	}
253 
254 	pp->pr_entered_file = file;
255 	pp->pr_entered_line = line;
256 }
257 
258 static __inline void
259 pr_leave(struct pool *pp)
260 {
261 
262 	if (__predict_false(pp->pr_entered_file == NULL)) {
263 		printf("pool %s not entered?\n", pp->pr_wchan);
264 		panic("pr_leave");
265 	}
266 
267 	pp->pr_entered_file = NULL;
268 	pp->pr_entered_line = 0;
269 }
270 
271 static __inline void
272 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
273 {
274 
275 	if (pp->pr_entered_file != NULL)
276 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
277 		    pp->pr_entered_file, pp->pr_entered_line);
278 }
279 #else
280 #define	pr_log(pp, v, action, file, line)
281 #define	pr_printlog(pp, pi, pr)
282 #define	pr_enter(pp, file, line)
283 #define	pr_leave(pp)
284 #define	pr_enter_check(pp, pr)
285 #endif /* POOL_DIAGNOSTIC */
286 
287 /*
288  * Return the pool page header based on page address.
289  */
290 static __inline struct pool_item_header *
291 pr_find_pagehead(struct pool *pp, caddr_t page)
292 {
293 	struct pool_item_header *ph;
294 
295 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
296 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
297 
298 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
299 	     ph != NULL;
300 	     ph = LIST_NEXT(ph, ph_hashlist)) {
301 		if (ph->ph_page == page)
302 			return (ph);
303 	}
304 	return (NULL);
305 }
306 
307 /*
308  * Remove a page from the pool.
309  */
310 static __inline void
311 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
312      struct pool_pagelist *pq)
313 {
314 	int s;
315 
316 	/*
317 	 * If the page was idle, decrement the idle page count.
318 	 */
319 	if (ph->ph_nmissing == 0) {
320 #ifdef DIAGNOSTIC
321 		if (pp->pr_nidle == 0)
322 			panic("pr_rmpage: nidle inconsistent");
323 		if (pp->pr_nitems < pp->pr_itemsperpage)
324 			panic("pr_rmpage: nitems inconsistent");
325 #endif
326 		pp->pr_nidle--;
327 	}
328 
329 	pp->pr_nitems -= pp->pr_itemsperpage;
330 
331 	/*
332 	 * Unlink a page from the pool and release it (or queue it for release).
333 	 */
334 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
335 	if (pq) {
336 		TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
337 	} else {
338 		(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
339 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
340 			LIST_REMOVE(ph, ph_hashlist);
341 			s = splhigh();
342 			pool_put(&phpool, ph);
343 			splx(s);
344 		}
345 	}
346 	pp->pr_npages--;
347 	pp->pr_npagefree++;
348 
349 	if (pp->pr_curpage == ph) {
350 		/*
351 		 * Find a new non-empty page header, if any.
352 		 * Start search from the page head, to increase the
353 		 * chance for "high water" pages to be freed.
354 		 */
355 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
356 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
357 				break;
358 
359 		pp->pr_curpage = ph;
360 	}
361 }
362 
363 /*
364  * Initialize the given pool resource structure.
365  *
366  * We export this routine to allow other kernel parts to declare
367  * static pools that must be initialized before malloc() is available.
368  */
369 void
370 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
371     const char *wchan, size_t pagesz,
372     void *(*alloc)(unsigned long, int, int),
373     void (*release)(void *, unsigned long, int),
374     int mtype)
375 {
376 	int off, slack, i;
377 
378 #ifdef POOL_DIAGNOSTIC
379 	/*
380 	 * Always log if POOL_DIAGNOSTIC is defined.
381 	 */
382 	if (pool_logsize != 0)
383 		flags |= PR_LOGGING;
384 #endif
385 
386 	/*
387 	 * Check arguments and construct default values.
388 	 */
389 	if (!powerof2(pagesz))
390 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
391 
392 	if (alloc == NULL && release == NULL) {
393 #ifdef POOL_SUBPAGE
394 		alloc = pool_subpage_alloc;
395 		release = pool_subpage_free;
396 		pagesz = POOL_SUBPAGE;
397 #else
398 		alloc = pool_page_alloc;
399 		release = pool_page_free;
400 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
401 #endif
402 	} else if ((alloc != NULL && release != NULL) == 0) {
403 		/* If you specifiy one, must specify both. */
404 		panic("pool_init: must specify alloc and release together");
405 	}
406 #ifdef POOL_SUBPAGE
407 	else if (alloc == pool_page_alloc_nointr &&
408 	    release == pool_page_free_nointr)
409 		pagesz = POOL_SUBPAGE;
410 #endif
411 
412 	if (pagesz == 0)
413 		pagesz = PAGE_SIZE;
414 
415 	if (align == 0)
416 		align = ALIGN(1);
417 
418 	if (size < sizeof(struct pool_item))
419 		size = sizeof(struct pool_item);
420 
421 	size = ALIGN(size);
422 	if (size > pagesz)
423 		panic("pool_init: pool item size (%lu) too large",
424 		      (u_long)size);
425 
426 	/*
427 	 * Initialize the pool structure.
428 	 */
429 	TAILQ_INIT(&pp->pr_pagelist);
430 	TAILQ_INIT(&pp->pr_cachelist);
431 	pp->pr_curpage = NULL;
432 	pp->pr_npages = 0;
433 	pp->pr_minitems = 0;
434 	pp->pr_minpages = 0;
435 	pp->pr_maxpages = UINT_MAX;
436 	pp->pr_roflags = flags;
437 	pp->pr_flags = 0;
438 	pp->pr_size = size;
439 	pp->pr_align = align;
440 	pp->pr_wchan = wchan;
441 	pp->pr_mtype = mtype;
442 	pp->pr_alloc = alloc;
443 	pp->pr_free = release;
444 	pp->pr_pagesz = pagesz;
445 	pp->pr_pagemask = ~(pagesz - 1);
446 	pp->pr_pageshift = ffs(pagesz) - 1;
447 	pp->pr_nitems = 0;
448 	pp->pr_nout = 0;
449 	pp->pr_hardlimit = UINT_MAX;
450 	pp->pr_hardlimit_warning = NULL;
451 	pp->pr_hardlimit_ratecap.tv_sec = 0;
452 	pp->pr_hardlimit_ratecap.tv_usec = 0;
453 	pp->pr_hardlimit_warning_last.tv_sec = 0;
454 	pp->pr_hardlimit_warning_last.tv_usec = 0;
455 
456 	/*
457 	 * Decide whether to put the page header off page to avoid
458 	 * wasting too large a part of the page. Off-page page headers
459 	 * go on a hash table, so we can match a returned item
460 	 * with its header based on the page address.
461 	 * We use 1/16 of the page size as the threshold (XXX: tune)
462 	 */
463 	if (pp->pr_size < pagesz/16) {
464 		/* Use the end of the page for the page header */
465 		pp->pr_roflags |= PR_PHINPAGE;
466 		pp->pr_phoffset = off =
467 			pagesz - ALIGN(sizeof(struct pool_item_header));
468 	} else {
469 		/* The page header will be taken from our page header pool */
470 		pp->pr_phoffset = 0;
471 		off = pagesz;
472 		for (i = 0; i < PR_HASHTABSIZE; i++) {
473 			LIST_INIT(&pp->pr_hashtab[i]);
474 		}
475 	}
476 
477 	/*
478 	 * Alignment is to take place at `ioff' within the item. This means
479 	 * we must reserve up to `align - 1' bytes on the page to allow
480 	 * appropriate positioning of each item.
481 	 *
482 	 * Silently enforce `0 <= ioff < align'.
483 	 */
484 	pp->pr_itemoffset = ioff = ioff % align;
485 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
486 	KASSERT(pp->pr_itemsperpage != 0);
487 
488 	/*
489 	 * Use the slack between the chunks and the page header
490 	 * for "cache coloring".
491 	 */
492 	slack = off - pp->pr_itemsperpage * pp->pr_size;
493 	pp->pr_maxcolor = (slack / align) * align;
494 	pp->pr_curcolor = 0;
495 
496 	pp->pr_nget = 0;
497 	pp->pr_nfail = 0;
498 	pp->pr_nput = 0;
499 	pp->pr_npagealloc = 0;
500 	pp->pr_npagefree = 0;
501 	pp->pr_hiwat = 0;
502 	pp->pr_nidle = 0;
503 
504 #ifdef POOL_DIAGNOSTIC
505 	if (flags & PR_LOGGING) {
506 		if (kmem_map == NULL ||
507 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
508 		     M_TEMP, M_NOWAIT)) == NULL)
509 			pp->pr_roflags &= ~PR_LOGGING;
510 		pp->pr_curlogentry = 0;
511 		pp->pr_logsize = pool_logsize;
512 	}
513 #endif
514 
515 	pp->pr_entered_file = NULL;
516 	pp->pr_entered_line = 0;
517 
518 	simple_lock_init(&pp->pr_slock);
519 
520 	/*
521 	 * Initialize private page header pool and cache magazine pool if we
522 	 * haven't done so yet.
523 	 * XXX LOCKING.
524 	 */
525 	if (phpool.pr_size == 0) {
526 #ifdef POOL_SUBPAGE
527 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
528 		    "phpool", PAGE_SIZE, pool_page_alloc, pool_page_free, 0);
529 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
530 		    PR_RECURSIVE, "psppool", PAGE_SIZE,
531 		    pool_page_alloc, pool_page_free, 0);
532 #else
533 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
534 		    0, "phpool", 0, 0, 0, 0);
535 #endif
536 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
537 		    0, "pcgpool", 0, 0, 0, 0);
538 	}
539 
540 	/* Insert into the list of all pools. */
541 	simple_lock(&pool_head_slock);
542 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
543 	simple_unlock(&pool_head_slock);
544 }
545 
546 /*
547  * De-commision a pool resource.
548  */
549 void
550 pool_destroy(struct pool *pp)
551 {
552 	struct pool_item_header *ph;
553 	struct pool_cache *pc;
554 
555 	/* Destroy all caches for this pool. */
556 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
557 		pool_cache_destroy(pc);
558 
559 #ifdef DIAGNOSTIC
560 	if (pp->pr_nout != 0) {
561 		pr_printlog(pp, NULL, printf);
562 		panic("pool_destroy: pool busy: still out: %u\n",
563 		    pp->pr_nout);
564 	}
565 #endif
566 
567 	/* Remove all pages */
568 	if ((pp->pr_roflags & PR_STATIC) == 0)
569 		while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
570 			pr_rmpage(pp, ph, NULL);
571 
572 	/* Remove from global pool list */
573 	simple_lock(&pool_head_slock);
574 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
575 	if (drainpp == pp) {
576 		drainpp = NULL;
577 	}
578 	simple_unlock(&pool_head_slock);
579 
580 #ifdef POOL_DIAGNOSTIC
581 	if ((pp->pr_roflags & PR_LOGGING) != 0)
582 		free(pp->pr_log, M_TEMP);
583 #endif
584 
585 	if (pp->pr_roflags & PR_FREEHEADER)
586 		free(pp, M_POOL);
587 }
588 
589 static __inline struct pool_item_header *
590 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
591 {
592 	struct pool_item_header *ph;
593 	int s;
594 
595 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
596 
597 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
598 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
599 	else {
600 		s = splhigh();
601 		ph = pool_get(&phpool, flags);
602 		splx(s);
603 	}
604 
605 	return (ph);
606 }
607 
608 /*
609  * Grab an item from the pool; must be called at appropriate spl level
610  */
611 void *
612 #ifdef POOL_DIAGNOSTIC
613 _pool_get(struct pool *pp, int flags, const char *file, long line)
614 #else
615 pool_get(struct pool *pp, int flags)
616 #endif
617 {
618 	struct pool_item *pi;
619 	struct pool_item_header *ph;
620 	void *v;
621 
622 #ifdef DIAGNOSTIC
623 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
624 			    (flags & PR_MALLOCOK))) {
625 		pr_printlog(pp, NULL, printf);
626 		panic("pool_get: static");
627 	}
628 
629 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
630 			    (flags & PR_WAITOK) != 0))
631 		panic("pool_get: must have NOWAIT");
632 
633 #ifdef LOCKDEBUG
634 	if (flags & PR_WAITOK)
635 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
636 #endif
637 #endif /* DIAGNOSTIC */
638 
639 	simple_lock(&pp->pr_slock);
640 	pr_enter(pp, file, line);
641 
642  startover:
643 	/*
644 	 * Check to see if we've reached the hard limit.  If we have,
645 	 * and we can wait, then wait until an item has been returned to
646 	 * the pool.
647 	 */
648 #ifdef DIAGNOSTIC
649 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
650 		pr_leave(pp);
651 		simple_unlock(&pp->pr_slock);
652 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
653 	}
654 #endif
655 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
656 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
657 			/*
658 			 * XXX: A warning isn't logged in this case.  Should
659 			 * it be?
660 			 */
661 			pp->pr_flags |= PR_WANTED;
662 			pr_leave(pp);
663 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
664 			pr_enter(pp, file, line);
665 			goto startover;
666 		}
667 
668 		/*
669 		 * Log a message that the hard limit has been hit.
670 		 */
671 		if (pp->pr_hardlimit_warning != NULL &&
672 		    ratecheck(&pp->pr_hardlimit_warning_last,
673 			      &pp->pr_hardlimit_ratecap))
674 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
675 
676 		if (flags & PR_URGENT)
677 			panic("pool_get: urgent");
678 
679 		pp->pr_nfail++;
680 
681 		pr_leave(pp);
682 		simple_unlock(&pp->pr_slock);
683 		return (NULL);
684 	}
685 
686 	/*
687 	 * The convention we use is that if `curpage' is not NULL, then
688 	 * it points at a non-empty bucket. In particular, `curpage'
689 	 * never points at a page header which has PR_PHINPAGE set and
690 	 * has no items in its bucket.
691 	 */
692 	if ((ph = pp->pr_curpage) == NULL) {
693 #ifdef DIAGNOSTIC
694 		if (pp->pr_nitems != 0) {
695 			simple_unlock(&pp->pr_slock);
696 			printf("pool_get: %s: curpage NULL, nitems %u\n",
697 			    pp->pr_wchan, pp->pr_nitems);
698 			panic("pool_get: nitems inconsistent\n");
699 		}
700 #endif
701 
702 		/*
703 		 * Call the back-end page allocator for more memory.
704 		 * Release the pool lock, as the back-end page allocator
705 		 * may block.
706 		 */
707 		pr_leave(pp);
708 		simple_unlock(&pp->pr_slock);
709 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
710 		if (__predict_true(v != NULL))
711 			ph = pool_alloc_item_header(pp, v, flags);
712 		simple_lock(&pp->pr_slock);
713 		pr_enter(pp, file, line);
714 
715 		if (__predict_false(v == NULL || ph == NULL)) {
716 			if (v != NULL)
717 				(*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
718 
719 			/*
720 			 * We were unable to allocate a page or item
721 			 * header, but we released the lock during
722 			 * allocation, so perhaps items were freed
723 			 * back to the pool.  Check for this case.
724 			 */
725 			if (pp->pr_curpage != NULL)
726 				goto startover;
727 
728 			if (flags & PR_URGENT)
729 				panic("pool_get: urgent");
730 
731 			if ((flags & PR_WAITOK) == 0) {
732 				pp->pr_nfail++;
733 				pr_leave(pp);
734 				simple_unlock(&pp->pr_slock);
735 				return (NULL);
736 			}
737 
738 			/*
739 			 * Wait for items to be returned to this pool.
740 			 *
741 			 * XXX: we actually want to wait just until
742 			 * the page allocator has memory again. Depending
743 			 * on this pool's usage, we might get stuck here
744 			 * for a long time.
745 			 *
746 			 * XXX: maybe we should wake up once a second and
747 			 * try again?
748 			 */
749 			pp->pr_flags |= PR_WANTED;
750 			pr_leave(pp);
751 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
752 			pr_enter(pp, file, line);
753 			goto startover;
754 		}
755 
756 		/* We have more memory; add it to the pool */
757 		pool_prime_page(pp, v, ph);
758 		pp->pr_npagealloc++;
759 
760 		/* Start the allocation process over. */
761 		goto startover;
762 	}
763 
764 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
765 		pr_leave(pp);
766 		simple_unlock(&pp->pr_slock);
767 		panic("pool_get: %s: page empty", pp->pr_wchan);
768 	}
769 #ifdef DIAGNOSTIC
770 	if (__predict_false(pp->pr_nitems == 0)) {
771 		pr_leave(pp);
772 		simple_unlock(&pp->pr_slock);
773 		printf("pool_get: %s: items on itemlist, nitems %u\n",
774 		    pp->pr_wchan, pp->pr_nitems);
775 		panic("pool_get: nitems inconsistent\n");
776 	}
777 
778 	pr_log(pp, v, PRLOG_GET, file, line);
779 
780 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
781 		pr_printlog(pp, pi, printf);
782 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
783 		       " item addr %p\n",
784 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
785 	}
786 #endif
787 
788 	/*
789 	 * Remove from item list.
790 	 */
791 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
792 	pp->pr_nitems--;
793 	pp->pr_nout++;
794 	if (ph->ph_nmissing == 0) {
795 #ifdef DIAGNOSTIC
796 		if (__predict_false(pp->pr_nidle == 0))
797 			panic("pool_get: nidle inconsistent");
798 #endif
799 		pp->pr_nidle--;
800 	}
801 	ph->ph_nmissing++;
802 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
803 #ifdef DIAGNOSTIC
804 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
805 			pr_leave(pp);
806 			simple_unlock(&pp->pr_slock);
807 			panic("pool_get: %s: nmissing inconsistent",
808 			    pp->pr_wchan);
809 		}
810 #endif
811 		/*
812 		 * Find a new non-empty page header, if any.
813 		 * Start search from the page head, to increase
814 		 * the chance for "high water" pages to be freed.
815 		 *
816 		 * Migrate empty pages to the end of the list.  This
817 		 * will speed the update of curpage as pages become
818 		 * idle.  Empty pages intermingled with idle pages
819 		 * is no big deal.  As soon as a page becomes un-empty,
820 		 * it will move back to the head of the list.
821 		 */
822 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
823 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
824 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
825 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
826 				break;
827 
828 		pp->pr_curpage = ph;
829 	}
830 
831 	pp->pr_nget++;
832 
833 	/*
834 	 * If we have a low water mark and we are now below that low
835 	 * water mark, add more items to the pool.
836 	 */
837 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
838 		/*
839 		 * XXX: Should we log a warning?  Should we set up a timeout
840 		 * to try again in a second or so?  The latter could break
841 		 * a caller's assumptions about interrupt protection, etc.
842 		 */
843 	}
844 
845 	pr_leave(pp);
846 	simple_unlock(&pp->pr_slock);
847 	return (v);
848 }
849 
850 /*
851  * Internal version of pool_put().  Pool is already locked/entered.
852  */
853 static void
854 pool_do_put(struct pool *pp, void *v)
855 {
856 	struct pool_item *pi = v;
857 	struct pool_item_header *ph;
858 	caddr_t page;
859 	int s;
860 
861 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
862 
863 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
864 
865 #ifdef DIAGNOSTIC
866 	if (__predict_false(pp->pr_nout == 0)) {
867 		printf("pool %s: putting with none out\n",
868 		    pp->pr_wchan);
869 		panic("pool_put");
870 	}
871 #endif
872 
873 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
874 		pr_printlog(pp, NULL, printf);
875 		panic("pool_put: %s: page header missing", pp->pr_wchan);
876 	}
877 
878 #ifdef LOCKDEBUG
879 	/*
880 	 * Check if we're freeing a locked simple lock.
881 	 */
882 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
883 #endif
884 
885 	/*
886 	 * Return to item list.
887 	 */
888 #ifdef DIAGNOSTIC
889 	pi->pi_magic = PI_MAGIC;
890 #endif
891 #ifdef DEBUG
892 	{
893 		int i, *ip = v;
894 
895 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
896 			*ip++ = PI_MAGIC;
897 		}
898 	}
899 #endif
900 
901 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
902 	ph->ph_nmissing--;
903 	pp->pr_nput++;
904 	pp->pr_nitems++;
905 	pp->pr_nout--;
906 
907 	/* Cancel "pool empty" condition if it exists */
908 	if (pp->pr_curpage == NULL)
909 		pp->pr_curpage = ph;
910 
911 	if (pp->pr_flags & PR_WANTED) {
912 		pp->pr_flags &= ~PR_WANTED;
913 		if (ph->ph_nmissing == 0)
914 			pp->pr_nidle++;
915 		wakeup((caddr_t)pp);
916 		return;
917 	}
918 
919 	/*
920 	 * If this page is now complete, do one of two things:
921 	 *
922 	 *	(1) If we have more pages than the page high water
923 	 *	    mark, free the page back to the system.
924 	 *
925 	 *	(2) Move it to the end of the page list, so that
926 	 *	    we minimize our chances of fragmenting the
927 	 *	    pool.  Idle pages migrate to the end (along with
928 	 *	    completely empty pages, so that we find un-empty
929 	 *	    pages more quickly when we update curpage) of the
930 	 *	    list so they can be more easily swept up by
931 	 *	    the pagedaemon when pages are scarce.
932 	 */
933 	if (ph->ph_nmissing == 0) {
934 		pp->pr_nidle++;
935 		if (pp->pr_npages > pp->pr_maxpages) {
936 			pr_rmpage(pp, ph, NULL);
937 		} else {
938 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
939 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
940 
941 			/*
942 			 * Update the timestamp on the page.  A page must
943 			 * be idle for some period of time before it can
944 			 * be reclaimed by the pagedaemon.  This minimizes
945 			 * ping-pong'ing for memory.
946 			 */
947 			s = splclock();
948 			ph->ph_time = mono_time;
949 			splx(s);
950 
951 			/*
952 			 * Update the current page pointer.  Just look for
953 			 * the first page with any free items.
954 			 *
955 			 * XXX: Maybe we want an option to look for the
956 			 * page with the fewest available items, to minimize
957 			 * fragmentation?
958 			 */
959 			TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
960 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
961 					break;
962 
963 			pp->pr_curpage = ph;
964 		}
965 	}
966 	/*
967 	 * If the page has just become un-empty, move it to the head of
968 	 * the list, and make it the current page.  The next allocation
969 	 * will get the item from this page, instead of further fragmenting
970 	 * the pool.
971 	 */
972 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
973 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
974 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
975 		pp->pr_curpage = ph;
976 	}
977 }
978 
979 /*
980  * Return resource to the pool; must be called at appropriate spl level
981  */
982 #ifdef POOL_DIAGNOSTIC
983 void
984 _pool_put(struct pool *pp, void *v, const char *file, long line)
985 {
986 
987 	simple_lock(&pp->pr_slock);
988 	pr_enter(pp, file, line);
989 
990 	pr_log(pp, v, PRLOG_PUT, file, line);
991 
992 	pool_do_put(pp, v);
993 
994 	pr_leave(pp);
995 	simple_unlock(&pp->pr_slock);
996 }
997 #undef pool_put
998 #endif /* POOL_DIAGNOSTIC */
999 
1000 void
1001 pool_put(struct pool *pp, void *v)
1002 {
1003 
1004 	simple_lock(&pp->pr_slock);
1005 
1006 	pool_do_put(pp, v);
1007 
1008 	simple_unlock(&pp->pr_slock);
1009 }
1010 
1011 #ifdef POOL_DIAGNOSTIC
1012 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1013 #endif
1014 
1015 /*
1016  * Add N items to the pool.
1017  */
1018 int
1019 pool_prime(struct pool *pp, int n)
1020 {
1021 	struct pool_item_header *ph;
1022 	caddr_t cp;
1023 	int newpages, error = 0;
1024 
1025 	simple_lock(&pp->pr_slock);
1026 
1027 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1028 
1029 	while (newpages-- > 0) {
1030 		simple_unlock(&pp->pr_slock);
1031 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1032 		if (__predict_true(cp != NULL))
1033 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1034 		simple_lock(&pp->pr_slock);
1035 
1036 		if (__predict_false(cp == NULL || ph == NULL)) {
1037 			error = ENOMEM;
1038 			if (cp != NULL)
1039 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1040 			break;
1041 		}
1042 
1043 		pool_prime_page(pp, cp, ph);
1044 		pp->pr_npagealloc++;
1045 		pp->pr_minpages++;
1046 	}
1047 
1048 	if (pp->pr_minpages >= pp->pr_maxpages)
1049 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1050 
1051 	simple_unlock(&pp->pr_slock);
1052 	return (0);
1053 }
1054 
1055 /*
1056  * Add a page worth of items to the pool.
1057  *
1058  * Note, we must be called with the pool descriptor LOCKED.
1059  */
1060 static void
1061 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1062 {
1063 	struct pool_item *pi;
1064 	caddr_t cp = storage;
1065 	unsigned int align = pp->pr_align;
1066 	unsigned int ioff = pp->pr_itemoffset;
1067 	int n;
1068 
1069 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1070 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1071 
1072 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1073 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1074 		    ph, ph_hashlist);
1075 
1076 	/*
1077 	 * Insert page header.
1078 	 */
1079 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1080 	TAILQ_INIT(&ph->ph_itemlist);
1081 	ph->ph_page = storage;
1082 	ph->ph_nmissing = 0;
1083 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1084 
1085 	pp->pr_nidle++;
1086 
1087 	/*
1088 	 * Color this page.
1089 	 */
1090 	cp = (caddr_t)(cp + pp->pr_curcolor);
1091 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1092 		pp->pr_curcolor = 0;
1093 
1094 	/*
1095 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1096 	 */
1097 	if (ioff != 0)
1098 		cp = (caddr_t)(cp + (align - ioff));
1099 
1100 	/*
1101 	 * Insert remaining chunks on the bucket list.
1102 	 */
1103 	n = pp->pr_itemsperpage;
1104 	pp->pr_nitems += n;
1105 
1106 	while (n--) {
1107 		pi = (struct pool_item *)cp;
1108 
1109 		/* Insert on page list */
1110 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1111 #ifdef DIAGNOSTIC
1112 		pi->pi_magic = PI_MAGIC;
1113 #endif
1114 		cp = (caddr_t)(cp + pp->pr_size);
1115 	}
1116 
1117 	/*
1118 	 * If the pool was depleted, point at the new page.
1119 	 */
1120 	if (pp->pr_curpage == NULL)
1121 		pp->pr_curpage = ph;
1122 
1123 	if (++pp->pr_npages > pp->pr_hiwat)
1124 		pp->pr_hiwat = pp->pr_npages;
1125 }
1126 
1127 /*
1128  * Used by pool_get() when nitems drops below the low water mark.  This
1129  * is used to catch up nitmes with the low water mark.
1130  *
1131  * Note 1, we never wait for memory here, we let the caller decide what to do.
1132  *
1133  * Note 2, this doesn't work with static pools.
1134  *
1135  * Note 3, we must be called with the pool already locked, and we return
1136  * with it locked.
1137  */
1138 static int
1139 pool_catchup(struct pool *pp)
1140 {
1141 	struct pool_item_header *ph;
1142 	caddr_t cp;
1143 	int error = 0;
1144 
1145 	if (pp->pr_roflags & PR_STATIC) {
1146 		/*
1147 		 * We dropped below the low water mark, and this is not a
1148 		 * good thing.  Log a warning.
1149 		 *
1150 		 * XXX: rate-limit this?
1151 		 */
1152 		printf("WARNING: static pool `%s' dropped below low water "
1153 		    "mark\n", pp->pr_wchan);
1154 		return (0);
1155 	}
1156 
1157 	while (POOL_NEEDS_CATCHUP(pp)) {
1158 		/*
1159 		 * Call the page back-end allocator for more memory.
1160 		 *
1161 		 * XXX: We never wait, so should we bother unlocking
1162 		 * the pool descriptor?
1163 		 */
1164 		simple_unlock(&pp->pr_slock);
1165 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1166 		if (__predict_true(cp != NULL))
1167 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1168 		simple_lock(&pp->pr_slock);
1169 		if (__predict_false(cp == NULL || ph == NULL)) {
1170 			if (cp != NULL)
1171 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1172 			error = ENOMEM;
1173 			break;
1174 		}
1175 		pool_prime_page(pp, cp, ph);
1176 		pp->pr_npagealloc++;
1177 	}
1178 
1179 	return (error);
1180 }
1181 
1182 void
1183 pool_setlowat(struct pool *pp, int n)
1184 {
1185 	int error;
1186 
1187 	simple_lock(&pp->pr_slock);
1188 
1189 	pp->pr_minitems = n;
1190 	pp->pr_minpages = (n == 0)
1191 		? 0
1192 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1193 
1194 	/* Make sure we're caught up with the newly-set low water mark. */
1195 	if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
1196 		/*
1197 		 * XXX: Should we log a warning?  Should we set up a timeout
1198 		 * to try again in a second or so?  The latter could break
1199 		 * a caller's assumptions about interrupt protection, etc.
1200 		 */
1201 	}
1202 
1203 	simple_unlock(&pp->pr_slock);
1204 }
1205 
1206 void
1207 pool_sethiwat(struct pool *pp, int n)
1208 {
1209 
1210 	simple_lock(&pp->pr_slock);
1211 
1212 	pp->pr_maxpages = (n == 0)
1213 		? 0
1214 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1215 
1216 	simple_unlock(&pp->pr_slock);
1217 }
1218 
1219 void
1220 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1221 {
1222 
1223 	simple_lock(&pp->pr_slock);
1224 
1225 	pp->pr_hardlimit = n;
1226 	pp->pr_hardlimit_warning = warnmess;
1227 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1228 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1229 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1230 
1231 	/*
1232 	 * In-line version of pool_sethiwat(), because we don't want to
1233 	 * release the lock.
1234 	 */
1235 	pp->pr_maxpages = (n == 0)
1236 		? 0
1237 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1238 
1239 	simple_unlock(&pp->pr_slock);
1240 }
1241 
1242 /*
1243  * Default page allocator.
1244  */
1245 static void *
1246 pool_page_alloc(unsigned long sz, int flags, int mtype)
1247 {
1248 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1249 
1250 	return ((void *)uvm_km_alloc_poolpage(waitok));
1251 }
1252 
1253 static void
1254 pool_page_free(void *v, unsigned long sz, int mtype)
1255 {
1256 
1257 	uvm_km_free_poolpage((vaddr_t)v);
1258 }
1259 
1260 #ifdef POOL_SUBPAGE
1261 /*
1262  * Sub-page allocator, for machines with large hardware pages.
1263  */
1264 static void *
1265 pool_subpage_alloc(unsigned long sz, int flags, int mtype)
1266 {
1267 
1268 	return pool_get(&psppool, flags);
1269 }
1270 
1271 static void
1272 pool_subpage_free(void *v, unsigned long sz, int mtype)
1273 {
1274 
1275 	pool_put(&psppool, v);
1276 }
1277 #endif
1278 
1279 #ifdef POOL_SUBPAGE
1280 /* We don't provide a real nointr allocator.  Maybe later. */
1281 void *
1282 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1283 {
1284 
1285 	return pool_subpage_alloc(sz, flags, mtype);
1286 }
1287 
1288 void
1289 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1290 {
1291 
1292 	pool_subpage_free(v, sz, mtype);
1293 }
1294 #else
1295 /*
1296  * Alternate pool page allocator for pools that know they will
1297  * never be accessed in interrupt context.
1298  */
1299 void *
1300 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1301 {
1302 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1303 
1304 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1305 	    waitok));
1306 }
1307 
1308 void
1309 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1310 {
1311 
1312 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1313 }
1314 #endif
1315 
1316 
1317 /*
1318  * Release all complete pages that have not been used recently.
1319  */
1320 void
1321 #ifdef POOL_DIAGNOSTIC
1322 _pool_reclaim(struct pool *pp, const char *file, long line)
1323 #else
1324 pool_reclaim(struct pool *pp)
1325 #endif
1326 {
1327 	struct pool_item_header *ph, *phnext;
1328 	struct pool_cache *pc;
1329 	struct timeval curtime;
1330 	struct pool_pagelist pq;
1331 	int s;
1332 
1333 	if (pp->pr_roflags & PR_STATIC)
1334 		return;
1335 
1336 	if (simple_lock_try(&pp->pr_slock) == 0)
1337 		return;
1338 	pr_enter(pp, file, line);
1339 	TAILQ_INIT(&pq);
1340 
1341 	/*
1342 	 * Reclaim items from the pool's caches.
1343 	 */
1344 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1345 		pool_cache_reclaim(pc);
1346 
1347 	s = splclock();
1348 	curtime = mono_time;
1349 	splx(s);
1350 
1351 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1352 		phnext = TAILQ_NEXT(ph, ph_pagelist);
1353 
1354 		/* Check our minimum page claim */
1355 		if (pp->pr_npages <= pp->pr_minpages)
1356 			break;
1357 
1358 		if (ph->ph_nmissing == 0) {
1359 			struct timeval diff;
1360 			timersub(&curtime, &ph->ph_time, &diff);
1361 			if (diff.tv_sec < pool_inactive_time)
1362 				continue;
1363 
1364 			/*
1365 			 * If freeing this page would put us below
1366 			 * the low water mark, stop now.
1367 			 */
1368 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
1369 			    pp->pr_minitems)
1370 				break;
1371 
1372 			pr_rmpage(pp, ph, &pq);
1373 		}
1374 	}
1375 
1376 	pr_leave(pp);
1377 	simple_unlock(&pp->pr_slock);
1378 	if (TAILQ_EMPTY(&pq)) {
1379 		return;
1380 	}
1381 	while ((ph = TAILQ_FIRST(&pq)) != NULL) {
1382 		TAILQ_REMOVE(&pq, ph, ph_pagelist);
1383 		(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
1384 		if (pp->pr_roflags & PR_PHINPAGE) {
1385 			continue;
1386 		}
1387 		LIST_REMOVE(ph, ph_hashlist);
1388 		s = splhigh();
1389 		pool_put(&phpool, ph);
1390 		splx(s);
1391 	}
1392 }
1393 
1394 
1395 /*
1396  * Drain pools, one at a time.
1397  *
1398  * Note, we must never be called from an interrupt context.
1399  */
1400 void
1401 pool_drain(void *arg)
1402 {
1403 	struct pool *pp;
1404 	int s;
1405 
1406 	pp = NULL;
1407 	s = splvm();
1408 	simple_lock(&pool_head_slock);
1409 	if (drainpp == NULL) {
1410 		drainpp = TAILQ_FIRST(&pool_head);
1411 	}
1412 	if (drainpp) {
1413 		pp = drainpp;
1414 		drainpp = TAILQ_NEXT(pp, pr_poollist);
1415 	}
1416 	simple_unlock(&pool_head_slock);
1417 	splx(s);
1418 
1419 	pool_reclaim(pp);
1420 }
1421 
1422 
1423 /*
1424  * Diagnostic helpers.
1425  */
1426 void
1427 pool_print(struct pool *pp, const char *modif)
1428 {
1429 	int s;
1430 
1431 	s = splvm();
1432 	if (simple_lock_try(&pp->pr_slock) == 0) {
1433 		printf("pool %s is locked; try again later\n",
1434 		    pp->pr_wchan);
1435 		splx(s);
1436 		return;
1437 	}
1438 	pool_print1(pp, modif, printf);
1439 	simple_unlock(&pp->pr_slock);
1440 	splx(s);
1441 }
1442 
1443 void
1444 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1445 {
1446 	int didlock = 0;
1447 
1448 	if (pp == NULL) {
1449 		(*pr)("Must specify a pool to print.\n");
1450 		return;
1451 	}
1452 
1453 	/*
1454 	 * Called from DDB; interrupts should be blocked, and all
1455 	 * other processors should be paused.  We can skip locking
1456 	 * the pool in this case.
1457 	 *
1458 	 * We do a simple_lock_try() just to print the lock
1459 	 * status, however.
1460 	 */
1461 
1462 	if (simple_lock_try(&pp->pr_slock) == 0)
1463 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1464 	else
1465 		didlock = 1;
1466 
1467 	pool_print1(pp, modif, pr);
1468 
1469 	if (didlock)
1470 		simple_unlock(&pp->pr_slock);
1471 }
1472 
1473 static void
1474 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1475 {
1476 	struct pool_item_header *ph;
1477 	struct pool_cache *pc;
1478 	struct pool_cache_group *pcg;
1479 #ifdef DIAGNOSTIC
1480 	struct pool_item *pi;
1481 #endif
1482 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1483 	char c;
1484 
1485 	while ((c = *modif++) != '\0') {
1486 		if (c == 'l')
1487 			print_log = 1;
1488 		if (c == 'p')
1489 			print_pagelist = 1;
1490 		if (c == 'c')
1491 			print_cache = 1;
1492 		modif++;
1493 	}
1494 
1495 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1496 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1497 	    pp->pr_roflags);
1498 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1499 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1500 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1501 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1502 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1503 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1504 
1505 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1506 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1507 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1508 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1509 
1510 	if (print_pagelist == 0)
1511 		goto skip_pagelist;
1512 
1513 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1514 		(*pr)("\n\tpage list:\n");
1515 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1516 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1517 		    ph->ph_page, ph->ph_nmissing,
1518 		    (u_long)ph->ph_time.tv_sec,
1519 		    (u_long)ph->ph_time.tv_usec);
1520 #ifdef DIAGNOSTIC
1521 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1522 			if (pi->pi_magic != PI_MAGIC) {
1523 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1524 				    pi, pi->pi_magic);
1525 			}
1526 		}
1527 #endif
1528 	}
1529 	if (pp->pr_curpage == NULL)
1530 		(*pr)("\tno current page\n");
1531 	else
1532 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1533 
1534  skip_pagelist:
1535 
1536 	if (print_log == 0)
1537 		goto skip_log;
1538 
1539 	(*pr)("\n");
1540 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1541 		(*pr)("\tno log\n");
1542 	else
1543 		pr_printlog(pp, NULL, pr);
1544 
1545  skip_log:
1546 
1547 	if (print_cache == 0)
1548 		goto skip_cache;
1549 
1550 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1551 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1552 		    pc->pc_allocfrom, pc->pc_freeto);
1553 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1554 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1555 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1556 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1557 			for (i = 0; i < PCG_NOBJECTS; i++)
1558 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1559 		}
1560 	}
1561 
1562  skip_cache:
1563 
1564 	pr_enter_check(pp, pr);
1565 }
1566 
1567 int
1568 pool_chk(struct pool *pp, const char *label)
1569 {
1570 	struct pool_item_header *ph;
1571 	int r = 0;
1572 
1573 	simple_lock(&pp->pr_slock);
1574 
1575 	TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
1576 		struct pool_item *pi;
1577 		int n;
1578 		caddr_t page;
1579 
1580 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1581 		if (page != ph->ph_page &&
1582 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1583 			if (label != NULL)
1584 				printf("%s: ", label);
1585 			printf("pool(%p:%s): page inconsistency: page %p;"
1586 			       " at page head addr %p (p %p)\n", pp,
1587 				pp->pr_wchan, ph->ph_page,
1588 				ph, page);
1589 			r++;
1590 			goto out;
1591 		}
1592 
1593 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1594 		     pi != NULL;
1595 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
1596 
1597 #ifdef DIAGNOSTIC
1598 			if (pi->pi_magic != PI_MAGIC) {
1599 				if (label != NULL)
1600 					printf("%s: ", label);
1601 				printf("pool(%s): free list modified: magic=%x;"
1602 				       " page %p; item ordinal %d;"
1603 				       " addr %p (p %p)\n",
1604 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
1605 					n, pi, page);
1606 				panic("pool");
1607 			}
1608 #endif
1609 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1610 			if (page == ph->ph_page)
1611 				continue;
1612 
1613 			if (label != NULL)
1614 				printf("%s: ", label);
1615 			printf("pool(%p:%s): page inconsistency: page %p;"
1616 			       " item ordinal %d; addr %p (p %p)\n", pp,
1617 				pp->pr_wchan, ph->ph_page,
1618 				n, pi, page);
1619 			r++;
1620 			goto out;
1621 		}
1622 	}
1623 out:
1624 	simple_unlock(&pp->pr_slock);
1625 	return (r);
1626 }
1627 
1628 /*
1629  * pool_cache_init:
1630  *
1631  *	Initialize a pool cache.
1632  *
1633  *	NOTE: If the pool must be protected from interrupts, we expect
1634  *	to be called at the appropriate interrupt priority level.
1635  */
1636 void
1637 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1638     int (*ctor)(void *, void *, int),
1639     void (*dtor)(void *, void *),
1640     void *arg)
1641 {
1642 
1643 	TAILQ_INIT(&pc->pc_grouplist);
1644 	simple_lock_init(&pc->pc_slock);
1645 
1646 	pc->pc_allocfrom = NULL;
1647 	pc->pc_freeto = NULL;
1648 	pc->pc_pool = pp;
1649 
1650 	pc->pc_ctor = ctor;
1651 	pc->pc_dtor = dtor;
1652 	pc->pc_arg  = arg;
1653 
1654 	pc->pc_hits   = 0;
1655 	pc->pc_misses = 0;
1656 
1657 	pc->pc_ngroups = 0;
1658 
1659 	pc->pc_nitems = 0;
1660 
1661 	simple_lock(&pp->pr_slock);
1662 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1663 	simple_unlock(&pp->pr_slock);
1664 }
1665 
1666 /*
1667  * pool_cache_destroy:
1668  *
1669  *	Destroy a pool cache.
1670  */
1671 void
1672 pool_cache_destroy(struct pool_cache *pc)
1673 {
1674 	struct pool *pp = pc->pc_pool;
1675 
1676 	/* First, invalidate the entire cache. */
1677 	pool_cache_invalidate(pc);
1678 
1679 	/* ...and remove it from the pool's cache list. */
1680 	simple_lock(&pp->pr_slock);
1681 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1682 	simple_unlock(&pp->pr_slock);
1683 }
1684 
1685 static __inline void *
1686 pcg_get(struct pool_cache_group *pcg)
1687 {
1688 	void *object;
1689 	u_int idx;
1690 
1691 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1692 	KASSERT(pcg->pcg_avail != 0);
1693 	idx = --pcg->pcg_avail;
1694 
1695 	KASSERT(pcg->pcg_objects[idx] != NULL);
1696 	object = pcg->pcg_objects[idx];
1697 	pcg->pcg_objects[idx] = NULL;
1698 
1699 	return (object);
1700 }
1701 
1702 static __inline void
1703 pcg_put(struct pool_cache_group *pcg, void *object)
1704 {
1705 	u_int idx;
1706 
1707 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1708 	idx = pcg->pcg_avail++;
1709 
1710 	KASSERT(pcg->pcg_objects[idx] == NULL);
1711 	pcg->pcg_objects[idx] = object;
1712 }
1713 
1714 /*
1715  * pool_cache_get:
1716  *
1717  *	Get an object from a pool cache.
1718  */
1719 void *
1720 pool_cache_get(struct pool_cache *pc, int flags)
1721 {
1722 	struct pool_cache_group *pcg;
1723 	void *object;
1724 
1725 #ifdef LOCKDEBUG
1726 	if (flags & PR_WAITOK)
1727 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1728 #endif
1729 
1730 	simple_lock(&pc->pc_slock);
1731 
1732 	if ((pcg = pc->pc_allocfrom) == NULL) {
1733 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1734 			if (pcg->pcg_avail != 0) {
1735 				pc->pc_allocfrom = pcg;
1736 				goto have_group;
1737 			}
1738 		}
1739 
1740 		/*
1741 		 * No groups with any available objects.  Allocate
1742 		 * a new object, construct it, and return it to
1743 		 * the caller.  We will allocate a group, if necessary,
1744 		 * when the object is freed back to the cache.
1745 		 */
1746 		pc->pc_misses++;
1747 		simple_unlock(&pc->pc_slock);
1748 		object = pool_get(pc->pc_pool, flags);
1749 		if (object != NULL && pc->pc_ctor != NULL) {
1750 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1751 				pool_put(pc->pc_pool, object);
1752 				return (NULL);
1753 			}
1754 		}
1755 		return (object);
1756 	}
1757 
1758  have_group:
1759 	pc->pc_hits++;
1760 	pc->pc_nitems--;
1761 	object = pcg_get(pcg);
1762 
1763 	if (pcg->pcg_avail == 0)
1764 		pc->pc_allocfrom = NULL;
1765 
1766 	simple_unlock(&pc->pc_slock);
1767 
1768 	return (object);
1769 }
1770 
1771 /*
1772  * pool_cache_put:
1773  *
1774  *	Put an object back to the pool cache.
1775  */
1776 void
1777 pool_cache_put(struct pool_cache *pc, void *object)
1778 {
1779 	struct pool_cache_group *pcg;
1780 	int s;
1781 
1782 	simple_lock(&pc->pc_slock);
1783 
1784 	if ((pcg = pc->pc_freeto) == NULL) {
1785 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1786 			if (pcg->pcg_avail != PCG_NOBJECTS) {
1787 				pc->pc_freeto = pcg;
1788 				goto have_group;
1789 			}
1790 		}
1791 
1792 		/*
1793 		 * No empty groups to free the object to.  Attempt to
1794 		 * allocate one.
1795 		 */
1796 		simple_unlock(&pc->pc_slock);
1797 		s = splvm();
1798 		pcg = pool_get(&pcgpool, PR_NOWAIT);
1799 		splx(s);
1800 		if (pcg != NULL) {
1801 			memset(pcg, 0, sizeof(*pcg));
1802 			simple_lock(&pc->pc_slock);
1803 			pc->pc_ngroups++;
1804 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1805 			if (pc->pc_freeto == NULL)
1806 				pc->pc_freeto = pcg;
1807 			goto have_group;
1808 		}
1809 
1810 		/*
1811 		 * Unable to allocate a cache group; destruct the object
1812 		 * and free it back to the pool.
1813 		 */
1814 		pool_cache_destruct_object(pc, object);
1815 		return;
1816 	}
1817 
1818  have_group:
1819 	pc->pc_nitems++;
1820 	pcg_put(pcg, object);
1821 
1822 	if (pcg->pcg_avail == PCG_NOBJECTS)
1823 		pc->pc_freeto = NULL;
1824 
1825 	simple_unlock(&pc->pc_slock);
1826 }
1827 
1828 /*
1829  * pool_cache_destruct_object:
1830  *
1831  *	Force destruction of an object and its release back into
1832  *	the pool.
1833  */
1834 void
1835 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1836 {
1837 
1838 	if (pc->pc_dtor != NULL)
1839 		(*pc->pc_dtor)(pc->pc_arg, object);
1840 	pool_put(pc->pc_pool, object);
1841 }
1842 
1843 /*
1844  * pool_cache_do_invalidate:
1845  *
1846  *	This internal function implements pool_cache_invalidate() and
1847  *	pool_cache_reclaim().
1848  */
1849 static void
1850 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1851     void (*putit)(struct pool *, void *))
1852 {
1853 	struct pool_cache_group *pcg, *npcg;
1854 	void *object;
1855 	int s;
1856 
1857 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1858 	     pcg = npcg) {
1859 		npcg = TAILQ_NEXT(pcg, pcg_list);
1860 		while (pcg->pcg_avail != 0) {
1861 			pc->pc_nitems--;
1862 			object = pcg_get(pcg);
1863 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1864 				pc->pc_allocfrom = NULL;
1865 			if (pc->pc_dtor != NULL)
1866 				(*pc->pc_dtor)(pc->pc_arg, object);
1867 			(*putit)(pc->pc_pool, object);
1868 		}
1869 		if (free_groups) {
1870 			pc->pc_ngroups--;
1871 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1872 			if (pc->pc_freeto == pcg)
1873 				pc->pc_freeto = NULL;
1874 			s = splvm();
1875 			pool_put(&pcgpool, pcg);
1876 			splx(s);
1877 		}
1878 	}
1879 }
1880 
1881 /*
1882  * pool_cache_invalidate:
1883  *
1884  *	Invalidate a pool cache (destruct and release all of the
1885  *	cached objects).
1886  */
1887 void
1888 pool_cache_invalidate(struct pool_cache *pc)
1889 {
1890 
1891 	simple_lock(&pc->pc_slock);
1892 	pool_cache_do_invalidate(pc, 0, pool_put);
1893 	simple_unlock(&pc->pc_slock);
1894 }
1895 
1896 /*
1897  * pool_cache_reclaim:
1898  *
1899  *	Reclaim a pool cache for pool_reclaim().
1900  */
1901 static void
1902 pool_cache_reclaim(struct pool_cache *pc)
1903 {
1904 
1905 	simple_lock(&pc->pc_slock);
1906 	pool_cache_do_invalidate(pc, 1, pool_do_put);
1907 	simple_unlock(&pc->pc_slock);
1908 }
1909