1 /* $NetBSD: subr_pool.c,v 1.189 2011/03/22 15:16:23 pooka Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.189 2011/03/22 15:16:23 pooka Exp $"); 36 37 #include "opt_ddb.h" 38 #include "opt_pool.h" 39 #include "opt_poollog.h" 40 #include "opt_lockdebug.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bitops.h> 45 #include <sys/proc.h> 46 #include <sys/errno.h> 47 #include <sys/kernel.h> 48 #include <sys/malloc.h> 49 #include <sys/pool.h> 50 #include <sys/syslog.h> 51 #include <sys/debug.h> 52 #include <sys/lockdebug.h> 53 #include <sys/xcall.h> 54 #include <sys/cpu.h> 55 #include <sys/atomic.h> 56 57 #include <uvm/uvm_extern.h> 58 #ifdef DIAGNOSTIC 59 #include <uvm/uvm_km.h> /* uvm_km_va_drain */ 60 #endif 61 62 /* 63 * Pool resource management utility. 64 * 65 * Memory is allocated in pages which are split into pieces according to 66 * the pool item size. Each page is kept on one of three lists in the 67 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 68 * for empty, full and partially-full pages respectively. The individual 69 * pool items are on a linked list headed by `ph_itemlist' in each page 70 * header. The memory for building the page list is either taken from 71 * the allocated pages themselves (for small pool items) or taken from 72 * an internal pool of page headers (`phpool'). 73 */ 74 75 /* List of all pools */ 76 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 77 78 /* Private pool for page header structures */ 79 #define PHPOOL_MAX 8 80 static struct pool phpool[PHPOOL_MAX]; 81 #define PHPOOL_FREELIST_NELEM(idx) \ 82 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 83 84 #ifdef POOL_SUBPAGE 85 /* Pool of subpages for use by normal pools. */ 86 static struct pool psppool; 87 #endif 88 89 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 90 SLIST_HEAD_INITIALIZER(pa_deferinitq); 91 92 static void *pool_page_alloc_meta(struct pool *, int); 93 static void pool_page_free_meta(struct pool *, void *); 94 95 /* allocator for pool metadata */ 96 struct pool_allocator pool_allocator_meta = { 97 pool_page_alloc_meta, pool_page_free_meta, 98 .pa_backingmapptr = &kmem_map, 99 }; 100 101 /* # of seconds to retain page after last use */ 102 int pool_inactive_time = 10; 103 104 /* Next candidate for drainage (see pool_drain()) */ 105 static struct pool *drainpp; 106 107 /* This lock protects both pool_head and drainpp. */ 108 static kmutex_t pool_head_lock; 109 static kcondvar_t pool_busy; 110 111 /* This lock protects initialization of a potentially shared pool allocator */ 112 static kmutex_t pool_allocator_lock; 113 114 typedef uint32_t pool_item_bitmap_t; 115 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 116 #define BITMAP_MASK (BITMAP_SIZE - 1) 117 118 struct pool_item_header { 119 /* Page headers */ 120 LIST_ENTRY(pool_item_header) 121 ph_pagelist; /* pool page list */ 122 SPLAY_ENTRY(pool_item_header) 123 ph_node; /* Off-page page headers */ 124 void * ph_page; /* this page's address */ 125 uint32_t ph_time; /* last referenced */ 126 uint16_t ph_nmissing; /* # of chunks in use */ 127 uint16_t ph_off; /* start offset in page */ 128 union { 129 /* !PR_NOTOUCH */ 130 struct { 131 LIST_HEAD(, pool_item) 132 phu_itemlist; /* chunk list for this page */ 133 } phu_normal; 134 /* PR_NOTOUCH */ 135 struct { 136 pool_item_bitmap_t phu_bitmap[1]; 137 } phu_notouch; 138 } ph_u; 139 }; 140 #define ph_itemlist ph_u.phu_normal.phu_itemlist 141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 142 143 struct pool_item { 144 #ifdef DIAGNOSTIC 145 u_int pi_magic; 146 #endif 147 #define PI_MAGIC 0xdeaddeadU 148 /* Other entries use only this list entry */ 149 LIST_ENTRY(pool_item) pi_list; 150 }; 151 152 #define POOL_NEEDS_CATCHUP(pp) \ 153 ((pp)->pr_nitems < (pp)->pr_minitems) 154 155 /* 156 * Pool cache management. 157 * 158 * Pool caches provide a way for constructed objects to be cached by the 159 * pool subsystem. This can lead to performance improvements by avoiding 160 * needless object construction/destruction; it is deferred until absolutely 161 * necessary. 162 * 163 * Caches are grouped into cache groups. Each cache group references up 164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 165 * object from the pool, it calls the object's constructor and places it 166 * into a cache group. When a cache group frees an object back to the 167 * pool, it first calls the object's destructor. This allows the object 168 * to persist in constructed form while freed to the cache. 169 * 170 * The pool references each cache, so that when a pool is drained by the 171 * pagedaemon, it can drain each individual cache as well. Each time a 172 * cache is drained, the most idle cache group is freed to the pool in 173 * its entirety. 174 * 175 * Pool caches are layed on top of pools. By layering them, we can avoid 176 * the complexity of cache management for pools which would not benefit 177 * from it. 178 */ 179 180 static struct pool pcg_normal_pool; 181 static struct pool pcg_large_pool; 182 static struct pool cache_pool; 183 static struct pool cache_cpu_pool; 184 185 pool_cache_t pnbuf_cache; /* pathname buffer cache */ 186 187 /* List of all caches. */ 188 TAILQ_HEAD(,pool_cache) pool_cache_head = 189 TAILQ_HEAD_INITIALIZER(pool_cache_head); 190 191 int pool_cache_disable; /* global disable for caching */ 192 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 193 194 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 195 void *); 196 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 197 void **, paddr_t *, int); 198 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 199 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 200 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 201 static void pool_cache_xcall(pool_cache_t); 202 203 static int pool_catchup(struct pool *); 204 static void pool_prime_page(struct pool *, void *, 205 struct pool_item_header *); 206 static void pool_update_curpage(struct pool *); 207 208 static int pool_grow(struct pool *, int); 209 static void *pool_allocator_alloc(struct pool *, int); 210 static void pool_allocator_free(struct pool *, void *); 211 212 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 213 void (*)(const char *, ...)); 214 static void pool_print1(struct pool *, const char *, 215 void (*)(const char *, ...)); 216 217 static int pool_chk_page(struct pool *, const char *, 218 struct pool_item_header *); 219 220 /* 221 * Pool log entry. An array of these is allocated in pool_init(). 222 */ 223 struct pool_log { 224 const char *pl_file; 225 long pl_line; 226 int pl_action; 227 #define PRLOG_GET 1 228 #define PRLOG_PUT 2 229 void *pl_addr; 230 }; 231 232 #ifdef POOL_DIAGNOSTIC 233 /* Number of entries in pool log buffers */ 234 #ifndef POOL_LOGSIZE 235 #define POOL_LOGSIZE 10 236 #endif 237 238 int pool_logsize = POOL_LOGSIZE; 239 240 static inline void 241 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 242 { 243 int n; 244 struct pool_log *pl; 245 246 if ((pp->pr_roflags & PR_LOGGING) == 0) 247 return; 248 249 if (pp->pr_log == NULL) { 250 if (kmem_map != NULL) 251 pp->pr_log = malloc( 252 pool_logsize * sizeof(struct pool_log), 253 M_TEMP, M_NOWAIT | M_ZERO); 254 if (pp->pr_log == NULL) 255 return; 256 pp->pr_curlogentry = 0; 257 pp->pr_logsize = pool_logsize; 258 } 259 260 /* 261 * Fill in the current entry. Wrap around and overwrite 262 * the oldest entry if necessary. 263 */ 264 n = pp->pr_curlogentry; 265 pl = &pp->pr_log[n]; 266 pl->pl_file = file; 267 pl->pl_line = line; 268 pl->pl_action = action; 269 pl->pl_addr = v; 270 if (++n >= pp->pr_logsize) 271 n = 0; 272 pp->pr_curlogentry = n; 273 } 274 275 static void 276 pr_printlog(struct pool *pp, struct pool_item *pi, 277 void (*pr)(const char *, ...)) 278 { 279 int i = pp->pr_logsize; 280 int n = pp->pr_curlogentry; 281 282 if (pp->pr_log == NULL) 283 return; 284 285 /* 286 * Print all entries in this pool's log. 287 */ 288 while (i-- > 0) { 289 struct pool_log *pl = &pp->pr_log[n]; 290 if (pl->pl_action != 0) { 291 if (pi == NULL || pi == pl->pl_addr) { 292 (*pr)("\tlog entry %d:\n", i); 293 (*pr)("\t\taction = %s, addr = %p\n", 294 pl->pl_action == PRLOG_GET ? "get" : "put", 295 pl->pl_addr); 296 (*pr)("\t\tfile: %s at line %lu\n", 297 pl->pl_file, pl->pl_line); 298 } 299 } 300 if (++n >= pp->pr_logsize) 301 n = 0; 302 } 303 } 304 305 static inline void 306 pr_enter(struct pool *pp, const char *file, long line) 307 { 308 309 if (__predict_false(pp->pr_entered_file != NULL)) { 310 printf("pool %s: reentrancy at file %s line %ld\n", 311 pp->pr_wchan, file, line); 312 printf(" previous entry at file %s line %ld\n", 313 pp->pr_entered_file, pp->pr_entered_line); 314 panic("pr_enter"); 315 } 316 317 pp->pr_entered_file = file; 318 pp->pr_entered_line = line; 319 } 320 321 static inline void 322 pr_leave(struct pool *pp) 323 { 324 325 if (__predict_false(pp->pr_entered_file == NULL)) { 326 printf("pool %s not entered?\n", pp->pr_wchan); 327 panic("pr_leave"); 328 } 329 330 pp->pr_entered_file = NULL; 331 pp->pr_entered_line = 0; 332 } 333 334 static inline void 335 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 336 { 337 338 if (pp->pr_entered_file != NULL) 339 (*pr)("\n\tcurrently entered from file %s line %ld\n", 340 pp->pr_entered_file, pp->pr_entered_line); 341 } 342 #else 343 #define pr_log(pp, v, action, file, line) 344 #define pr_printlog(pp, pi, pr) 345 #define pr_enter(pp, file, line) 346 #define pr_leave(pp) 347 #define pr_enter_check(pp, pr) 348 #endif /* POOL_DIAGNOSTIC */ 349 350 static inline unsigned int 351 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 352 const void *v) 353 { 354 const char *cp = v; 355 unsigned int idx; 356 357 KASSERT(pp->pr_roflags & PR_NOTOUCH); 358 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 359 KASSERT(idx < pp->pr_itemsperpage); 360 return idx; 361 } 362 363 static inline void 364 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 365 void *obj) 366 { 367 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 368 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 369 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 370 371 KASSERT((*bitmap & mask) == 0); 372 *bitmap |= mask; 373 } 374 375 static inline void * 376 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 377 { 378 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 379 unsigned int idx; 380 int i; 381 382 for (i = 0; ; i++) { 383 int bit; 384 385 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 386 bit = ffs32(bitmap[i]); 387 if (bit) { 388 pool_item_bitmap_t mask; 389 390 bit--; 391 idx = (i * BITMAP_SIZE) + bit; 392 mask = 1 << bit; 393 KASSERT((bitmap[i] & mask) != 0); 394 bitmap[i] &= ~mask; 395 break; 396 } 397 } 398 KASSERT(idx < pp->pr_itemsperpage); 399 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 400 } 401 402 static inline void 403 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 404 { 405 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 406 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 407 int i; 408 409 for (i = 0; i < n; i++) { 410 bitmap[i] = (pool_item_bitmap_t)-1; 411 } 412 } 413 414 static inline int 415 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 416 { 417 418 /* 419 * we consider pool_item_header with smaller ph_page bigger. 420 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 421 */ 422 423 if (a->ph_page < b->ph_page) 424 return (1); 425 else if (a->ph_page > b->ph_page) 426 return (-1); 427 else 428 return (0); 429 } 430 431 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 432 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 433 434 static inline struct pool_item_header * 435 pr_find_pagehead_noalign(struct pool *pp, void *v) 436 { 437 struct pool_item_header *ph, tmp; 438 439 tmp.ph_page = (void *)(uintptr_t)v; 440 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 441 if (ph == NULL) { 442 ph = SPLAY_ROOT(&pp->pr_phtree); 443 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 444 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 445 } 446 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 447 } 448 449 return ph; 450 } 451 452 /* 453 * Return the pool page header based on item address. 454 */ 455 static inline struct pool_item_header * 456 pr_find_pagehead(struct pool *pp, void *v) 457 { 458 struct pool_item_header *ph, tmp; 459 460 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 461 ph = pr_find_pagehead_noalign(pp, v); 462 } else { 463 void *page = 464 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 465 466 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 467 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 468 } else { 469 tmp.ph_page = page; 470 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 471 } 472 } 473 474 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 475 ((char *)ph->ph_page <= (char *)v && 476 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 477 return ph; 478 } 479 480 static void 481 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 482 { 483 struct pool_item_header *ph; 484 485 while ((ph = LIST_FIRST(pq)) != NULL) { 486 LIST_REMOVE(ph, ph_pagelist); 487 pool_allocator_free(pp, ph->ph_page); 488 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 489 pool_put(pp->pr_phpool, ph); 490 } 491 } 492 493 /* 494 * Remove a page from the pool. 495 */ 496 static inline void 497 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 498 struct pool_pagelist *pq) 499 { 500 501 KASSERT(mutex_owned(&pp->pr_lock)); 502 503 /* 504 * If the page was idle, decrement the idle page count. 505 */ 506 if (ph->ph_nmissing == 0) { 507 #ifdef DIAGNOSTIC 508 if (pp->pr_nidle == 0) 509 panic("pr_rmpage: nidle inconsistent"); 510 if (pp->pr_nitems < pp->pr_itemsperpage) 511 panic("pr_rmpage: nitems inconsistent"); 512 #endif 513 pp->pr_nidle--; 514 } 515 516 pp->pr_nitems -= pp->pr_itemsperpage; 517 518 /* 519 * Unlink the page from the pool and queue it for release. 520 */ 521 LIST_REMOVE(ph, ph_pagelist); 522 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 523 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 524 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 525 526 pp->pr_npages--; 527 pp->pr_npagefree++; 528 529 pool_update_curpage(pp); 530 } 531 532 static bool 533 pa_starved_p(struct pool_allocator *pa) 534 { 535 536 if (pa->pa_backingmap != NULL) { 537 return vm_map_starved_p(pa->pa_backingmap); 538 } 539 return false; 540 } 541 542 static int 543 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 544 { 545 struct pool *pp = obj; 546 struct pool_allocator *pa = pp->pr_alloc; 547 548 KASSERT(&pp->pr_reclaimerentry == ce); 549 pool_reclaim(pp); 550 if (!pa_starved_p(pa)) { 551 return CALLBACK_CHAIN_ABORT; 552 } 553 return CALLBACK_CHAIN_CONTINUE; 554 } 555 556 static void 557 pool_reclaim_register(struct pool *pp) 558 { 559 struct vm_map *map = pp->pr_alloc->pa_backingmap; 560 int s; 561 562 if (map == NULL) { 563 return; 564 } 565 566 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 567 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 568 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 569 splx(s); 570 571 #ifdef DIAGNOSTIC 572 /* Diagnostic drain attempt. */ 573 uvm_km_va_drain(map, 0); 574 #endif 575 } 576 577 static void 578 pool_reclaim_unregister(struct pool *pp) 579 { 580 struct vm_map *map = pp->pr_alloc->pa_backingmap; 581 int s; 582 583 if (map == NULL) { 584 return; 585 } 586 587 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 588 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 589 &pp->pr_reclaimerentry); 590 splx(s); 591 } 592 593 static void 594 pa_reclaim_register(struct pool_allocator *pa) 595 { 596 struct vm_map *map = *pa->pa_backingmapptr; 597 struct pool *pp; 598 599 KASSERT(pa->pa_backingmap == NULL); 600 if (map == NULL) { 601 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 602 return; 603 } 604 pa->pa_backingmap = map; 605 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 606 pool_reclaim_register(pp); 607 } 608 } 609 610 /* 611 * Initialize all the pools listed in the "pools" link set. 612 */ 613 void 614 pool_subsystem_init(void) 615 { 616 struct pool_allocator *pa; 617 618 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 619 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 620 cv_init(&pool_busy, "poolbusy"); 621 622 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 623 KASSERT(pa->pa_backingmapptr != NULL); 624 KASSERT(*pa->pa_backingmapptr != NULL); 625 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 626 pa_reclaim_register(pa); 627 } 628 629 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 630 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 631 632 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 633 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 634 } 635 636 /* 637 * Initialize the given pool resource structure. 638 * 639 * We export this routine to allow other kernel parts to declare 640 * static pools that must be initialized before malloc() is available. 641 */ 642 void 643 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 644 const char *wchan, struct pool_allocator *palloc, int ipl) 645 { 646 struct pool *pp1; 647 size_t trysize, phsize; 648 int off, slack; 649 650 #ifdef DEBUG 651 /* 652 * Check that the pool hasn't already been initialised and 653 * added to the list of all pools. 654 */ 655 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 656 if (pp == pp1) 657 panic("pool_init: pool %s already initialised", 658 wchan); 659 } 660 #endif 661 662 #ifdef POOL_DIAGNOSTIC 663 /* 664 * Always log if POOL_DIAGNOSTIC is defined. 665 */ 666 if (pool_logsize != 0) 667 flags |= PR_LOGGING; 668 #endif 669 670 if (palloc == NULL) 671 palloc = &pool_allocator_kmem; 672 #ifdef POOL_SUBPAGE 673 if (size > palloc->pa_pagesz) { 674 if (palloc == &pool_allocator_kmem) 675 palloc = &pool_allocator_kmem_fullpage; 676 else if (palloc == &pool_allocator_nointr) 677 palloc = &pool_allocator_nointr_fullpage; 678 } 679 #endif /* POOL_SUBPAGE */ 680 if (!cold) 681 mutex_enter(&pool_allocator_lock); 682 if (palloc->pa_refcnt++ == 0) { 683 if (palloc->pa_pagesz == 0) 684 palloc->pa_pagesz = PAGE_SIZE; 685 686 TAILQ_INIT(&palloc->pa_list); 687 688 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 689 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 690 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 691 692 if (palloc->pa_backingmapptr != NULL) { 693 pa_reclaim_register(palloc); 694 } 695 } 696 if (!cold) 697 mutex_exit(&pool_allocator_lock); 698 699 if (align == 0) 700 align = ALIGN(1); 701 702 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 703 size = sizeof(struct pool_item); 704 705 size = roundup(size, align); 706 #ifdef DIAGNOSTIC 707 if (size > palloc->pa_pagesz) 708 panic("pool_init: pool item size (%zu) too large", size); 709 #endif 710 711 /* 712 * Initialize the pool structure. 713 */ 714 LIST_INIT(&pp->pr_emptypages); 715 LIST_INIT(&pp->pr_fullpages); 716 LIST_INIT(&pp->pr_partpages); 717 pp->pr_cache = NULL; 718 pp->pr_curpage = NULL; 719 pp->pr_npages = 0; 720 pp->pr_minitems = 0; 721 pp->pr_minpages = 0; 722 pp->pr_maxpages = UINT_MAX; 723 pp->pr_roflags = flags; 724 pp->pr_flags = 0; 725 pp->pr_size = size; 726 pp->pr_align = align; 727 pp->pr_wchan = wchan; 728 pp->pr_alloc = palloc; 729 pp->pr_nitems = 0; 730 pp->pr_nout = 0; 731 pp->pr_hardlimit = UINT_MAX; 732 pp->pr_hardlimit_warning = NULL; 733 pp->pr_hardlimit_ratecap.tv_sec = 0; 734 pp->pr_hardlimit_ratecap.tv_usec = 0; 735 pp->pr_hardlimit_warning_last.tv_sec = 0; 736 pp->pr_hardlimit_warning_last.tv_usec = 0; 737 pp->pr_drain_hook = NULL; 738 pp->pr_drain_hook_arg = NULL; 739 pp->pr_freecheck = NULL; 740 741 /* 742 * Decide whether to put the page header off page to avoid 743 * wasting too large a part of the page or too big item. 744 * Off-page page headers go on a hash table, so we can match 745 * a returned item with its header based on the page address. 746 * We use 1/16 of the page size and about 8 times of the item 747 * size as the threshold (XXX: tune) 748 * 749 * However, we'll put the header into the page if we can put 750 * it without wasting any items. 751 * 752 * Silently enforce `0 <= ioff < align'. 753 */ 754 pp->pr_itemoffset = ioff %= align; 755 /* See the comment below about reserved bytes. */ 756 trysize = palloc->pa_pagesz - ((align - ioff) % align); 757 phsize = ALIGN(sizeof(struct pool_item_header)); 758 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 759 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 760 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 761 /* Use the end of the page for the page header */ 762 pp->pr_roflags |= PR_PHINPAGE; 763 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 764 } else { 765 /* The page header will be taken from our page header pool */ 766 pp->pr_phoffset = 0; 767 off = palloc->pa_pagesz; 768 SPLAY_INIT(&pp->pr_phtree); 769 } 770 771 /* 772 * Alignment is to take place at `ioff' within the item. This means 773 * we must reserve up to `align - 1' bytes on the page to allow 774 * appropriate positioning of each item. 775 */ 776 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 777 KASSERT(pp->pr_itemsperpage != 0); 778 if ((pp->pr_roflags & PR_NOTOUCH)) { 779 int idx; 780 781 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 782 idx++) { 783 /* nothing */ 784 } 785 if (idx >= PHPOOL_MAX) { 786 /* 787 * if you see this panic, consider to tweak 788 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 789 */ 790 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 791 pp->pr_wchan, pp->pr_itemsperpage); 792 } 793 pp->pr_phpool = &phpool[idx]; 794 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 795 pp->pr_phpool = &phpool[0]; 796 } 797 #if defined(DIAGNOSTIC) 798 else { 799 pp->pr_phpool = NULL; 800 } 801 #endif 802 803 /* 804 * Use the slack between the chunks and the page header 805 * for "cache coloring". 806 */ 807 slack = off - pp->pr_itemsperpage * pp->pr_size; 808 pp->pr_maxcolor = (slack / align) * align; 809 pp->pr_curcolor = 0; 810 811 pp->pr_nget = 0; 812 pp->pr_nfail = 0; 813 pp->pr_nput = 0; 814 pp->pr_npagealloc = 0; 815 pp->pr_npagefree = 0; 816 pp->pr_hiwat = 0; 817 pp->pr_nidle = 0; 818 pp->pr_refcnt = 0; 819 820 pp->pr_log = NULL; 821 822 pp->pr_entered_file = NULL; 823 pp->pr_entered_line = 0; 824 825 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 826 cv_init(&pp->pr_cv, wchan); 827 pp->pr_ipl = ipl; 828 829 /* 830 * Initialize private page header pool and cache magazine pool if we 831 * haven't done so yet. 832 * XXX LOCKING. 833 */ 834 if (phpool[0].pr_size == 0) { 835 int idx; 836 for (idx = 0; idx < PHPOOL_MAX; idx++) { 837 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 838 int nelem; 839 size_t sz; 840 841 nelem = PHPOOL_FREELIST_NELEM(idx); 842 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 843 "phpool-%d", nelem); 844 sz = sizeof(struct pool_item_header); 845 if (nelem) { 846 sz = offsetof(struct pool_item_header, 847 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 848 } 849 pool_init(&phpool[idx], sz, 0, 0, 0, 850 phpool_names[idx], &pool_allocator_meta, IPL_VM); 851 } 852 #ifdef POOL_SUBPAGE 853 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 854 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 855 #endif 856 857 size = sizeof(pcg_t) + 858 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 859 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 860 "pcgnormal", &pool_allocator_meta, IPL_VM); 861 862 size = sizeof(pcg_t) + 863 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 864 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 865 "pcglarge", &pool_allocator_meta, IPL_VM); 866 } 867 868 /* Insert into the list of all pools. */ 869 if (!cold) 870 mutex_enter(&pool_head_lock); 871 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 872 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 873 break; 874 } 875 if (pp1 == NULL) 876 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 877 else 878 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 879 if (!cold) 880 mutex_exit(&pool_head_lock); 881 882 /* Insert this into the list of pools using this allocator. */ 883 if (!cold) 884 mutex_enter(&palloc->pa_lock); 885 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 886 if (!cold) 887 mutex_exit(&palloc->pa_lock); 888 889 pool_reclaim_register(pp); 890 } 891 892 /* 893 * De-commision a pool resource. 894 */ 895 void 896 pool_destroy(struct pool *pp) 897 { 898 struct pool_pagelist pq; 899 struct pool_item_header *ph; 900 901 /* Remove from global pool list */ 902 mutex_enter(&pool_head_lock); 903 while (pp->pr_refcnt != 0) 904 cv_wait(&pool_busy, &pool_head_lock); 905 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 906 if (drainpp == pp) 907 drainpp = NULL; 908 mutex_exit(&pool_head_lock); 909 910 /* Remove this pool from its allocator's list of pools. */ 911 pool_reclaim_unregister(pp); 912 mutex_enter(&pp->pr_alloc->pa_lock); 913 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 914 mutex_exit(&pp->pr_alloc->pa_lock); 915 916 mutex_enter(&pool_allocator_lock); 917 if (--pp->pr_alloc->pa_refcnt == 0) 918 mutex_destroy(&pp->pr_alloc->pa_lock); 919 mutex_exit(&pool_allocator_lock); 920 921 mutex_enter(&pp->pr_lock); 922 923 KASSERT(pp->pr_cache == NULL); 924 925 #ifdef DIAGNOSTIC 926 if (pp->pr_nout != 0) { 927 pr_printlog(pp, NULL, printf); 928 panic("pool_destroy: pool busy: still out: %u", 929 pp->pr_nout); 930 } 931 #endif 932 933 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 934 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 935 936 /* Remove all pages */ 937 LIST_INIT(&pq); 938 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 939 pr_rmpage(pp, ph, &pq); 940 941 mutex_exit(&pp->pr_lock); 942 943 pr_pagelist_free(pp, &pq); 944 945 #ifdef POOL_DIAGNOSTIC 946 if (pp->pr_log != NULL) { 947 free(pp->pr_log, M_TEMP); 948 pp->pr_log = NULL; 949 } 950 #endif 951 952 cv_destroy(&pp->pr_cv); 953 mutex_destroy(&pp->pr_lock); 954 } 955 956 void 957 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 958 { 959 960 /* XXX no locking -- must be used just after pool_init() */ 961 #ifdef DIAGNOSTIC 962 if (pp->pr_drain_hook != NULL) 963 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 964 #endif 965 pp->pr_drain_hook = fn; 966 pp->pr_drain_hook_arg = arg; 967 } 968 969 static struct pool_item_header * 970 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 971 { 972 struct pool_item_header *ph; 973 974 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 975 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 976 else 977 ph = pool_get(pp->pr_phpool, flags); 978 979 return (ph); 980 } 981 982 /* 983 * Grab an item from the pool. 984 */ 985 void * 986 #ifdef POOL_DIAGNOSTIC 987 _pool_get(struct pool *pp, int flags, const char *file, long line) 988 #else 989 pool_get(struct pool *pp, int flags) 990 #endif 991 { 992 struct pool_item *pi; 993 struct pool_item_header *ph; 994 void *v; 995 996 #ifdef DIAGNOSTIC 997 if (pp->pr_itemsperpage == 0) 998 panic("pool_get: pool '%s': pr_itemsperpage is zero, " 999 "pool not initialized?", pp->pr_wchan); 1000 if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE && 1001 !cold && panicstr == NULL) 1002 panic("pool '%s' is IPL_NONE, but called from " 1003 "interrupt context\n", pp->pr_wchan); 1004 #endif 1005 if (flags & PR_WAITOK) { 1006 ASSERT_SLEEPABLE(); 1007 } 1008 1009 mutex_enter(&pp->pr_lock); 1010 pr_enter(pp, file, line); 1011 1012 startover: 1013 /* 1014 * Check to see if we've reached the hard limit. If we have, 1015 * and we can wait, then wait until an item has been returned to 1016 * the pool. 1017 */ 1018 #ifdef DIAGNOSTIC 1019 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 1020 pr_leave(pp); 1021 mutex_exit(&pp->pr_lock); 1022 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 1023 } 1024 #endif 1025 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1026 if (pp->pr_drain_hook != NULL) { 1027 /* 1028 * Since the drain hook is going to free things 1029 * back to the pool, unlock, call the hook, re-lock, 1030 * and check the hardlimit condition again. 1031 */ 1032 pr_leave(pp); 1033 mutex_exit(&pp->pr_lock); 1034 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1035 mutex_enter(&pp->pr_lock); 1036 pr_enter(pp, file, line); 1037 if (pp->pr_nout < pp->pr_hardlimit) 1038 goto startover; 1039 } 1040 1041 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1042 /* 1043 * XXX: A warning isn't logged in this case. Should 1044 * it be? 1045 */ 1046 pp->pr_flags |= PR_WANTED; 1047 pr_leave(pp); 1048 cv_wait(&pp->pr_cv, &pp->pr_lock); 1049 pr_enter(pp, file, line); 1050 goto startover; 1051 } 1052 1053 /* 1054 * Log a message that the hard limit has been hit. 1055 */ 1056 if (pp->pr_hardlimit_warning != NULL && 1057 ratecheck(&pp->pr_hardlimit_warning_last, 1058 &pp->pr_hardlimit_ratecap)) 1059 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1060 1061 pp->pr_nfail++; 1062 1063 pr_leave(pp); 1064 mutex_exit(&pp->pr_lock); 1065 return (NULL); 1066 } 1067 1068 /* 1069 * The convention we use is that if `curpage' is not NULL, then 1070 * it points at a non-empty bucket. In particular, `curpage' 1071 * never points at a page header which has PR_PHINPAGE set and 1072 * has no items in its bucket. 1073 */ 1074 if ((ph = pp->pr_curpage) == NULL) { 1075 int error; 1076 1077 #ifdef DIAGNOSTIC 1078 if (pp->pr_nitems != 0) { 1079 mutex_exit(&pp->pr_lock); 1080 printf("pool_get: %s: curpage NULL, nitems %u\n", 1081 pp->pr_wchan, pp->pr_nitems); 1082 panic("pool_get: nitems inconsistent"); 1083 } 1084 #endif 1085 1086 /* 1087 * Call the back-end page allocator for more memory. 1088 * Release the pool lock, as the back-end page allocator 1089 * may block. 1090 */ 1091 pr_leave(pp); 1092 error = pool_grow(pp, flags); 1093 pr_enter(pp, file, line); 1094 if (error != 0) { 1095 /* 1096 * We were unable to allocate a page or item 1097 * header, but we released the lock during 1098 * allocation, so perhaps items were freed 1099 * back to the pool. Check for this case. 1100 */ 1101 if (pp->pr_curpage != NULL) 1102 goto startover; 1103 1104 pp->pr_nfail++; 1105 pr_leave(pp); 1106 mutex_exit(&pp->pr_lock); 1107 return (NULL); 1108 } 1109 1110 /* Start the allocation process over. */ 1111 goto startover; 1112 } 1113 if (pp->pr_roflags & PR_NOTOUCH) { 1114 #ifdef DIAGNOSTIC 1115 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1116 pr_leave(pp); 1117 mutex_exit(&pp->pr_lock); 1118 panic("pool_get: %s: page empty", pp->pr_wchan); 1119 } 1120 #endif 1121 v = pr_item_notouch_get(pp, ph); 1122 #ifdef POOL_DIAGNOSTIC 1123 pr_log(pp, v, PRLOG_GET, file, line); 1124 #endif 1125 } else { 1126 v = pi = LIST_FIRST(&ph->ph_itemlist); 1127 if (__predict_false(v == NULL)) { 1128 pr_leave(pp); 1129 mutex_exit(&pp->pr_lock); 1130 panic("pool_get: %s: page empty", pp->pr_wchan); 1131 } 1132 #ifdef DIAGNOSTIC 1133 if (__predict_false(pp->pr_nitems == 0)) { 1134 pr_leave(pp); 1135 mutex_exit(&pp->pr_lock); 1136 printf("pool_get: %s: items on itemlist, nitems %u\n", 1137 pp->pr_wchan, pp->pr_nitems); 1138 panic("pool_get: nitems inconsistent"); 1139 } 1140 #endif 1141 1142 #ifdef POOL_DIAGNOSTIC 1143 pr_log(pp, v, PRLOG_GET, file, line); 1144 #endif 1145 1146 #ifdef DIAGNOSTIC 1147 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1148 pr_printlog(pp, pi, printf); 1149 panic("pool_get(%s): free list modified: " 1150 "magic=%x; page %p; item addr %p\n", 1151 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1152 } 1153 #endif 1154 1155 /* 1156 * Remove from item list. 1157 */ 1158 LIST_REMOVE(pi, pi_list); 1159 } 1160 pp->pr_nitems--; 1161 pp->pr_nout++; 1162 if (ph->ph_nmissing == 0) { 1163 #ifdef DIAGNOSTIC 1164 if (__predict_false(pp->pr_nidle == 0)) 1165 panic("pool_get: nidle inconsistent"); 1166 #endif 1167 pp->pr_nidle--; 1168 1169 /* 1170 * This page was previously empty. Move it to the list of 1171 * partially-full pages. This page is already curpage. 1172 */ 1173 LIST_REMOVE(ph, ph_pagelist); 1174 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1175 } 1176 ph->ph_nmissing++; 1177 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1178 #ifdef DIAGNOSTIC 1179 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1180 !LIST_EMPTY(&ph->ph_itemlist))) { 1181 pr_leave(pp); 1182 mutex_exit(&pp->pr_lock); 1183 panic("pool_get: %s: nmissing inconsistent", 1184 pp->pr_wchan); 1185 } 1186 #endif 1187 /* 1188 * This page is now full. Move it to the full list 1189 * and select a new current page. 1190 */ 1191 LIST_REMOVE(ph, ph_pagelist); 1192 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1193 pool_update_curpage(pp); 1194 } 1195 1196 pp->pr_nget++; 1197 pr_leave(pp); 1198 1199 /* 1200 * If we have a low water mark and we are now below that low 1201 * water mark, add more items to the pool. 1202 */ 1203 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1204 /* 1205 * XXX: Should we log a warning? Should we set up a timeout 1206 * to try again in a second or so? The latter could break 1207 * a caller's assumptions about interrupt protection, etc. 1208 */ 1209 } 1210 1211 mutex_exit(&pp->pr_lock); 1212 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1213 FREECHECK_OUT(&pp->pr_freecheck, v); 1214 return (v); 1215 } 1216 1217 /* 1218 * Internal version of pool_put(). Pool is already locked/entered. 1219 */ 1220 static void 1221 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1222 { 1223 struct pool_item *pi = v; 1224 struct pool_item_header *ph; 1225 1226 KASSERT(mutex_owned(&pp->pr_lock)); 1227 FREECHECK_IN(&pp->pr_freecheck, v); 1228 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1229 1230 #ifdef DIAGNOSTIC 1231 if (__predict_false(pp->pr_nout == 0)) { 1232 printf("pool %s: putting with none out\n", 1233 pp->pr_wchan); 1234 panic("pool_put"); 1235 } 1236 #endif 1237 1238 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1239 pr_printlog(pp, NULL, printf); 1240 panic("pool_put: %s: page header missing", pp->pr_wchan); 1241 } 1242 1243 /* 1244 * Return to item list. 1245 */ 1246 if (pp->pr_roflags & PR_NOTOUCH) { 1247 pr_item_notouch_put(pp, ph, v); 1248 } else { 1249 #ifdef DIAGNOSTIC 1250 pi->pi_magic = PI_MAGIC; 1251 #endif 1252 #ifdef DEBUG 1253 { 1254 int i, *ip = v; 1255 1256 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1257 *ip++ = PI_MAGIC; 1258 } 1259 } 1260 #endif 1261 1262 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1263 } 1264 KDASSERT(ph->ph_nmissing != 0); 1265 ph->ph_nmissing--; 1266 pp->pr_nput++; 1267 pp->pr_nitems++; 1268 pp->pr_nout--; 1269 1270 /* Cancel "pool empty" condition if it exists */ 1271 if (pp->pr_curpage == NULL) 1272 pp->pr_curpage = ph; 1273 1274 if (pp->pr_flags & PR_WANTED) { 1275 pp->pr_flags &= ~PR_WANTED; 1276 cv_broadcast(&pp->pr_cv); 1277 } 1278 1279 /* 1280 * If this page is now empty, do one of two things: 1281 * 1282 * (1) If we have more pages than the page high water mark, 1283 * free the page back to the system. ONLY CONSIDER 1284 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1285 * CLAIM. 1286 * 1287 * (2) Otherwise, move the page to the empty page list. 1288 * 1289 * Either way, select a new current page (so we use a partially-full 1290 * page if one is available). 1291 */ 1292 if (ph->ph_nmissing == 0) { 1293 pp->pr_nidle++; 1294 if (pp->pr_npages > pp->pr_minpages && 1295 pp->pr_npages > pp->pr_maxpages) { 1296 pr_rmpage(pp, ph, pq); 1297 } else { 1298 LIST_REMOVE(ph, ph_pagelist); 1299 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1300 1301 /* 1302 * Update the timestamp on the page. A page must 1303 * be idle for some period of time before it can 1304 * be reclaimed by the pagedaemon. This minimizes 1305 * ping-pong'ing for memory. 1306 * 1307 * note for 64-bit time_t: truncating to 32-bit is not 1308 * a problem for our usage. 1309 */ 1310 ph->ph_time = time_uptime; 1311 } 1312 pool_update_curpage(pp); 1313 } 1314 1315 /* 1316 * If the page was previously completely full, move it to the 1317 * partially-full list and make it the current page. The next 1318 * allocation will get the item from this page, instead of 1319 * further fragmenting the pool. 1320 */ 1321 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1322 LIST_REMOVE(ph, ph_pagelist); 1323 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1324 pp->pr_curpage = ph; 1325 } 1326 } 1327 1328 /* 1329 * Return resource to the pool. 1330 */ 1331 #ifdef POOL_DIAGNOSTIC 1332 void 1333 _pool_put(struct pool *pp, void *v, const char *file, long line) 1334 { 1335 struct pool_pagelist pq; 1336 1337 LIST_INIT(&pq); 1338 1339 mutex_enter(&pp->pr_lock); 1340 pr_enter(pp, file, line); 1341 1342 pr_log(pp, v, PRLOG_PUT, file, line); 1343 1344 pool_do_put(pp, v, &pq); 1345 1346 pr_leave(pp); 1347 mutex_exit(&pp->pr_lock); 1348 1349 pr_pagelist_free(pp, &pq); 1350 } 1351 #undef pool_put 1352 #endif /* POOL_DIAGNOSTIC */ 1353 1354 void 1355 pool_put(struct pool *pp, void *v) 1356 { 1357 struct pool_pagelist pq; 1358 1359 LIST_INIT(&pq); 1360 1361 mutex_enter(&pp->pr_lock); 1362 pool_do_put(pp, v, &pq); 1363 mutex_exit(&pp->pr_lock); 1364 1365 pr_pagelist_free(pp, &pq); 1366 } 1367 1368 #ifdef POOL_DIAGNOSTIC 1369 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1370 #endif 1371 1372 /* 1373 * pool_grow: grow a pool by a page. 1374 * 1375 * => called with pool locked. 1376 * => unlock and relock the pool. 1377 * => return with pool locked. 1378 */ 1379 1380 static int 1381 pool_grow(struct pool *pp, int flags) 1382 { 1383 struct pool_item_header *ph = NULL; 1384 char *cp; 1385 1386 mutex_exit(&pp->pr_lock); 1387 cp = pool_allocator_alloc(pp, flags); 1388 if (__predict_true(cp != NULL)) { 1389 ph = pool_alloc_item_header(pp, cp, flags); 1390 } 1391 if (__predict_false(cp == NULL || ph == NULL)) { 1392 if (cp != NULL) { 1393 pool_allocator_free(pp, cp); 1394 } 1395 mutex_enter(&pp->pr_lock); 1396 return ENOMEM; 1397 } 1398 1399 mutex_enter(&pp->pr_lock); 1400 pool_prime_page(pp, cp, ph); 1401 pp->pr_npagealloc++; 1402 return 0; 1403 } 1404 1405 /* 1406 * Add N items to the pool. 1407 */ 1408 int 1409 pool_prime(struct pool *pp, int n) 1410 { 1411 int newpages; 1412 int error = 0; 1413 1414 mutex_enter(&pp->pr_lock); 1415 1416 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1417 1418 while (newpages-- > 0) { 1419 error = pool_grow(pp, PR_NOWAIT); 1420 if (error) { 1421 break; 1422 } 1423 pp->pr_minpages++; 1424 } 1425 1426 if (pp->pr_minpages >= pp->pr_maxpages) 1427 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1428 1429 mutex_exit(&pp->pr_lock); 1430 return error; 1431 } 1432 1433 /* 1434 * Add a page worth of items to the pool. 1435 * 1436 * Note, we must be called with the pool descriptor LOCKED. 1437 */ 1438 static void 1439 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1440 { 1441 struct pool_item *pi; 1442 void *cp = storage; 1443 const unsigned int align = pp->pr_align; 1444 const unsigned int ioff = pp->pr_itemoffset; 1445 int n; 1446 1447 KASSERT(mutex_owned(&pp->pr_lock)); 1448 1449 #ifdef DIAGNOSTIC 1450 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1451 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1452 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1453 #endif 1454 1455 /* 1456 * Insert page header. 1457 */ 1458 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1459 LIST_INIT(&ph->ph_itemlist); 1460 ph->ph_page = storage; 1461 ph->ph_nmissing = 0; 1462 ph->ph_time = time_uptime; 1463 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1464 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1465 1466 pp->pr_nidle++; 1467 1468 /* 1469 * Color this page. 1470 */ 1471 ph->ph_off = pp->pr_curcolor; 1472 cp = (char *)cp + ph->ph_off; 1473 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1474 pp->pr_curcolor = 0; 1475 1476 /* 1477 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1478 */ 1479 if (ioff != 0) 1480 cp = (char *)cp + align - ioff; 1481 1482 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1483 1484 /* 1485 * Insert remaining chunks on the bucket list. 1486 */ 1487 n = pp->pr_itemsperpage; 1488 pp->pr_nitems += n; 1489 1490 if (pp->pr_roflags & PR_NOTOUCH) { 1491 pr_item_notouch_init(pp, ph); 1492 } else { 1493 while (n--) { 1494 pi = (struct pool_item *)cp; 1495 1496 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1497 1498 /* Insert on page list */ 1499 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1500 #ifdef DIAGNOSTIC 1501 pi->pi_magic = PI_MAGIC; 1502 #endif 1503 cp = (char *)cp + pp->pr_size; 1504 1505 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1506 } 1507 } 1508 1509 /* 1510 * If the pool was depleted, point at the new page. 1511 */ 1512 if (pp->pr_curpage == NULL) 1513 pp->pr_curpage = ph; 1514 1515 if (++pp->pr_npages > pp->pr_hiwat) 1516 pp->pr_hiwat = pp->pr_npages; 1517 } 1518 1519 /* 1520 * Used by pool_get() when nitems drops below the low water mark. This 1521 * is used to catch up pr_nitems with the low water mark. 1522 * 1523 * Note 1, we never wait for memory here, we let the caller decide what to do. 1524 * 1525 * Note 2, we must be called with the pool already locked, and we return 1526 * with it locked. 1527 */ 1528 static int 1529 pool_catchup(struct pool *pp) 1530 { 1531 int error = 0; 1532 1533 while (POOL_NEEDS_CATCHUP(pp)) { 1534 error = pool_grow(pp, PR_NOWAIT); 1535 if (error) { 1536 break; 1537 } 1538 } 1539 return error; 1540 } 1541 1542 static void 1543 pool_update_curpage(struct pool *pp) 1544 { 1545 1546 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1547 if (pp->pr_curpage == NULL) { 1548 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1549 } 1550 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1551 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1552 } 1553 1554 void 1555 pool_setlowat(struct pool *pp, int n) 1556 { 1557 1558 mutex_enter(&pp->pr_lock); 1559 1560 pp->pr_minitems = n; 1561 pp->pr_minpages = (n == 0) 1562 ? 0 1563 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1564 1565 /* Make sure we're caught up with the newly-set low water mark. */ 1566 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1567 /* 1568 * XXX: Should we log a warning? Should we set up a timeout 1569 * to try again in a second or so? The latter could break 1570 * a caller's assumptions about interrupt protection, etc. 1571 */ 1572 } 1573 1574 mutex_exit(&pp->pr_lock); 1575 } 1576 1577 void 1578 pool_sethiwat(struct pool *pp, int n) 1579 { 1580 1581 mutex_enter(&pp->pr_lock); 1582 1583 pp->pr_maxpages = (n == 0) 1584 ? 0 1585 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1586 1587 mutex_exit(&pp->pr_lock); 1588 } 1589 1590 void 1591 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1592 { 1593 1594 mutex_enter(&pp->pr_lock); 1595 1596 pp->pr_hardlimit = n; 1597 pp->pr_hardlimit_warning = warnmess; 1598 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1599 pp->pr_hardlimit_warning_last.tv_sec = 0; 1600 pp->pr_hardlimit_warning_last.tv_usec = 0; 1601 1602 /* 1603 * In-line version of pool_sethiwat(), because we don't want to 1604 * release the lock. 1605 */ 1606 pp->pr_maxpages = (n == 0) 1607 ? 0 1608 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1609 1610 mutex_exit(&pp->pr_lock); 1611 } 1612 1613 /* 1614 * Release all complete pages that have not been used recently. 1615 * 1616 * Might be called from interrupt context. 1617 */ 1618 int 1619 #ifdef POOL_DIAGNOSTIC 1620 _pool_reclaim(struct pool *pp, const char *file, long line) 1621 #else 1622 pool_reclaim(struct pool *pp) 1623 #endif 1624 { 1625 struct pool_item_header *ph, *phnext; 1626 struct pool_pagelist pq; 1627 uint32_t curtime; 1628 bool klock; 1629 int rv; 1630 1631 if (cpu_intr_p() || cpu_softintr_p()) { 1632 KASSERT(pp->pr_ipl != IPL_NONE); 1633 } 1634 1635 if (pp->pr_drain_hook != NULL) { 1636 /* 1637 * The drain hook must be called with the pool unlocked. 1638 */ 1639 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1640 } 1641 1642 /* 1643 * XXXSMP Because we do not want to cause non-MPSAFE code 1644 * to block. 1645 */ 1646 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1647 pp->pr_ipl == IPL_SOFTSERIAL) { 1648 KERNEL_LOCK(1, NULL); 1649 klock = true; 1650 } else 1651 klock = false; 1652 1653 /* Reclaim items from the pool's cache (if any). */ 1654 if (pp->pr_cache != NULL) 1655 pool_cache_invalidate(pp->pr_cache); 1656 1657 if (mutex_tryenter(&pp->pr_lock) == 0) { 1658 if (klock) { 1659 KERNEL_UNLOCK_ONE(NULL); 1660 } 1661 return (0); 1662 } 1663 pr_enter(pp, file, line); 1664 1665 LIST_INIT(&pq); 1666 1667 curtime = time_uptime; 1668 1669 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1670 phnext = LIST_NEXT(ph, ph_pagelist); 1671 1672 /* Check our minimum page claim */ 1673 if (pp->pr_npages <= pp->pr_minpages) 1674 break; 1675 1676 KASSERT(ph->ph_nmissing == 0); 1677 if (curtime - ph->ph_time < pool_inactive_time 1678 && !pa_starved_p(pp->pr_alloc)) 1679 continue; 1680 1681 /* 1682 * If freeing this page would put us below 1683 * the low water mark, stop now. 1684 */ 1685 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1686 pp->pr_minitems) 1687 break; 1688 1689 pr_rmpage(pp, ph, &pq); 1690 } 1691 1692 pr_leave(pp); 1693 mutex_exit(&pp->pr_lock); 1694 1695 if (LIST_EMPTY(&pq)) 1696 rv = 0; 1697 else { 1698 pr_pagelist_free(pp, &pq); 1699 rv = 1; 1700 } 1701 1702 if (klock) { 1703 KERNEL_UNLOCK_ONE(NULL); 1704 } 1705 1706 return (rv); 1707 } 1708 1709 /* 1710 * Drain pools, one at a time. This is a two stage process; 1711 * drain_start kicks off a cross call to drain CPU-level caches 1712 * if the pool has an associated pool_cache. drain_end waits 1713 * for those cross calls to finish, and then drains the cache 1714 * (if any) and pool. 1715 * 1716 * Note, must never be called from interrupt context. 1717 */ 1718 void 1719 pool_drain_start(struct pool **ppp, uint64_t *wp) 1720 { 1721 struct pool *pp; 1722 1723 KASSERT(!TAILQ_EMPTY(&pool_head)); 1724 1725 pp = NULL; 1726 1727 /* Find next pool to drain, and add a reference. */ 1728 mutex_enter(&pool_head_lock); 1729 do { 1730 if (drainpp == NULL) { 1731 drainpp = TAILQ_FIRST(&pool_head); 1732 } 1733 if (drainpp != NULL) { 1734 pp = drainpp; 1735 drainpp = TAILQ_NEXT(pp, pr_poollist); 1736 } 1737 /* 1738 * Skip completely idle pools. We depend on at least 1739 * one pool in the system being active. 1740 */ 1741 } while (pp == NULL || pp->pr_npages == 0); 1742 pp->pr_refcnt++; 1743 mutex_exit(&pool_head_lock); 1744 1745 /* If there is a pool_cache, drain CPU level caches. */ 1746 *ppp = pp; 1747 if (pp->pr_cache != NULL) { 1748 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1749 pp->pr_cache, NULL); 1750 } 1751 } 1752 1753 bool 1754 pool_drain_end(struct pool *pp, uint64_t where) 1755 { 1756 bool reclaimed; 1757 1758 if (pp == NULL) 1759 return false; 1760 1761 KASSERT(pp->pr_refcnt > 0); 1762 1763 /* Wait for remote draining to complete. */ 1764 if (pp->pr_cache != NULL) 1765 xc_wait(where); 1766 1767 /* Drain the cache (if any) and pool.. */ 1768 reclaimed = pool_reclaim(pp); 1769 1770 /* Finally, unlock the pool. */ 1771 mutex_enter(&pool_head_lock); 1772 pp->pr_refcnt--; 1773 cv_broadcast(&pool_busy); 1774 mutex_exit(&pool_head_lock); 1775 1776 return reclaimed; 1777 } 1778 1779 /* 1780 * Diagnostic helpers. 1781 */ 1782 void 1783 pool_print(struct pool *pp, const char *modif) 1784 { 1785 1786 pool_print1(pp, modif, printf); 1787 } 1788 1789 void 1790 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1791 { 1792 struct pool *pp; 1793 1794 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1795 pool_printit(pp, modif, pr); 1796 } 1797 } 1798 1799 void 1800 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1801 { 1802 1803 if (pp == NULL) { 1804 (*pr)("Must specify a pool to print.\n"); 1805 return; 1806 } 1807 1808 pool_print1(pp, modif, pr); 1809 } 1810 1811 static void 1812 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1813 void (*pr)(const char *, ...)) 1814 { 1815 struct pool_item_header *ph; 1816 #ifdef DIAGNOSTIC 1817 struct pool_item *pi; 1818 #endif 1819 1820 LIST_FOREACH(ph, pl, ph_pagelist) { 1821 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1822 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1823 #ifdef DIAGNOSTIC 1824 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1825 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1826 if (pi->pi_magic != PI_MAGIC) { 1827 (*pr)("\t\t\titem %p, magic 0x%x\n", 1828 pi, pi->pi_magic); 1829 } 1830 } 1831 } 1832 #endif 1833 } 1834 } 1835 1836 static void 1837 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1838 { 1839 struct pool_item_header *ph; 1840 pool_cache_t pc; 1841 pcg_t *pcg; 1842 pool_cache_cpu_t *cc; 1843 uint64_t cpuhit, cpumiss; 1844 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1845 char c; 1846 1847 while ((c = *modif++) != '\0') { 1848 if (c == 'l') 1849 print_log = 1; 1850 if (c == 'p') 1851 print_pagelist = 1; 1852 if (c == 'c') 1853 print_cache = 1; 1854 } 1855 1856 if ((pc = pp->pr_cache) != NULL) { 1857 (*pr)("POOL CACHE"); 1858 } else { 1859 (*pr)("POOL"); 1860 } 1861 1862 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1863 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1864 pp->pr_roflags); 1865 (*pr)("\talloc %p\n", pp->pr_alloc); 1866 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1867 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1868 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1869 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1870 1871 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1872 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1873 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1874 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1875 1876 if (print_pagelist == 0) 1877 goto skip_pagelist; 1878 1879 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1880 (*pr)("\n\tempty page list:\n"); 1881 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1882 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1883 (*pr)("\n\tfull page list:\n"); 1884 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1885 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1886 (*pr)("\n\tpartial-page list:\n"); 1887 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1888 1889 if (pp->pr_curpage == NULL) 1890 (*pr)("\tno current page\n"); 1891 else 1892 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1893 1894 skip_pagelist: 1895 if (print_log == 0) 1896 goto skip_log; 1897 1898 (*pr)("\n"); 1899 if ((pp->pr_roflags & PR_LOGGING) == 0) 1900 (*pr)("\tno log\n"); 1901 else { 1902 pr_printlog(pp, NULL, pr); 1903 } 1904 1905 skip_log: 1906 1907 #define PR_GROUPLIST(pcg) \ 1908 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1909 for (i = 0; i < pcg->pcg_size; i++) { \ 1910 if (pcg->pcg_objects[i].pcgo_pa != \ 1911 POOL_PADDR_INVALID) { \ 1912 (*pr)("\t\t\t%p, 0x%llx\n", \ 1913 pcg->pcg_objects[i].pcgo_va, \ 1914 (unsigned long long) \ 1915 pcg->pcg_objects[i].pcgo_pa); \ 1916 } else { \ 1917 (*pr)("\t\t\t%p\n", \ 1918 pcg->pcg_objects[i].pcgo_va); \ 1919 } \ 1920 } 1921 1922 if (pc != NULL) { 1923 cpuhit = 0; 1924 cpumiss = 0; 1925 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1926 if ((cc = pc->pc_cpus[i]) == NULL) 1927 continue; 1928 cpuhit += cc->cc_hits; 1929 cpumiss += cc->cc_misses; 1930 } 1931 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1932 (*pr)("\tcache layer hits %llu misses %llu\n", 1933 pc->pc_hits, pc->pc_misses); 1934 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1935 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1936 pc->pc_contended); 1937 (*pr)("\tcache layer empty groups %u full groups %u\n", 1938 pc->pc_nempty, pc->pc_nfull); 1939 if (print_cache) { 1940 (*pr)("\tfull cache groups:\n"); 1941 for (pcg = pc->pc_fullgroups; pcg != NULL; 1942 pcg = pcg->pcg_next) { 1943 PR_GROUPLIST(pcg); 1944 } 1945 (*pr)("\tempty cache groups:\n"); 1946 for (pcg = pc->pc_emptygroups; pcg != NULL; 1947 pcg = pcg->pcg_next) { 1948 PR_GROUPLIST(pcg); 1949 } 1950 } 1951 } 1952 #undef PR_GROUPLIST 1953 1954 pr_enter_check(pp, pr); 1955 } 1956 1957 static int 1958 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1959 { 1960 struct pool_item *pi; 1961 void *page; 1962 int n; 1963 1964 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1965 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1966 if (page != ph->ph_page && 1967 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1968 if (label != NULL) 1969 printf("%s: ", label); 1970 printf("pool(%p:%s): page inconsistency: page %p;" 1971 " at page head addr %p (p %p)\n", pp, 1972 pp->pr_wchan, ph->ph_page, 1973 ph, page); 1974 return 1; 1975 } 1976 } 1977 1978 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1979 return 0; 1980 1981 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1982 pi != NULL; 1983 pi = LIST_NEXT(pi,pi_list), n++) { 1984 1985 #ifdef DIAGNOSTIC 1986 if (pi->pi_magic != PI_MAGIC) { 1987 if (label != NULL) 1988 printf("%s: ", label); 1989 printf("pool(%s): free list modified: magic=%x;" 1990 " page %p; item ordinal %d; addr %p\n", 1991 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1992 n, pi); 1993 panic("pool"); 1994 } 1995 #endif 1996 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1997 continue; 1998 } 1999 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 2000 if (page == ph->ph_page) 2001 continue; 2002 2003 if (label != NULL) 2004 printf("%s: ", label); 2005 printf("pool(%p:%s): page inconsistency: page %p;" 2006 " item ordinal %d; addr %p (p %p)\n", pp, 2007 pp->pr_wchan, ph->ph_page, 2008 n, pi, page); 2009 return 1; 2010 } 2011 return 0; 2012 } 2013 2014 2015 int 2016 pool_chk(struct pool *pp, const char *label) 2017 { 2018 struct pool_item_header *ph; 2019 int r = 0; 2020 2021 mutex_enter(&pp->pr_lock); 2022 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2023 r = pool_chk_page(pp, label, ph); 2024 if (r) { 2025 goto out; 2026 } 2027 } 2028 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2029 r = pool_chk_page(pp, label, ph); 2030 if (r) { 2031 goto out; 2032 } 2033 } 2034 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2035 r = pool_chk_page(pp, label, ph); 2036 if (r) { 2037 goto out; 2038 } 2039 } 2040 2041 out: 2042 mutex_exit(&pp->pr_lock); 2043 return (r); 2044 } 2045 2046 /* 2047 * pool_cache_init: 2048 * 2049 * Initialize a pool cache. 2050 */ 2051 pool_cache_t 2052 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2053 const char *wchan, struct pool_allocator *palloc, int ipl, 2054 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2055 { 2056 pool_cache_t pc; 2057 2058 pc = pool_get(&cache_pool, PR_WAITOK); 2059 if (pc == NULL) 2060 return NULL; 2061 2062 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2063 palloc, ipl, ctor, dtor, arg); 2064 2065 return pc; 2066 } 2067 2068 /* 2069 * pool_cache_bootstrap: 2070 * 2071 * Kernel-private version of pool_cache_init(). The caller 2072 * provides initial storage. 2073 */ 2074 void 2075 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2076 u_int align_offset, u_int flags, const char *wchan, 2077 struct pool_allocator *palloc, int ipl, 2078 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2079 void *arg) 2080 { 2081 CPU_INFO_ITERATOR cii; 2082 pool_cache_t pc1; 2083 struct cpu_info *ci; 2084 struct pool *pp; 2085 2086 pp = &pc->pc_pool; 2087 if (palloc == NULL && ipl == IPL_NONE) 2088 palloc = &pool_allocator_nointr; 2089 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2090 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2091 2092 if (ctor == NULL) { 2093 ctor = (int (*)(void *, void *, int))nullop; 2094 } 2095 if (dtor == NULL) { 2096 dtor = (void (*)(void *, void *))nullop; 2097 } 2098 2099 pc->pc_emptygroups = NULL; 2100 pc->pc_fullgroups = NULL; 2101 pc->pc_partgroups = NULL; 2102 pc->pc_ctor = ctor; 2103 pc->pc_dtor = dtor; 2104 pc->pc_arg = arg; 2105 pc->pc_hits = 0; 2106 pc->pc_misses = 0; 2107 pc->pc_nempty = 0; 2108 pc->pc_npart = 0; 2109 pc->pc_nfull = 0; 2110 pc->pc_contended = 0; 2111 pc->pc_refcnt = 0; 2112 pc->pc_freecheck = NULL; 2113 2114 if ((flags & PR_LARGECACHE) != 0) { 2115 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2116 pc->pc_pcgpool = &pcg_large_pool; 2117 } else { 2118 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2119 pc->pc_pcgpool = &pcg_normal_pool; 2120 } 2121 2122 /* Allocate per-CPU caches. */ 2123 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2124 pc->pc_ncpu = 0; 2125 if (ncpu < 2) { 2126 /* XXX For sparc: boot CPU is not attached yet. */ 2127 pool_cache_cpu_init1(curcpu(), pc); 2128 } else { 2129 for (CPU_INFO_FOREACH(cii, ci)) { 2130 pool_cache_cpu_init1(ci, pc); 2131 } 2132 } 2133 2134 /* Add to list of all pools. */ 2135 if (__predict_true(!cold)) 2136 mutex_enter(&pool_head_lock); 2137 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2138 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2139 break; 2140 } 2141 if (pc1 == NULL) 2142 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2143 else 2144 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2145 if (__predict_true(!cold)) 2146 mutex_exit(&pool_head_lock); 2147 2148 membar_sync(); 2149 pp->pr_cache = pc; 2150 } 2151 2152 /* 2153 * pool_cache_destroy: 2154 * 2155 * Destroy a pool cache. 2156 */ 2157 void 2158 pool_cache_destroy(pool_cache_t pc) 2159 { 2160 struct pool *pp = &pc->pc_pool; 2161 u_int i; 2162 2163 /* Remove it from the global list. */ 2164 mutex_enter(&pool_head_lock); 2165 while (pc->pc_refcnt != 0) 2166 cv_wait(&pool_busy, &pool_head_lock); 2167 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2168 mutex_exit(&pool_head_lock); 2169 2170 /* First, invalidate the entire cache. */ 2171 pool_cache_invalidate(pc); 2172 2173 /* Disassociate it from the pool. */ 2174 mutex_enter(&pp->pr_lock); 2175 pp->pr_cache = NULL; 2176 mutex_exit(&pp->pr_lock); 2177 2178 /* Destroy per-CPU data */ 2179 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 2180 pool_cache_invalidate_cpu(pc, i); 2181 2182 /* Finally, destroy it. */ 2183 mutex_destroy(&pc->pc_lock); 2184 pool_destroy(pp); 2185 pool_put(&cache_pool, pc); 2186 } 2187 2188 /* 2189 * pool_cache_cpu_init1: 2190 * 2191 * Called for each pool_cache whenever a new CPU is attached. 2192 */ 2193 static void 2194 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2195 { 2196 pool_cache_cpu_t *cc; 2197 int index; 2198 2199 index = ci->ci_index; 2200 2201 KASSERT(index < __arraycount(pc->pc_cpus)); 2202 2203 if ((cc = pc->pc_cpus[index]) != NULL) { 2204 KASSERT(cc->cc_cpuindex == index); 2205 return; 2206 } 2207 2208 /* 2209 * The first CPU is 'free'. This needs to be the case for 2210 * bootstrap - we may not be able to allocate yet. 2211 */ 2212 if (pc->pc_ncpu == 0) { 2213 cc = &pc->pc_cpu0; 2214 pc->pc_ncpu = 1; 2215 } else { 2216 mutex_enter(&pc->pc_lock); 2217 pc->pc_ncpu++; 2218 mutex_exit(&pc->pc_lock); 2219 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2220 } 2221 2222 cc->cc_ipl = pc->pc_pool.pr_ipl; 2223 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2224 cc->cc_cache = pc; 2225 cc->cc_cpuindex = index; 2226 cc->cc_hits = 0; 2227 cc->cc_misses = 0; 2228 cc->cc_current = __UNCONST(&pcg_dummy); 2229 cc->cc_previous = __UNCONST(&pcg_dummy); 2230 2231 pc->pc_cpus[index] = cc; 2232 } 2233 2234 /* 2235 * pool_cache_cpu_init: 2236 * 2237 * Called whenever a new CPU is attached. 2238 */ 2239 void 2240 pool_cache_cpu_init(struct cpu_info *ci) 2241 { 2242 pool_cache_t pc; 2243 2244 mutex_enter(&pool_head_lock); 2245 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2246 pc->pc_refcnt++; 2247 mutex_exit(&pool_head_lock); 2248 2249 pool_cache_cpu_init1(ci, pc); 2250 2251 mutex_enter(&pool_head_lock); 2252 pc->pc_refcnt--; 2253 cv_broadcast(&pool_busy); 2254 } 2255 mutex_exit(&pool_head_lock); 2256 } 2257 2258 /* 2259 * pool_cache_reclaim: 2260 * 2261 * Reclaim memory from a pool cache. 2262 */ 2263 bool 2264 pool_cache_reclaim(pool_cache_t pc) 2265 { 2266 2267 return pool_reclaim(&pc->pc_pool); 2268 } 2269 2270 static void 2271 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2272 { 2273 2274 (*pc->pc_dtor)(pc->pc_arg, object); 2275 pool_put(&pc->pc_pool, object); 2276 } 2277 2278 /* 2279 * pool_cache_destruct_object: 2280 * 2281 * Force destruction of an object and its release back into 2282 * the pool. 2283 */ 2284 void 2285 pool_cache_destruct_object(pool_cache_t pc, void *object) 2286 { 2287 2288 FREECHECK_IN(&pc->pc_freecheck, object); 2289 2290 pool_cache_destruct_object1(pc, object); 2291 } 2292 2293 /* 2294 * pool_cache_invalidate_groups: 2295 * 2296 * Invalidate a chain of groups and destruct all objects. 2297 */ 2298 static void 2299 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2300 { 2301 void *object; 2302 pcg_t *next; 2303 int i; 2304 2305 for (; pcg != NULL; pcg = next) { 2306 next = pcg->pcg_next; 2307 2308 for (i = 0; i < pcg->pcg_avail; i++) { 2309 object = pcg->pcg_objects[i].pcgo_va; 2310 pool_cache_destruct_object1(pc, object); 2311 } 2312 2313 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2314 pool_put(&pcg_large_pool, pcg); 2315 } else { 2316 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2317 pool_put(&pcg_normal_pool, pcg); 2318 } 2319 } 2320 } 2321 2322 /* 2323 * pool_cache_invalidate: 2324 * 2325 * Invalidate a pool cache (destruct and release all of the 2326 * cached objects). Does not reclaim objects from the pool. 2327 * 2328 * Note: For pool caches that provide constructed objects, there 2329 * is an assumption that another level of synchronization is occurring 2330 * between the input to the constructor and the cache invalidation. 2331 */ 2332 void 2333 pool_cache_invalidate(pool_cache_t pc) 2334 { 2335 pcg_t *full, *empty, *part; 2336 #if 0 2337 uint64_t where; 2338 2339 if (ncpu < 2 || !mp_online) { 2340 /* 2341 * We might be called early enough in the boot process 2342 * for the CPU data structures to not be fully initialized. 2343 * In this case, simply gather the local CPU's cache now 2344 * since it will be the only one running. 2345 */ 2346 pool_cache_xcall(pc); 2347 } else { 2348 /* 2349 * Gather all of the CPU-specific caches into the 2350 * global cache. 2351 */ 2352 where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL); 2353 xc_wait(where); 2354 } 2355 #endif 2356 mutex_enter(&pc->pc_lock); 2357 full = pc->pc_fullgroups; 2358 empty = pc->pc_emptygroups; 2359 part = pc->pc_partgroups; 2360 pc->pc_fullgroups = NULL; 2361 pc->pc_emptygroups = NULL; 2362 pc->pc_partgroups = NULL; 2363 pc->pc_nfull = 0; 2364 pc->pc_nempty = 0; 2365 pc->pc_npart = 0; 2366 mutex_exit(&pc->pc_lock); 2367 2368 pool_cache_invalidate_groups(pc, full); 2369 pool_cache_invalidate_groups(pc, empty); 2370 pool_cache_invalidate_groups(pc, part); 2371 } 2372 2373 /* 2374 * pool_cache_invalidate_cpu: 2375 * 2376 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2377 * identified by its associated index. 2378 * It is caller's responsibility to ensure that no operation is 2379 * taking place on this pool cache while doing this invalidation. 2380 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2381 * pool cached objects from a CPU different from the one currently running 2382 * may result in an undefined behaviour. 2383 */ 2384 static void 2385 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2386 { 2387 2388 pool_cache_cpu_t *cc; 2389 pcg_t *pcg; 2390 2391 if ((cc = pc->pc_cpus[index]) == NULL) 2392 return; 2393 2394 if ((pcg = cc->cc_current) != &pcg_dummy) { 2395 pcg->pcg_next = NULL; 2396 pool_cache_invalidate_groups(pc, pcg); 2397 } 2398 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2399 pcg->pcg_next = NULL; 2400 pool_cache_invalidate_groups(pc, pcg); 2401 } 2402 if (cc != &pc->pc_cpu0) 2403 pool_put(&cache_cpu_pool, cc); 2404 2405 } 2406 2407 void 2408 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2409 { 2410 2411 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2412 } 2413 2414 void 2415 pool_cache_setlowat(pool_cache_t pc, int n) 2416 { 2417 2418 pool_setlowat(&pc->pc_pool, n); 2419 } 2420 2421 void 2422 pool_cache_sethiwat(pool_cache_t pc, int n) 2423 { 2424 2425 pool_sethiwat(&pc->pc_pool, n); 2426 } 2427 2428 void 2429 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2430 { 2431 2432 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2433 } 2434 2435 static bool __noinline 2436 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2437 paddr_t *pap, int flags) 2438 { 2439 pcg_t *pcg, *cur; 2440 uint64_t ncsw; 2441 pool_cache_t pc; 2442 void *object; 2443 2444 KASSERT(cc->cc_current->pcg_avail == 0); 2445 KASSERT(cc->cc_previous->pcg_avail == 0); 2446 2447 pc = cc->cc_cache; 2448 cc->cc_misses++; 2449 2450 /* 2451 * Nothing was available locally. Try and grab a group 2452 * from the cache. 2453 */ 2454 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2455 ncsw = curlwp->l_ncsw; 2456 mutex_enter(&pc->pc_lock); 2457 pc->pc_contended++; 2458 2459 /* 2460 * If we context switched while locking, then 2461 * our view of the per-CPU data is invalid: 2462 * retry. 2463 */ 2464 if (curlwp->l_ncsw != ncsw) { 2465 mutex_exit(&pc->pc_lock); 2466 return true; 2467 } 2468 } 2469 2470 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2471 /* 2472 * If there's a full group, release our empty 2473 * group back to the cache. Install the full 2474 * group as cc_current and return. 2475 */ 2476 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2477 KASSERT(cur->pcg_avail == 0); 2478 cur->pcg_next = pc->pc_emptygroups; 2479 pc->pc_emptygroups = cur; 2480 pc->pc_nempty++; 2481 } 2482 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2483 cc->cc_current = pcg; 2484 pc->pc_fullgroups = pcg->pcg_next; 2485 pc->pc_hits++; 2486 pc->pc_nfull--; 2487 mutex_exit(&pc->pc_lock); 2488 return true; 2489 } 2490 2491 /* 2492 * Nothing available locally or in cache. Take the slow 2493 * path: fetch a new object from the pool and construct 2494 * it. 2495 */ 2496 pc->pc_misses++; 2497 mutex_exit(&pc->pc_lock); 2498 splx(s); 2499 2500 object = pool_get(&pc->pc_pool, flags); 2501 *objectp = object; 2502 if (__predict_false(object == NULL)) 2503 return false; 2504 2505 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2506 pool_put(&pc->pc_pool, object); 2507 *objectp = NULL; 2508 return false; 2509 } 2510 2511 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2512 (pc->pc_pool.pr_align - 1)) == 0); 2513 2514 if (pap != NULL) { 2515 #ifdef POOL_VTOPHYS 2516 *pap = POOL_VTOPHYS(object); 2517 #else 2518 *pap = POOL_PADDR_INVALID; 2519 #endif 2520 } 2521 2522 FREECHECK_OUT(&pc->pc_freecheck, object); 2523 return false; 2524 } 2525 2526 /* 2527 * pool_cache_get{,_paddr}: 2528 * 2529 * Get an object from a pool cache (optionally returning 2530 * the physical address of the object). 2531 */ 2532 void * 2533 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2534 { 2535 pool_cache_cpu_t *cc; 2536 pcg_t *pcg; 2537 void *object; 2538 int s; 2539 2540 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2541 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2542 ("pool '%s' is IPL_NONE, but called from interrupt context\n", 2543 pc->pc_pool.pr_wchan)); 2544 2545 if (flags & PR_WAITOK) { 2546 ASSERT_SLEEPABLE(); 2547 } 2548 2549 /* Lock out interrupts and disable preemption. */ 2550 s = splvm(); 2551 while (/* CONSTCOND */ true) { 2552 /* Try and allocate an object from the current group. */ 2553 cc = pc->pc_cpus[curcpu()->ci_index]; 2554 KASSERT(cc->cc_cache == pc); 2555 pcg = cc->cc_current; 2556 if (__predict_true(pcg->pcg_avail > 0)) { 2557 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2558 if (__predict_false(pap != NULL)) 2559 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2560 #if defined(DIAGNOSTIC) 2561 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2562 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2563 KASSERT(object != NULL); 2564 #endif 2565 cc->cc_hits++; 2566 splx(s); 2567 FREECHECK_OUT(&pc->pc_freecheck, object); 2568 return object; 2569 } 2570 2571 /* 2572 * That failed. If the previous group isn't empty, swap 2573 * it with the current group and allocate from there. 2574 */ 2575 pcg = cc->cc_previous; 2576 if (__predict_true(pcg->pcg_avail > 0)) { 2577 cc->cc_previous = cc->cc_current; 2578 cc->cc_current = pcg; 2579 continue; 2580 } 2581 2582 /* 2583 * Can't allocate from either group: try the slow path. 2584 * If get_slow() allocated an object for us, or if 2585 * no more objects are available, it will return false. 2586 * Otherwise, we need to retry. 2587 */ 2588 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2589 break; 2590 } 2591 2592 return object; 2593 } 2594 2595 static bool __noinline 2596 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2597 { 2598 pcg_t *pcg, *cur; 2599 uint64_t ncsw; 2600 pool_cache_t pc; 2601 2602 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2603 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2604 2605 pc = cc->cc_cache; 2606 pcg = NULL; 2607 cc->cc_misses++; 2608 2609 /* 2610 * If there are no empty groups in the cache then allocate one 2611 * while still unlocked. 2612 */ 2613 if (__predict_false(pc->pc_emptygroups == NULL)) { 2614 if (__predict_true(!pool_cache_disable)) { 2615 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2616 } 2617 if (__predict_true(pcg != NULL)) { 2618 pcg->pcg_avail = 0; 2619 pcg->pcg_size = pc->pc_pcgsize; 2620 } 2621 } 2622 2623 /* Lock the cache. */ 2624 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2625 ncsw = curlwp->l_ncsw; 2626 mutex_enter(&pc->pc_lock); 2627 pc->pc_contended++; 2628 2629 /* 2630 * If we context switched while locking, then our view of 2631 * the per-CPU data is invalid: retry. 2632 */ 2633 if (__predict_false(curlwp->l_ncsw != ncsw)) { 2634 mutex_exit(&pc->pc_lock); 2635 if (pcg != NULL) { 2636 pool_put(pc->pc_pcgpool, pcg); 2637 } 2638 return true; 2639 } 2640 } 2641 2642 /* If there are no empty groups in the cache then allocate one. */ 2643 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2644 pcg = pc->pc_emptygroups; 2645 pc->pc_emptygroups = pcg->pcg_next; 2646 pc->pc_nempty--; 2647 } 2648 2649 /* 2650 * If there's a empty group, release our full group back 2651 * to the cache. Install the empty group to the local CPU 2652 * and return. 2653 */ 2654 if (pcg != NULL) { 2655 KASSERT(pcg->pcg_avail == 0); 2656 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2657 cc->cc_previous = pcg; 2658 } else { 2659 cur = cc->cc_current; 2660 if (__predict_true(cur != &pcg_dummy)) { 2661 KASSERT(cur->pcg_avail == cur->pcg_size); 2662 cur->pcg_next = pc->pc_fullgroups; 2663 pc->pc_fullgroups = cur; 2664 pc->pc_nfull++; 2665 } 2666 cc->cc_current = pcg; 2667 } 2668 pc->pc_hits++; 2669 mutex_exit(&pc->pc_lock); 2670 return true; 2671 } 2672 2673 /* 2674 * Nothing available locally or in cache, and we didn't 2675 * allocate an empty group. Take the slow path and destroy 2676 * the object here and now. 2677 */ 2678 pc->pc_misses++; 2679 mutex_exit(&pc->pc_lock); 2680 splx(s); 2681 pool_cache_destruct_object(pc, object); 2682 2683 return false; 2684 } 2685 2686 /* 2687 * pool_cache_put{,_paddr}: 2688 * 2689 * Put an object back to the pool cache (optionally caching the 2690 * physical address of the object). 2691 */ 2692 void 2693 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2694 { 2695 pool_cache_cpu_t *cc; 2696 pcg_t *pcg; 2697 int s; 2698 2699 KASSERT(object != NULL); 2700 FREECHECK_IN(&pc->pc_freecheck, object); 2701 2702 /* Lock out interrupts and disable preemption. */ 2703 s = splvm(); 2704 while (/* CONSTCOND */ true) { 2705 /* If the current group isn't full, release it there. */ 2706 cc = pc->pc_cpus[curcpu()->ci_index]; 2707 KASSERT(cc->cc_cache == pc); 2708 pcg = cc->cc_current; 2709 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2710 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2711 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2712 pcg->pcg_avail++; 2713 cc->cc_hits++; 2714 splx(s); 2715 return; 2716 } 2717 2718 /* 2719 * That failed. If the previous group isn't full, swap 2720 * it with the current group and try again. 2721 */ 2722 pcg = cc->cc_previous; 2723 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2724 cc->cc_previous = cc->cc_current; 2725 cc->cc_current = pcg; 2726 continue; 2727 } 2728 2729 /* 2730 * Can't free to either group: try the slow path. 2731 * If put_slow() releases the object for us, it 2732 * will return false. Otherwise we need to retry. 2733 */ 2734 if (!pool_cache_put_slow(cc, s, object)) 2735 break; 2736 } 2737 } 2738 2739 /* 2740 * pool_cache_xcall: 2741 * 2742 * Transfer objects from the per-CPU cache to the global cache. 2743 * Run within a cross-call thread. 2744 */ 2745 static void 2746 pool_cache_xcall(pool_cache_t pc) 2747 { 2748 pool_cache_cpu_t *cc; 2749 pcg_t *prev, *cur, **list; 2750 int s; 2751 2752 s = splvm(); 2753 mutex_enter(&pc->pc_lock); 2754 cc = pc->pc_cpus[curcpu()->ci_index]; 2755 cur = cc->cc_current; 2756 cc->cc_current = __UNCONST(&pcg_dummy); 2757 prev = cc->cc_previous; 2758 cc->cc_previous = __UNCONST(&pcg_dummy); 2759 if (cur != &pcg_dummy) { 2760 if (cur->pcg_avail == cur->pcg_size) { 2761 list = &pc->pc_fullgroups; 2762 pc->pc_nfull++; 2763 } else if (cur->pcg_avail == 0) { 2764 list = &pc->pc_emptygroups; 2765 pc->pc_nempty++; 2766 } else { 2767 list = &pc->pc_partgroups; 2768 pc->pc_npart++; 2769 } 2770 cur->pcg_next = *list; 2771 *list = cur; 2772 } 2773 if (prev != &pcg_dummy) { 2774 if (prev->pcg_avail == prev->pcg_size) { 2775 list = &pc->pc_fullgroups; 2776 pc->pc_nfull++; 2777 } else if (prev->pcg_avail == 0) { 2778 list = &pc->pc_emptygroups; 2779 pc->pc_nempty++; 2780 } else { 2781 list = &pc->pc_partgroups; 2782 pc->pc_npart++; 2783 } 2784 prev->pcg_next = *list; 2785 *list = prev; 2786 } 2787 mutex_exit(&pc->pc_lock); 2788 splx(s); 2789 } 2790 2791 /* 2792 * Pool backend allocators. 2793 * 2794 * Each pool has a backend allocator that handles allocation, deallocation, 2795 * and any additional draining that might be needed. 2796 * 2797 * We provide two standard allocators: 2798 * 2799 * pool_allocator_kmem - the default when no allocator is specified 2800 * 2801 * pool_allocator_nointr - used for pools that will not be accessed 2802 * in interrupt context. 2803 */ 2804 void *pool_page_alloc(struct pool *, int); 2805 void pool_page_free(struct pool *, void *); 2806 2807 #ifdef POOL_SUBPAGE 2808 struct pool_allocator pool_allocator_kmem_fullpage = { 2809 pool_page_alloc, pool_page_free, 0, 2810 .pa_backingmapptr = &kmem_map, 2811 }; 2812 #else 2813 struct pool_allocator pool_allocator_kmem = { 2814 pool_page_alloc, pool_page_free, 0, 2815 .pa_backingmapptr = &kmem_map, 2816 }; 2817 #endif 2818 2819 void *pool_page_alloc_nointr(struct pool *, int); 2820 void pool_page_free_nointr(struct pool *, void *); 2821 2822 #ifdef POOL_SUBPAGE 2823 struct pool_allocator pool_allocator_nointr_fullpage = { 2824 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2825 .pa_backingmapptr = &kernel_map, 2826 }; 2827 #else 2828 struct pool_allocator pool_allocator_nointr = { 2829 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2830 .pa_backingmapptr = &kernel_map, 2831 }; 2832 #endif 2833 2834 #ifdef POOL_SUBPAGE 2835 void *pool_subpage_alloc(struct pool *, int); 2836 void pool_subpage_free(struct pool *, void *); 2837 2838 struct pool_allocator pool_allocator_kmem = { 2839 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2840 .pa_backingmapptr = &kmem_map, 2841 }; 2842 2843 void *pool_subpage_alloc_nointr(struct pool *, int); 2844 void pool_subpage_free_nointr(struct pool *, void *); 2845 2846 struct pool_allocator pool_allocator_nointr = { 2847 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2848 .pa_backingmapptr = &kmem_map, 2849 }; 2850 #endif /* POOL_SUBPAGE */ 2851 2852 static void * 2853 pool_allocator_alloc(struct pool *pp, int flags) 2854 { 2855 struct pool_allocator *pa = pp->pr_alloc; 2856 void *res; 2857 2858 res = (*pa->pa_alloc)(pp, flags); 2859 if (res == NULL && (flags & PR_WAITOK) == 0) { 2860 /* 2861 * We only run the drain hook here if PR_NOWAIT. 2862 * In other cases, the hook will be run in 2863 * pool_reclaim(). 2864 */ 2865 if (pp->pr_drain_hook != NULL) { 2866 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2867 res = (*pa->pa_alloc)(pp, flags); 2868 } 2869 } 2870 return res; 2871 } 2872 2873 static void 2874 pool_allocator_free(struct pool *pp, void *v) 2875 { 2876 struct pool_allocator *pa = pp->pr_alloc; 2877 2878 (*pa->pa_free)(pp, v); 2879 } 2880 2881 void * 2882 pool_page_alloc(struct pool *pp, int flags) 2883 { 2884 bool waitok = (flags & PR_WAITOK) ? true : false; 2885 2886 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2887 } 2888 2889 void 2890 pool_page_free(struct pool *pp, void *v) 2891 { 2892 2893 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2894 } 2895 2896 static void * 2897 pool_page_alloc_meta(struct pool *pp, int flags) 2898 { 2899 bool waitok = (flags & PR_WAITOK) ? true : false; 2900 2901 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2902 } 2903 2904 static void 2905 pool_page_free_meta(struct pool *pp, void *v) 2906 { 2907 2908 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2909 } 2910 2911 #ifdef POOL_SUBPAGE 2912 /* Sub-page allocator, for machines with large hardware pages. */ 2913 void * 2914 pool_subpage_alloc(struct pool *pp, int flags) 2915 { 2916 return pool_get(&psppool, flags); 2917 } 2918 2919 void 2920 pool_subpage_free(struct pool *pp, void *v) 2921 { 2922 pool_put(&psppool, v); 2923 } 2924 2925 /* We don't provide a real nointr allocator. Maybe later. */ 2926 void * 2927 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2928 { 2929 2930 return (pool_subpage_alloc(pp, flags)); 2931 } 2932 2933 void 2934 pool_subpage_free_nointr(struct pool *pp, void *v) 2935 { 2936 2937 pool_subpage_free(pp, v); 2938 } 2939 #endif /* POOL_SUBPAGE */ 2940 void * 2941 pool_page_alloc_nointr(struct pool *pp, int flags) 2942 { 2943 bool waitok = (flags & PR_WAITOK) ? true : false; 2944 2945 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2946 } 2947 2948 void 2949 pool_page_free_nointr(struct pool *pp, void *v) 2950 { 2951 2952 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2953 } 2954 2955 #if defined(DDB) 2956 static bool 2957 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2958 { 2959 2960 return (uintptr_t)ph->ph_page <= addr && 2961 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2962 } 2963 2964 static bool 2965 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2966 { 2967 2968 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2969 } 2970 2971 static bool 2972 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2973 { 2974 int i; 2975 2976 if (pcg == NULL) { 2977 return false; 2978 } 2979 for (i = 0; i < pcg->pcg_avail; i++) { 2980 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2981 return true; 2982 } 2983 } 2984 return false; 2985 } 2986 2987 static bool 2988 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2989 { 2990 2991 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2992 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2993 pool_item_bitmap_t *bitmap = 2994 ph->ph_bitmap + (idx / BITMAP_SIZE); 2995 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2996 2997 return (*bitmap & mask) == 0; 2998 } else { 2999 struct pool_item *pi; 3000 3001 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 3002 if (pool_in_item(pp, pi, addr)) { 3003 return false; 3004 } 3005 } 3006 return true; 3007 } 3008 } 3009 3010 void 3011 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 3012 { 3013 struct pool *pp; 3014 3015 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3016 struct pool_item_header *ph; 3017 uintptr_t item; 3018 bool allocated = true; 3019 bool incache = false; 3020 bool incpucache = false; 3021 char cpucachestr[32]; 3022 3023 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3024 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3025 if (pool_in_page(pp, ph, addr)) { 3026 goto found; 3027 } 3028 } 3029 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3030 if (pool_in_page(pp, ph, addr)) { 3031 allocated = 3032 pool_allocated(pp, ph, addr); 3033 goto found; 3034 } 3035 } 3036 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3037 if (pool_in_page(pp, ph, addr)) { 3038 allocated = false; 3039 goto found; 3040 } 3041 } 3042 continue; 3043 } else { 3044 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3045 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3046 continue; 3047 } 3048 allocated = pool_allocated(pp, ph, addr); 3049 } 3050 found: 3051 if (allocated && pp->pr_cache) { 3052 pool_cache_t pc = pp->pr_cache; 3053 struct pool_cache_group *pcg; 3054 int i; 3055 3056 for (pcg = pc->pc_fullgroups; pcg != NULL; 3057 pcg = pcg->pcg_next) { 3058 if (pool_in_cg(pp, pcg, addr)) { 3059 incache = true; 3060 goto print; 3061 } 3062 } 3063 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 3064 pool_cache_cpu_t *cc; 3065 3066 if ((cc = pc->pc_cpus[i]) == NULL) { 3067 continue; 3068 } 3069 if (pool_in_cg(pp, cc->cc_current, addr) || 3070 pool_in_cg(pp, cc->cc_previous, addr)) { 3071 struct cpu_info *ci = 3072 cpu_lookup(i); 3073 3074 incpucache = true; 3075 snprintf(cpucachestr, 3076 sizeof(cpucachestr), 3077 "cached by CPU %u", 3078 ci->ci_index); 3079 goto print; 3080 } 3081 } 3082 } 3083 print: 3084 item = (uintptr_t)ph->ph_page + ph->ph_off; 3085 item = item + rounddown(addr - item, pp->pr_size); 3086 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3087 (void *)addr, item, (size_t)(addr - item), 3088 pp->pr_wchan, 3089 incpucache ? cpucachestr : 3090 incache ? "cached" : allocated ? "allocated" : "free"); 3091 } 3092 } 3093 #endif /* defined(DDB) */ 3094