xref: /netbsd-src/sys/kern/subr_pool.c (revision 88a08a05ec8c5ba828fd2259171984c198f85add)
1 /*	$NetBSD: subr_pool.c,v 1.208 2017/06/08 04:00:01 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.208 2017/06/08 04:00:01 chs Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/bitops.h>
47 #include <sys/proc.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/vmem.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 #include <sys/debug.h>
54 #include <sys/lockdebug.h>
55 #include <sys/xcall.h>
56 #include <sys/cpu.h>
57 #include <sys/atomic.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 /*
62  * Pool resource management utility.
63  *
64  * Memory is allocated in pages which are split into pieces according to
65  * the pool item size. Each page is kept on one of three lists in the
66  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
67  * for empty, full and partially-full pages respectively. The individual
68  * pool items are on a linked list headed by `ph_itemlist' in each page
69  * header. The memory for building the page list is either taken from
70  * the allocated pages themselves (for small pool items) or taken from
71  * an internal pool of page headers (`phpool').
72  */
73 
74 /* List of all pools. Non static as needed by 'vmstat -i' */
75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
76 
77 /* Private pool for page header structures */
78 #define	PHPOOL_MAX	8
79 static struct pool phpool[PHPOOL_MAX];
80 #define	PHPOOL_FREELIST_NELEM(idx) \
81 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
82 
83 #ifdef POOL_SUBPAGE
84 /* Pool of subpages for use by normal pools. */
85 static struct pool psppool;
86 #endif
87 
88 #ifdef POOL_REDZONE
89 # define POOL_REDZONE_SIZE 2
90 static void pool_redzone_init(struct pool *, size_t);
91 static void pool_redzone_fill(struct pool *, void *);
92 static void pool_redzone_check(struct pool *, void *);
93 #else
94 # define pool_redzone_init(pp, sz)	/* NOTHING */
95 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
96 # define pool_redzone_check(pp, ptr)	/* NOTHING */
97 #endif
98 
99 static void *pool_page_alloc_meta(struct pool *, int);
100 static void pool_page_free_meta(struct pool *, void *);
101 
102 /* allocator for pool metadata */
103 struct pool_allocator pool_allocator_meta = {
104 	.pa_alloc = pool_page_alloc_meta,
105 	.pa_free = pool_page_free_meta,
106 	.pa_pagesz = 0
107 };
108 
109 #define POOL_ALLOCATOR_BIG_BASE 13
110 extern struct pool_allocator pool_allocator_big[];
111 static int pool_bigidx(size_t);
112 
113 /* # of seconds to retain page after last use */
114 int pool_inactive_time = 10;
115 
116 /* Next candidate for drainage (see pool_drain()) */
117 static struct pool	*drainpp;
118 
119 /* This lock protects both pool_head and drainpp. */
120 static kmutex_t pool_head_lock;
121 static kcondvar_t pool_busy;
122 
123 /* This lock protects initialization of a potentially shared pool allocator */
124 static kmutex_t pool_allocator_lock;
125 
126 typedef uint32_t pool_item_bitmap_t;
127 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
128 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
129 
130 struct pool_item_header {
131 	/* Page headers */
132 	LIST_ENTRY(pool_item_header)
133 				ph_pagelist;	/* pool page list */
134 	SPLAY_ENTRY(pool_item_header)
135 				ph_node;	/* Off-page page headers */
136 	void *			ph_page;	/* this page's address */
137 	uint32_t		ph_time;	/* last referenced */
138 	uint16_t		ph_nmissing;	/* # of chunks in use */
139 	uint16_t		ph_off;		/* start offset in page */
140 	union {
141 		/* !PR_NOTOUCH */
142 		struct {
143 			LIST_HEAD(, pool_item)
144 				phu_itemlist;	/* chunk list for this page */
145 		} phu_normal;
146 		/* PR_NOTOUCH */
147 		struct {
148 			pool_item_bitmap_t phu_bitmap[1];
149 		} phu_notouch;
150 	} ph_u;
151 };
152 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
153 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
154 
155 struct pool_item {
156 #ifdef DIAGNOSTIC
157 	u_int pi_magic;
158 #endif
159 #define	PI_MAGIC 0xdeaddeadU
160 	/* Other entries use only this list entry */
161 	LIST_ENTRY(pool_item)	pi_list;
162 };
163 
164 #define	POOL_NEEDS_CATCHUP(pp)						\
165 	((pp)->pr_nitems < (pp)->pr_minitems)
166 
167 /*
168  * Pool cache management.
169  *
170  * Pool caches provide a way for constructed objects to be cached by the
171  * pool subsystem.  This can lead to performance improvements by avoiding
172  * needless object construction/destruction; it is deferred until absolutely
173  * necessary.
174  *
175  * Caches are grouped into cache groups.  Each cache group references up
176  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
177  * object from the pool, it calls the object's constructor and places it
178  * into a cache group.  When a cache group frees an object back to the
179  * pool, it first calls the object's destructor.  This allows the object
180  * to persist in constructed form while freed to the cache.
181  *
182  * The pool references each cache, so that when a pool is drained by the
183  * pagedaemon, it can drain each individual cache as well.  Each time a
184  * cache is drained, the most idle cache group is freed to the pool in
185  * its entirety.
186  *
187  * Pool caches are layed on top of pools.  By layering them, we can avoid
188  * the complexity of cache management for pools which would not benefit
189  * from it.
190  */
191 
192 static struct pool pcg_normal_pool;
193 static struct pool pcg_large_pool;
194 static struct pool cache_pool;
195 static struct pool cache_cpu_pool;
196 
197 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
198 
199 /* List of all caches. */
200 TAILQ_HEAD(,pool_cache) pool_cache_head =
201     TAILQ_HEAD_INITIALIZER(pool_cache_head);
202 
203 int pool_cache_disable;		/* global disable for caching */
204 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
205 
206 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
207 				    void *);
208 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
209 				    void **, paddr_t *, int);
210 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
211 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
212 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
213 static void	pool_cache_transfer(pool_cache_t);
214 
215 static int	pool_catchup(struct pool *);
216 static void	pool_prime_page(struct pool *, void *,
217 		    struct pool_item_header *);
218 static void	pool_update_curpage(struct pool *);
219 
220 static int	pool_grow(struct pool *, int);
221 static void	*pool_allocator_alloc(struct pool *, int);
222 static void	pool_allocator_free(struct pool *, void *);
223 
224 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
225 	void (*)(const char *, ...) __printflike(1, 2));
226 static void pool_print1(struct pool *, const char *,
227 	void (*)(const char *, ...) __printflike(1, 2));
228 
229 static int pool_chk_page(struct pool *, const char *,
230 			 struct pool_item_header *);
231 
232 static inline unsigned int
233 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
234     const void *v)
235 {
236 	const char *cp = v;
237 	unsigned int idx;
238 
239 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
240 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
241 	KASSERT(idx < pp->pr_itemsperpage);
242 	return idx;
243 }
244 
245 static inline void
246 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
247     void *obj)
248 {
249 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
250 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
251 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
252 
253 	KASSERT((*bitmap & mask) == 0);
254 	*bitmap |= mask;
255 }
256 
257 static inline void *
258 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
259 {
260 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
261 	unsigned int idx;
262 	int i;
263 
264 	for (i = 0; ; i++) {
265 		int bit;
266 
267 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
268 		bit = ffs32(bitmap[i]);
269 		if (bit) {
270 			pool_item_bitmap_t mask;
271 
272 			bit--;
273 			idx = (i * BITMAP_SIZE) + bit;
274 			mask = 1 << bit;
275 			KASSERT((bitmap[i] & mask) != 0);
276 			bitmap[i] &= ~mask;
277 			break;
278 		}
279 	}
280 	KASSERT(idx < pp->pr_itemsperpage);
281 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
282 }
283 
284 static inline void
285 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
286 {
287 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
288 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
289 	int i;
290 
291 	for (i = 0; i < n; i++) {
292 		bitmap[i] = (pool_item_bitmap_t)-1;
293 	}
294 }
295 
296 static inline int
297 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
298 {
299 
300 	/*
301 	 * we consider pool_item_header with smaller ph_page bigger.
302 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
303 	 */
304 
305 	if (a->ph_page < b->ph_page)
306 		return (1);
307 	else if (a->ph_page > b->ph_page)
308 		return (-1);
309 	else
310 		return (0);
311 }
312 
313 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
314 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
315 
316 static inline struct pool_item_header *
317 pr_find_pagehead_noalign(struct pool *pp, void *v)
318 {
319 	struct pool_item_header *ph, tmp;
320 
321 	tmp.ph_page = (void *)(uintptr_t)v;
322 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
323 	if (ph == NULL) {
324 		ph = SPLAY_ROOT(&pp->pr_phtree);
325 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
326 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
327 		}
328 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
329 	}
330 
331 	return ph;
332 }
333 
334 /*
335  * Return the pool page header based on item address.
336  */
337 static inline struct pool_item_header *
338 pr_find_pagehead(struct pool *pp, void *v)
339 {
340 	struct pool_item_header *ph, tmp;
341 
342 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
343 		ph = pr_find_pagehead_noalign(pp, v);
344 	} else {
345 		void *page =
346 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
347 
348 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
349 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
350 		} else {
351 			tmp.ph_page = page;
352 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
353 		}
354 	}
355 
356 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
357 	    ((char *)ph->ph_page <= (char *)v &&
358 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
359 	return ph;
360 }
361 
362 static void
363 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
364 {
365 	struct pool_item_header *ph;
366 
367 	while ((ph = LIST_FIRST(pq)) != NULL) {
368 		LIST_REMOVE(ph, ph_pagelist);
369 		pool_allocator_free(pp, ph->ph_page);
370 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
371 			pool_put(pp->pr_phpool, ph);
372 	}
373 }
374 
375 /*
376  * Remove a page from the pool.
377  */
378 static inline void
379 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
380      struct pool_pagelist *pq)
381 {
382 
383 	KASSERT(mutex_owned(&pp->pr_lock));
384 
385 	/*
386 	 * If the page was idle, decrement the idle page count.
387 	 */
388 	if (ph->ph_nmissing == 0) {
389 		KASSERT(pp->pr_nidle != 0);
390 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
391 		    "nitems=%u < itemsperpage=%u",
392 		    pp->pr_nitems, pp->pr_itemsperpage);
393 		pp->pr_nidle--;
394 	}
395 
396 	pp->pr_nitems -= pp->pr_itemsperpage;
397 
398 	/*
399 	 * Unlink the page from the pool and queue it for release.
400 	 */
401 	LIST_REMOVE(ph, ph_pagelist);
402 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
403 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
404 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
405 
406 	pp->pr_npages--;
407 	pp->pr_npagefree++;
408 
409 	pool_update_curpage(pp);
410 }
411 
412 /*
413  * Initialize all the pools listed in the "pools" link set.
414  */
415 void
416 pool_subsystem_init(void)
417 {
418 	size_t size;
419 	int idx;
420 
421 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
422 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
423 	cv_init(&pool_busy, "poolbusy");
424 
425 	/*
426 	 * Initialize private page header pool and cache magazine pool if we
427 	 * haven't done so yet.
428 	 */
429 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
430 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
431 		int nelem;
432 		size_t sz;
433 
434 		nelem = PHPOOL_FREELIST_NELEM(idx);
435 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
436 		    "phpool-%d", nelem);
437 		sz = sizeof(struct pool_item_header);
438 		if (nelem) {
439 			sz = offsetof(struct pool_item_header,
440 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
441 		}
442 		pool_init(&phpool[idx], sz, 0, 0, 0,
443 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
444 	}
445 #ifdef POOL_SUBPAGE
446 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
447 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
448 #endif
449 
450 	size = sizeof(pcg_t) +
451 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
452 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
453 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
454 
455 	size = sizeof(pcg_t) +
456 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
457 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
458 	    "pcglarge", &pool_allocator_meta, IPL_VM);
459 
460 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
461 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
462 
463 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
464 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
465 }
466 
467 /*
468  * Initialize the given pool resource structure.
469  *
470  * We export this routine to allow other kernel parts to declare
471  * static pools that must be initialized before kmem(9) is available.
472  */
473 void
474 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
475     const char *wchan, struct pool_allocator *palloc, int ipl)
476 {
477 	struct pool *pp1;
478 	size_t trysize, phsize, prsize;
479 	int off, slack;
480 
481 #ifdef DEBUG
482 	if (__predict_true(!cold))
483 		mutex_enter(&pool_head_lock);
484 	/*
485 	 * Check that the pool hasn't already been initialised and
486 	 * added to the list of all pools.
487 	 */
488 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
489 		if (pp == pp1)
490 			panic("pool_init: pool %s already initialised",
491 			    wchan);
492 	}
493 	if (__predict_true(!cold))
494 		mutex_exit(&pool_head_lock);
495 #endif
496 
497 	if (palloc == NULL)
498 		palloc = &pool_allocator_kmem;
499 #ifdef POOL_SUBPAGE
500 	if (size > palloc->pa_pagesz) {
501 		if (palloc == &pool_allocator_kmem)
502 			palloc = &pool_allocator_kmem_fullpage;
503 		else if (palloc == &pool_allocator_nointr)
504 			palloc = &pool_allocator_nointr_fullpage;
505 	}
506 #endif /* POOL_SUBPAGE */
507 	if (!cold)
508 		mutex_enter(&pool_allocator_lock);
509 	if (palloc->pa_refcnt++ == 0) {
510 		if (palloc->pa_pagesz == 0)
511 			palloc->pa_pagesz = PAGE_SIZE;
512 
513 		TAILQ_INIT(&palloc->pa_list);
514 
515 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
516 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
517 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
518 	}
519 	if (!cold)
520 		mutex_exit(&pool_allocator_lock);
521 
522 	if (align == 0)
523 		align = ALIGN(1);
524 
525 	prsize = size;
526 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
527 		prsize = sizeof(struct pool_item);
528 
529 	prsize = roundup(prsize, align);
530 	KASSERTMSG((prsize <= palloc->pa_pagesz),
531 	    "pool_init: pool item size (%zu) larger than page size (%u)",
532 	    prsize, palloc->pa_pagesz);
533 
534 	/*
535 	 * Initialize the pool structure.
536 	 */
537 	LIST_INIT(&pp->pr_emptypages);
538 	LIST_INIT(&pp->pr_fullpages);
539 	LIST_INIT(&pp->pr_partpages);
540 	pp->pr_cache = NULL;
541 	pp->pr_curpage = NULL;
542 	pp->pr_npages = 0;
543 	pp->pr_minitems = 0;
544 	pp->pr_minpages = 0;
545 	pp->pr_maxpages = UINT_MAX;
546 	pp->pr_roflags = flags;
547 	pp->pr_flags = 0;
548 	pp->pr_size = prsize;
549 	pp->pr_align = align;
550 	pp->pr_wchan = wchan;
551 	pp->pr_alloc = palloc;
552 	pp->pr_nitems = 0;
553 	pp->pr_nout = 0;
554 	pp->pr_hardlimit = UINT_MAX;
555 	pp->pr_hardlimit_warning = NULL;
556 	pp->pr_hardlimit_ratecap.tv_sec = 0;
557 	pp->pr_hardlimit_ratecap.tv_usec = 0;
558 	pp->pr_hardlimit_warning_last.tv_sec = 0;
559 	pp->pr_hardlimit_warning_last.tv_usec = 0;
560 	pp->pr_drain_hook = NULL;
561 	pp->pr_drain_hook_arg = NULL;
562 	pp->pr_freecheck = NULL;
563 	pool_redzone_init(pp, size);
564 
565 	/*
566 	 * Decide whether to put the page header off page to avoid
567 	 * wasting too large a part of the page or too big item.
568 	 * Off-page page headers go on a hash table, so we can match
569 	 * a returned item with its header based on the page address.
570 	 * We use 1/16 of the page size and about 8 times of the item
571 	 * size as the threshold (XXX: tune)
572 	 *
573 	 * However, we'll put the header into the page if we can put
574 	 * it without wasting any items.
575 	 *
576 	 * Silently enforce `0 <= ioff < align'.
577 	 */
578 	pp->pr_itemoffset = ioff %= align;
579 	/* See the comment below about reserved bytes. */
580 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
581 	phsize = ALIGN(sizeof(struct pool_item_header));
582 	if (pp->pr_roflags & PR_PHINPAGE ||
583 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
584 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
585 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
586 		/* Use the end of the page for the page header */
587 		pp->pr_roflags |= PR_PHINPAGE;
588 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
589 	} else {
590 		/* The page header will be taken from our page header pool */
591 		pp->pr_phoffset = 0;
592 		off = palloc->pa_pagesz;
593 		SPLAY_INIT(&pp->pr_phtree);
594 	}
595 
596 	/*
597 	 * Alignment is to take place at `ioff' within the item. This means
598 	 * we must reserve up to `align - 1' bytes on the page to allow
599 	 * appropriate positioning of each item.
600 	 */
601 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
602 	KASSERT(pp->pr_itemsperpage != 0);
603 	if ((pp->pr_roflags & PR_NOTOUCH)) {
604 		int idx;
605 
606 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
607 		    idx++) {
608 			/* nothing */
609 		}
610 		if (idx >= PHPOOL_MAX) {
611 			/*
612 			 * if you see this panic, consider to tweak
613 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
614 			 */
615 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
616 			    pp->pr_wchan, pp->pr_itemsperpage);
617 		}
618 		pp->pr_phpool = &phpool[idx];
619 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
620 		pp->pr_phpool = &phpool[0];
621 	}
622 #if defined(DIAGNOSTIC)
623 	else {
624 		pp->pr_phpool = NULL;
625 	}
626 #endif
627 
628 	/*
629 	 * Use the slack between the chunks and the page header
630 	 * for "cache coloring".
631 	 */
632 	slack = off - pp->pr_itemsperpage * pp->pr_size;
633 	pp->pr_maxcolor = (slack / align) * align;
634 	pp->pr_curcolor = 0;
635 
636 	pp->pr_nget = 0;
637 	pp->pr_nfail = 0;
638 	pp->pr_nput = 0;
639 	pp->pr_npagealloc = 0;
640 	pp->pr_npagefree = 0;
641 	pp->pr_hiwat = 0;
642 	pp->pr_nidle = 0;
643 	pp->pr_refcnt = 0;
644 
645 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
646 	cv_init(&pp->pr_cv, wchan);
647 	pp->pr_ipl = ipl;
648 
649 	/* Insert into the list of all pools. */
650 	if (!cold)
651 		mutex_enter(&pool_head_lock);
652 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
653 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
654 			break;
655 	}
656 	if (pp1 == NULL)
657 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
658 	else
659 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
660 	if (!cold)
661 		mutex_exit(&pool_head_lock);
662 
663 	/* Insert this into the list of pools using this allocator. */
664 	if (!cold)
665 		mutex_enter(&palloc->pa_lock);
666 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
667 	if (!cold)
668 		mutex_exit(&palloc->pa_lock);
669 }
670 
671 /*
672  * De-commision a pool resource.
673  */
674 void
675 pool_destroy(struct pool *pp)
676 {
677 	struct pool_pagelist pq;
678 	struct pool_item_header *ph;
679 
680 	/* Remove from global pool list */
681 	mutex_enter(&pool_head_lock);
682 	while (pp->pr_refcnt != 0)
683 		cv_wait(&pool_busy, &pool_head_lock);
684 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
685 	if (drainpp == pp)
686 		drainpp = NULL;
687 	mutex_exit(&pool_head_lock);
688 
689 	/* Remove this pool from its allocator's list of pools. */
690 	mutex_enter(&pp->pr_alloc->pa_lock);
691 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
692 	mutex_exit(&pp->pr_alloc->pa_lock);
693 
694 	mutex_enter(&pool_allocator_lock);
695 	if (--pp->pr_alloc->pa_refcnt == 0)
696 		mutex_destroy(&pp->pr_alloc->pa_lock);
697 	mutex_exit(&pool_allocator_lock);
698 
699 	mutex_enter(&pp->pr_lock);
700 
701 	KASSERT(pp->pr_cache == NULL);
702 	KASSERTMSG((pp->pr_nout == 0),
703 	    "pool_destroy: pool busy: still out: %u", pp->pr_nout);
704 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
705 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
706 
707 	/* Remove all pages */
708 	LIST_INIT(&pq);
709 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
710 		pr_rmpage(pp, ph, &pq);
711 
712 	mutex_exit(&pp->pr_lock);
713 
714 	pr_pagelist_free(pp, &pq);
715 	cv_destroy(&pp->pr_cv);
716 	mutex_destroy(&pp->pr_lock);
717 }
718 
719 void
720 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
721 {
722 
723 	/* XXX no locking -- must be used just after pool_init() */
724 	KASSERTMSG((pp->pr_drain_hook == NULL),
725 	    "pool_set_drain_hook(%s): already set", pp->pr_wchan);
726 	pp->pr_drain_hook = fn;
727 	pp->pr_drain_hook_arg = arg;
728 }
729 
730 static struct pool_item_header *
731 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
732 {
733 	struct pool_item_header *ph;
734 
735 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
736 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
737 	else
738 		ph = pool_get(pp->pr_phpool, flags);
739 
740 	return (ph);
741 }
742 
743 /*
744  * Grab an item from the pool.
745  */
746 void *
747 pool_get(struct pool *pp, int flags)
748 {
749 	struct pool_item *pi;
750 	struct pool_item_header *ph;
751 	void *v;
752 
753 	KASSERTMSG((pp->pr_itemsperpage != 0),
754 	    "pool_get: pool '%s': pr_itemsperpage is zero, "
755 	    "pool not initialized?", pp->pr_wchan);
756 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
757 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
758 	    "pool '%s' is IPL_NONE, but called from interrupt context",
759 	    pp->pr_wchan);
760 	if (flags & PR_WAITOK) {
761 		ASSERT_SLEEPABLE();
762 	}
763 
764 	mutex_enter(&pp->pr_lock);
765  startover:
766 	/*
767 	 * Check to see if we've reached the hard limit.  If we have,
768 	 * and we can wait, then wait until an item has been returned to
769 	 * the pool.
770 	 */
771 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
772 	    "pool_get: %s: crossed hard limit", pp->pr_wchan);
773 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
774 		if (pp->pr_drain_hook != NULL) {
775 			/*
776 			 * Since the drain hook is going to free things
777 			 * back to the pool, unlock, call the hook, re-lock,
778 			 * and check the hardlimit condition again.
779 			 */
780 			mutex_exit(&pp->pr_lock);
781 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
782 			mutex_enter(&pp->pr_lock);
783 			if (pp->pr_nout < pp->pr_hardlimit)
784 				goto startover;
785 		}
786 
787 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
788 			/*
789 			 * XXX: A warning isn't logged in this case.  Should
790 			 * it be?
791 			 */
792 			pp->pr_flags |= PR_WANTED;
793 			cv_wait(&pp->pr_cv, &pp->pr_lock);
794 			goto startover;
795 		}
796 
797 		/*
798 		 * Log a message that the hard limit has been hit.
799 		 */
800 		if (pp->pr_hardlimit_warning != NULL &&
801 		    ratecheck(&pp->pr_hardlimit_warning_last,
802 			      &pp->pr_hardlimit_ratecap))
803 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
804 
805 		pp->pr_nfail++;
806 
807 		mutex_exit(&pp->pr_lock);
808 		return (NULL);
809 	}
810 
811 	/*
812 	 * The convention we use is that if `curpage' is not NULL, then
813 	 * it points at a non-empty bucket. In particular, `curpage'
814 	 * never points at a page header which has PR_PHINPAGE set and
815 	 * has no items in its bucket.
816 	 */
817 	if ((ph = pp->pr_curpage) == NULL) {
818 		int error;
819 
820 		KASSERTMSG((pp->pr_nitems == 0),
821 		    "pool_get: nitems inconsistent"
822 		    ": %s: curpage NULL, nitems %u",
823 		    pp->pr_wchan, pp->pr_nitems);
824 
825 		/*
826 		 * Call the back-end page allocator for more memory.
827 		 * Release the pool lock, as the back-end page allocator
828 		 * may block.
829 		 */
830 		error = pool_grow(pp, flags);
831 		if (error != 0) {
832 			/*
833 			 * We were unable to allocate a page or item
834 			 * header, but we released the lock during
835 			 * allocation, so perhaps items were freed
836 			 * back to the pool.  Check for this case.
837 			 */
838 			if (pp->pr_curpage != NULL)
839 				goto startover;
840 
841 			pp->pr_nfail++;
842 			mutex_exit(&pp->pr_lock);
843 			return (NULL);
844 		}
845 
846 		/* Start the allocation process over. */
847 		goto startover;
848 	}
849 	if (pp->pr_roflags & PR_NOTOUCH) {
850 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
851 		    "pool_get: %s: page empty", pp->pr_wchan);
852 		v = pr_item_notouch_get(pp, ph);
853 	} else {
854 		v = pi = LIST_FIRST(&ph->ph_itemlist);
855 		if (__predict_false(v == NULL)) {
856 			mutex_exit(&pp->pr_lock);
857 			panic("pool_get: %s: page empty", pp->pr_wchan);
858 		}
859 		KASSERTMSG((pp->pr_nitems > 0),
860 		    "pool_get: nitems inconsistent"
861 		    ": %s: items on itemlist, nitems %u",
862 		    pp->pr_wchan, pp->pr_nitems);
863 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
864 		    "pool_get(%s): free list modified: "
865 		    "magic=%x; page %p; item addr %p",
866 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
867 
868 		/*
869 		 * Remove from item list.
870 		 */
871 		LIST_REMOVE(pi, pi_list);
872 	}
873 	pp->pr_nitems--;
874 	pp->pr_nout++;
875 	if (ph->ph_nmissing == 0) {
876 		KASSERT(pp->pr_nidle > 0);
877 		pp->pr_nidle--;
878 
879 		/*
880 		 * This page was previously empty.  Move it to the list of
881 		 * partially-full pages.  This page is already curpage.
882 		 */
883 		LIST_REMOVE(ph, ph_pagelist);
884 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
885 	}
886 	ph->ph_nmissing++;
887 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
888 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
889 			LIST_EMPTY(&ph->ph_itemlist)),
890 		    "pool_get: %s: nmissing inconsistent", pp->pr_wchan);
891 		/*
892 		 * This page is now full.  Move it to the full list
893 		 * and select a new current page.
894 		 */
895 		LIST_REMOVE(ph, ph_pagelist);
896 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
897 		pool_update_curpage(pp);
898 	}
899 
900 	pp->pr_nget++;
901 
902 	/*
903 	 * If we have a low water mark and we are now below that low
904 	 * water mark, add more items to the pool.
905 	 */
906 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
907 		/*
908 		 * XXX: Should we log a warning?  Should we set up a timeout
909 		 * to try again in a second or so?  The latter could break
910 		 * a caller's assumptions about interrupt protection, etc.
911 		 */
912 	}
913 
914 	mutex_exit(&pp->pr_lock);
915 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
916 	FREECHECK_OUT(&pp->pr_freecheck, v);
917 	pool_redzone_fill(pp, v);
918 	return (v);
919 }
920 
921 /*
922  * Internal version of pool_put().  Pool is already locked/entered.
923  */
924 static void
925 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
926 {
927 	struct pool_item *pi = v;
928 	struct pool_item_header *ph;
929 
930 	KASSERT(mutex_owned(&pp->pr_lock));
931 	pool_redzone_check(pp, v);
932 	FREECHECK_IN(&pp->pr_freecheck, v);
933 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
934 
935 	KASSERTMSG((pp->pr_nout > 0),
936 	    "pool_put: pool %s: putting with none out", pp->pr_wchan);
937 
938 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
939 		panic("pool_put: %s: page header missing", pp->pr_wchan);
940 	}
941 
942 	/*
943 	 * Return to item list.
944 	 */
945 	if (pp->pr_roflags & PR_NOTOUCH) {
946 		pr_item_notouch_put(pp, ph, v);
947 	} else {
948 #ifdef DIAGNOSTIC
949 		pi->pi_magic = PI_MAGIC;
950 #endif
951 #ifdef DEBUG
952 		{
953 			int i, *ip = v;
954 
955 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
956 				*ip++ = PI_MAGIC;
957 			}
958 		}
959 #endif
960 
961 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
962 	}
963 	KDASSERT(ph->ph_nmissing != 0);
964 	ph->ph_nmissing--;
965 	pp->pr_nput++;
966 	pp->pr_nitems++;
967 	pp->pr_nout--;
968 
969 	/* Cancel "pool empty" condition if it exists */
970 	if (pp->pr_curpage == NULL)
971 		pp->pr_curpage = ph;
972 
973 	if (pp->pr_flags & PR_WANTED) {
974 		pp->pr_flags &= ~PR_WANTED;
975 		cv_broadcast(&pp->pr_cv);
976 	}
977 
978 	/*
979 	 * If this page is now empty, do one of two things:
980 	 *
981 	 *	(1) If we have more pages than the page high water mark,
982 	 *	    free the page back to the system.  ONLY CONSIDER
983 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
984 	 *	    CLAIM.
985 	 *
986 	 *	(2) Otherwise, move the page to the empty page list.
987 	 *
988 	 * Either way, select a new current page (so we use a partially-full
989 	 * page if one is available).
990 	 */
991 	if (ph->ph_nmissing == 0) {
992 		pp->pr_nidle++;
993 		if (pp->pr_npages > pp->pr_minpages &&
994 		    pp->pr_npages > pp->pr_maxpages) {
995 			pr_rmpage(pp, ph, pq);
996 		} else {
997 			LIST_REMOVE(ph, ph_pagelist);
998 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
999 
1000 			/*
1001 			 * Update the timestamp on the page.  A page must
1002 			 * be idle for some period of time before it can
1003 			 * be reclaimed by the pagedaemon.  This minimizes
1004 			 * ping-pong'ing for memory.
1005 			 *
1006 			 * note for 64-bit time_t: truncating to 32-bit is not
1007 			 * a problem for our usage.
1008 			 */
1009 			ph->ph_time = time_uptime;
1010 		}
1011 		pool_update_curpage(pp);
1012 	}
1013 
1014 	/*
1015 	 * If the page was previously completely full, move it to the
1016 	 * partially-full list and make it the current page.  The next
1017 	 * allocation will get the item from this page, instead of
1018 	 * further fragmenting the pool.
1019 	 */
1020 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1021 		LIST_REMOVE(ph, ph_pagelist);
1022 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1023 		pp->pr_curpage = ph;
1024 	}
1025 }
1026 
1027 void
1028 pool_put(struct pool *pp, void *v)
1029 {
1030 	struct pool_pagelist pq;
1031 
1032 	LIST_INIT(&pq);
1033 
1034 	mutex_enter(&pp->pr_lock);
1035 	pool_do_put(pp, v, &pq);
1036 	mutex_exit(&pp->pr_lock);
1037 
1038 	pr_pagelist_free(pp, &pq);
1039 }
1040 
1041 /*
1042  * pool_grow: grow a pool by a page.
1043  *
1044  * => called with pool locked.
1045  * => unlock and relock the pool.
1046  * => return with pool locked.
1047  */
1048 
1049 static int
1050 pool_grow(struct pool *pp, int flags)
1051 {
1052 	struct pool_item_header *ph = NULL;
1053 	char *cp;
1054 
1055 	mutex_exit(&pp->pr_lock);
1056 	cp = pool_allocator_alloc(pp, flags);
1057 	if (__predict_true(cp != NULL)) {
1058 		ph = pool_alloc_item_header(pp, cp, flags);
1059 	}
1060 	if (__predict_false(cp == NULL || ph == NULL)) {
1061 		if (cp != NULL) {
1062 			pool_allocator_free(pp, cp);
1063 		}
1064 		mutex_enter(&pp->pr_lock);
1065 		return ENOMEM;
1066 	}
1067 
1068 	mutex_enter(&pp->pr_lock);
1069 	pool_prime_page(pp, cp, ph);
1070 	pp->pr_npagealloc++;
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Add N items to the pool.
1076  */
1077 int
1078 pool_prime(struct pool *pp, int n)
1079 {
1080 	int newpages;
1081 	int error = 0;
1082 
1083 	mutex_enter(&pp->pr_lock);
1084 
1085 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1086 
1087 	while (newpages-- > 0) {
1088 		error = pool_grow(pp, PR_NOWAIT);
1089 		if (error) {
1090 			break;
1091 		}
1092 		pp->pr_minpages++;
1093 	}
1094 
1095 	if (pp->pr_minpages >= pp->pr_maxpages)
1096 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1097 
1098 	mutex_exit(&pp->pr_lock);
1099 	return error;
1100 }
1101 
1102 /*
1103  * Add a page worth of items to the pool.
1104  *
1105  * Note, we must be called with the pool descriptor LOCKED.
1106  */
1107 static void
1108 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1109 {
1110 	struct pool_item *pi;
1111 	void *cp = storage;
1112 	const unsigned int align = pp->pr_align;
1113 	const unsigned int ioff = pp->pr_itemoffset;
1114 	int n;
1115 
1116 	KASSERT(mutex_owned(&pp->pr_lock));
1117 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1118 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1119 	    "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp);
1120 
1121 	/*
1122 	 * Insert page header.
1123 	 */
1124 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1125 	LIST_INIT(&ph->ph_itemlist);
1126 	ph->ph_page = storage;
1127 	ph->ph_nmissing = 0;
1128 	ph->ph_time = time_uptime;
1129 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1130 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1131 
1132 	pp->pr_nidle++;
1133 
1134 	/*
1135 	 * Color this page.
1136 	 */
1137 	ph->ph_off = pp->pr_curcolor;
1138 	cp = (char *)cp + ph->ph_off;
1139 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1140 		pp->pr_curcolor = 0;
1141 
1142 	/*
1143 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1144 	 */
1145 	if (ioff != 0)
1146 		cp = (char *)cp + align - ioff;
1147 
1148 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1149 
1150 	/*
1151 	 * Insert remaining chunks on the bucket list.
1152 	 */
1153 	n = pp->pr_itemsperpage;
1154 	pp->pr_nitems += n;
1155 
1156 	if (pp->pr_roflags & PR_NOTOUCH) {
1157 		pr_item_notouch_init(pp, ph);
1158 	} else {
1159 		while (n--) {
1160 			pi = (struct pool_item *)cp;
1161 
1162 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1163 
1164 			/* Insert on page list */
1165 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1166 #ifdef DIAGNOSTIC
1167 			pi->pi_magic = PI_MAGIC;
1168 #endif
1169 			cp = (char *)cp + pp->pr_size;
1170 
1171 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1172 		}
1173 	}
1174 
1175 	/*
1176 	 * If the pool was depleted, point at the new page.
1177 	 */
1178 	if (pp->pr_curpage == NULL)
1179 		pp->pr_curpage = ph;
1180 
1181 	if (++pp->pr_npages > pp->pr_hiwat)
1182 		pp->pr_hiwat = pp->pr_npages;
1183 }
1184 
1185 /*
1186  * Used by pool_get() when nitems drops below the low water mark.  This
1187  * is used to catch up pr_nitems with the low water mark.
1188  *
1189  * Note 1, we never wait for memory here, we let the caller decide what to do.
1190  *
1191  * Note 2, we must be called with the pool already locked, and we return
1192  * with it locked.
1193  */
1194 static int
1195 pool_catchup(struct pool *pp)
1196 {
1197 	int error = 0;
1198 
1199 	while (POOL_NEEDS_CATCHUP(pp)) {
1200 		error = pool_grow(pp, PR_NOWAIT);
1201 		if (error) {
1202 			break;
1203 		}
1204 	}
1205 	return error;
1206 }
1207 
1208 static void
1209 pool_update_curpage(struct pool *pp)
1210 {
1211 
1212 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1213 	if (pp->pr_curpage == NULL) {
1214 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1215 	}
1216 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1217 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1218 }
1219 
1220 void
1221 pool_setlowat(struct pool *pp, int n)
1222 {
1223 
1224 	mutex_enter(&pp->pr_lock);
1225 
1226 	pp->pr_minitems = n;
1227 	pp->pr_minpages = (n == 0)
1228 		? 0
1229 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1230 
1231 	/* Make sure we're caught up with the newly-set low water mark. */
1232 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1233 		/*
1234 		 * XXX: Should we log a warning?  Should we set up a timeout
1235 		 * to try again in a second or so?  The latter could break
1236 		 * a caller's assumptions about interrupt protection, etc.
1237 		 */
1238 	}
1239 
1240 	mutex_exit(&pp->pr_lock);
1241 }
1242 
1243 void
1244 pool_sethiwat(struct pool *pp, int n)
1245 {
1246 
1247 	mutex_enter(&pp->pr_lock);
1248 
1249 	pp->pr_maxpages = (n == 0)
1250 		? 0
1251 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1252 
1253 	mutex_exit(&pp->pr_lock);
1254 }
1255 
1256 void
1257 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1258 {
1259 
1260 	mutex_enter(&pp->pr_lock);
1261 
1262 	pp->pr_hardlimit = n;
1263 	pp->pr_hardlimit_warning = warnmess;
1264 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1265 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1266 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1267 
1268 	/*
1269 	 * In-line version of pool_sethiwat(), because we don't want to
1270 	 * release the lock.
1271 	 */
1272 	pp->pr_maxpages = (n == 0)
1273 		? 0
1274 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1275 
1276 	mutex_exit(&pp->pr_lock);
1277 }
1278 
1279 /*
1280  * Release all complete pages that have not been used recently.
1281  *
1282  * Must not be called from interrupt context.
1283  */
1284 int
1285 pool_reclaim(struct pool *pp)
1286 {
1287 	struct pool_item_header *ph, *phnext;
1288 	struct pool_pagelist pq;
1289 	uint32_t curtime;
1290 	bool klock;
1291 	int rv;
1292 
1293 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1294 
1295 	if (pp->pr_drain_hook != NULL) {
1296 		/*
1297 		 * The drain hook must be called with the pool unlocked.
1298 		 */
1299 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1300 	}
1301 
1302 	/*
1303 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1304 	 * to block.
1305 	 */
1306 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1307 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1308 		KERNEL_LOCK(1, NULL);
1309 		klock = true;
1310 	} else
1311 		klock = false;
1312 
1313 	/* Reclaim items from the pool's cache (if any). */
1314 	if (pp->pr_cache != NULL)
1315 		pool_cache_invalidate(pp->pr_cache);
1316 
1317 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1318 		if (klock) {
1319 			KERNEL_UNLOCK_ONE(NULL);
1320 		}
1321 		return (0);
1322 	}
1323 
1324 	LIST_INIT(&pq);
1325 
1326 	curtime = time_uptime;
1327 
1328 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1329 		phnext = LIST_NEXT(ph, ph_pagelist);
1330 
1331 		/* Check our minimum page claim */
1332 		if (pp->pr_npages <= pp->pr_minpages)
1333 			break;
1334 
1335 		KASSERT(ph->ph_nmissing == 0);
1336 		if (curtime - ph->ph_time < pool_inactive_time)
1337 			continue;
1338 
1339 		/*
1340 		 * If freeing this page would put us below
1341 		 * the low water mark, stop now.
1342 		 */
1343 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1344 		    pp->pr_minitems)
1345 			break;
1346 
1347 		pr_rmpage(pp, ph, &pq);
1348 	}
1349 
1350 	mutex_exit(&pp->pr_lock);
1351 
1352 	if (LIST_EMPTY(&pq))
1353 		rv = 0;
1354 	else {
1355 		pr_pagelist_free(pp, &pq);
1356 		rv = 1;
1357 	}
1358 
1359 	if (klock) {
1360 		KERNEL_UNLOCK_ONE(NULL);
1361 	}
1362 
1363 	return (rv);
1364 }
1365 
1366 /*
1367  * Drain pools, one at a time. The drained pool is returned within ppp.
1368  *
1369  * Note, must never be called from interrupt context.
1370  */
1371 bool
1372 pool_drain(struct pool **ppp)
1373 {
1374 	bool reclaimed;
1375 	struct pool *pp;
1376 
1377 	KASSERT(!TAILQ_EMPTY(&pool_head));
1378 
1379 	pp = NULL;
1380 
1381 	/* Find next pool to drain, and add a reference. */
1382 	mutex_enter(&pool_head_lock);
1383 	do {
1384 		if (drainpp == NULL) {
1385 			drainpp = TAILQ_FIRST(&pool_head);
1386 		}
1387 		if (drainpp != NULL) {
1388 			pp = drainpp;
1389 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1390 		}
1391 		/*
1392 		 * Skip completely idle pools.  We depend on at least
1393 		 * one pool in the system being active.
1394 		 */
1395 	} while (pp == NULL || pp->pr_npages == 0);
1396 	pp->pr_refcnt++;
1397 	mutex_exit(&pool_head_lock);
1398 
1399 	/* Drain the cache (if any) and pool.. */
1400 	reclaimed = pool_reclaim(pp);
1401 
1402 	/* Finally, unlock the pool. */
1403 	mutex_enter(&pool_head_lock);
1404 	pp->pr_refcnt--;
1405 	cv_broadcast(&pool_busy);
1406 	mutex_exit(&pool_head_lock);
1407 
1408 	if (ppp != NULL)
1409 		*ppp = pp;
1410 
1411 	return reclaimed;
1412 }
1413 
1414 /*
1415  * Diagnostic helpers.
1416  */
1417 
1418 void
1419 pool_printall(const char *modif, void (*pr)(const char *, ...))
1420 {
1421 	struct pool *pp;
1422 
1423 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1424 		pool_printit(pp, modif, pr);
1425 	}
1426 }
1427 
1428 void
1429 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1430 {
1431 
1432 	if (pp == NULL) {
1433 		(*pr)("Must specify a pool to print.\n");
1434 		return;
1435 	}
1436 
1437 	pool_print1(pp, modif, pr);
1438 }
1439 
1440 static void
1441 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1442     void (*pr)(const char *, ...))
1443 {
1444 	struct pool_item_header *ph;
1445 	struct pool_item *pi __diagused;
1446 
1447 	LIST_FOREACH(ph, pl, ph_pagelist) {
1448 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1449 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1450 #ifdef DIAGNOSTIC
1451 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1452 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1453 				if (pi->pi_magic != PI_MAGIC) {
1454 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1455 					    pi, pi->pi_magic);
1456 				}
1457 			}
1458 		}
1459 #endif
1460 	}
1461 }
1462 
1463 static void
1464 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1465 {
1466 	struct pool_item_header *ph;
1467 	pool_cache_t pc;
1468 	pcg_t *pcg;
1469 	pool_cache_cpu_t *cc;
1470 	uint64_t cpuhit, cpumiss;
1471 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1472 	char c;
1473 
1474 	while ((c = *modif++) != '\0') {
1475 		if (c == 'l')
1476 			print_log = 1;
1477 		if (c == 'p')
1478 			print_pagelist = 1;
1479 		if (c == 'c')
1480 			print_cache = 1;
1481 	}
1482 
1483 	if ((pc = pp->pr_cache) != NULL) {
1484 		(*pr)("POOL CACHE");
1485 	} else {
1486 		(*pr)("POOL");
1487 	}
1488 
1489 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1490 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1491 	    pp->pr_roflags);
1492 	(*pr)("\talloc %p\n", pp->pr_alloc);
1493 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1494 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1495 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1496 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1497 
1498 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1499 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1500 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1501 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1502 
1503 	if (print_pagelist == 0)
1504 		goto skip_pagelist;
1505 
1506 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1507 		(*pr)("\n\tempty page list:\n");
1508 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1509 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1510 		(*pr)("\n\tfull page list:\n");
1511 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1512 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1513 		(*pr)("\n\tpartial-page list:\n");
1514 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1515 
1516 	if (pp->pr_curpage == NULL)
1517 		(*pr)("\tno current page\n");
1518 	else
1519 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1520 
1521  skip_pagelist:
1522 	if (print_log == 0)
1523 		goto skip_log;
1524 
1525 	(*pr)("\n");
1526 
1527  skip_log:
1528 
1529 #define PR_GROUPLIST(pcg)						\
1530 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1531 	for (i = 0; i < pcg->pcg_size; i++) {				\
1532 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1533 		    POOL_PADDR_INVALID) {				\
1534 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1535 			    pcg->pcg_objects[i].pcgo_va,		\
1536 			    (unsigned long long)			\
1537 			    pcg->pcg_objects[i].pcgo_pa);		\
1538 		} else {						\
1539 			(*pr)("\t\t\t%p\n",				\
1540 			    pcg->pcg_objects[i].pcgo_va);		\
1541 		}							\
1542 	}
1543 
1544 	if (pc != NULL) {
1545 		cpuhit = 0;
1546 		cpumiss = 0;
1547 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1548 			if ((cc = pc->pc_cpus[i]) == NULL)
1549 				continue;
1550 			cpuhit += cc->cc_hits;
1551 			cpumiss += cc->cc_misses;
1552 		}
1553 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1554 		(*pr)("\tcache layer hits %llu misses %llu\n",
1555 		    pc->pc_hits, pc->pc_misses);
1556 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1557 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1558 		    pc->pc_contended);
1559 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1560 		    pc->pc_nempty, pc->pc_nfull);
1561 		if (print_cache) {
1562 			(*pr)("\tfull cache groups:\n");
1563 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1564 			    pcg = pcg->pcg_next) {
1565 				PR_GROUPLIST(pcg);
1566 			}
1567 			(*pr)("\tempty cache groups:\n");
1568 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1569 			    pcg = pcg->pcg_next) {
1570 				PR_GROUPLIST(pcg);
1571 			}
1572 		}
1573 	}
1574 #undef PR_GROUPLIST
1575 }
1576 
1577 static int
1578 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1579 {
1580 	struct pool_item *pi;
1581 	void *page;
1582 	int n;
1583 
1584 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1585 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1586 		if (page != ph->ph_page &&
1587 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1588 			if (label != NULL)
1589 				printf("%s: ", label);
1590 			printf("pool(%p:%s): page inconsistency: page %p;"
1591 			       " at page head addr %p (p %p)\n", pp,
1592 				pp->pr_wchan, ph->ph_page,
1593 				ph, page);
1594 			return 1;
1595 		}
1596 	}
1597 
1598 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1599 		return 0;
1600 
1601 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1602 	     pi != NULL;
1603 	     pi = LIST_NEXT(pi,pi_list), n++) {
1604 
1605 #ifdef DIAGNOSTIC
1606 		if (pi->pi_magic != PI_MAGIC) {
1607 			if (label != NULL)
1608 				printf("%s: ", label);
1609 			printf("pool(%s): free list modified: magic=%x;"
1610 			       " page %p; item ordinal %d; addr %p\n",
1611 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1612 				n, pi);
1613 			panic("pool");
1614 		}
1615 #endif
1616 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1617 			continue;
1618 		}
1619 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1620 		if (page == ph->ph_page)
1621 			continue;
1622 
1623 		if (label != NULL)
1624 			printf("%s: ", label);
1625 		printf("pool(%p:%s): page inconsistency: page %p;"
1626 		       " item ordinal %d; addr %p (p %p)\n", pp,
1627 			pp->pr_wchan, ph->ph_page,
1628 			n, pi, page);
1629 		return 1;
1630 	}
1631 	return 0;
1632 }
1633 
1634 
1635 int
1636 pool_chk(struct pool *pp, const char *label)
1637 {
1638 	struct pool_item_header *ph;
1639 	int r = 0;
1640 
1641 	mutex_enter(&pp->pr_lock);
1642 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1643 		r = pool_chk_page(pp, label, ph);
1644 		if (r) {
1645 			goto out;
1646 		}
1647 	}
1648 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1649 		r = pool_chk_page(pp, label, ph);
1650 		if (r) {
1651 			goto out;
1652 		}
1653 	}
1654 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1655 		r = pool_chk_page(pp, label, ph);
1656 		if (r) {
1657 			goto out;
1658 		}
1659 	}
1660 
1661 out:
1662 	mutex_exit(&pp->pr_lock);
1663 	return (r);
1664 }
1665 
1666 /*
1667  * pool_cache_init:
1668  *
1669  *	Initialize a pool cache.
1670  */
1671 pool_cache_t
1672 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1673     const char *wchan, struct pool_allocator *palloc, int ipl,
1674     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1675 {
1676 	pool_cache_t pc;
1677 
1678 	pc = pool_get(&cache_pool, PR_WAITOK);
1679 	if (pc == NULL)
1680 		return NULL;
1681 
1682 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1683 	   palloc, ipl, ctor, dtor, arg);
1684 
1685 	return pc;
1686 }
1687 
1688 /*
1689  * pool_cache_bootstrap:
1690  *
1691  *	Kernel-private version of pool_cache_init().  The caller
1692  *	provides initial storage.
1693  */
1694 void
1695 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1696     u_int align_offset, u_int flags, const char *wchan,
1697     struct pool_allocator *palloc, int ipl,
1698     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1699     void *arg)
1700 {
1701 	CPU_INFO_ITERATOR cii;
1702 	pool_cache_t pc1;
1703 	struct cpu_info *ci;
1704 	struct pool *pp;
1705 
1706 	pp = &pc->pc_pool;
1707 	if (palloc == NULL && ipl == IPL_NONE) {
1708 		if (size > PAGE_SIZE) {
1709 			int bigidx = pool_bigidx(size);
1710 
1711 			palloc = &pool_allocator_big[bigidx];
1712 		} else
1713 			palloc = &pool_allocator_nointr;
1714 	}
1715 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1716 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1717 
1718 	if (ctor == NULL) {
1719 		ctor = (int (*)(void *, void *, int))nullop;
1720 	}
1721 	if (dtor == NULL) {
1722 		dtor = (void (*)(void *, void *))nullop;
1723 	}
1724 
1725 	pc->pc_emptygroups = NULL;
1726 	pc->pc_fullgroups = NULL;
1727 	pc->pc_partgroups = NULL;
1728 	pc->pc_ctor = ctor;
1729 	pc->pc_dtor = dtor;
1730 	pc->pc_arg  = arg;
1731 	pc->pc_hits  = 0;
1732 	pc->pc_misses = 0;
1733 	pc->pc_nempty = 0;
1734 	pc->pc_npart = 0;
1735 	pc->pc_nfull = 0;
1736 	pc->pc_contended = 0;
1737 	pc->pc_refcnt = 0;
1738 	pc->pc_freecheck = NULL;
1739 
1740 	if ((flags & PR_LARGECACHE) != 0) {
1741 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1742 		pc->pc_pcgpool = &pcg_large_pool;
1743 	} else {
1744 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1745 		pc->pc_pcgpool = &pcg_normal_pool;
1746 	}
1747 
1748 	/* Allocate per-CPU caches. */
1749 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1750 	pc->pc_ncpu = 0;
1751 	if (ncpu < 2) {
1752 		/* XXX For sparc: boot CPU is not attached yet. */
1753 		pool_cache_cpu_init1(curcpu(), pc);
1754 	} else {
1755 		for (CPU_INFO_FOREACH(cii, ci)) {
1756 			pool_cache_cpu_init1(ci, pc);
1757 		}
1758 	}
1759 
1760 	/* Add to list of all pools. */
1761 	if (__predict_true(!cold))
1762 		mutex_enter(&pool_head_lock);
1763 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1764 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1765 			break;
1766 	}
1767 	if (pc1 == NULL)
1768 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1769 	else
1770 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1771 	if (__predict_true(!cold))
1772 		mutex_exit(&pool_head_lock);
1773 
1774 	membar_sync();
1775 	pp->pr_cache = pc;
1776 }
1777 
1778 /*
1779  * pool_cache_destroy:
1780  *
1781  *	Destroy a pool cache.
1782  */
1783 void
1784 pool_cache_destroy(pool_cache_t pc)
1785 {
1786 
1787 	pool_cache_bootstrap_destroy(pc);
1788 	pool_put(&cache_pool, pc);
1789 }
1790 
1791 /*
1792  * pool_cache_bootstrap_destroy:
1793  *
1794  *	Destroy a pool cache.
1795  */
1796 void
1797 pool_cache_bootstrap_destroy(pool_cache_t pc)
1798 {
1799 	struct pool *pp = &pc->pc_pool;
1800 	u_int i;
1801 
1802 	/* Remove it from the global list. */
1803 	mutex_enter(&pool_head_lock);
1804 	while (pc->pc_refcnt != 0)
1805 		cv_wait(&pool_busy, &pool_head_lock);
1806 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1807 	mutex_exit(&pool_head_lock);
1808 
1809 	/* First, invalidate the entire cache. */
1810 	pool_cache_invalidate(pc);
1811 
1812 	/* Disassociate it from the pool. */
1813 	mutex_enter(&pp->pr_lock);
1814 	pp->pr_cache = NULL;
1815 	mutex_exit(&pp->pr_lock);
1816 
1817 	/* Destroy per-CPU data */
1818 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1819 		pool_cache_invalidate_cpu(pc, i);
1820 
1821 	/* Finally, destroy it. */
1822 	mutex_destroy(&pc->pc_lock);
1823 	pool_destroy(pp);
1824 }
1825 
1826 /*
1827  * pool_cache_cpu_init1:
1828  *
1829  *	Called for each pool_cache whenever a new CPU is attached.
1830  */
1831 static void
1832 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1833 {
1834 	pool_cache_cpu_t *cc;
1835 	int index;
1836 
1837 	index = ci->ci_index;
1838 
1839 	KASSERT(index < __arraycount(pc->pc_cpus));
1840 
1841 	if ((cc = pc->pc_cpus[index]) != NULL) {
1842 		KASSERT(cc->cc_cpuindex == index);
1843 		return;
1844 	}
1845 
1846 	/*
1847 	 * The first CPU is 'free'.  This needs to be the case for
1848 	 * bootstrap - we may not be able to allocate yet.
1849 	 */
1850 	if (pc->pc_ncpu == 0) {
1851 		cc = &pc->pc_cpu0;
1852 		pc->pc_ncpu = 1;
1853 	} else {
1854 		mutex_enter(&pc->pc_lock);
1855 		pc->pc_ncpu++;
1856 		mutex_exit(&pc->pc_lock);
1857 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1858 	}
1859 
1860 	cc->cc_ipl = pc->pc_pool.pr_ipl;
1861 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1862 	cc->cc_cache = pc;
1863 	cc->cc_cpuindex = index;
1864 	cc->cc_hits = 0;
1865 	cc->cc_misses = 0;
1866 	cc->cc_current = __UNCONST(&pcg_dummy);
1867 	cc->cc_previous = __UNCONST(&pcg_dummy);
1868 
1869 	pc->pc_cpus[index] = cc;
1870 }
1871 
1872 /*
1873  * pool_cache_cpu_init:
1874  *
1875  *	Called whenever a new CPU is attached.
1876  */
1877 void
1878 pool_cache_cpu_init(struct cpu_info *ci)
1879 {
1880 	pool_cache_t pc;
1881 
1882 	mutex_enter(&pool_head_lock);
1883 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1884 		pc->pc_refcnt++;
1885 		mutex_exit(&pool_head_lock);
1886 
1887 		pool_cache_cpu_init1(ci, pc);
1888 
1889 		mutex_enter(&pool_head_lock);
1890 		pc->pc_refcnt--;
1891 		cv_broadcast(&pool_busy);
1892 	}
1893 	mutex_exit(&pool_head_lock);
1894 }
1895 
1896 /*
1897  * pool_cache_reclaim:
1898  *
1899  *	Reclaim memory from a pool cache.
1900  */
1901 bool
1902 pool_cache_reclaim(pool_cache_t pc)
1903 {
1904 
1905 	return pool_reclaim(&pc->pc_pool);
1906 }
1907 
1908 static void
1909 pool_cache_destruct_object1(pool_cache_t pc, void *object)
1910 {
1911 
1912 	(*pc->pc_dtor)(pc->pc_arg, object);
1913 	pool_put(&pc->pc_pool, object);
1914 }
1915 
1916 /*
1917  * pool_cache_destruct_object:
1918  *
1919  *	Force destruction of an object and its release back into
1920  *	the pool.
1921  */
1922 void
1923 pool_cache_destruct_object(pool_cache_t pc, void *object)
1924 {
1925 
1926 	FREECHECK_IN(&pc->pc_freecheck, object);
1927 
1928 	pool_cache_destruct_object1(pc, object);
1929 }
1930 
1931 /*
1932  * pool_cache_invalidate_groups:
1933  *
1934  *	Invalidate a chain of groups and destruct all objects.
1935  */
1936 static void
1937 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
1938 {
1939 	void *object;
1940 	pcg_t *next;
1941 	int i;
1942 
1943 	for (; pcg != NULL; pcg = next) {
1944 		next = pcg->pcg_next;
1945 
1946 		for (i = 0; i < pcg->pcg_avail; i++) {
1947 			object = pcg->pcg_objects[i].pcgo_va;
1948 			pool_cache_destruct_object1(pc, object);
1949 		}
1950 
1951 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
1952 			pool_put(&pcg_large_pool, pcg);
1953 		} else {
1954 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
1955 			pool_put(&pcg_normal_pool, pcg);
1956 		}
1957 	}
1958 }
1959 
1960 /*
1961  * pool_cache_invalidate:
1962  *
1963  *	Invalidate a pool cache (destruct and release all of the
1964  *	cached objects).  Does not reclaim objects from the pool.
1965  *
1966  *	Note: For pool caches that provide constructed objects, there
1967  *	is an assumption that another level of synchronization is occurring
1968  *	between the input to the constructor and the cache invalidation.
1969  *
1970  *	Invalidation is a costly process and should not be called from
1971  *	interrupt context.
1972  */
1973 void
1974 pool_cache_invalidate(pool_cache_t pc)
1975 {
1976 	uint64_t where;
1977 	pcg_t *full, *empty, *part;
1978 
1979 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1980 
1981 	if (ncpu < 2 || !mp_online) {
1982 		/*
1983 		 * We might be called early enough in the boot process
1984 		 * for the CPU data structures to not be fully initialized.
1985 		 * In this case, transfer the content of the local CPU's
1986 		 * cache back into global cache as only this CPU is currently
1987 		 * running.
1988 		 */
1989 		pool_cache_transfer(pc);
1990 	} else {
1991 		/*
1992 		 * Signal all CPUs that they must transfer their local
1993 		 * cache back to the global pool then wait for the xcall to
1994 		 * complete.
1995 		 */
1996 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
1997 		    pc, NULL);
1998 		xc_wait(where);
1999 	}
2000 
2001 	/* Empty pool caches, then invalidate objects */
2002 	mutex_enter(&pc->pc_lock);
2003 	full = pc->pc_fullgroups;
2004 	empty = pc->pc_emptygroups;
2005 	part = pc->pc_partgroups;
2006 	pc->pc_fullgroups = NULL;
2007 	pc->pc_emptygroups = NULL;
2008 	pc->pc_partgroups = NULL;
2009 	pc->pc_nfull = 0;
2010 	pc->pc_nempty = 0;
2011 	pc->pc_npart = 0;
2012 	mutex_exit(&pc->pc_lock);
2013 
2014 	pool_cache_invalidate_groups(pc, full);
2015 	pool_cache_invalidate_groups(pc, empty);
2016 	pool_cache_invalidate_groups(pc, part);
2017 }
2018 
2019 /*
2020  * pool_cache_invalidate_cpu:
2021  *
2022  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2023  *	identified by its associated index.
2024  *	It is caller's responsibility to ensure that no operation is
2025  *	taking place on this pool cache while doing this invalidation.
2026  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2027  *	pool cached objects from a CPU different from the one currently running
2028  *	may result in an undefined behaviour.
2029  */
2030 static void
2031 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2032 {
2033 	pool_cache_cpu_t *cc;
2034 	pcg_t *pcg;
2035 
2036 	if ((cc = pc->pc_cpus[index]) == NULL)
2037 		return;
2038 
2039 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2040 		pcg->pcg_next = NULL;
2041 		pool_cache_invalidate_groups(pc, pcg);
2042 	}
2043 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2044 		pcg->pcg_next = NULL;
2045 		pool_cache_invalidate_groups(pc, pcg);
2046 	}
2047 	if (cc != &pc->pc_cpu0)
2048 		pool_put(&cache_cpu_pool, cc);
2049 
2050 }
2051 
2052 void
2053 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2054 {
2055 
2056 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2057 }
2058 
2059 void
2060 pool_cache_setlowat(pool_cache_t pc, int n)
2061 {
2062 
2063 	pool_setlowat(&pc->pc_pool, n);
2064 }
2065 
2066 void
2067 pool_cache_sethiwat(pool_cache_t pc, int n)
2068 {
2069 
2070 	pool_sethiwat(&pc->pc_pool, n);
2071 }
2072 
2073 void
2074 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2075 {
2076 
2077 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2078 }
2079 
2080 static bool __noinline
2081 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2082 		    paddr_t *pap, int flags)
2083 {
2084 	pcg_t *pcg, *cur;
2085 	uint64_t ncsw;
2086 	pool_cache_t pc;
2087 	void *object;
2088 
2089 	KASSERT(cc->cc_current->pcg_avail == 0);
2090 	KASSERT(cc->cc_previous->pcg_avail == 0);
2091 
2092 	pc = cc->cc_cache;
2093 	cc->cc_misses++;
2094 
2095 	/*
2096 	 * Nothing was available locally.  Try and grab a group
2097 	 * from the cache.
2098 	 */
2099 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2100 		ncsw = curlwp->l_ncsw;
2101 		mutex_enter(&pc->pc_lock);
2102 		pc->pc_contended++;
2103 
2104 		/*
2105 		 * If we context switched while locking, then
2106 		 * our view of the per-CPU data is invalid:
2107 		 * retry.
2108 		 */
2109 		if (curlwp->l_ncsw != ncsw) {
2110 			mutex_exit(&pc->pc_lock);
2111 			return true;
2112 		}
2113 	}
2114 
2115 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2116 		/*
2117 		 * If there's a full group, release our empty
2118 		 * group back to the cache.  Install the full
2119 		 * group as cc_current and return.
2120 		 */
2121 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2122 			KASSERT(cur->pcg_avail == 0);
2123 			cur->pcg_next = pc->pc_emptygroups;
2124 			pc->pc_emptygroups = cur;
2125 			pc->pc_nempty++;
2126 		}
2127 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2128 		cc->cc_current = pcg;
2129 		pc->pc_fullgroups = pcg->pcg_next;
2130 		pc->pc_hits++;
2131 		pc->pc_nfull--;
2132 		mutex_exit(&pc->pc_lock);
2133 		return true;
2134 	}
2135 
2136 	/*
2137 	 * Nothing available locally or in cache.  Take the slow
2138 	 * path: fetch a new object from the pool and construct
2139 	 * it.
2140 	 */
2141 	pc->pc_misses++;
2142 	mutex_exit(&pc->pc_lock);
2143 	splx(s);
2144 
2145 	object = pool_get(&pc->pc_pool, flags);
2146 	*objectp = object;
2147 	if (__predict_false(object == NULL))
2148 		return false;
2149 
2150 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2151 		pool_put(&pc->pc_pool, object);
2152 		*objectp = NULL;
2153 		return false;
2154 	}
2155 
2156 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2157 	    (pc->pc_pool.pr_align - 1)) == 0);
2158 
2159 	if (pap != NULL) {
2160 #ifdef POOL_VTOPHYS
2161 		*pap = POOL_VTOPHYS(object);
2162 #else
2163 		*pap = POOL_PADDR_INVALID;
2164 #endif
2165 	}
2166 
2167 	FREECHECK_OUT(&pc->pc_freecheck, object);
2168 	pool_redzone_fill(&pc->pc_pool, object);
2169 	return false;
2170 }
2171 
2172 /*
2173  * pool_cache_get{,_paddr}:
2174  *
2175  *	Get an object from a pool cache (optionally returning
2176  *	the physical address of the object).
2177  */
2178 void *
2179 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2180 {
2181 	pool_cache_cpu_t *cc;
2182 	pcg_t *pcg;
2183 	void *object;
2184 	int s;
2185 
2186 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2187 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2188 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
2189 	    pc->pc_pool.pr_wchan);
2190 
2191 	if (flags & PR_WAITOK) {
2192 		ASSERT_SLEEPABLE();
2193 	}
2194 
2195 	/* Lock out interrupts and disable preemption. */
2196 	s = splvm();
2197 	while (/* CONSTCOND */ true) {
2198 		/* Try and allocate an object from the current group. */
2199 		cc = pc->pc_cpus[curcpu()->ci_index];
2200 		KASSERT(cc->cc_cache == pc);
2201 	 	pcg = cc->cc_current;
2202 		if (__predict_true(pcg->pcg_avail > 0)) {
2203 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2204 			if (__predict_false(pap != NULL))
2205 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2206 #if defined(DIAGNOSTIC)
2207 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2208 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2209 			KASSERT(object != NULL);
2210 #endif
2211 			cc->cc_hits++;
2212 			splx(s);
2213 			FREECHECK_OUT(&pc->pc_freecheck, object);
2214 			pool_redzone_fill(&pc->pc_pool, object);
2215 			return object;
2216 		}
2217 
2218 		/*
2219 		 * That failed.  If the previous group isn't empty, swap
2220 		 * it with the current group and allocate from there.
2221 		 */
2222 		pcg = cc->cc_previous;
2223 		if (__predict_true(pcg->pcg_avail > 0)) {
2224 			cc->cc_previous = cc->cc_current;
2225 			cc->cc_current = pcg;
2226 			continue;
2227 		}
2228 
2229 		/*
2230 		 * Can't allocate from either group: try the slow path.
2231 		 * If get_slow() allocated an object for us, or if
2232 		 * no more objects are available, it will return false.
2233 		 * Otherwise, we need to retry.
2234 		 */
2235 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2236 			break;
2237 	}
2238 
2239 	return object;
2240 }
2241 
2242 static bool __noinline
2243 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2244 {
2245 	struct lwp *l = curlwp;
2246 	pcg_t *pcg, *cur;
2247 	uint64_t ncsw;
2248 	pool_cache_t pc;
2249 
2250 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2251 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2252 
2253 	pc = cc->cc_cache;
2254 	pcg = NULL;
2255 	cc->cc_misses++;
2256 	ncsw = l->l_ncsw;
2257 
2258 	/*
2259 	 * If there are no empty groups in the cache then allocate one
2260 	 * while still unlocked.
2261 	 */
2262 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2263 		if (__predict_true(!pool_cache_disable)) {
2264 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2265 		}
2266 		/*
2267 		 * If pool_get() blocked, then our view of
2268 		 * the per-CPU data is invalid: retry.
2269 		 */
2270 		if (__predict_false(l->l_ncsw != ncsw)) {
2271 			if (pcg != NULL) {
2272 				pool_put(pc->pc_pcgpool, pcg);
2273 			}
2274 			return true;
2275 		}
2276 		if (__predict_true(pcg != NULL)) {
2277 			pcg->pcg_avail = 0;
2278 			pcg->pcg_size = pc->pc_pcgsize;
2279 		}
2280 	}
2281 
2282 	/* Lock the cache. */
2283 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2284 		mutex_enter(&pc->pc_lock);
2285 		pc->pc_contended++;
2286 
2287 		/*
2288 		 * If we context switched while locking, then our view of
2289 		 * the per-CPU data is invalid: retry.
2290 		 */
2291 		if (__predict_false(l->l_ncsw != ncsw)) {
2292 			mutex_exit(&pc->pc_lock);
2293 			if (pcg != NULL) {
2294 				pool_put(pc->pc_pcgpool, pcg);
2295 			}
2296 			return true;
2297 		}
2298 	}
2299 
2300 	/* If there are no empty groups in the cache then allocate one. */
2301 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2302 		pcg = pc->pc_emptygroups;
2303 		pc->pc_emptygroups = pcg->pcg_next;
2304 		pc->pc_nempty--;
2305 	}
2306 
2307 	/*
2308 	 * If there's a empty group, release our full group back
2309 	 * to the cache.  Install the empty group to the local CPU
2310 	 * and return.
2311 	 */
2312 	if (pcg != NULL) {
2313 		KASSERT(pcg->pcg_avail == 0);
2314 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2315 			cc->cc_previous = pcg;
2316 		} else {
2317 			cur = cc->cc_current;
2318 			if (__predict_true(cur != &pcg_dummy)) {
2319 				KASSERT(cur->pcg_avail == cur->pcg_size);
2320 				cur->pcg_next = pc->pc_fullgroups;
2321 				pc->pc_fullgroups = cur;
2322 				pc->pc_nfull++;
2323 			}
2324 			cc->cc_current = pcg;
2325 		}
2326 		pc->pc_hits++;
2327 		mutex_exit(&pc->pc_lock);
2328 		return true;
2329 	}
2330 
2331 	/*
2332 	 * Nothing available locally or in cache, and we didn't
2333 	 * allocate an empty group.  Take the slow path and destroy
2334 	 * the object here and now.
2335 	 */
2336 	pc->pc_misses++;
2337 	mutex_exit(&pc->pc_lock);
2338 	splx(s);
2339 	pool_cache_destruct_object(pc, object);
2340 
2341 	return false;
2342 }
2343 
2344 /*
2345  * pool_cache_put{,_paddr}:
2346  *
2347  *	Put an object back to the pool cache (optionally caching the
2348  *	physical address of the object).
2349  */
2350 void
2351 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2352 {
2353 	pool_cache_cpu_t *cc;
2354 	pcg_t *pcg;
2355 	int s;
2356 
2357 	KASSERT(object != NULL);
2358 	pool_redzone_check(&pc->pc_pool, object);
2359 	FREECHECK_IN(&pc->pc_freecheck, object);
2360 
2361 	/* Lock out interrupts and disable preemption. */
2362 	s = splvm();
2363 	while (/* CONSTCOND */ true) {
2364 		/* If the current group isn't full, release it there. */
2365 		cc = pc->pc_cpus[curcpu()->ci_index];
2366 		KASSERT(cc->cc_cache == pc);
2367 	 	pcg = cc->cc_current;
2368 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2369 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2370 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2371 			pcg->pcg_avail++;
2372 			cc->cc_hits++;
2373 			splx(s);
2374 			return;
2375 		}
2376 
2377 		/*
2378 		 * That failed.  If the previous group isn't full, swap
2379 		 * it with the current group and try again.
2380 		 */
2381 		pcg = cc->cc_previous;
2382 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2383 			cc->cc_previous = cc->cc_current;
2384 			cc->cc_current = pcg;
2385 			continue;
2386 		}
2387 
2388 		/*
2389 		 * Can't free to either group: try the slow path.
2390 		 * If put_slow() releases the object for us, it
2391 		 * will return false.  Otherwise we need to retry.
2392 		 */
2393 		if (!pool_cache_put_slow(cc, s, object))
2394 			break;
2395 	}
2396 }
2397 
2398 /*
2399  * pool_cache_transfer:
2400  *
2401  *	Transfer objects from the per-CPU cache to the global cache.
2402  *	Run within a cross-call thread.
2403  */
2404 static void
2405 pool_cache_transfer(pool_cache_t pc)
2406 {
2407 	pool_cache_cpu_t *cc;
2408 	pcg_t *prev, *cur, **list;
2409 	int s;
2410 
2411 	s = splvm();
2412 	mutex_enter(&pc->pc_lock);
2413 	cc = pc->pc_cpus[curcpu()->ci_index];
2414 	cur = cc->cc_current;
2415 	cc->cc_current = __UNCONST(&pcg_dummy);
2416 	prev = cc->cc_previous;
2417 	cc->cc_previous = __UNCONST(&pcg_dummy);
2418 	if (cur != &pcg_dummy) {
2419 		if (cur->pcg_avail == cur->pcg_size) {
2420 			list = &pc->pc_fullgroups;
2421 			pc->pc_nfull++;
2422 		} else if (cur->pcg_avail == 0) {
2423 			list = &pc->pc_emptygroups;
2424 			pc->pc_nempty++;
2425 		} else {
2426 			list = &pc->pc_partgroups;
2427 			pc->pc_npart++;
2428 		}
2429 		cur->pcg_next = *list;
2430 		*list = cur;
2431 	}
2432 	if (prev != &pcg_dummy) {
2433 		if (prev->pcg_avail == prev->pcg_size) {
2434 			list = &pc->pc_fullgroups;
2435 			pc->pc_nfull++;
2436 		} else if (prev->pcg_avail == 0) {
2437 			list = &pc->pc_emptygroups;
2438 			pc->pc_nempty++;
2439 		} else {
2440 			list = &pc->pc_partgroups;
2441 			pc->pc_npart++;
2442 		}
2443 		prev->pcg_next = *list;
2444 		*list = prev;
2445 	}
2446 	mutex_exit(&pc->pc_lock);
2447 	splx(s);
2448 }
2449 
2450 /*
2451  * Pool backend allocators.
2452  *
2453  * Each pool has a backend allocator that handles allocation, deallocation,
2454  * and any additional draining that might be needed.
2455  *
2456  * We provide two standard allocators:
2457  *
2458  *	pool_allocator_kmem - the default when no allocator is specified
2459  *
2460  *	pool_allocator_nointr - used for pools that will not be accessed
2461  *	in interrupt context.
2462  */
2463 void	*pool_page_alloc(struct pool *, int);
2464 void	pool_page_free(struct pool *, void *);
2465 
2466 #ifdef POOL_SUBPAGE
2467 struct pool_allocator pool_allocator_kmem_fullpage = {
2468 	.pa_alloc = pool_page_alloc,
2469 	.pa_free = pool_page_free,
2470 	.pa_pagesz = 0
2471 };
2472 #else
2473 struct pool_allocator pool_allocator_kmem = {
2474 	.pa_alloc = pool_page_alloc,
2475 	.pa_free = pool_page_free,
2476 	.pa_pagesz = 0
2477 };
2478 #endif
2479 
2480 #ifdef POOL_SUBPAGE
2481 struct pool_allocator pool_allocator_nointr_fullpage = {
2482 	.pa_alloc = pool_page_alloc,
2483 	.pa_free = pool_page_free,
2484 	.pa_pagesz = 0
2485 };
2486 #else
2487 struct pool_allocator pool_allocator_nointr = {
2488 	.pa_alloc = pool_page_alloc,
2489 	.pa_free = pool_page_free,
2490 	.pa_pagesz = 0
2491 };
2492 #endif
2493 
2494 #ifdef POOL_SUBPAGE
2495 void	*pool_subpage_alloc(struct pool *, int);
2496 void	pool_subpage_free(struct pool *, void *);
2497 
2498 struct pool_allocator pool_allocator_kmem = {
2499 	.pa_alloc = pool_subpage_alloc,
2500 	.pa_free = pool_subpage_free,
2501 	.pa_pagesz = POOL_SUBPAGE
2502 };
2503 
2504 struct pool_allocator pool_allocator_nointr = {
2505 	.pa_alloc = pool_subpage_alloc,
2506 	.pa_free = pool_subpage_free,
2507 	.pa_pagesz = POOL_SUBPAGE
2508 };
2509 #endif /* POOL_SUBPAGE */
2510 
2511 struct pool_allocator pool_allocator_big[] = {
2512 	{
2513 		.pa_alloc = pool_page_alloc,
2514 		.pa_free = pool_page_free,
2515 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2516 	},
2517 	{
2518 		.pa_alloc = pool_page_alloc,
2519 		.pa_free = pool_page_free,
2520 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2521 	},
2522 	{
2523 		.pa_alloc = pool_page_alloc,
2524 		.pa_free = pool_page_free,
2525 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2526 	},
2527 	{
2528 		.pa_alloc = pool_page_alloc,
2529 		.pa_free = pool_page_free,
2530 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2531 	},
2532 	{
2533 		.pa_alloc = pool_page_alloc,
2534 		.pa_free = pool_page_free,
2535 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2536 	},
2537 	{
2538 		.pa_alloc = pool_page_alloc,
2539 		.pa_free = pool_page_free,
2540 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2541 	},
2542 	{
2543 		.pa_alloc = pool_page_alloc,
2544 		.pa_free = pool_page_free,
2545 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2546 	},
2547 	{
2548 		.pa_alloc = pool_page_alloc,
2549 		.pa_free = pool_page_free,
2550 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2551 	}
2552 };
2553 
2554 static int
2555 pool_bigidx(size_t size)
2556 {
2557 	int i;
2558 
2559 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2560 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2561 			return i;
2562 	}
2563 	panic("pool item size %zu too large, use a custom allocator", size);
2564 }
2565 
2566 static void *
2567 pool_allocator_alloc(struct pool *pp, int flags)
2568 {
2569 	struct pool_allocator *pa = pp->pr_alloc;
2570 	void *res;
2571 
2572 	res = (*pa->pa_alloc)(pp, flags);
2573 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2574 		/*
2575 		 * We only run the drain hook here if PR_NOWAIT.
2576 		 * In other cases, the hook will be run in
2577 		 * pool_reclaim().
2578 		 */
2579 		if (pp->pr_drain_hook != NULL) {
2580 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2581 			res = (*pa->pa_alloc)(pp, flags);
2582 		}
2583 	}
2584 	return res;
2585 }
2586 
2587 static void
2588 pool_allocator_free(struct pool *pp, void *v)
2589 {
2590 	struct pool_allocator *pa = pp->pr_alloc;
2591 
2592 	(*pa->pa_free)(pp, v);
2593 }
2594 
2595 void *
2596 pool_page_alloc(struct pool *pp, int flags)
2597 {
2598 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2599 	vmem_addr_t va;
2600 	int ret;
2601 
2602 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2603 	    vflags | VM_INSTANTFIT, &va);
2604 
2605 	return ret ? NULL : (void *)va;
2606 }
2607 
2608 void
2609 pool_page_free(struct pool *pp, void *v)
2610 {
2611 
2612 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2613 }
2614 
2615 static void *
2616 pool_page_alloc_meta(struct pool *pp, int flags)
2617 {
2618 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2619 	vmem_addr_t va;
2620 	int ret;
2621 
2622 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2623 	    vflags | VM_INSTANTFIT, &va);
2624 
2625 	return ret ? NULL : (void *)va;
2626 }
2627 
2628 static void
2629 pool_page_free_meta(struct pool *pp, void *v)
2630 {
2631 
2632 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2633 }
2634 
2635 #ifdef POOL_REDZONE
2636 #if defined(_LP64)
2637 # define PRIME 0x9e37fffffffc0000UL
2638 #else /* defined(_LP64) */
2639 # define PRIME 0x9e3779b1
2640 #endif /* defined(_LP64) */
2641 #define STATIC_BYTE	0xFE
2642 CTASSERT(POOL_REDZONE_SIZE > 1);
2643 
2644 static inline uint8_t
2645 pool_pattern_generate(const void *p)
2646 {
2647 	return (uint8_t)(((uintptr_t)p) * PRIME
2648 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2649 }
2650 
2651 static void
2652 pool_redzone_init(struct pool *pp, size_t requested_size)
2653 {
2654 	size_t nsz;
2655 
2656 	if (pp->pr_roflags & PR_NOTOUCH) {
2657 		pp->pr_reqsize = 0;
2658 		pp->pr_redzone = false;
2659 		return;
2660 	}
2661 
2662 	/*
2663 	 * We may have extended the requested size earlier; check if
2664 	 * there's naturally space in the padding for a red zone.
2665 	 */
2666 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
2667 		pp->pr_reqsize = requested_size;
2668 		pp->pr_redzone = true;
2669 		return;
2670 	}
2671 
2672 	/*
2673 	 * No space in the natural padding; check if we can extend a
2674 	 * bit the size of the pool.
2675 	 */
2676 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
2677 	if (nsz <= pp->pr_alloc->pa_pagesz) {
2678 		/* Ok, we can */
2679 		pp->pr_size = nsz;
2680 		pp->pr_reqsize = requested_size;
2681 		pp->pr_redzone = true;
2682 	} else {
2683 		/* No space for a red zone... snif :'( */
2684 		pp->pr_reqsize = 0;
2685 		pp->pr_redzone = false;
2686 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2687 	}
2688 }
2689 
2690 static void
2691 pool_redzone_fill(struct pool *pp, void *p)
2692 {
2693 	uint8_t *cp, pat;
2694 	const uint8_t *ep;
2695 
2696 	if (!pp->pr_redzone)
2697 		return;
2698 
2699 	cp = (uint8_t *)p + pp->pr_reqsize;
2700 	ep = cp + POOL_REDZONE_SIZE;
2701 
2702 	/*
2703 	 * We really don't want the first byte of the red zone to be '\0';
2704 	 * an off-by-one in a string may not be properly detected.
2705 	 */
2706 	pat = pool_pattern_generate(cp);
2707 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
2708 	cp++;
2709 
2710 	while (cp < ep) {
2711 		*cp = pool_pattern_generate(cp);
2712 		cp++;
2713 	}
2714 }
2715 
2716 static void
2717 pool_redzone_check(struct pool *pp, void *p)
2718 {
2719 	uint8_t *cp, pat, expected;
2720 	const uint8_t *ep;
2721 
2722 	if (!pp->pr_redzone)
2723 		return;
2724 
2725 	cp = (uint8_t *)p + pp->pr_reqsize;
2726 	ep = cp + POOL_REDZONE_SIZE;
2727 
2728 	pat = pool_pattern_generate(cp);
2729 	expected = (pat == '\0') ? STATIC_BYTE: pat;
2730 	if (expected != *cp) {
2731 		panic("%s: %p: 0x%02x != 0x%02x\n",
2732 		   __func__, cp, *cp, expected);
2733 	}
2734 	cp++;
2735 
2736 	while (cp < ep) {
2737 		expected = pool_pattern_generate(cp);
2738 		if (*cp != expected) {
2739 			panic("%s: %p: 0x%02x != 0x%02x\n",
2740 			   __func__, cp, *cp, expected);
2741 		}
2742 		cp++;
2743 	}
2744 }
2745 
2746 #endif /* POOL_REDZONE */
2747 
2748 
2749 #ifdef POOL_SUBPAGE
2750 /* Sub-page allocator, for machines with large hardware pages. */
2751 void *
2752 pool_subpage_alloc(struct pool *pp, int flags)
2753 {
2754 	return pool_get(&psppool, flags);
2755 }
2756 
2757 void
2758 pool_subpage_free(struct pool *pp, void *v)
2759 {
2760 	pool_put(&psppool, v);
2761 }
2762 
2763 #endif /* POOL_SUBPAGE */
2764 
2765 #if defined(DDB)
2766 static bool
2767 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2768 {
2769 
2770 	return (uintptr_t)ph->ph_page <= addr &&
2771 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2772 }
2773 
2774 static bool
2775 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2776 {
2777 
2778 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2779 }
2780 
2781 static bool
2782 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2783 {
2784 	int i;
2785 
2786 	if (pcg == NULL) {
2787 		return false;
2788 	}
2789 	for (i = 0; i < pcg->pcg_avail; i++) {
2790 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2791 			return true;
2792 		}
2793 	}
2794 	return false;
2795 }
2796 
2797 static bool
2798 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2799 {
2800 
2801 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2802 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2803 		pool_item_bitmap_t *bitmap =
2804 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2805 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2806 
2807 		return (*bitmap & mask) == 0;
2808 	} else {
2809 		struct pool_item *pi;
2810 
2811 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2812 			if (pool_in_item(pp, pi, addr)) {
2813 				return false;
2814 			}
2815 		}
2816 		return true;
2817 	}
2818 }
2819 
2820 void
2821 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2822 {
2823 	struct pool *pp;
2824 
2825 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2826 		struct pool_item_header *ph;
2827 		uintptr_t item;
2828 		bool allocated = true;
2829 		bool incache = false;
2830 		bool incpucache = false;
2831 		char cpucachestr[32];
2832 
2833 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2834 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2835 				if (pool_in_page(pp, ph, addr)) {
2836 					goto found;
2837 				}
2838 			}
2839 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2840 				if (pool_in_page(pp, ph, addr)) {
2841 					allocated =
2842 					    pool_allocated(pp, ph, addr);
2843 					goto found;
2844 				}
2845 			}
2846 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2847 				if (pool_in_page(pp, ph, addr)) {
2848 					allocated = false;
2849 					goto found;
2850 				}
2851 			}
2852 			continue;
2853 		} else {
2854 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
2855 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2856 				continue;
2857 			}
2858 			allocated = pool_allocated(pp, ph, addr);
2859 		}
2860 found:
2861 		if (allocated && pp->pr_cache) {
2862 			pool_cache_t pc = pp->pr_cache;
2863 			struct pool_cache_group *pcg;
2864 			int i;
2865 
2866 			for (pcg = pc->pc_fullgroups; pcg != NULL;
2867 			    pcg = pcg->pcg_next) {
2868 				if (pool_in_cg(pp, pcg, addr)) {
2869 					incache = true;
2870 					goto print;
2871 				}
2872 			}
2873 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2874 				pool_cache_cpu_t *cc;
2875 
2876 				if ((cc = pc->pc_cpus[i]) == NULL) {
2877 					continue;
2878 				}
2879 				if (pool_in_cg(pp, cc->cc_current, addr) ||
2880 				    pool_in_cg(pp, cc->cc_previous, addr)) {
2881 					struct cpu_info *ci =
2882 					    cpu_lookup(i);
2883 
2884 					incpucache = true;
2885 					snprintf(cpucachestr,
2886 					    sizeof(cpucachestr),
2887 					    "cached by CPU %u",
2888 					    ci->ci_index);
2889 					goto print;
2890 				}
2891 			}
2892 		}
2893 print:
2894 		item = (uintptr_t)ph->ph_page + ph->ph_off;
2895 		item = item + rounddown(addr - item, pp->pr_size);
2896 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2897 		    (void *)addr, item, (size_t)(addr - item),
2898 		    pp->pr_wchan,
2899 		    incpucache ? cpucachestr :
2900 		    incache ? "cached" : allocated ? "allocated" : "free");
2901 	}
2902 }
2903 #endif /* defined(DDB) */
2904 
2905 static int
2906 pool_sysctl(SYSCTLFN_ARGS)
2907 {
2908 	struct pool_sysctl data;
2909 	struct pool *pp;
2910 	struct pool_cache *pc;
2911 	pool_cache_cpu_t *cc;
2912 	int error;
2913 	size_t i, written;
2914 
2915 	if (oldp == NULL) {
2916 		*oldlenp = 0;
2917 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
2918 			*oldlenp += sizeof(data);
2919 		return 0;
2920 	}
2921 
2922 	memset(&data, 0, sizeof(data));
2923 	error = 0;
2924 	written = 0;
2925 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2926 		if (written + sizeof(data) > *oldlenp)
2927 			break;
2928 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
2929 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
2930 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
2931 #define COPY(field) data.field = pp->field
2932 		COPY(pr_size);
2933 
2934 		COPY(pr_itemsperpage);
2935 		COPY(pr_nitems);
2936 		COPY(pr_nout);
2937 		COPY(pr_hardlimit);
2938 		COPY(pr_npages);
2939 		COPY(pr_minpages);
2940 		COPY(pr_maxpages);
2941 
2942 		COPY(pr_nget);
2943 		COPY(pr_nfail);
2944 		COPY(pr_nput);
2945 		COPY(pr_npagealloc);
2946 		COPY(pr_npagefree);
2947 		COPY(pr_hiwat);
2948 		COPY(pr_nidle);
2949 #undef COPY
2950 
2951 		data.pr_cache_nmiss_pcpu = 0;
2952 		data.pr_cache_nhit_pcpu = 0;
2953 		if (pp->pr_cache) {
2954 			pc = pp->pr_cache;
2955 			data.pr_cache_meta_size = pc->pc_pcgsize;
2956 			data.pr_cache_nfull = pc->pc_nfull;
2957 			data.pr_cache_npartial = pc->pc_npart;
2958 			data.pr_cache_nempty = pc->pc_nempty;
2959 			data.pr_cache_ncontended = pc->pc_contended;
2960 			data.pr_cache_nmiss_global = pc->pc_misses;
2961 			data.pr_cache_nhit_global = pc->pc_hits;
2962 			for (i = 0; i < pc->pc_ncpu; ++i) {
2963 				cc = pc->pc_cpus[i];
2964 				if (cc == NULL)
2965 					continue;
2966 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
2967 				data.pr_cache_nhit_pcpu += cc->cc_hits;
2968 			}
2969 		} else {
2970 			data.pr_cache_meta_size = 0;
2971 			data.pr_cache_nfull = 0;
2972 			data.pr_cache_npartial = 0;
2973 			data.pr_cache_nempty = 0;
2974 			data.pr_cache_ncontended = 0;
2975 			data.pr_cache_nmiss_global = 0;
2976 			data.pr_cache_nhit_global = 0;
2977 		}
2978 
2979 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
2980 		if (error)
2981 			break;
2982 		written += sizeof(data);
2983 		oldp = (char *)oldp + sizeof(data);
2984 	}
2985 
2986 	*oldlenp = written;
2987 	return error;
2988 }
2989 
2990 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
2991 {
2992 	const struct sysctlnode *rnode = NULL;
2993 
2994 	sysctl_createv(clog, 0, NULL, &rnode,
2995 		       CTLFLAG_PERMANENT,
2996 		       CTLTYPE_STRUCT, "pool",
2997 		       SYSCTL_DESCR("Get pool statistics"),
2998 		       pool_sysctl, 0, NULL, 0,
2999 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3000 }
3001