1 /* $NetBSD: subr_pool.c,v 1.208 2017/06/08 04:00:01 chs Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 11 * Maxime Villard. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.208 2017/06/08 04:00:01 chs Exp $"); 37 38 #ifdef _KERNEL_OPT 39 #include "opt_ddb.h" 40 #include "opt_lockdebug.h" 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysctl.h> 46 #include <sys/bitops.h> 47 #include <sys/proc.h> 48 #include <sys/errno.h> 49 #include <sys/kernel.h> 50 #include <sys/vmem.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 #include <sys/debug.h> 54 #include <sys/lockdebug.h> 55 #include <sys/xcall.h> 56 #include <sys/cpu.h> 57 #include <sys/atomic.h> 58 59 #include <uvm/uvm_extern.h> 60 61 /* 62 * Pool resource management utility. 63 * 64 * Memory is allocated in pages which are split into pieces according to 65 * the pool item size. Each page is kept on one of three lists in the 66 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 67 * for empty, full and partially-full pages respectively. The individual 68 * pool items are on a linked list headed by `ph_itemlist' in each page 69 * header. The memory for building the page list is either taken from 70 * the allocated pages themselves (for small pool items) or taken from 71 * an internal pool of page headers (`phpool'). 72 */ 73 74 /* List of all pools. Non static as needed by 'vmstat -i' */ 75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 76 77 /* Private pool for page header structures */ 78 #define PHPOOL_MAX 8 79 static struct pool phpool[PHPOOL_MAX]; 80 #define PHPOOL_FREELIST_NELEM(idx) \ 81 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 82 83 #ifdef POOL_SUBPAGE 84 /* Pool of subpages for use by normal pools. */ 85 static struct pool psppool; 86 #endif 87 88 #ifdef POOL_REDZONE 89 # define POOL_REDZONE_SIZE 2 90 static void pool_redzone_init(struct pool *, size_t); 91 static void pool_redzone_fill(struct pool *, void *); 92 static void pool_redzone_check(struct pool *, void *); 93 #else 94 # define pool_redzone_init(pp, sz) /* NOTHING */ 95 # define pool_redzone_fill(pp, ptr) /* NOTHING */ 96 # define pool_redzone_check(pp, ptr) /* NOTHING */ 97 #endif 98 99 static void *pool_page_alloc_meta(struct pool *, int); 100 static void pool_page_free_meta(struct pool *, void *); 101 102 /* allocator for pool metadata */ 103 struct pool_allocator pool_allocator_meta = { 104 .pa_alloc = pool_page_alloc_meta, 105 .pa_free = pool_page_free_meta, 106 .pa_pagesz = 0 107 }; 108 109 #define POOL_ALLOCATOR_BIG_BASE 13 110 extern struct pool_allocator pool_allocator_big[]; 111 static int pool_bigidx(size_t); 112 113 /* # of seconds to retain page after last use */ 114 int pool_inactive_time = 10; 115 116 /* Next candidate for drainage (see pool_drain()) */ 117 static struct pool *drainpp; 118 119 /* This lock protects both pool_head and drainpp. */ 120 static kmutex_t pool_head_lock; 121 static kcondvar_t pool_busy; 122 123 /* This lock protects initialization of a potentially shared pool allocator */ 124 static kmutex_t pool_allocator_lock; 125 126 typedef uint32_t pool_item_bitmap_t; 127 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 128 #define BITMAP_MASK (BITMAP_SIZE - 1) 129 130 struct pool_item_header { 131 /* Page headers */ 132 LIST_ENTRY(pool_item_header) 133 ph_pagelist; /* pool page list */ 134 SPLAY_ENTRY(pool_item_header) 135 ph_node; /* Off-page page headers */ 136 void * ph_page; /* this page's address */ 137 uint32_t ph_time; /* last referenced */ 138 uint16_t ph_nmissing; /* # of chunks in use */ 139 uint16_t ph_off; /* start offset in page */ 140 union { 141 /* !PR_NOTOUCH */ 142 struct { 143 LIST_HEAD(, pool_item) 144 phu_itemlist; /* chunk list for this page */ 145 } phu_normal; 146 /* PR_NOTOUCH */ 147 struct { 148 pool_item_bitmap_t phu_bitmap[1]; 149 } phu_notouch; 150 } ph_u; 151 }; 152 #define ph_itemlist ph_u.phu_normal.phu_itemlist 153 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 154 155 struct pool_item { 156 #ifdef DIAGNOSTIC 157 u_int pi_magic; 158 #endif 159 #define PI_MAGIC 0xdeaddeadU 160 /* Other entries use only this list entry */ 161 LIST_ENTRY(pool_item) pi_list; 162 }; 163 164 #define POOL_NEEDS_CATCHUP(pp) \ 165 ((pp)->pr_nitems < (pp)->pr_minitems) 166 167 /* 168 * Pool cache management. 169 * 170 * Pool caches provide a way for constructed objects to be cached by the 171 * pool subsystem. This can lead to performance improvements by avoiding 172 * needless object construction/destruction; it is deferred until absolutely 173 * necessary. 174 * 175 * Caches are grouped into cache groups. Each cache group references up 176 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 177 * object from the pool, it calls the object's constructor and places it 178 * into a cache group. When a cache group frees an object back to the 179 * pool, it first calls the object's destructor. This allows the object 180 * to persist in constructed form while freed to the cache. 181 * 182 * The pool references each cache, so that when a pool is drained by the 183 * pagedaemon, it can drain each individual cache as well. Each time a 184 * cache is drained, the most idle cache group is freed to the pool in 185 * its entirety. 186 * 187 * Pool caches are layed on top of pools. By layering them, we can avoid 188 * the complexity of cache management for pools which would not benefit 189 * from it. 190 */ 191 192 static struct pool pcg_normal_pool; 193 static struct pool pcg_large_pool; 194 static struct pool cache_pool; 195 static struct pool cache_cpu_pool; 196 197 pool_cache_t pnbuf_cache; /* pathname buffer cache */ 198 199 /* List of all caches. */ 200 TAILQ_HEAD(,pool_cache) pool_cache_head = 201 TAILQ_HEAD_INITIALIZER(pool_cache_head); 202 203 int pool_cache_disable; /* global disable for caching */ 204 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 205 206 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 207 void *); 208 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 209 void **, paddr_t *, int); 210 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 211 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 212 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 213 static void pool_cache_transfer(pool_cache_t); 214 215 static int pool_catchup(struct pool *); 216 static void pool_prime_page(struct pool *, void *, 217 struct pool_item_header *); 218 static void pool_update_curpage(struct pool *); 219 220 static int pool_grow(struct pool *, int); 221 static void *pool_allocator_alloc(struct pool *, int); 222 static void pool_allocator_free(struct pool *, void *); 223 224 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 225 void (*)(const char *, ...) __printflike(1, 2)); 226 static void pool_print1(struct pool *, const char *, 227 void (*)(const char *, ...) __printflike(1, 2)); 228 229 static int pool_chk_page(struct pool *, const char *, 230 struct pool_item_header *); 231 232 static inline unsigned int 233 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 234 const void *v) 235 { 236 const char *cp = v; 237 unsigned int idx; 238 239 KASSERT(pp->pr_roflags & PR_NOTOUCH); 240 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 241 KASSERT(idx < pp->pr_itemsperpage); 242 return idx; 243 } 244 245 static inline void 246 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 247 void *obj) 248 { 249 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 250 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 251 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 252 253 KASSERT((*bitmap & mask) == 0); 254 *bitmap |= mask; 255 } 256 257 static inline void * 258 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 259 { 260 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 261 unsigned int idx; 262 int i; 263 264 for (i = 0; ; i++) { 265 int bit; 266 267 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 268 bit = ffs32(bitmap[i]); 269 if (bit) { 270 pool_item_bitmap_t mask; 271 272 bit--; 273 idx = (i * BITMAP_SIZE) + bit; 274 mask = 1 << bit; 275 KASSERT((bitmap[i] & mask) != 0); 276 bitmap[i] &= ~mask; 277 break; 278 } 279 } 280 KASSERT(idx < pp->pr_itemsperpage); 281 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 282 } 283 284 static inline void 285 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 286 { 287 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 288 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 289 int i; 290 291 for (i = 0; i < n; i++) { 292 bitmap[i] = (pool_item_bitmap_t)-1; 293 } 294 } 295 296 static inline int 297 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 298 { 299 300 /* 301 * we consider pool_item_header with smaller ph_page bigger. 302 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 303 */ 304 305 if (a->ph_page < b->ph_page) 306 return (1); 307 else if (a->ph_page > b->ph_page) 308 return (-1); 309 else 310 return (0); 311 } 312 313 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 314 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 315 316 static inline struct pool_item_header * 317 pr_find_pagehead_noalign(struct pool *pp, void *v) 318 { 319 struct pool_item_header *ph, tmp; 320 321 tmp.ph_page = (void *)(uintptr_t)v; 322 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 323 if (ph == NULL) { 324 ph = SPLAY_ROOT(&pp->pr_phtree); 325 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 326 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 327 } 328 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 329 } 330 331 return ph; 332 } 333 334 /* 335 * Return the pool page header based on item address. 336 */ 337 static inline struct pool_item_header * 338 pr_find_pagehead(struct pool *pp, void *v) 339 { 340 struct pool_item_header *ph, tmp; 341 342 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 343 ph = pr_find_pagehead_noalign(pp, v); 344 } else { 345 void *page = 346 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 347 348 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 349 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 350 } else { 351 tmp.ph_page = page; 352 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 353 } 354 } 355 356 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 357 ((char *)ph->ph_page <= (char *)v && 358 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 359 return ph; 360 } 361 362 static void 363 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 364 { 365 struct pool_item_header *ph; 366 367 while ((ph = LIST_FIRST(pq)) != NULL) { 368 LIST_REMOVE(ph, ph_pagelist); 369 pool_allocator_free(pp, ph->ph_page); 370 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 371 pool_put(pp->pr_phpool, ph); 372 } 373 } 374 375 /* 376 * Remove a page from the pool. 377 */ 378 static inline void 379 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 380 struct pool_pagelist *pq) 381 { 382 383 KASSERT(mutex_owned(&pp->pr_lock)); 384 385 /* 386 * If the page was idle, decrement the idle page count. 387 */ 388 if (ph->ph_nmissing == 0) { 389 KASSERT(pp->pr_nidle != 0); 390 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 391 "nitems=%u < itemsperpage=%u", 392 pp->pr_nitems, pp->pr_itemsperpage); 393 pp->pr_nidle--; 394 } 395 396 pp->pr_nitems -= pp->pr_itemsperpage; 397 398 /* 399 * Unlink the page from the pool and queue it for release. 400 */ 401 LIST_REMOVE(ph, ph_pagelist); 402 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 403 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 404 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 405 406 pp->pr_npages--; 407 pp->pr_npagefree++; 408 409 pool_update_curpage(pp); 410 } 411 412 /* 413 * Initialize all the pools listed in the "pools" link set. 414 */ 415 void 416 pool_subsystem_init(void) 417 { 418 size_t size; 419 int idx; 420 421 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 422 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 423 cv_init(&pool_busy, "poolbusy"); 424 425 /* 426 * Initialize private page header pool and cache magazine pool if we 427 * haven't done so yet. 428 */ 429 for (idx = 0; idx < PHPOOL_MAX; idx++) { 430 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 431 int nelem; 432 size_t sz; 433 434 nelem = PHPOOL_FREELIST_NELEM(idx); 435 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 436 "phpool-%d", nelem); 437 sz = sizeof(struct pool_item_header); 438 if (nelem) { 439 sz = offsetof(struct pool_item_header, 440 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 441 } 442 pool_init(&phpool[idx], sz, 0, 0, 0, 443 phpool_names[idx], &pool_allocator_meta, IPL_VM); 444 } 445 #ifdef POOL_SUBPAGE 446 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 447 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 448 #endif 449 450 size = sizeof(pcg_t) + 451 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 452 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 453 "pcgnormal", &pool_allocator_meta, IPL_VM); 454 455 size = sizeof(pcg_t) + 456 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 457 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 458 "pcglarge", &pool_allocator_meta, IPL_VM); 459 460 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 461 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 462 463 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 464 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 465 } 466 467 /* 468 * Initialize the given pool resource structure. 469 * 470 * We export this routine to allow other kernel parts to declare 471 * static pools that must be initialized before kmem(9) is available. 472 */ 473 void 474 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 475 const char *wchan, struct pool_allocator *palloc, int ipl) 476 { 477 struct pool *pp1; 478 size_t trysize, phsize, prsize; 479 int off, slack; 480 481 #ifdef DEBUG 482 if (__predict_true(!cold)) 483 mutex_enter(&pool_head_lock); 484 /* 485 * Check that the pool hasn't already been initialised and 486 * added to the list of all pools. 487 */ 488 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 489 if (pp == pp1) 490 panic("pool_init: pool %s already initialised", 491 wchan); 492 } 493 if (__predict_true(!cold)) 494 mutex_exit(&pool_head_lock); 495 #endif 496 497 if (palloc == NULL) 498 palloc = &pool_allocator_kmem; 499 #ifdef POOL_SUBPAGE 500 if (size > palloc->pa_pagesz) { 501 if (palloc == &pool_allocator_kmem) 502 palloc = &pool_allocator_kmem_fullpage; 503 else if (palloc == &pool_allocator_nointr) 504 palloc = &pool_allocator_nointr_fullpage; 505 } 506 #endif /* POOL_SUBPAGE */ 507 if (!cold) 508 mutex_enter(&pool_allocator_lock); 509 if (palloc->pa_refcnt++ == 0) { 510 if (palloc->pa_pagesz == 0) 511 palloc->pa_pagesz = PAGE_SIZE; 512 513 TAILQ_INIT(&palloc->pa_list); 514 515 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 516 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 517 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 518 } 519 if (!cold) 520 mutex_exit(&pool_allocator_lock); 521 522 if (align == 0) 523 align = ALIGN(1); 524 525 prsize = size; 526 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 527 prsize = sizeof(struct pool_item); 528 529 prsize = roundup(prsize, align); 530 KASSERTMSG((prsize <= palloc->pa_pagesz), 531 "pool_init: pool item size (%zu) larger than page size (%u)", 532 prsize, palloc->pa_pagesz); 533 534 /* 535 * Initialize the pool structure. 536 */ 537 LIST_INIT(&pp->pr_emptypages); 538 LIST_INIT(&pp->pr_fullpages); 539 LIST_INIT(&pp->pr_partpages); 540 pp->pr_cache = NULL; 541 pp->pr_curpage = NULL; 542 pp->pr_npages = 0; 543 pp->pr_minitems = 0; 544 pp->pr_minpages = 0; 545 pp->pr_maxpages = UINT_MAX; 546 pp->pr_roflags = flags; 547 pp->pr_flags = 0; 548 pp->pr_size = prsize; 549 pp->pr_align = align; 550 pp->pr_wchan = wchan; 551 pp->pr_alloc = palloc; 552 pp->pr_nitems = 0; 553 pp->pr_nout = 0; 554 pp->pr_hardlimit = UINT_MAX; 555 pp->pr_hardlimit_warning = NULL; 556 pp->pr_hardlimit_ratecap.tv_sec = 0; 557 pp->pr_hardlimit_ratecap.tv_usec = 0; 558 pp->pr_hardlimit_warning_last.tv_sec = 0; 559 pp->pr_hardlimit_warning_last.tv_usec = 0; 560 pp->pr_drain_hook = NULL; 561 pp->pr_drain_hook_arg = NULL; 562 pp->pr_freecheck = NULL; 563 pool_redzone_init(pp, size); 564 565 /* 566 * Decide whether to put the page header off page to avoid 567 * wasting too large a part of the page or too big item. 568 * Off-page page headers go on a hash table, so we can match 569 * a returned item with its header based on the page address. 570 * We use 1/16 of the page size and about 8 times of the item 571 * size as the threshold (XXX: tune) 572 * 573 * However, we'll put the header into the page if we can put 574 * it without wasting any items. 575 * 576 * Silently enforce `0 <= ioff < align'. 577 */ 578 pp->pr_itemoffset = ioff %= align; 579 /* See the comment below about reserved bytes. */ 580 trysize = palloc->pa_pagesz - ((align - ioff) % align); 581 phsize = ALIGN(sizeof(struct pool_item_header)); 582 if (pp->pr_roflags & PR_PHINPAGE || 583 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 584 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 585 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) { 586 /* Use the end of the page for the page header */ 587 pp->pr_roflags |= PR_PHINPAGE; 588 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 589 } else { 590 /* The page header will be taken from our page header pool */ 591 pp->pr_phoffset = 0; 592 off = palloc->pa_pagesz; 593 SPLAY_INIT(&pp->pr_phtree); 594 } 595 596 /* 597 * Alignment is to take place at `ioff' within the item. This means 598 * we must reserve up to `align - 1' bytes on the page to allow 599 * appropriate positioning of each item. 600 */ 601 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 602 KASSERT(pp->pr_itemsperpage != 0); 603 if ((pp->pr_roflags & PR_NOTOUCH)) { 604 int idx; 605 606 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 607 idx++) { 608 /* nothing */ 609 } 610 if (idx >= PHPOOL_MAX) { 611 /* 612 * if you see this panic, consider to tweak 613 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 614 */ 615 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 616 pp->pr_wchan, pp->pr_itemsperpage); 617 } 618 pp->pr_phpool = &phpool[idx]; 619 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 620 pp->pr_phpool = &phpool[0]; 621 } 622 #if defined(DIAGNOSTIC) 623 else { 624 pp->pr_phpool = NULL; 625 } 626 #endif 627 628 /* 629 * Use the slack between the chunks and the page header 630 * for "cache coloring". 631 */ 632 slack = off - pp->pr_itemsperpage * pp->pr_size; 633 pp->pr_maxcolor = (slack / align) * align; 634 pp->pr_curcolor = 0; 635 636 pp->pr_nget = 0; 637 pp->pr_nfail = 0; 638 pp->pr_nput = 0; 639 pp->pr_npagealloc = 0; 640 pp->pr_npagefree = 0; 641 pp->pr_hiwat = 0; 642 pp->pr_nidle = 0; 643 pp->pr_refcnt = 0; 644 645 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 646 cv_init(&pp->pr_cv, wchan); 647 pp->pr_ipl = ipl; 648 649 /* Insert into the list of all pools. */ 650 if (!cold) 651 mutex_enter(&pool_head_lock); 652 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 653 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 654 break; 655 } 656 if (pp1 == NULL) 657 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 658 else 659 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 660 if (!cold) 661 mutex_exit(&pool_head_lock); 662 663 /* Insert this into the list of pools using this allocator. */ 664 if (!cold) 665 mutex_enter(&palloc->pa_lock); 666 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 667 if (!cold) 668 mutex_exit(&palloc->pa_lock); 669 } 670 671 /* 672 * De-commision a pool resource. 673 */ 674 void 675 pool_destroy(struct pool *pp) 676 { 677 struct pool_pagelist pq; 678 struct pool_item_header *ph; 679 680 /* Remove from global pool list */ 681 mutex_enter(&pool_head_lock); 682 while (pp->pr_refcnt != 0) 683 cv_wait(&pool_busy, &pool_head_lock); 684 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 685 if (drainpp == pp) 686 drainpp = NULL; 687 mutex_exit(&pool_head_lock); 688 689 /* Remove this pool from its allocator's list of pools. */ 690 mutex_enter(&pp->pr_alloc->pa_lock); 691 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 692 mutex_exit(&pp->pr_alloc->pa_lock); 693 694 mutex_enter(&pool_allocator_lock); 695 if (--pp->pr_alloc->pa_refcnt == 0) 696 mutex_destroy(&pp->pr_alloc->pa_lock); 697 mutex_exit(&pool_allocator_lock); 698 699 mutex_enter(&pp->pr_lock); 700 701 KASSERT(pp->pr_cache == NULL); 702 KASSERTMSG((pp->pr_nout == 0), 703 "pool_destroy: pool busy: still out: %u", pp->pr_nout); 704 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 705 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 706 707 /* Remove all pages */ 708 LIST_INIT(&pq); 709 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 710 pr_rmpage(pp, ph, &pq); 711 712 mutex_exit(&pp->pr_lock); 713 714 pr_pagelist_free(pp, &pq); 715 cv_destroy(&pp->pr_cv); 716 mutex_destroy(&pp->pr_lock); 717 } 718 719 void 720 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 721 { 722 723 /* XXX no locking -- must be used just after pool_init() */ 724 KASSERTMSG((pp->pr_drain_hook == NULL), 725 "pool_set_drain_hook(%s): already set", pp->pr_wchan); 726 pp->pr_drain_hook = fn; 727 pp->pr_drain_hook_arg = arg; 728 } 729 730 static struct pool_item_header * 731 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 732 { 733 struct pool_item_header *ph; 734 735 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 736 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 737 else 738 ph = pool_get(pp->pr_phpool, flags); 739 740 return (ph); 741 } 742 743 /* 744 * Grab an item from the pool. 745 */ 746 void * 747 pool_get(struct pool *pp, int flags) 748 { 749 struct pool_item *pi; 750 struct pool_item_header *ph; 751 void *v; 752 753 KASSERTMSG((pp->pr_itemsperpage != 0), 754 "pool_get: pool '%s': pr_itemsperpage is zero, " 755 "pool not initialized?", pp->pr_wchan); 756 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 757 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 758 "pool '%s' is IPL_NONE, but called from interrupt context", 759 pp->pr_wchan); 760 if (flags & PR_WAITOK) { 761 ASSERT_SLEEPABLE(); 762 } 763 764 mutex_enter(&pp->pr_lock); 765 startover: 766 /* 767 * Check to see if we've reached the hard limit. If we have, 768 * and we can wait, then wait until an item has been returned to 769 * the pool. 770 */ 771 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 772 "pool_get: %s: crossed hard limit", pp->pr_wchan); 773 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 774 if (pp->pr_drain_hook != NULL) { 775 /* 776 * Since the drain hook is going to free things 777 * back to the pool, unlock, call the hook, re-lock, 778 * and check the hardlimit condition again. 779 */ 780 mutex_exit(&pp->pr_lock); 781 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 782 mutex_enter(&pp->pr_lock); 783 if (pp->pr_nout < pp->pr_hardlimit) 784 goto startover; 785 } 786 787 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 788 /* 789 * XXX: A warning isn't logged in this case. Should 790 * it be? 791 */ 792 pp->pr_flags |= PR_WANTED; 793 cv_wait(&pp->pr_cv, &pp->pr_lock); 794 goto startover; 795 } 796 797 /* 798 * Log a message that the hard limit has been hit. 799 */ 800 if (pp->pr_hardlimit_warning != NULL && 801 ratecheck(&pp->pr_hardlimit_warning_last, 802 &pp->pr_hardlimit_ratecap)) 803 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 804 805 pp->pr_nfail++; 806 807 mutex_exit(&pp->pr_lock); 808 return (NULL); 809 } 810 811 /* 812 * The convention we use is that if `curpage' is not NULL, then 813 * it points at a non-empty bucket. In particular, `curpage' 814 * never points at a page header which has PR_PHINPAGE set and 815 * has no items in its bucket. 816 */ 817 if ((ph = pp->pr_curpage) == NULL) { 818 int error; 819 820 KASSERTMSG((pp->pr_nitems == 0), 821 "pool_get: nitems inconsistent" 822 ": %s: curpage NULL, nitems %u", 823 pp->pr_wchan, pp->pr_nitems); 824 825 /* 826 * Call the back-end page allocator for more memory. 827 * Release the pool lock, as the back-end page allocator 828 * may block. 829 */ 830 error = pool_grow(pp, flags); 831 if (error != 0) { 832 /* 833 * We were unable to allocate a page or item 834 * header, but we released the lock during 835 * allocation, so perhaps items were freed 836 * back to the pool. Check for this case. 837 */ 838 if (pp->pr_curpage != NULL) 839 goto startover; 840 841 pp->pr_nfail++; 842 mutex_exit(&pp->pr_lock); 843 return (NULL); 844 } 845 846 /* Start the allocation process over. */ 847 goto startover; 848 } 849 if (pp->pr_roflags & PR_NOTOUCH) { 850 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 851 "pool_get: %s: page empty", pp->pr_wchan); 852 v = pr_item_notouch_get(pp, ph); 853 } else { 854 v = pi = LIST_FIRST(&ph->ph_itemlist); 855 if (__predict_false(v == NULL)) { 856 mutex_exit(&pp->pr_lock); 857 panic("pool_get: %s: page empty", pp->pr_wchan); 858 } 859 KASSERTMSG((pp->pr_nitems > 0), 860 "pool_get: nitems inconsistent" 861 ": %s: items on itemlist, nitems %u", 862 pp->pr_wchan, pp->pr_nitems); 863 KASSERTMSG((pi->pi_magic == PI_MAGIC), 864 "pool_get(%s): free list modified: " 865 "magic=%x; page %p; item addr %p", 866 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 867 868 /* 869 * Remove from item list. 870 */ 871 LIST_REMOVE(pi, pi_list); 872 } 873 pp->pr_nitems--; 874 pp->pr_nout++; 875 if (ph->ph_nmissing == 0) { 876 KASSERT(pp->pr_nidle > 0); 877 pp->pr_nidle--; 878 879 /* 880 * This page was previously empty. Move it to the list of 881 * partially-full pages. This page is already curpage. 882 */ 883 LIST_REMOVE(ph, ph_pagelist); 884 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 885 } 886 ph->ph_nmissing++; 887 if (ph->ph_nmissing == pp->pr_itemsperpage) { 888 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) || 889 LIST_EMPTY(&ph->ph_itemlist)), 890 "pool_get: %s: nmissing inconsistent", pp->pr_wchan); 891 /* 892 * This page is now full. Move it to the full list 893 * and select a new current page. 894 */ 895 LIST_REMOVE(ph, ph_pagelist); 896 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 897 pool_update_curpage(pp); 898 } 899 900 pp->pr_nget++; 901 902 /* 903 * If we have a low water mark and we are now below that low 904 * water mark, add more items to the pool. 905 */ 906 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 907 /* 908 * XXX: Should we log a warning? Should we set up a timeout 909 * to try again in a second or so? The latter could break 910 * a caller's assumptions about interrupt protection, etc. 911 */ 912 } 913 914 mutex_exit(&pp->pr_lock); 915 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 916 FREECHECK_OUT(&pp->pr_freecheck, v); 917 pool_redzone_fill(pp, v); 918 return (v); 919 } 920 921 /* 922 * Internal version of pool_put(). Pool is already locked/entered. 923 */ 924 static void 925 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 926 { 927 struct pool_item *pi = v; 928 struct pool_item_header *ph; 929 930 KASSERT(mutex_owned(&pp->pr_lock)); 931 pool_redzone_check(pp, v); 932 FREECHECK_IN(&pp->pr_freecheck, v); 933 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 934 935 KASSERTMSG((pp->pr_nout > 0), 936 "pool_put: pool %s: putting with none out", pp->pr_wchan); 937 938 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 939 panic("pool_put: %s: page header missing", pp->pr_wchan); 940 } 941 942 /* 943 * Return to item list. 944 */ 945 if (pp->pr_roflags & PR_NOTOUCH) { 946 pr_item_notouch_put(pp, ph, v); 947 } else { 948 #ifdef DIAGNOSTIC 949 pi->pi_magic = PI_MAGIC; 950 #endif 951 #ifdef DEBUG 952 { 953 int i, *ip = v; 954 955 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 956 *ip++ = PI_MAGIC; 957 } 958 } 959 #endif 960 961 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 962 } 963 KDASSERT(ph->ph_nmissing != 0); 964 ph->ph_nmissing--; 965 pp->pr_nput++; 966 pp->pr_nitems++; 967 pp->pr_nout--; 968 969 /* Cancel "pool empty" condition if it exists */ 970 if (pp->pr_curpage == NULL) 971 pp->pr_curpage = ph; 972 973 if (pp->pr_flags & PR_WANTED) { 974 pp->pr_flags &= ~PR_WANTED; 975 cv_broadcast(&pp->pr_cv); 976 } 977 978 /* 979 * If this page is now empty, do one of two things: 980 * 981 * (1) If we have more pages than the page high water mark, 982 * free the page back to the system. ONLY CONSIDER 983 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 984 * CLAIM. 985 * 986 * (2) Otherwise, move the page to the empty page list. 987 * 988 * Either way, select a new current page (so we use a partially-full 989 * page if one is available). 990 */ 991 if (ph->ph_nmissing == 0) { 992 pp->pr_nidle++; 993 if (pp->pr_npages > pp->pr_minpages && 994 pp->pr_npages > pp->pr_maxpages) { 995 pr_rmpage(pp, ph, pq); 996 } else { 997 LIST_REMOVE(ph, ph_pagelist); 998 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 999 1000 /* 1001 * Update the timestamp on the page. A page must 1002 * be idle for some period of time before it can 1003 * be reclaimed by the pagedaemon. This minimizes 1004 * ping-pong'ing for memory. 1005 * 1006 * note for 64-bit time_t: truncating to 32-bit is not 1007 * a problem for our usage. 1008 */ 1009 ph->ph_time = time_uptime; 1010 } 1011 pool_update_curpage(pp); 1012 } 1013 1014 /* 1015 * If the page was previously completely full, move it to the 1016 * partially-full list and make it the current page. The next 1017 * allocation will get the item from this page, instead of 1018 * further fragmenting the pool. 1019 */ 1020 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1021 LIST_REMOVE(ph, ph_pagelist); 1022 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1023 pp->pr_curpage = ph; 1024 } 1025 } 1026 1027 void 1028 pool_put(struct pool *pp, void *v) 1029 { 1030 struct pool_pagelist pq; 1031 1032 LIST_INIT(&pq); 1033 1034 mutex_enter(&pp->pr_lock); 1035 pool_do_put(pp, v, &pq); 1036 mutex_exit(&pp->pr_lock); 1037 1038 pr_pagelist_free(pp, &pq); 1039 } 1040 1041 /* 1042 * pool_grow: grow a pool by a page. 1043 * 1044 * => called with pool locked. 1045 * => unlock and relock the pool. 1046 * => return with pool locked. 1047 */ 1048 1049 static int 1050 pool_grow(struct pool *pp, int flags) 1051 { 1052 struct pool_item_header *ph = NULL; 1053 char *cp; 1054 1055 mutex_exit(&pp->pr_lock); 1056 cp = pool_allocator_alloc(pp, flags); 1057 if (__predict_true(cp != NULL)) { 1058 ph = pool_alloc_item_header(pp, cp, flags); 1059 } 1060 if (__predict_false(cp == NULL || ph == NULL)) { 1061 if (cp != NULL) { 1062 pool_allocator_free(pp, cp); 1063 } 1064 mutex_enter(&pp->pr_lock); 1065 return ENOMEM; 1066 } 1067 1068 mutex_enter(&pp->pr_lock); 1069 pool_prime_page(pp, cp, ph); 1070 pp->pr_npagealloc++; 1071 return 0; 1072 } 1073 1074 /* 1075 * Add N items to the pool. 1076 */ 1077 int 1078 pool_prime(struct pool *pp, int n) 1079 { 1080 int newpages; 1081 int error = 0; 1082 1083 mutex_enter(&pp->pr_lock); 1084 1085 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1086 1087 while (newpages-- > 0) { 1088 error = pool_grow(pp, PR_NOWAIT); 1089 if (error) { 1090 break; 1091 } 1092 pp->pr_minpages++; 1093 } 1094 1095 if (pp->pr_minpages >= pp->pr_maxpages) 1096 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1097 1098 mutex_exit(&pp->pr_lock); 1099 return error; 1100 } 1101 1102 /* 1103 * Add a page worth of items to the pool. 1104 * 1105 * Note, we must be called with the pool descriptor LOCKED. 1106 */ 1107 static void 1108 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1109 { 1110 struct pool_item *pi; 1111 void *cp = storage; 1112 const unsigned int align = pp->pr_align; 1113 const unsigned int ioff = pp->pr_itemoffset; 1114 int n; 1115 1116 KASSERT(mutex_owned(&pp->pr_lock)); 1117 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1118 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1119 "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp); 1120 1121 /* 1122 * Insert page header. 1123 */ 1124 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1125 LIST_INIT(&ph->ph_itemlist); 1126 ph->ph_page = storage; 1127 ph->ph_nmissing = 0; 1128 ph->ph_time = time_uptime; 1129 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1130 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1131 1132 pp->pr_nidle++; 1133 1134 /* 1135 * Color this page. 1136 */ 1137 ph->ph_off = pp->pr_curcolor; 1138 cp = (char *)cp + ph->ph_off; 1139 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1140 pp->pr_curcolor = 0; 1141 1142 /* 1143 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1144 */ 1145 if (ioff != 0) 1146 cp = (char *)cp + align - ioff; 1147 1148 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1149 1150 /* 1151 * Insert remaining chunks on the bucket list. 1152 */ 1153 n = pp->pr_itemsperpage; 1154 pp->pr_nitems += n; 1155 1156 if (pp->pr_roflags & PR_NOTOUCH) { 1157 pr_item_notouch_init(pp, ph); 1158 } else { 1159 while (n--) { 1160 pi = (struct pool_item *)cp; 1161 1162 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1163 1164 /* Insert on page list */ 1165 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1166 #ifdef DIAGNOSTIC 1167 pi->pi_magic = PI_MAGIC; 1168 #endif 1169 cp = (char *)cp + pp->pr_size; 1170 1171 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1172 } 1173 } 1174 1175 /* 1176 * If the pool was depleted, point at the new page. 1177 */ 1178 if (pp->pr_curpage == NULL) 1179 pp->pr_curpage = ph; 1180 1181 if (++pp->pr_npages > pp->pr_hiwat) 1182 pp->pr_hiwat = pp->pr_npages; 1183 } 1184 1185 /* 1186 * Used by pool_get() when nitems drops below the low water mark. This 1187 * is used to catch up pr_nitems with the low water mark. 1188 * 1189 * Note 1, we never wait for memory here, we let the caller decide what to do. 1190 * 1191 * Note 2, we must be called with the pool already locked, and we return 1192 * with it locked. 1193 */ 1194 static int 1195 pool_catchup(struct pool *pp) 1196 { 1197 int error = 0; 1198 1199 while (POOL_NEEDS_CATCHUP(pp)) { 1200 error = pool_grow(pp, PR_NOWAIT); 1201 if (error) { 1202 break; 1203 } 1204 } 1205 return error; 1206 } 1207 1208 static void 1209 pool_update_curpage(struct pool *pp) 1210 { 1211 1212 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1213 if (pp->pr_curpage == NULL) { 1214 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1215 } 1216 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1217 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1218 } 1219 1220 void 1221 pool_setlowat(struct pool *pp, int n) 1222 { 1223 1224 mutex_enter(&pp->pr_lock); 1225 1226 pp->pr_minitems = n; 1227 pp->pr_minpages = (n == 0) 1228 ? 0 1229 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1230 1231 /* Make sure we're caught up with the newly-set low water mark. */ 1232 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1233 /* 1234 * XXX: Should we log a warning? Should we set up a timeout 1235 * to try again in a second or so? The latter could break 1236 * a caller's assumptions about interrupt protection, etc. 1237 */ 1238 } 1239 1240 mutex_exit(&pp->pr_lock); 1241 } 1242 1243 void 1244 pool_sethiwat(struct pool *pp, int n) 1245 { 1246 1247 mutex_enter(&pp->pr_lock); 1248 1249 pp->pr_maxpages = (n == 0) 1250 ? 0 1251 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1252 1253 mutex_exit(&pp->pr_lock); 1254 } 1255 1256 void 1257 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1258 { 1259 1260 mutex_enter(&pp->pr_lock); 1261 1262 pp->pr_hardlimit = n; 1263 pp->pr_hardlimit_warning = warnmess; 1264 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1265 pp->pr_hardlimit_warning_last.tv_sec = 0; 1266 pp->pr_hardlimit_warning_last.tv_usec = 0; 1267 1268 /* 1269 * In-line version of pool_sethiwat(), because we don't want to 1270 * release the lock. 1271 */ 1272 pp->pr_maxpages = (n == 0) 1273 ? 0 1274 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1275 1276 mutex_exit(&pp->pr_lock); 1277 } 1278 1279 /* 1280 * Release all complete pages that have not been used recently. 1281 * 1282 * Must not be called from interrupt context. 1283 */ 1284 int 1285 pool_reclaim(struct pool *pp) 1286 { 1287 struct pool_item_header *ph, *phnext; 1288 struct pool_pagelist pq; 1289 uint32_t curtime; 1290 bool klock; 1291 int rv; 1292 1293 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1294 1295 if (pp->pr_drain_hook != NULL) { 1296 /* 1297 * The drain hook must be called with the pool unlocked. 1298 */ 1299 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1300 } 1301 1302 /* 1303 * XXXSMP Because we do not want to cause non-MPSAFE code 1304 * to block. 1305 */ 1306 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1307 pp->pr_ipl == IPL_SOFTSERIAL) { 1308 KERNEL_LOCK(1, NULL); 1309 klock = true; 1310 } else 1311 klock = false; 1312 1313 /* Reclaim items from the pool's cache (if any). */ 1314 if (pp->pr_cache != NULL) 1315 pool_cache_invalidate(pp->pr_cache); 1316 1317 if (mutex_tryenter(&pp->pr_lock) == 0) { 1318 if (klock) { 1319 KERNEL_UNLOCK_ONE(NULL); 1320 } 1321 return (0); 1322 } 1323 1324 LIST_INIT(&pq); 1325 1326 curtime = time_uptime; 1327 1328 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1329 phnext = LIST_NEXT(ph, ph_pagelist); 1330 1331 /* Check our minimum page claim */ 1332 if (pp->pr_npages <= pp->pr_minpages) 1333 break; 1334 1335 KASSERT(ph->ph_nmissing == 0); 1336 if (curtime - ph->ph_time < pool_inactive_time) 1337 continue; 1338 1339 /* 1340 * If freeing this page would put us below 1341 * the low water mark, stop now. 1342 */ 1343 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1344 pp->pr_minitems) 1345 break; 1346 1347 pr_rmpage(pp, ph, &pq); 1348 } 1349 1350 mutex_exit(&pp->pr_lock); 1351 1352 if (LIST_EMPTY(&pq)) 1353 rv = 0; 1354 else { 1355 pr_pagelist_free(pp, &pq); 1356 rv = 1; 1357 } 1358 1359 if (klock) { 1360 KERNEL_UNLOCK_ONE(NULL); 1361 } 1362 1363 return (rv); 1364 } 1365 1366 /* 1367 * Drain pools, one at a time. The drained pool is returned within ppp. 1368 * 1369 * Note, must never be called from interrupt context. 1370 */ 1371 bool 1372 pool_drain(struct pool **ppp) 1373 { 1374 bool reclaimed; 1375 struct pool *pp; 1376 1377 KASSERT(!TAILQ_EMPTY(&pool_head)); 1378 1379 pp = NULL; 1380 1381 /* Find next pool to drain, and add a reference. */ 1382 mutex_enter(&pool_head_lock); 1383 do { 1384 if (drainpp == NULL) { 1385 drainpp = TAILQ_FIRST(&pool_head); 1386 } 1387 if (drainpp != NULL) { 1388 pp = drainpp; 1389 drainpp = TAILQ_NEXT(pp, pr_poollist); 1390 } 1391 /* 1392 * Skip completely idle pools. We depend on at least 1393 * one pool in the system being active. 1394 */ 1395 } while (pp == NULL || pp->pr_npages == 0); 1396 pp->pr_refcnt++; 1397 mutex_exit(&pool_head_lock); 1398 1399 /* Drain the cache (if any) and pool.. */ 1400 reclaimed = pool_reclaim(pp); 1401 1402 /* Finally, unlock the pool. */ 1403 mutex_enter(&pool_head_lock); 1404 pp->pr_refcnt--; 1405 cv_broadcast(&pool_busy); 1406 mutex_exit(&pool_head_lock); 1407 1408 if (ppp != NULL) 1409 *ppp = pp; 1410 1411 return reclaimed; 1412 } 1413 1414 /* 1415 * Diagnostic helpers. 1416 */ 1417 1418 void 1419 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1420 { 1421 struct pool *pp; 1422 1423 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1424 pool_printit(pp, modif, pr); 1425 } 1426 } 1427 1428 void 1429 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1430 { 1431 1432 if (pp == NULL) { 1433 (*pr)("Must specify a pool to print.\n"); 1434 return; 1435 } 1436 1437 pool_print1(pp, modif, pr); 1438 } 1439 1440 static void 1441 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1442 void (*pr)(const char *, ...)) 1443 { 1444 struct pool_item_header *ph; 1445 struct pool_item *pi __diagused; 1446 1447 LIST_FOREACH(ph, pl, ph_pagelist) { 1448 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1449 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1450 #ifdef DIAGNOSTIC 1451 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1452 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1453 if (pi->pi_magic != PI_MAGIC) { 1454 (*pr)("\t\t\titem %p, magic 0x%x\n", 1455 pi, pi->pi_magic); 1456 } 1457 } 1458 } 1459 #endif 1460 } 1461 } 1462 1463 static void 1464 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1465 { 1466 struct pool_item_header *ph; 1467 pool_cache_t pc; 1468 pcg_t *pcg; 1469 pool_cache_cpu_t *cc; 1470 uint64_t cpuhit, cpumiss; 1471 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1472 char c; 1473 1474 while ((c = *modif++) != '\0') { 1475 if (c == 'l') 1476 print_log = 1; 1477 if (c == 'p') 1478 print_pagelist = 1; 1479 if (c == 'c') 1480 print_cache = 1; 1481 } 1482 1483 if ((pc = pp->pr_cache) != NULL) { 1484 (*pr)("POOL CACHE"); 1485 } else { 1486 (*pr)("POOL"); 1487 } 1488 1489 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1490 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1491 pp->pr_roflags); 1492 (*pr)("\talloc %p\n", pp->pr_alloc); 1493 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1494 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1495 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1496 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1497 1498 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1499 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1500 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1501 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1502 1503 if (print_pagelist == 0) 1504 goto skip_pagelist; 1505 1506 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1507 (*pr)("\n\tempty page list:\n"); 1508 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1509 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1510 (*pr)("\n\tfull page list:\n"); 1511 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1512 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1513 (*pr)("\n\tpartial-page list:\n"); 1514 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1515 1516 if (pp->pr_curpage == NULL) 1517 (*pr)("\tno current page\n"); 1518 else 1519 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1520 1521 skip_pagelist: 1522 if (print_log == 0) 1523 goto skip_log; 1524 1525 (*pr)("\n"); 1526 1527 skip_log: 1528 1529 #define PR_GROUPLIST(pcg) \ 1530 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1531 for (i = 0; i < pcg->pcg_size; i++) { \ 1532 if (pcg->pcg_objects[i].pcgo_pa != \ 1533 POOL_PADDR_INVALID) { \ 1534 (*pr)("\t\t\t%p, 0x%llx\n", \ 1535 pcg->pcg_objects[i].pcgo_va, \ 1536 (unsigned long long) \ 1537 pcg->pcg_objects[i].pcgo_pa); \ 1538 } else { \ 1539 (*pr)("\t\t\t%p\n", \ 1540 pcg->pcg_objects[i].pcgo_va); \ 1541 } \ 1542 } 1543 1544 if (pc != NULL) { 1545 cpuhit = 0; 1546 cpumiss = 0; 1547 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1548 if ((cc = pc->pc_cpus[i]) == NULL) 1549 continue; 1550 cpuhit += cc->cc_hits; 1551 cpumiss += cc->cc_misses; 1552 } 1553 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1554 (*pr)("\tcache layer hits %llu misses %llu\n", 1555 pc->pc_hits, pc->pc_misses); 1556 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1557 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1558 pc->pc_contended); 1559 (*pr)("\tcache layer empty groups %u full groups %u\n", 1560 pc->pc_nempty, pc->pc_nfull); 1561 if (print_cache) { 1562 (*pr)("\tfull cache groups:\n"); 1563 for (pcg = pc->pc_fullgroups; pcg != NULL; 1564 pcg = pcg->pcg_next) { 1565 PR_GROUPLIST(pcg); 1566 } 1567 (*pr)("\tempty cache groups:\n"); 1568 for (pcg = pc->pc_emptygroups; pcg != NULL; 1569 pcg = pcg->pcg_next) { 1570 PR_GROUPLIST(pcg); 1571 } 1572 } 1573 } 1574 #undef PR_GROUPLIST 1575 } 1576 1577 static int 1578 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1579 { 1580 struct pool_item *pi; 1581 void *page; 1582 int n; 1583 1584 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1585 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1586 if (page != ph->ph_page && 1587 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1588 if (label != NULL) 1589 printf("%s: ", label); 1590 printf("pool(%p:%s): page inconsistency: page %p;" 1591 " at page head addr %p (p %p)\n", pp, 1592 pp->pr_wchan, ph->ph_page, 1593 ph, page); 1594 return 1; 1595 } 1596 } 1597 1598 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1599 return 0; 1600 1601 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1602 pi != NULL; 1603 pi = LIST_NEXT(pi,pi_list), n++) { 1604 1605 #ifdef DIAGNOSTIC 1606 if (pi->pi_magic != PI_MAGIC) { 1607 if (label != NULL) 1608 printf("%s: ", label); 1609 printf("pool(%s): free list modified: magic=%x;" 1610 " page %p; item ordinal %d; addr %p\n", 1611 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1612 n, pi); 1613 panic("pool"); 1614 } 1615 #endif 1616 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1617 continue; 1618 } 1619 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1620 if (page == ph->ph_page) 1621 continue; 1622 1623 if (label != NULL) 1624 printf("%s: ", label); 1625 printf("pool(%p:%s): page inconsistency: page %p;" 1626 " item ordinal %d; addr %p (p %p)\n", pp, 1627 pp->pr_wchan, ph->ph_page, 1628 n, pi, page); 1629 return 1; 1630 } 1631 return 0; 1632 } 1633 1634 1635 int 1636 pool_chk(struct pool *pp, const char *label) 1637 { 1638 struct pool_item_header *ph; 1639 int r = 0; 1640 1641 mutex_enter(&pp->pr_lock); 1642 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1643 r = pool_chk_page(pp, label, ph); 1644 if (r) { 1645 goto out; 1646 } 1647 } 1648 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1649 r = pool_chk_page(pp, label, ph); 1650 if (r) { 1651 goto out; 1652 } 1653 } 1654 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1655 r = pool_chk_page(pp, label, ph); 1656 if (r) { 1657 goto out; 1658 } 1659 } 1660 1661 out: 1662 mutex_exit(&pp->pr_lock); 1663 return (r); 1664 } 1665 1666 /* 1667 * pool_cache_init: 1668 * 1669 * Initialize a pool cache. 1670 */ 1671 pool_cache_t 1672 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 1673 const char *wchan, struct pool_allocator *palloc, int ipl, 1674 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 1675 { 1676 pool_cache_t pc; 1677 1678 pc = pool_get(&cache_pool, PR_WAITOK); 1679 if (pc == NULL) 1680 return NULL; 1681 1682 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 1683 palloc, ipl, ctor, dtor, arg); 1684 1685 return pc; 1686 } 1687 1688 /* 1689 * pool_cache_bootstrap: 1690 * 1691 * Kernel-private version of pool_cache_init(). The caller 1692 * provides initial storage. 1693 */ 1694 void 1695 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 1696 u_int align_offset, u_int flags, const char *wchan, 1697 struct pool_allocator *palloc, int ipl, 1698 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 1699 void *arg) 1700 { 1701 CPU_INFO_ITERATOR cii; 1702 pool_cache_t pc1; 1703 struct cpu_info *ci; 1704 struct pool *pp; 1705 1706 pp = &pc->pc_pool; 1707 if (palloc == NULL && ipl == IPL_NONE) { 1708 if (size > PAGE_SIZE) { 1709 int bigidx = pool_bigidx(size); 1710 1711 palloc = &pool_allocator_big[bigidx]; 1712 } else 1713 palloc = &pool_allocator_nointr; 1714 } 1715 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 1716 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 1717 1718 if (ctor == NULL) { 1719 ctor = (int (*)(void *, void *, int))nullop; 1720 } 1721 if (dtor == NULL) { 1722 dtor = (void (*)(void *, void *))nullop; 1723 } 1724 1725 pc->pc_emptygroups = NULL; 1726 pc->pc_fullgroups = NULL; 1727 pc->pc_partgroups = NULL; 1728 pc->pc_ctor = ctor; 1729 pc->pc_dtor = dtor; 1730 pc->pc_arg = arg; 1731 pc->pc_hits = 0; 1732 pc->pc_misses = 0; 1733 pc->pc_nempty = 0; 1734 pc->pc_npart = 0; 1735 pc->pc_nfull = 0; 1736 pc->pc_contended = 0; 1737 pc->pc_refcnt = 0; 1738 pc->pc_freecheck = NULL; 1739 1740 if ((flags & PR_LARGECACHE) != 0) { 1741 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 1742 pc->pc_pcgpool = &pcg_large_pool; 1743 } else { 1744 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 1745 pc->pc_pcgpool = &pcg_normal_pool; 1746 } 1747 1748 /* Allocate per-CPU caches. */ 1749 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 1750 pc->pc_ncpu = 0; 1751 if (ncpu < 2) { 1752 /* XXX For sparc: boot CPU is not attached yet. */ 1753 pool_cache_cpu_init1(curcpu(), pc); 1754 } else { 1755 for (CPU_INFO_FOREACH(cii, ci)) { 1756 pool_cache_cpu_init1(ci, pc); 1757 } 1758 } 1759 1760 /* Add to list of all pools. */ 1761 if (__predict_true(!cold)) 1762 mutex_enter(&pool_head_lock); 1763 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 1764 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 1765 break; 1766 } 1767 if (pc1 == NULL) 1768 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 1769 else 1770 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 1771 if (__predict_true(!cold)) 1772 mutex_exit(&pool_head_lock); 1773 1774 membar_sync(); 1775 pp->pr_cache = pc; 1776 } 1777 1778 /* 1779 * pool_cache_destroy: 1780 * 1781 * Destroy a pool cache. 1782 */ 1783 void 1784 pool_cache_destroy(pool_cache_t pc) 1785 { 1786 1787 pool_cache_bootstrap_destroy(pc); 1788 pool_put(&cache_pool, pc); 1789 } 1790 1791 /* 1792 * pool_cache_bootstrap_destroy: 1793 * 1794 * Destroy a pool cache. 1795 */ 1796 void 1797 pool_cache_bootstrap_destroy(pool_cache_t pc) 1798 { 1799 struct pool *pp = &pc->pc_pool; 1800 u_int i; 1801 1802 /* Remove it from the global list. */ 1803 mutex_enter(&pool_head_lock); 1804 while (pc->pc_refcnt != 0) 1805 cv_wait(&pool_busy, &pool_head_lock); 1806 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 1807 mutex_exit(&pool_head_lock); 1808 1809 /* First, invalidate the entire cache. */ 1810 pool_cache_invalidate(pc); 1811 1812 /* Disassociate it from the pool. */ 1813 mutex_enter(&pp->pr_lock); 1814 pp->pr_cache = NULL; 1815 mutex_exit(&pp->pr_lock); 1816 1817 /* Destroy per-CPU data */ 1818 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 1819 pool_cache_invalidate_cpu(pc, i); 1820 1821 /* Finally, destroy it. */ 1822 mutex_destroy(&pc->pc_lock); 1823 pool_destroy(pp); 1824 } 1825 1826 /* 1827 * pool_cache_cpu_init1: 1828 * 1829 * Called for each pool_cache whenever a new CPU is attached. 1830 */ 1831 static void 1832 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 1833 { 1834 pool_cache_cpu_t *cc; 1835 int index; 1836 1837 index = ci->ci_index; 1838 1839 KASSERT(index < __arraycount(pc->pc_cpus)); 1840 1841 if ((cc = pc->pc_cpus[index]) != NULL) { 1842 KASSERT(cc->cc_cpuindex == index); 1843 return; 1844 } 1845 1846 /* 1847 * The first CPU is 'free'. This needs to be the case for 1848 * bootstrap - we may not be able to allocate yet. 1849 */ 1850 if (pc->pc_ncpu == 0) { 1851 cc = &pc->pc_cpu0; 1852 pc->pc_ncpu = 1; 1853 } else { 1854 mutex_enter(&pc->pc_lock); 1855 pc->pc_ncpu++; 1856 mutex_exit(&pc->pc_lock); 1857 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 1858 } 1859 1860 cc->cc_ipl = pc->pc_pool.pr_ipl; 1861 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 1862 cc->cc_cache = pc; 1863 cc->cc_cpuindex = index; 1864 cc->cc_hits = 0; 1865 cc->cc_misses = 0; 1866 cc->cc_current = __UNCONST(&pcg_dummy); 1867 cc->cc_previous = __UNCONST(&pcg_dummy); 1868 1869 pc->pc_cpus[index] = cc; 1870 } 1871 1872 /* 1873 * pool_cache_cpu_init: 1874 * 1875 * Called whenever a new CPU is attached. 1876 */ 1877 void 1878 pool_cache_cpu_init(struct cpu_info *ci) 1879 { 1880 pool_cache_t pc; 1881 1882 mutex_enter(&pool_head_lock); 1883 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 1884 pc->pc_refcnt++; 1885 mutex_exit(&pool_head_lock); 1886 1887 pool_cache_cpu_init1(ci, pc); 1888 1889 mutex_enter(&pool_head_lock); 1890 pc->pc_refcnt--; 1891 cv_broadcast(&pool_busy); 1892 } 1893 mutex_exit(&pool_head_lock); 1894 } 1895 1896 /* 1897 * pool_cache_reclaim: 1898 * 1899 * Reclaim memory from a pool cache. 1900 */ 1901 bool 1902 pool_cache_reclaim(pool_cache_t pc) 1903 { 1904 1905 return pool_reclaim(&pc->pc_pool); 1906 } 1907 1908 static void 1909 pool_cache_destruct_object1(pool_cache_t pc, void *object) 1910 { 1911 1912 (*pc->pc_dtor)(pc->pc_arg, object); 1913 pool_put(&pc->pc_pool, object); 1914 } 1915 1916 /* 1917 * pool_cache_destruct_object: 1918 * 1919 * Force destruction of an object and its release back into 1920 * the pool. 1921 */ 1922 void 1923 pool_cache_destruct_object(pool_cache_t pc, void *object) 1924 { 1925 1926 FREECHECK_IN(&pc->pc_freecheck, object); 1927 1928 pool_cache_destruct_object1(pc, object); 1929 } 1930 1931 /* 1932 * pool_cache_invalidate_groups: 1933 * 1934 * Invalidate a chain of groups and destruct all objects. 1935 */ 1936 static void 1937 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 1938 { 1939 void *object; 1940 pcg_t *next; 1941 int i; 1942 1943 for (; pcg != NULL; pcg = next) { 1944 next = pcg->pcg_next; 1945 1946 for (i = 0; i < pcg->pcg_avail; i++) { 1947 object = pcg->pcg_objects[i].pcgo_va; 1948 pool_cache_destruct_object1(pc, object); 1949 } 1950 1951 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 1952 pool_put(&pcg_large_pool, pcg); 1953 } else { 1954 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 1955 pool_put(&pcg_normal_pool, pcg); 1956 } 1957 } 1958 } 1959 1960 /* 1961 * pool_cache_invalidate: 1962 * 1963 * Invalidate a pool cache (destruct and release all of the 1964 * cached objects). Does not reclaim objects from the pool. 1965 * 1966 * Note: For pool caches that provide constructed objects, there 1967 * is an assumption that another level of synchronization is occurring 1968 * between the input to the constructor and the cache invalidation. 1969 * 1970 * Invalidation is a costly process and should not be called from 1971 * interrupt context. 1972 */ 1973 void 1974 pool_cache_invalidate(pool_cache_t pc) 1975 { 1976 uint64_t where; 1977 pcg_t *full, *empty, *part; 1978 1979 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1980 1981 if (ncpu < 2 || !mp_online) { 1982 /* 1983 * We might be called early enough in the boot process 1984 * for the CPU data structures to not be fully initialized. 1985 * In this case, transfer the content of the local CPU's 1986 * cache back into global cache as only this CPU is currently 1987 * running. 1988 */ 1989 pool_cache_transfer(pc); 1990 } else { 1991 /* 1992 * Signal all CPUs that they must transfer their local 1993 * cache back to the global pool then wait for the xcall to 1994 * complete. 1995 */ 1996 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer, 1997 pc, NULL); 1998 xc_wait(where); 1999 } 2000 2001 /* Empty pool caches, then invalidate objects */ 2002 mutex_enter(&pc->pc_lock); 2003 full = pc->pc_fullgroups; 2004 empty = pc->pc_emptygroups; 2005 part = pc->pc_partgroups; 2006 pc->pc_fullgroups = NULL; 2007 pc->pc_emptygroups = NULL; 2008 pc->pc_partgroups = NULL; 2009 pc->pc_nfull = 0; 2010 pc->pc_nempty = 0; 2011 pc->pc_npart = 0; 2012 mutex_exit(&pc->pc_lock); 2013 2014 pool_cache_invalidate_groups(pc, full); 2015 pool_cache_invalidate_groups(pc, empty); 2016 pool_cache_invalidate_groups(pc, part); 2017 } 2018 2019 /* 2020 * pool_cache_invalidate_cpu: 2021 * 2022 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2023 * identified by its associated index. 2024 * It is caller's responsibility to ensure that no operation is 2025 * taking place on this pool cache while doing this invalidation. 2026 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2027 * pool cached objects from a CPU different from the one currently running 2028 * may result in an undefined behaviour. 2029 */ 2030 static void 2031 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2032 { 2033 pool_cache_cpu_t *cc; 2034 pcg_t *pcg; 2035 2036 if ((cc = pc->pc_cpus[index]) == NULL) 2037 return; 2038 2039 if ((pcg = cc->cc_current) != &pcg_dummy) { 2040 pcg->pcg_next = NULL; 2041 pool_cache_invalidate_groups(pc, pcg); 2042 } 2043 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2044 pcg->pcg_next = NULL; 2045 pool_cache_invalidate_groups(pc, pcg); 2046 } 2047 if (cc != &pc->pc_cpu0) 2048 pool_put(&cache_cpu_pool, cc); 2049 2050 } 2051 2052 void 2053 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2054 { 2055 2056 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2057 } 2058 2059 void 2060 pool_cache_setlowat(pool_cache_t pc, int n) 2061 { 2062 2063 pool_setlowat(&pc->pc_pool, n); 2064 } 2065 2066 void 2067 pool_cache_sethiwat(pool_cache_t pc, int n) 2068 { 2069 2070 pool_sethiwat(&pc->pc_pool, n); 2071 } 2072 2073 void 2074 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2075 { 2076 2077 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2078 } 2079 2080 static bool __noinline 2081 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2082 paddr_t *pap, int flags) 2083 { 2084 pcg_t *pcg, *cur; 2085 uint64_t ncsw; 2086 pool_cache_t pc; 2087 void *object; 2088 2089 KASSERT(cc->cc_current->pcg_avail == 0); 2090 KASSERT(cc->cc_previous->pcg_avail == 0); 2091 2092 pc = cc->cc_cache; 2093 cc->cc_misses++; 2094 2095 /* 2096 * Nothing was available locally. Try and grab a group 2097 * from the cache. 2098 */ 2099 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2100 ncsw = curlwp->l_ncsw; 2101 mutex_enter(&pc->pc_lock); 2102 pc->pc_contended++; 2103 2104 /* 2105 * If we context switched while locking, then 2106 * our view of the per-CPU data is invalid: 2107 * retry. 2108 */ 2109 if (curlwp->l_ncsw != ncsw) { 2110 mutex_exit(&pc->pc_lock); 2111 return true; 2112 } 2113 } 2114 2115 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2116 /* 2117 * If there's a full group, release our empty 2118 * group back to the cache. Install the full 2119 * group as cc_current and return. 2120 */ 2121 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2122 KASSERT(cur->pcg_avail == 0); 2123 cur->pcg_next = pc->pc_emptygroups; 2124 pc->pc_emptygroups = cur; 2125 pc->pc_nempty++; 2126 } 2127 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2128 cc->cc_current = pcg; 2129 pc->pc_fullgroups = pcg->pcg_next; 2130 pc->pc_hits++; 2131 pc->pc_nfull--; 2132 mutex_exit(&pc->pc_lock); 2133 return true; 2134 } 2135 2136 /* 2137 * Nothing available locally or in cache. Take the slow 2138 * path: fetch a new object from the pool and construct 2139 * it. 2140 */ 2141 pc->pc_misses++; 2142 mutex_exit(&pc->pc_lock); 2143 splx(s); 2144 2145 object = pool_get(&pc->pc_pool, flags); 2146 *objectp = object; 2147 if (__predict_false(object == NULL)) 2148 return false; 2149 2150 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2151 pool_put(&pc->pc_pool, object); 2152 *objectp = NULL; 2153 return false; 2154 } 2155 2156 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2157 (pc->pc_pool.pr_align - 1)) == 0); 2158 2159 if (pap != NULL) { 2160 #ifdef POOL_VTOPHYS 2161 *pap = POOL_VTOPHYS(object); 2162 #else 2163 *pap = POOL_PADDR_INVALID; 2164 #endif 2165 } 2166 2167 FREECHECK_OUT(&pc->pc_freecheck, object); 2168 pool_redzone_fill(&pc->pc_pool, object); 2169 return false; 2170 } 2171 2172 /* 2173 * pool_cache_get{,_paddr}: 2174 * 2175 * Get an object from a pool cache (optionally returning 2176 * the physical address of the object). 2177 */ 2178 void * 2179 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2180 { 2181 pool_cache_cpu_t *cc; 2182 pcg_t *pcg; 2183 void *object; 2184 int s; 2185 2186 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2187 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2188 "pool '%s' is IPL_NONE, but called from interrupt context\n", 2189 pc->pc_pool.pr_wchan); 2190 2191 if (flags & PR_WAITOK) { 2192 ASSERT_SLEEPABLE(); 2193 } 2194 2195 /* Lock out interrupts and disable preemption. */ 2196 s = splvm(); 2197 while (/* CONSTCOND */ true) { 2198 /* Try and allocate an object from the current group. */ 2199 cc = pc->pc_cpus[curcpu()->ci_index]; 2200 KASSERT(cc->cc_cache == pc); 2201 pcg = cc->cc_current; 2202 if (__predict_true(pcg->pcg_avail > 0)) { 2203 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2204 if (__predict_false(pap != NULL)) 2205 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2206 #if defined(DIAGNOSTIC) 2207 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2208 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2209 KASSERT(object != NULL); 2210 #endif 2211 cc->cc_hits++; 2212 splx(s); 2213 FREECHECK_OUT(&pc->pc_freecheck, object); 2214 pool_redzone_fill(&pc->pc_pool, object); 2215 return object; 2216 } 2217 2218 /* 2219 * That failed. If the previous group isn't empty, swap 2220 * it with the current group and allocate from there. 2221 */ 2222 pcg = cc->cc_previous; 2223 if (__predict_true(pcg->pcg_avail > 0)) { 2224 cc->cc_previous = cc->cc_current; 2225 cc->cc_current = pcg; 2226 continue; 2227 } 2228 2229 /* 2230 * Can't allocate from either group: try the slow path. 2231 * If get_slow() allocated an object for us, or if 2232 * no more objects are available, it will return false. 2233 * Otherwise, we need to retry. 2234 */ 2235 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2236 break; 2237 } 2238 2239 return object; 2240 } 2241 2242 static bool __noinline 2243 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2244 { 2245 struct lwp *l = curlwp; 2246 pcg_t *pcg, *cur; 2247 uint64_t ncsw; 2248 pool_cache_t pc; 2249 2250 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2251 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2252 2253 pc = cc->cc_cache; 2254 pcg = NULL; 2255 cc->cc_misses++; 2256 ncsw = l->l_ncsw; 2257 2258 /* 2259 * If there are no empty groups in the cache then allocate one 2260 * while still unlocked. 2261 */ 2262 if (__predict_false(pc->pc_emptygroups == NULL)) { 2263 if (__predict_true(!pool_cache_disable)) { 2264 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2265 } 2266 /* 2267 * If pool_get() blocked, then our view of 2268 * the per-CPU data is invalid: retry. 2269 */ 2270 if (__predict_false(l->l_ncsw != ncsw)) { 2271 if (pcg != NULL) { 2272 pool_put(pc->pc_pcgpool, pcg); 2273 } 2274 return true; 2275 } 2276 if (__predict_true(pcg != NULL)) { 2277 pcg->pcg_avail = 0; 2278 pcg->pcg_size = pc->pc_pcgsize; 2279 } 2280 } 2281 2282 /* Lock the cache. */ 2283 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2284 mutex_enter(&pc->pc_lock); 2285 pc->pc_contended++; 2286 2287 /* 2288 * If we context switched while locking, then our view of 2289 * the per-CPU data is invalid: retry. 2290 */ 2291 if (__predict_false(l->l_ncsw != ncsw)) { 2292 mutex_exit(&pc->pc_lock); 2293 if (pcg != NULL) { 2294 pool_put(pc->pc_pcgpool, pcg); 2295 } 2296 return true; 2297 } 2298 } 2299 2300 /* If there are no empty groups in the cache then allocate one. */ 2301 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2302 pcg = pc->pc_emptygroups; 2303 pc->pc_emptygroups = pcg->pcg_next; 2304 pc->pc_nempty--; 2305 } 2306 2307 /* 2308 * If there's a empty group, release our full group back 2309 * to the cache. Install the empty group to the local CPU 2310 * and return. 2311 */ 2312 if (pcg != NULL) { 2313 KASSERT(pcg->pcg_avail == 0); 2314 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2315 cc->cc_previous = pcg; 2316 } else { 2317 cur = cc->cc_current; 2318 if (__predict_true(cur != &pcg_dummy)) { 2319 KASSERT(cur->pcg_avail == cur->pcg_size); 2320 cur->pcg_next = pc->pc_fullgroups; 2321 pc->pc_fullgroups = cur; 2322 pc->pc_nfull++; 2323 } 2324 cc->cc_current = pcg; 2325 } 2326 pc->pc_hits++; 2327 mutex_exit(&pc->pc_lock); 2328 return true; 2329 } 2330 2331 /* 2332 * Nothing available locally or in cache, and we didn't 2333 * allocate an empty group. Take the slow path and destroy 2334 * the object here and now. 2335 */ 2336 pc->pc_misses++; 2337 mutex_exit(&pc->pc_lock); 2338 splx(s); 2339 pool_cache_destruct_object(pc, object); 2340 2341 return false; 2342 } 2343 2344 /* 2345 * pool_cache_put{,_paddr}: 2346 * 2347 * Put an object back to the pool cache (optionally caching the 2348 * physical address of the object). 2349 */ 2350 void 2351 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2352 { 2353 pool_cache_cpu_t *cc; 2354 pcg_t *pcg; 2355 int s; 2356 2357 KASSERT(object != NULL); 2358 pool_redzone_check(&pc->pc_pool, object); 2359 FREECHECK_IN(&pc->pc_freecheck, object); 2360 2361 /* Lock out interrupts and disable preemption. */ 2362 s = splvm(); 2363 while (/* CONSTCOND */ true) { 2364 /* If the current group isn't full, release it there. */ 2365 cc = pc->pc_cpus[curcpu()->ci_index]; 2366 KASSERT(cc->cc_cache == pc); 2367 pcg = cc->cc_current; 2368 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2369 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2370 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2371 pcg->pcg_avail++; 2372 cc->cc_hits++; 2373 splx(s); 2374 return; 2375 } 2376 2377 /* 2378 * That failed. If the previous group isn't full, swap 2379 * it with the current group and try again. 2380 */ 2381 pcg = cc->cc_previous; 2382 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2383 cc->cc_previous = cc->cc_current; 2384 cc->cc_current = pcg; 2385 continue; 2386 } 2387 2388 /* 2389 * Can't free to either group: try the slow path. 2390 * If put_slow() releases the object for us, it 2391 * will return false. Otherwise we need to retry. 2392 */ 2393 if (!pool_cache_put_slow(cc, s, object)) 2394 break; 2395 } 2396 } 2397 2398 /* 2399 * pool_cache_transfer: 2400 * 2401 * Transfer objects from the per-CPU cache to the global cache. 2402 * Run within a cross-call thread. 2403 */ 2404 static void 2405 pool_cache_transfer(pool_cache_t pc) 2406 { 2407 pool_cache_cpu_t *cc; 2408 pcg_t *prev, *cur, **list; 2409 int s; 2410 2411 s = splvm(); 2412 mutex_enter(&pc->pc_lock); 2413 cc = pc->pc_cpus[curcpu()->ci_index]; 2414 cur = cc->cc_current; 2415 cc->cc_current = __UNCONST(&pcg_dummy); 2416 prev = cc->cc_previous; 2417 cc->cc_previous = __UNCONST(&pcg_dummy); 2418 if (cur != &pcg_dummy) { 2419 if (cur->pcg_avail == cur->pcg_size) { 2420 list = &pc->pc_fullgroups; 2421 pc->pc_nfull++; 2422 } else if (cur->pcg_avail == 0) { 2423 list = &pc->pc_emptygroups; 2424 pc->pc_nempty++; 2425 } else { 2426 list = &pc->pc_partgroups; 2427 pc->pc_npart++; 2428 } 2429 cur->pcg_next = *list; 2430 *list = cur; 2431 } 2432 if (prev != &pcg_dummy) { 2433 if (prev->pcg_avail == prev->pcg_size) { 2434 list = &pc->pc_fullgroups; 2435 pc->pc_nfull++; 2436 } else if (prev->pcg_avail == 0) { 2437 list = &pc->pc_emptygroups; 2438 pc->pc_nempty++; 2439 } else { 2440 list = &pc->pc_partgroups; 2441 pc->pc_npart++; 2442 } 2443 prev->pcg_next = *list; 2444 *list = prev; 2445 } 2446 mutex_exit(&pc->pc_lock); 2447 splx(s); 2448 } 2449 2450 /* 2451 * Pool backend allocators. 2452 * 2453 * Each pool has a backend allocator that handles allocation, deallocation, 2454 * and any additional draining that might be needed. 2455 * 2456 * We provide two standard allocators: 2457 * 2458 * pool_allocator_kmem - the default when no allocator is specified 2459 * 2460 * pool_allocator_nointr - used for pools that will not be accessed 2461 * in interrupt context. 2462 */ 2463 void *pool_page_alloc(struct pool *, int); 2464 void pool_page_free(struct pool *, void *); 2465 2466 #ifdef POOL_SUBPAGE 2467 struct pool_allocator pool_allocator_kmem_fullpage = { 2468 .pa_alloc = pool_page_alloc, 2469 .pa_free = pool_page_free, 2470 .pa_pagesz = 0 2471 }; 2472 #else 2473 struct pool_allocator pool_allocator_kmem = { 2474 .pa_alloc = pool_page_alloc, 2475 .pa_free = pool_page_free, 2476 .pa_pagesz = 0 2477 }; 2478 #endif 2479 2480 #ifdef POOL_SUBPAGE 2481 struct pool_allocator pool_allocator_nointr_fullpage = { 2482 .pa_alloc = pool_page_alloc, 2483 .pa_free = pool_page_free, 2484 .pa_pagesz = 0 2485 }; 2486 #else 2487 struct pool_allocator pool_allocator_nointr = { 2488 .pa_alloc = pool_page_alloc, 2489 .pa_free = pool_page_free, 2490 .pa_pagesz = 0 2491 }; 2492 #endif 2493 2494 #ifdef POOL_SUBPAGE 2495 void *pool_subpage_alloc(struct pool *, int); 2496 void pool_subpage_free(struct pool *, void *); 2497 2498 struct pool_allocator pool_allocator_kmem = { 2499 .pa_alloc = pool_subpage_alloc, 2500 .pa_free = pool_subpage_free, 2501 .pa_pagesz = POOL_SUBPAGE 2502 }; 2503 2504 struct pool_allocator pool_allocator_nointr = { 2505 .pa_alloc = pool_subpage_alloc, 2506 .pa_free = pool_subpage_free, 2507 .pa_pagesz = POOL_SUBPAGE 2508 }; 2509 #endif /* POOL_SUBPAGE */ 2510 2511 struct pool_allocator pool_allocator_big[] = { 2512 { 2513 .pa_alloc = pool_page_alloc, 2514 .pa_free = pool_page_free, 2515 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0), 2516 }, 2517 { 2518 .pa_alloc = pool_page_alloc, 2519 .pa_free = pool_page_free, 2520 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1), 2521 }, 2522 { 2523 .pa_alloc = pool_page_alloc, 2524 .pa_free = pool_page_free, 2525 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2), 2526 }, 2527 { 2528 .pa_alloc = pool_page_alloc, 2529 .pa_free = pool_page_free, 2530 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3), 2531 }, 2532 { 2533 .pa_alloc = pool_page_alloc, 2534 .pa_free = pool_page_free, 2535 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4), 2536 }, 2537 { 2538 .pa_alloc = pool_page_alloc, 2539 .pa_free = pool_page_free, 2540 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5), 2541 }, 2542 { 2543 .pa_alloc = pool_page_alloc, 2544 .pa_free = pool_page_free, 2545 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6), 2546 }, 2547 { 2548 .pa_alloc = pool_page_alloc, 2549 .pa_free = pool_page_free, 2550 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7), 2551 } 2552 }; 2553 2554 static int 2555 pool_bigidx(size_t size) 2556 { 2557 int i; 2558 2559 for (i = 0; i < __arraycount(pool_allocator_big); i++) { 2560 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size) 2561 return i; 2562 } 2563 panic("pool item size %zu too large, use a custom allocator", size); 2564 } 2565 2566 static void * 2567 pool_allocator_alloc(struct pool *pp, int flags) 2568 { 2569 struct pool_allocator *pa = pp->pr_alloc; 2570 void *res; 2571 2572 res = (*pa->pa_alloc)(pp, flags); 2573 if (res == NULL && (flags & PR_WAITOK) == 0) { 2574 /* 2575 * We only run the drain hook here if PR_NOWAIT. 2576 * In other cases, the hook will be run in 2577 * pool_reclaim(). 2578 */ 2579 if (pp->pr_drain_hook != NULL) { 2580 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2581 res = (*pa->pa_alloc)(pp, flags); 2582 } 2583 } 2584 return res; 2585 } 2586 2587 static void 2588 pool_allocator_free(struct pool *pp, void *v) 2589 { 2590 struct pool_allocator *pa = pp->pr_alloc; 2591 2592 (*pa->pa_free)(pp, v); 2593 } 2594 2595 void * 2596 pool_page_alloc(struct pool *pp, int flags) 2597 { 2598 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2599 vmem_addr_t va; 2600 int ret; 2601 2602 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2603 vflags | VM_INSTANTFIT, &va); 2604 2605 return ret ? NULL : (void *)va; 2606 } 2607 2608 void 2609 pool_page_free(struct pool *pp, void *v) 2610 { 2611 2612 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2613 } 2614 2615 static void * 2616 pool_page_alloc_meta(struct pool *pp, int flags) 2617 { 2618 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2619 vmem_addr_t va; 2620 int ret; 2621 2622 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2623 vflags | VM_INSTANTFIT, &va); 2624 2625 return ret ? NULL : (void *)va; 2626 } 2627 2628 static void 2629 pool_page_free_meta(struct pool *pp, void *v) 2630 { 2631 2632 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2633 } 2634 2635 #ifdef POOL_REDZONE 2636 #if defined(_LP64) 2637 # define PRIME 0x9e37fffffffc0000UL 2638 #else /* defined(_LP64) */ 2639 # define PRIME 0x9e3779b1 2640 #endif /* defined(_LP64) */ 2641 #define STATIC_BYTE 0xFE 2642 CTASSERT(POOL_REDZONE_SIZE > 1); 2643 2644 static inline uint8_t 2645 pool_pattern_generate(const void *p) 2646 { 2647 return (uint8_t)(((uintptr_t)p) * PRIME 2648 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 2649 } 2650 2651 static void 2652 pool_redzone_init(struct pool *pp, size_t requested_size) 2653 { 2654 size_t nsz; 2655 2656 if (pp->pr_roflags & PR_NOTOUCH) { 2657 pp->pr_reqsize = 0; 2658 pp->pr_redzone = false; 2659 return; 2660 } 2661 2662 /* 2663 * We may have extended the requested size earlier; check if 2664 * there's naturally space in the padding for a red zone. 2665 */ 2666 if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) { 2667 pp->pr_reqsize = requested_size; 2668 pp->pr_redzone = true; 2669 return; 2670 } 2671 2672 /* 2673 * No space in the natural padding; check if we can extend a 2674 * bit the size of the pool. 2675 */ 2676 nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align); 2677 if (nsz <= pp->pr_alloc->pa_pagesz) { 2678 /* Ok, we can */ 2679 pp->pr_size = nsz; 2680 pp->pr_reqsize = requested_size; 2681 pp->pr_redzone = true; 2682 } else { 2683 /* No space for a red zone... snif :'( */ 2684 pp->pr_reqsize = 0; 2685 pp->pr_redzone = false; 2686 printf("pool redzone disabled for '%s'\n", pp->pr_wchan); 2687 } 2688 } 2689 2690 static void 2691 pool_redzone_fill(struct pool *pp, void *p) 2692 { 2693 uint8_t *cp, pat; 2694 const uint8_t *ep; 2695 2696 if (!pp->pr_redzone) 2697 return; 2698 2699 cp = (uint8_t *)p + pp->pr_reqsize; 2700 ep = cp + POOL_REDZONE_SIZE; 2701 2702 /* 2703 * We really don't want the first byte of the red zone to be '\0'; 2704 * an off-by-one in a string may not be properly detected. 2705 */ 2706 pat = pool_pattern_generate(cp); 2707 *cp = (pat == '\0') ? STATIC_BYTE: pat; 2708 cp++; 2709 2710 while (cp < ep) { 2711 *cp = pool_pattern_generate(cp); 2712 cp++; 2713 } 2714 } 2715 2716 static void 2717 pool_redzone_check(struct pool *pp, void *p) 2718 { 2719 uint8_t *cp, pat, expected; 2720 const uint8_t *ep; 2721 2722 if (!pp->pr_redzone) 2723 return; 2724 2725 cp = (uint8_t *)p + pp->pr_reqsize; 2726 ep = cp + POOL_REDZONE_SIZE; 2727 2728 pat = pool_pattern_generate(cp); 2729 expected = (pat == '\0') ? STATIC_BYTE: pat; 2730 if (expected != *cp) { 2731 panic("%s: %p: 0x%02x != 0x%02x\n", 2732 __func__, cp, *cp, expected); 2733 } 2734 cp++; 2735 2736 while (cp < ep) { 2737 expected = pool_pattern_generate(cp); 2738 if (*cp != expected) { 2739 panic("%s: %p: 0x%02x != 0x%02x\n", 2740 __func__, cp, *cp, expected); 2741 } 2742 cp++; 2743 } 2744 } 2745 2746 #endif /* POOL_REDZONE */ 2747 2748 2749 #ifdef POOL_SUBPAGE 2750 /* Sub-page allocator, for machines with large hardware pages. */ 2751 void * 2752 pool_subpage_alloc(struct pool *pp, int flags) 2753 { 2754 return pool_get(&psppool, flags); 2755 } 2756 2757 void 2758 pool_subpage_free(struct pool *pp, void *v) 2759 { 2760 pool_put(&psppool, v); 2761 } 2762 2763 #endif /* POOL_SUBPAGE */ 2764 2765 #if defined(DDB) 2766 static bool 2767 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2768 { 2769 2770 return (uintptr_t)ph->ph_page <= addr && 2771 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2772 } 2773 2774 static bool 2775 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2776 { 2777 2778 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2779 } 2780 2781 static bool 2782 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2783 { 2784 int i; 2785 2786 if (pcg == NULL) { 2787 return false; 2788 } 2789 for (i = 0; i < pcg->pcg_avail; i++) { 2790 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2791 return true; 2792 } 2793 } 2794 return false; 2795 } 2796 2797 static bool 2798 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2799 { 2800 2801 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2802 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2803 pool_item_bitmap_t *bitmap = 2804 ph->ph_bitmap + (idx / BITMAP_SIZE); 2805 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2806 2807 return (*bitmap & mask) == 0; 2808 } else { 2809 struct pool_item *pi; 2810 2811 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2812 if (pool_in_item(pp, pi, addr)) { 2813 return false; 2814 } 2815 } 2816 return true; 2817 } 2818 } 2819 2820 void 2821 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2822 { 2823 struct pool *pp; 2824 2825 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2826 struct pool_item_header *ph; 2827 uintptr_t item; 2828 bool allocated = true; 2829 bool incache = false; 2830 bool incpucache = false; 2831 char cpucachestr[32]; 2832 2833 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 2834 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2835 if (pool_in_page(pp, ph, addr)) { 2836 goto found; 2837 } 2838 } 2839 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2840 if (pool_in_page(pp, ph, addr)) { 2841 allocated = 2842 pool_allocated(pp, ph, addr); 2843 goto found; 2844 } 2845 } 2846 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2847 if (pool_in_page(pp, ph, addr)) { 2848 allocated = false; 2849 goto found; 2850 } 2851 } 2852 continue; 2853 } else { 2854 ph = pr_find_pagehead_noalign(pp, (void *)addr); 2855 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 2856 continue; 2857 } 2858 allocated = pool_allocated(pp, ph, addr); 2859 } 2860 found: 2861 if (allocated && pp->pr_cache) { 2862 pool_cache_t pc = pp->pr_cache; 2863 struct pool_cache_group *pcg; 2864 int i; 2865 2866 for (pcg = pc->pc_fullgroups; pcg != NULL; 2867 pcg = pcg->pcg_next) { 2868 if (pool_in_cg(pp, pcg, addr)) { 2869 incache = true; 2870 goto print; 2871 } 2872 } 2873 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 2874 pool_cache_cpu_t *cc; 2875 2876 if ((cc = pc->pc_cpus[i]) == NULL) { 2877 continue; 2878 } 2879 if (pool_in_cg(pp, cc->cc_current, addr) || 2880 pool_in_cg(pp, cc->cc_previous, addr)) { 2881 struct cpu_info *ci = 2882 cpu_lookup(i); 2883 2884 incpucache = true; 2885 snprintf(cpucachestr, 2886 sizeof(cpucachestr), 2887 "cached by CPU %u", 2888 ci->ci_index); 2889 goto print; 2890 } 2891 } 2892 } 2893 print: 2894 item = (uintptr_t)ph->ph_page + ph->ph_off; 2895 item = item + rounddown(addr - item, pp->pr_size); 2896 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 2897 (void *)addr, item, (size_t)(addr - item), 2898 pp->pr_wchan, 2899 incpucache ? cpucachestr : 2900 incache ? "cached" : allocated ? "allocated" : "free"); 2901 } 2902 } 2903 #endif /* defined(DDB) */ 2904 2905 static int 2906 pool_sysctl(SYSCTLFN_ARGS) 2907 { 2908 struct pool_sysctl data; 2909 struct pool *pp; 2910 struct pool_cache *pc; 2911 pool_cache_cpu_t *cc; 2912 int error; 2913 size_t i, written; 2914 2915 if (oldp == NULL) { 2916 *oldlenp = 0; 2917 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 2918 *oldlenp += sizeof(data); 2919 return 0; 2920 } 2921 2922 memset(&data, 0, sizeof(data)); 2923 error = 0; 2924 written = 0; 2925 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2926 if (written + sizeof(data) > *oldlenp) 2927 break; 2928 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 2929 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 2930 data.pr_flags = pp->pr_roflags | pp->pr_flags; 2931 #define COPY(field) data.field = pp->field 2932 COPY(pr_size); 2933 2934 COPY(pr_itemsperpage); 2935 COPY(pr_nitems); 2936 COPY(pr_nout); 2937 COPY(pr_hardlimit); 2938 COPY(pr_npages); 2939 COPY(pr_minpages); 2940 COPY(pr_maxpages); 2941 2942 COPY(pr_nget); 2943 COPY(pr_nfail); 2944 COPY(pr_nput); 2945 COPY(pr_npagealloc); 2946 COPY(pr_npagefree); 2947 COPY(pr_hiwat); 2948 COPY(pr_nidle); 2949 #undef COPY 2950 2951 data.pr_cache_nmiss_pcpu = 0; 2952 data.pr_cache_nhit_pcpu = 0; 2953 if (pp->pr_cache) { 2954 pc = pp->pr_cache; 2955 data.pr_cache_meta_size = pc->pc_pcgsize; 2956 data.pr_cache_nfull = pc->pc_nfull; 2957 data.pr_cache_npartial = pc->pc_npart; 2958 data.pr_cache_nempty = pc->pc_nempty; 2959 data.pr_cache_ncontended = pc->pc_contended; 2960 data.pr_cache_nmiss_global = pc->pc_misses; 2961 data.pr_cache_nhit_global = pc->pc_hits; 2962 for (i = 0; i < pc->pc_ncpu; ++i) { 2963 cc = pc->pc_cpus[i]; 2964 if (cc == NULL) 2965 continue; 2966 data.pr_cache_nmiss_pcpu += cc->cc_misses; 2967 data.pr_cache_nhit_pcpu += cc->cc_hits; 2968 } 2969 } else { 2970 data.pr_cache_meta_size = 0; 2971 data.pr_cache_nfull = 0; 2972 data.pr_cache_npartial = 0; 2973 data.pr_cache_nempty = 0; 2974 data.pr_cache_ncontended = 0; 2975 data.pr_cache_nmiss_global = 0; 2976 data.pr_cache_nhit_global = 0; 2977 } 2978 2979 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 2980 if (error) 2981 break; 2982 written += sizeof(data); 2983 oldp = (char *)oldp + sizeof(data); 2984 } 2985 2986 *oldlenp = written; 2987 return error; 2988 } 2989 2990 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 2991 { 2992 const struct sysctlnode *rnode = NULL; 2993 2994 sysctl_createv(clog, 0, NULL, &rnode, 2995 CTLFLAG_PERMANENT, 2996 CTLTYPE_STRUCT, "pool", 2997 SYSCTL_DESCR("Get pool statistics"), 2998 pool_sysctl, 0, NULL, 0, 2999 CTL_KERN, CTL_CREATE, CTL_EOL); 3000 } 3001