1 /* $NetBSD: subr_pool.c,v 1.177 2009/10/20 17:24:22 jym Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.177 2009/10/20 17:24:22 jym Exp $"); 35 36 #include "opt_ddb.h" 37 #include "opt_pool.h" 38 #include "opt_poollog.h" 39 #include "opt_lockdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bitops.h> 44 #include <sys/proc.h> 45 #include <sys/errno.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/pool.h> 49 #include <sys/syslog.h> 50 #include <sys/debug.h> 51 #include <sys/lockdebug.h> 52 #include <sys/xcall.h> 53 #include <sys/cpu.h> 54 #include <sys/atomic.h> 55 56 #include <uvm/uvm.h> 57 58 /* 59 * Pool resource management utility. 60 * 61 * Memory is allocated in pages which are split into pieces according to 62 * the pool item size. Each page is kept on one of three lists in the 63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 64 * for empty, full and partially-full pages respectively. The individual 65 * pool items are on a linked list headed by `ph_itemlist' in each page 66 * header. The memory for building the page list is either taken from 67 * the allocated pages themselves (for small pool items) or taken from 68 * an internal pool of page headers (`phpool'). 69 */ 70 71 /* List of all pools */ 72 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 73 74 /* Private pool for page header structures */ 75 #define PHPOOL_MAX 8 76 static struct pool phpool[PHPOOL_MAX]; 77 #define PHPOOL_FREELIST_NELEM(idx) \ 78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 79 80 #ifdef POOL_SUBPAGE 81 /* Pool of subpages for use by normal pools. */ 82 static struct pool psppool; 83 #endif 84 85 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 86 SLIST_HEAD_INITIALIZER(pa_deferinitq); 87 88 static void *pool_page_alloc_meta(struct pool *, int); 89 static void pool_page_free_meta(struct pool *, void *); 90 91 /* allocator for pool metadata */ 92 struct pool_allocator pool_allocator_meta = { 93 pool_page_alloc_meta, pool_page_free_meta, 94 .pa_backingmapptr = &kmem_map, 95 }; 96 97 /* # of seconds to retain page after last use */ 98 int pool_inactive_time = 10; 99 100 /* Next candidate for drainage (see pool_drain()) */ 101 static struct pool *drainpp; 102 103 /* This lock protects both pool_head and drainpp. */ 104 static kmutex_t pool_head_lock; 105 static kcondvar_t pool_busy; 106 107 typedef uint32_t pool_item_bitmap_t; 108 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 109 #define BITMAP_MASK (BITMAP_SIZE - 1) 110 111 struct pool_item_header { 112 /* Page headers */ 113 LIST_ENTRY(pool_item_header) 114 ph_pagelist; /* pool page list */ 115 SPLAY_ENTRY(pool_item_header) 116 ph_node; /* Off-page page headers */ 117 void * ph_page; /* this page's address */ 118 uint32_t ph_time; /* last referenced */ 119 uint16_t ph_nmissing; /* # of chunks in use */ 120 uint16_t ph_off; /* start offset in page */ 121 union { 122 /* !PR_NOTOUCH */ 123 struct { 124 LIST_HEAD(, pool_item) 125 phu_itemlist; /* chunk list for this page */ 126 } phu_normal; 127 /* PR_NOTOUCH */ 128 struct { 129 pool_item_bitmap_t phu_bitmap[1]; 130 } phu_notouch; 131 } ph_u; 132 }; 133 #define ph_itemlist ph_u.phu_normal.phu_itemlist 134 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 135 136 struct pool_item { 137 #ifdef DIAGNOSTIC 138 u_int pi_magic; 139 #endif 140 #define PI_MAGIC 0xdeaddeadU 141 /* Other entries use only this list entry */ 142 LIST_ENTRY(pool_item) pi_list; 143 }; 144 145 #define POOL_NEEDS_CATCHUP(pp) \ 146 ((pp)->pr_nitems < (pp)->pr_minitems) 147 148 /* 149 * Pool cache management. 150 * 151 * Pool caches provide a way for constructed objects to be cached by the 152 * pool subsystem. This can lead to performance improvements by avoiding 153 * needless object construction/destruction; it is deferred until absolutely 154 * necessary. 155 * 156 * Caches are grouped into cache groups. Each cache group references up 157 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 158 * object from the pool, it calls the object's constructor and places it 159 * into a cache group. When a cache group frees an object back to the 160 * pool, it first calls the object's destructor. This allows the object 161 * to persist in constructed form while freed to the cache. 162 * 163 * The pool references each cache, so that when a pool is drained by the 164 * pagedaemon, it can drain each individual cache as well. Each time a 165 * cache is drained, the most idle cache group is freed to the pool in 166 * its entirety. 167 * 168 * Pool caches are layed on top of pools. By layering them, we can avoid 169 * the complexity of cache management for pools which would not benefit 170 * from it. 171 */ 172 173 static struct pool pcg_normal_pool; 174 static struct pool pcg_large_pool; 175 static struct pool cache_pool; 176 static struct pool cache_cpu_pool; 177 178 /* List of all caches. */ 179 TAILQ_HEAD(,pool_cache) pool_cache_head = 180 TAILQ_HEAD_INITIALIZER(pool_cache_head); 181 182 int pool_cache_disable; /* global disable for caching */ 183 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 184 185 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 186 void *); 187 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 188 void **, paddr_t *, int); 189 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 190 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 191 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 192 static void pool_cache_xcall(pool_cache_t); 193 194 static int pool_catchup(struct pool *); 195 static void pool_prime_page(struct pool *, void *, 196 struct pool_item_header *); 197 static void pool_update_curpage(struct pool *); 198 199 static int pool_grow(struct pool *, int); 200 static void *pool_allocator_alloc(struct pool *, int); 201 static void pool_allocator_free(struct pool *, void *); 202 203 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 204 void (*)(const char *, ...)); 205 static void pool_print1(struct pool *, const char *, 206 void (*)(const char *, ...)); 207 208 static int pool_chk_page(struct pool *, const char *, 209 struct pool_item_header *); 210 211 /* 212 * Pool log entry. An array of these is allocated in pool_init(). 213 */ 214 struct pool_log { 215 const char *pl_file; 216 long pl_line; 217 int pl_action; 218 #define PRLOG_GET 1 219 #define PRLOG_PUT 2 220 void *pl_addr; 221 }; 222 223 #ifdef POOL_DIAGNOSTIC 224 /* Number of entries in pool log buffers */ 225 #ifndef POOL_LOGSIZE 226 #define POOL_LOGSIZE 10 227 #endif 228 229 int pool_logsize = POOL_LOGSIZE; 230 231 static inline void 232 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 233 { 234 int n = pp->pr_curlogentry; 235 struct pool_log *pl; 236 237 if ((pp->pr_roflags & PR_LOGGING) == 0) 238 return; 239 240 /* 241 * Fill in the current entry. Wrap around and overwrite 242 * the oldest entry if necessary. 243 */ 244 pl = &pp->pr_log[n]; 245 pl->pl_file = file; 246 pl->pl_line = line; 247 pl->pl_action = action; 248 pl->pl_addr = v; 249 if (++n >= pp->pr_logsize) 250 n = 0; 251 pp->pr_curlogentry = n; 252 } 253 254 static void 255 pr_printlog(struct pool *pp, struct pool_item *pi, 256 void (*pr)(const char *, ...)) 257 { 258 int i = pp->pr_logsize; 259 int n = pp->pr_curlogentry; 260 261 if ((pp->pr_roflags & PR_LOGGING) == 0) 262 return; 263 264 /* 265 * Print all entries in this pool's log. 266 */ 267 while (i-- > 0) { 268 struct pool_log *pl = &pp->pr_log[n]; 269 if (pl->pl_action != 0) { 270 if (pi == NULL || pi == pl->pl_addr) { 271 (*pr)("\tlog entry %d:\n", i); 272 (*pr)("\t\taction = %s, addr = %p\n", 273 pl->pl_action == PRLOG_GET ? "get" : "put", 274 pl->pl_addr); 275 (*pr)("\t\tfile: %s at line %lu\n", 276 pl->pl_file, pl->pl_line); 277 } 278 } 279 if (++n >= pp->pr_logsize) 280 n = 0; 281 } 282 } 283 284 static inline void 285 pr_enter(struct pool *pp, const char *file, long line) 286 { 287 288 if (__predict_false(pp->pr_entered_file != NULL)) { 289 printf("pool %s: reentrancy at file %s line %ld\n", 290 pp->pr_wchan, file, line); 291 printf(" previous entry at file %s line %ld\n", 292 pp->pr_entered_file, pp->pr_entered_line); 293 panic("pr_enter"); 294 } 295 296 pp->pr_entered_file = file; 297 pp->pr_entered_line = line; 298 } 299 300 static inline void 301 pr_leave(struct pool *pp) 302 { 303 304 if (__predict_false(pp->pr_entered_file == NULL)) { 305 printf("pool %s not entered?\n", pp->pr_wchan); 306 panic("pr_leave"); 307 } 308 309 pp->pr_entered_file = NULL; 310 pp->pr_entered_line = 0; 311 } 312 313 static inline void 314 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 315 { 316 317 if (pp->pr_entered_file != NULL) 318 (*pr)("\n\tcurrently entered from file %s line %ld\n", 319 pp->pr_entered_file, pp->pr_entered_line); 320 } 321 #else 322 #define pr_log(pp, v, action, file, line) 323 #define pr_printlog(pp, pi, pr) 324 #define pr_enter(pp, file, line) 325 #define pr_leave(pp) 326 #define pr_enter_check(pp, pr) 327 #endif /* POOL_DIAGNOSTIC */ 328 329 static inline unsigned int 330 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 331 const void *v) 332 { 333 const char *cp = v; 334 unsigned int idx; 335 336 KASSERT(pp->pr_roflags & PR_NOTOUCH); 337 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 338 KASSERT(idx < pp->pr_itemsperpage); 339 return idx; 340 } 341 342 static inline void 343 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 344 void *obj) 345 { 346 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 347 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 348 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 349 350 KASSERT((*bitmap & mask) == 0); 351 *bitmap |= mask; 352 } 353 354 static inline void * 355 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 356 { 357 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 358 unsigned int idx; 359 int i; 360 361 for (i = 0; ; i++) { 362 int bit; 363 364 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 365 bit = ffs32(bitmap[i]); 366 if (bit) { 367 pool_item_bitmap_t mask; 368 369 bit--; 370 idx = (i * BITMAP_SIZE) + bit; 371 mask = 1 << bit; 372 KASSERT((bitmap[i] & mask) != 0); 373 bitmap[i] &= ~mask; 374 break; 375 } 376 } 377 KASSERT(idx < pp->pr_itemsperpage); 378 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 379 } 380 381 static inline void 382 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 383 { 384 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 385 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 386 int i; 387 388 for (i = 0; i < n; i++) { 389 bitmap[i] = (pool_item_bitmap_t)-1; 390 } 391 } 392 393 static inline int 394 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 395 { 396 397 /* 398 * we consider pool_item_header with smaller ph_page bigger. 399 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 400 */ 401 402 if (a->ph_page < b->ph_page) 403 return (1); 404 else if (a->ph_page > b->ph_page) 405 return (-1); 406 else 407 return (0); 408 } 409 410 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 411 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 412 413 static inline struct pool_item_header * 414 pr_find_pagehead_noalign(struct pool *pp, void *v) 415 { 416 struct pool_item_header *ph, tmp; 417 418 tmp.ph_page = (void *)(uintptr_t)v; 419 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 420 if (ph == NULL) { 421 ph = SPLAY_ROOT(&pp->pr_phtree); 422 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 423 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 424 } 425 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 426 } 427 428 return ph; 429 } 430 431 /* 432 * Return the pool page header based on item address. 433 */ 434 static inline struct pool_item_header * 435 pr_find_pagehead(struct pool *pp, void *v) 436 { 437 struct pool_item_header *ph, tmp; 438 439 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 440 ph = pr_find_pagehead_noalign(pp, v); 441 } else { 442 void *page = 443 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 444 445 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 446 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 447 } else { 448 tmp.ph_page = page; 449 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 450 } 451 } 452 453 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 454 ((char *)ph->ph_page <= (char *)v && 455 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 456 return ph; 457 } 458 459 static void 460 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 461 { 462 struct pool_item_header *ph; 463 464 while ((ph = LIST_FIRST(pq)) != NULL) { 465 LIST_REMOVE(ph, ph_pagelist); 466 pool_allocator_free(pp, ph->ph_page); 467 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 468 pool_put(pp->pr_phpool, ph); 469 } 470 } 471 472 /* 473 * Remove a page from the pool. 474 */ 475 static inline void 476 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 477 struct pool_pagelist *pq) 478 { 479 480 KASSERT(mutex_owned(&pp->pr_lock)); 481 482 /* 483 * If the page was idle, decrement the idle page count. 484 */ 485 if (ph->ph_nmissing == 0) { 486 #ifdef DIAGNOSTIC 487 if (pp->pr_nidle == 0) 488 panic("pr_rmpage: nidle inconsistent"); 489 if (pp->pr_nitems < pp->pr_itemsperpage) 490 panic("pr_rmpage: nitems inconsistent"); 491 #endif 492 pp->pr_nidle--; 493 } 494 495 pp->pr_nitems -= pp->pr_itemsperpage; 496 497 /* 498 * Unlink the page from the pool and queue it for release. 499 */ 500 LIST_REMOVE(ph, ph_pagelist); 501 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 502 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 503 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 504 505 pp->pr_npages--; 506 pp->pr_npagefree++; 507 508 pool_update_curpage(pp); 509 } 510 511 static bool 512 pa_starved_p(struct pool_allocator *pa) 513 { 514 515 if (pa->pa_backingmap != NULL) { 516 return vm_map_starved_p(pa->pa_backingmap); 517 } 518 return false; 519 } 520 521 static int 522 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 523 { 524 struct pool *pp = obj; 525 struct pool_allocator *pa = pp->pr_alloc; 526 527 KASSERT(&pp->pr_reclaimerentry == ce); 528 pool_reclaim(pp); 529 if (!pa_starved_p(pa)) { 530 return CALLBACK_CHAIN_ABORT; 531 } 532 return CALLBACK_CHAIN_CONTINUE; 533 } 534 535 static void 536 pool_reclaim_register(struct pool *pp) 537 { 538 struct vm_map *map = pp->pr_alloc->pa_backingmap; 539 int s; 540 541 if (map == NULL) { 542 return; 543 } 544 545 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 546 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 547 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 548 splx(s); 549 } 550 551 static void 552 pool_reclaim_unregister(struct pool *pp) 553 { 554 struct vm_map *map = pp->pr_alloc->pa_backingmap; 555 int s; 556 557 if (map == NULL) { 558 return; 559 } 560 561 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 562 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 563 &pp->pr_reclaimerentry); 564 splx(s); 565 } 566 567 static void 568 pa_reclaim_register(struct pool_allocator *pa) 569 { 570 struct vm_map *map = *pa->pa_backingmapptr; 571 struct pool *pp; 572 573 KASSERT(pa->pa_backingmap == NULL); 574 if (map == NULL) { 575 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 576 return; 577 } 578 pa->pa_backingmap = map; 579 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 580 pool_reclaim_register(pp); 581 } 582 } 583 584 /* 585 * Initialize all the pools listed in the "pools" link set. 586 */ 587 void 588 pool_subsystem_init(void) 589 { 590 struct pool_allocator *pa; 591 592 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 593 cv_init(&pool_busy, "poolbusy"); 594 595 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 596 KASSERT(pa->pa_backingmapptr != NULL); 597 KASSERT(*pa->pa_backingmapptr != NULL); 598 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 599 pa_reclaim_register(pa); 600 } 601 602 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 603 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 604 605 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 606 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 607 } 608 609 /* 610 * Initialize the given pool resource structure. 611 * 612 * We export this routine to allow other kernel parts to declare 613 * static pools that must be initialized before malloc() is available. 614 */ 615 void 616 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 617 const char *wchan, struct pool_allocator *palloc, int ipl) 618 { 619 struct pool *pp1; 620 size_t trysize, phsize; 621 int off, slack; 622 623 #ifdef DEBUG 624 /* 625 * Check that the pool hasn't already been initialised and 626 * added to the list of all pools. 627 */ 628 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 629 if (pp == pp1) 630 panic("pool_init: pool %s already initialised", 631 wchan); 632 } 633 #endif 634 635 #ifdef POOL_DIAGNOSTIC 636 /* 637 * Always log if POOL_DIAGNOSTIC is defined. 638 */ 639 if (pool_logsize != 0) 640 flags |= PR_LOGGING; 641 #endif 642 643 if (palloc == NULL) 644 palloc = &pool_allocator_kmem; 645 #ifdef POOL_SUBPAGE 646 if (size > palloc->pa_pagesz) { 647 if (palloc == &pool_allocator_kmem) 648 palloc = &pool_allocator_kmem_fullpage; 649 else if (palloc == &pool_allocator_nointr) 650 palloc = &pool_allocator_nointr_fullpage; 651 } 652 #endif /* POOL_SUBPAGE */ 653 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 654 if (palloc->pa_pagesz == 0) 655 palloc->pa_pagesz = PAGE_SIZE; 656 657 TAILQ_INIT(&palloc->pa_list); 658 659 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 660 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 661 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 662 663 if (palloc->pa_backingmapptr != NULL) { 664 pa_reclaim_register(palloc); 665 } 666 palloc->pa_flags |= PA_INITIALIZED; 667 } 668 669 if (align == 0) 670 align = ALIGN(1); 671 672 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 673 size = sizeof(struct pool_item); 674 675 size = roundup(size, align); 676 #ifdef DIAGNOSTIC 677 if (size > palloc->pa_pagesz) 678 panic("pool_init: pool item size (%zu) too large", size); 679 #endif 680 681 /* 682 * Initialize the pool structure. 683 */ 684 LIST_INIT(&pp->pr_emptypages); 685 LIST_INIT(&pp->pr_fullpages); 686 LIST_INIT(&pp->pr_partpages); 687 pp->pr_cache = NULL; 688 pp->pr_curpage = NULL; 689 pp->pr_npages = 0; 690 pp->pr_minitems = 0; 691 pp->pr_minpages = 0; 692 pp->pr_maxpages = UINT_MAX; 693 pp->pr_roflags = flags; 694 pp->pr_flags = 0; 695 pp->pr_size = size; 696 pp->pr_align = align; 697 pp->pr_wchan = wchan; 698 pp->pr_alloc = palloc; 699 pp->pr_nitems = 0; 700 pp->pr_nout = 0; 701 pp->pr_hardlimit = UINT_MAX; 702 pp->pr_hardlimit_warning = NULL; 703 pp->pr_hardlimit_ratecap.tv_sec = 0; 704 pp->pr_hardlimit_ratecap.tv_usec = 0; 705 pp->pr_hardlimit_warning_last.tv_sec = 0; 706 pp->pr_hardlimit_warning_last.tv_usec = 0; 707 pp->pr_drain_hook = NULL; 708 pp->pr_drain_hook_arg = NULL; 709 pp->pr_freecheck = NULL; 710 711 /* 712 * Decide whether to put the page header off page to avoid 713 * wasting too large a part of the page or too big item. 714 * Off-page page headers go on a hash table, so we can match 715 * a returned item with its header based on the page address. 716 * We use 1/16 of the page size and about 8 times of the item 717 * size as the threshold (XXX: tune) 718 * 719 * However, we'll put the header into the page if we can put 720 * it without wasting any items. 721 * 722 * Silently enforce `0 <= ioff < align'. 723 */ 724 pp->pr_itemoffset = ioff %= align; 725 /* See the comment below about reserved bytes. */ 726 trysize = palloc->pa_pagesz - ((align - ioff) % align); 727 phsize = ALIGN(sizeof(struct pool_item_header)); 728 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 729 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 730 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 731 /* Use the end of the page for the page header */ 732 pp->pr_roflags |= PR_PHINPAGE; 733 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 734 } else { 735 /* The page header will be taken from our page header pool */ 736 pp->pr_phoffset = 0; 737 off = palloc->pa_pagesz; 738 SPLAY_INIT(&pp->pr_phtree); 739 } 740 741 /* 742 * Alignment is to take place at `ioff' within the item. This means 743 * we must reserve up to `align - 1' bytes on the page to allow 744 * appropriate positioning of each item. 745 */ 746 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 747 KASSERT(pp->pr_itemsperpage != 0); 748 if ((pp->pr_roflags & PR_NOTOUCH)) { 749 int idx; 750 751 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 752 idx++) { 753 /* nothing */ 754 } 755 if (idx >= PHPOOL_MAX) { 756 /* 757 * if you see this panic, consider to tweak 758 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 759 */ 760 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 761 pp->pr_wchan, pp->pr_itemsperpage); 762 } 763 pp->pr_phpool = &phpool[idx]; 764 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 765 pp->pr_phpool = &phpool[0]; 766 } 767 #if defined(DIAGNOSTIC) 768 else { 769 pp->pr_phpool = NULL; 770 } 771 #endif 772 773 /* 774 * Use the slack between the chunks and the page header 775 * for "cache coloring". 776 */ 777 slack = off - pp->pr_itemsperpage * pp->pr_size; 778 pp->pr_maxcolor = (slack / align) * align; 779 pp->pr_curcolor = 0; 780 781 pp->pr_nget = 0; 782 pp->pr_nfail = 0; 783 pp->pr_nput = 0; 784 pp->pr_npagealloc = 0; 785 pp->pr_npagefree = 0; 786 pp->pr_hiwat = 0; 787 pp->pr_nidle = 0; 788 pp->pr_refcnt = 0; 789 790 #ifdef POOL_DIAGNOSTIC 791 if (flags & PR_LOGGING) { 792 if (kmem_map == NULL || 793 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 794 M_TEMP, M_NOWAIT)) == NULL) 795 pp->pr_roflags &= ~PR_LOGGING; 796 pp->pr_curlogentry = 0; 797 pp->pr_logsize = pool_logsize; 798 } 799 #endif 800 801 pp->pr_entered_file = NULL; 802 pp->pr_entered_line = 0; 803 804 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 805 cv_init(&pp->pr_cv, wchan); 806 pp->pr_ipl = ipl; 807 808 /* 809 * Initialize private page header pool and cache magazine pool if we 810 * haven't done so yet. 811 * XXX LOCKING. 812 */ 813 if (phpool[0].pr_size == 0) { 814 int idx; 815 for (idx = 0; idx < PHPOOL_MAX; idx++) { 816 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 817 int nelem; 818 size_t sz; 819 820 nelem = PHPOOL_FREELIST_NELEM(idx); 821 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 822 "phpool-%d", nelem); 823 sz = sizeof(struct pool_item_header); 824 if (nelem) { 825 sz = offsetof(struct pool_item_header, 826 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 827 } 828 pool_init(&phpool[idx], sz, 0, 0, 0, 829 phpool_names[idx], &pool_allocator_meta, IPL_VM); 830 } 831 #ifdef POOL_SUBPAGE 832 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 833 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 834 #endif 835 836 size = sizeof(pcg_t) + 837 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 838 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 839 "pcgnormal", &pool_allocator_meta, IPL_VM); 840 841 size = sizeof(pcg_t) + 842 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 843 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 844 "pcglarge", &pool_allocator_meta, IPL_VM); 845 } 846 847 /* Insert into the list of all pools. */ 848 if (__predict_true(!cold)) 849 mutex_enter(&pool_head_lock); 850 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 851 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 852 break; 853 } 854 if (pp1 == NULL) 855 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 856 else 857 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 858 if (__predict_true(!cold)) 859 mutex_exit(&pool_head_lock); 860 861 /* Insert this into the list of pools using this allocator. */ 862 if (__predict_true(!cold)) 863 mutex_enter(&palloc->pa_lock); 864 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 865 if (__predict_true(!cold)) 866 mutex_exit(&palloc->pa_lock); 867 868 pool_reclaim_register(pp); 869 } 870 871 /* 872 * De-commision a pool resource. 873 */ 874 void 875 pool_destroy(struct pool *pp) 876 { 877 struct pool_pagelist pq; 878 struct pool_item_header *ph; 879 880 /* Remove from global pool list */ 881 mutex_enter(&pool_head_lock); 882 while (pp->pr_refcnt != 0) 883 cv_wait(&pool_busy, &pool_head_lock); 884 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 885 if (drainpp == pp) 886 drainpp = NULL; 887 mutex_exit(&pool_head_lock); 888 889 /* Remove this pool from its allocator's list of pools. */ 890 pool_reclaim_unregister(pp); 891 mutex_enter(&pp->pr_alloc->pa_lock); 892 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 893 mutex_exit(&pp->pr_alloc->pa_lock); 894 895 mutex_enter(&pp->pr_lock); 896 897 KASSERT(pp->pr_cache == NULL); 898 899 #ifdef DIAGNOSTIC 900 if (pp->pr_nout != 0) { 901 pr_printlog(pp, NULL, printf); 902 panic("pool_destroy: pool busy: still out: %u", 903 pp->pr_nout); 904 } 905 #endif 906 907 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 908 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 909 910 /* Remove all pages */ 911 LIST_INIT(&pq); 912 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 913 pr_rmpage(pp, ph, &pq); 914 915 mutex_exit(&pp->pr_lock); 916 917 pr_pagelist_free(pp, &pq); 918 919 #ifdef POOL_DIAGNOSTIC 920 if ((pp->pr_roflags & PR_LOGGING) != 0) 921 free(pp->pr_log, M_TEMP); 922 #endif 923 924 cv_destroy(&pp->pr_cv); 925 mutex_destroy(&pp->pr_lock); 926 } 927 928 void 929 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 930 { 931 932 /* XXX no locking -- must be used just after pool_init() */ 933 #ifdef DIAGNOSTIC 934 if (pp->pr_drain_hook != NULL) 935 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 936 #endif 937 pp->pr_drain_hook = fn; 938 pp->pr_drain_hook_arg = arg; 939 } 940 941 static struct pool_item_header * 942 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 943 { 944 struct pool_item_header *ph; 945 946 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 947 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 948 else 949 ph = pool_get(pp->pr_phpool, flags); 950 951 return (ph); 952 } 953 954 /* 955 * Grab an item from the pool. 956 */ 957 void * 958 #ifdef POOL_DIAGNOSTIC 959 _pool_get(struct pool *pp, int flags, const char *file, long line) 960 #else 961 pool_get(struct pool *pp, int flags) 962 #endif 963 { 964 struct pool_item *pi; 965 struct pool_item_header *ph; 966 void *v; 967 968 #ifdef DIAGNOSTIC 969 if (__predict_false(pp->pr_itemsperpage == 0)) 970 panic("pool_get: pool %p: pr_itemsperpage is zero, " 971 "pool not initialized?", pp); 972 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 973 (flags & PR_WAITOK) != 0)) 974 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 975 976 #endif /* DIAGNOSTIC */ 977 #ifdef LOCKDEBUG 978 if (flags & PR_WAITOK) { 979 ASSERT_SLEEPABLE(); 980 } 981 #endif 982 983 mutex_enter(&pp->pr_lock); 984 pr_enter(pp, file, line); 985 986 startover: 987 /* 988 * Check to see if we've reached the hard limit. If we have, 989 * and we can wait, then wait until an item has been returned to 990 * the pool. 991 */ 992 #ifdef DIAGNOSTIC 993 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 994 pr_leave(pp); 995 mutex_exit(&pp->pr_lock); 996 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 997 } 998 #endif 999 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1000 if (pp->pr_drain_hook != NULL) { 1001 /* 1002 * Since the drain hook is going to free things 1003 * back to the pool, unlock, call the hook, re-lock, 1004 * and check the hardlimit condition again. 1005 */ 1006 pr_leave(pp); 1007 mutex_exit(&pp->pr_lock); 1008 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1009 mutex_enter(&pp->pr_lock); 1010 pr_enter(pp, file, line); 1011 if (pp->pr_nout < pp->pr_hardlimit) 1012 goto startover; 1013 } 1014 1015 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1016 /* 1017 * XXX: A warning isn't logged in this case. Should 1018 * it be? 1019 */ 1020 pp->pr_flags |= PR_WANTED; 1021 pr_leave(pp); 1022 cv_wait(&pp->pr_cv, &pp->pr_lock); 1023 pr_enter(pp, file, line); 1024 goto startover; 1025 } 1026 1027 /* 1028 * Log a message that the hard limit has been hit. 1029 */ 1030 if (pp->pr_hardlimit_warning != NULL && 1031 ratecheck(&pp->pr_hardlimit_warning_last, 1032 &pp->pr_hardlimit_ratecap)) 1033 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1034 1035 pp->pr_nfail++; 1036 1037 pr_leave(pp); 1038 mutex_exit(&pp->pr_lock); 1039 return (NULL); 1040 } 1041 1042 /* 1043 * The convention we use is that if `curpage' is not NULL, then 1044 * it points at a non-empty bucket. In particular, `curpage' 1045 * never points at a page header which has PR_PHINPAGE set and 1046 * has no items in its bucket. 1047 */ 1048 if ((ph = pp->pr_curpage) == NULL) { 1049 int error; 1050 1051 #ifdef DIAGNOSTIC 1052 if (pp->pr_nitems != 0) { 1053 mutex_exit(&pp->pr_lock); 1054 printf("pool_get: %s: curpage NULL, nitems %u\n", 1055 pp->pr_wchan, pp->pr_nitems); 1056 panic("pool_get: nitems inconsistent"); 1057 } 1058 #endif 1059 1060 /* 1061 * Call the back-end page allocator for more memory. 1062 * Release the pool lock, as the back-end page allocator 1063 * may block. 1064 */ 1065 pr_leave(pp); 1066 error = pool_grow(pp, flags); 1067 pr_enter(pp, file, line); 1068 if (error != 0) { 1069 /* 1070 * We were unable to allocate a page or item 1071 * header, but we released the lock during 1072 * allocation, so perhaps items were freed 1073 * back to the pool. Check for this case. 1074 */ 1075 if (pp->pr_curpage != NULL) 1076 goto startover; 1077 1078 pp->pr_nfail++; 1079 pr_leave(pp); 1080 mutex_exit(&pp->pr_lock); 1081 return (NULL); 1082 } 1083 1084 /* Start the allocation process over. */ 1085 goto startover; 1086 } 1087 if (pp->pr_roflags & PR_NOTOUCH) { 1088 #ifdef DIAGNOSTIC 1089 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1090 pr_leave(pp); 1091 mutex_exit(&pp->pr_lock); 1092 panic("pool_get: %s: page empty", pp->pr_wchan); 1093 } 1094 #endif 1095 v = pr_item_notouch_get(pp, ph); 1096 #ifdef POOL_DIAGNOSTIC 1097 pr_log(pp, v, PRLOG_GET, file, line); 1098 #endif 1099 } else { 1100 v = pi = LIST_FIRST(&ph->ph_itemlist); 1101 if (__predict_false(v == NULL)) { 1102 pr_leave(pp); 1103 mutex_exit(&pp->pr_lock); 1104 panic("pool_get: %s: page empty", pp->pr_wchan); 1105 } 1106 #ifdef DIAGNOSTIC 1107 if (__predict_false(pp->pr_nitems == 0)) { 1108 pr_leave(pp); 1109 mutex_exit(&pp->pr_lock); 1110 printf("pool_get: %s: items on itemlist, nitems %u\n", 1111 pp->pr_wchan, pp->pr_nitems); 1112 panic("pool_get: nitems inconsistent"); 1113 } 1114 #endif 1115 1116 #ifdef POOL_DIAGNOSTIC 1117 pr_log(pp, v, PRLOG_GET, file, line); 1118 #endif 1119 1120 #ifdef DIAGNOSTIC 1121 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1122 pr_printlog(pp, pi, printf); 1123 panic("pool_get(%s): free list modified: " 1124 "magic=%x; page %p; item addr %p\n", 1125 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1126 } 1127 #endif 1128 1129 /* 1130 * Remove from item list. 1131 */ 1132 LIST_REMOVE(pi, pi_list); 1133 } 1134 pp->pr_nitems--; 1135 pp->pr_nout++; 1136 if (ph->ph_nmissing == 0) { 1137 #ifdef DIAGNOSTIC 1138 if (__predict_false(pp->pr_nidle == 0)) 1139 panic("pool_get: nidle inconsistent"); 1140 #endif 1141 pp->pr_nidle--; 1142 1143 /* 1144 * This page was previously empty. Move it to the list of 1145 * partially-full pages. This page is already curpage. 1146 */ 1147 LIST_REMOVE(ph, ph_pagelist); 1148 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1149 } 1150 ph->ph_nmissing++; 1151 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1152 #ifdef DIAGNOSTIC 1153 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1154 !LIST_EMPTY(&ph->ph_itemlist))) { 1155 pr_leave(pp); 1156 mutex_exit(&pp->pr_lock); 1157 panic("pool_get: %s: nmissing inconsistent", 1158 pp->pr_wchan); 1159 } 1160 #endif 1161 /* 1162 * This page is now full. Move it to the full list 1163 * and select a new current page. 1164 */ 1165 LIST_REMOVE(ph, ph_pagelist); 1166 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1167 pool_update_curpage(pp); 1168 } 1169 1170 pp->pr_nget++; 1171 pr_leave(pp); 1172 1173 /* 1174 * If we have a low water mark and we are now below that low 1175 * water mark, add more items to the pool. 1176 */ 1177 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1178 /* 1179 * XXX: Should we log a warning? Should we set up a timeout 1180 * to try again in a second or so? The latter could break 1181 * a caller's assumptions about interrupt protection, etc. 1182 */ 1183 } 1184 1185 mutex_exit(&pp->pr_lock); 1186 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1187 FREECHECK_OUT(&pp->pr_freecheck, v); 1188 return (v); 1189 } 1190 1191 /* 1192 * Internal version of pool_put(). Pool is already locked/entered. 1193 */ 1194 static void 1195 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1196 { 1197 struct pool_item *pi = v; 1198 struct pool_item_header *ph; 1199 1200 KASSERT(mutex_owned(&pp->pr_lock)); 1201 FREECHECK_IN(&pp->pr_freecheck, v); 1202 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1203 1204 #ifdef DIAGNOSTIC 1205 if (__predict_false(pp->pr_nout == 0)) { 1206 printf("pool %s: putting with none out\n", 1207 pp->pr_wchan); 1208 panic("pool_put"); 1209 } 1210 #endif 1211 1212 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1213 pr_printlog(pp, NULL, printf); 1214 panic("pool_put: %s: page header missing", pp->pr_wchan); 1215 } 1216 1217 /* 1218 * Return to item list. 1219 */ 1220 if (pp->pr_roflags & PR_NOTOUCH) { 1221 pr_item_notouch_put(pp, ph, v); 1222 } else { 1223 #ifdef DIAGNOSTIC 1224 pi->pi_magic = PI_MAGIC; 1225 #endif 1226 #ifdef DEBUG 1227 { 1228 int i, *ip = v; 1229 1230 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1231 *ip++ = PI_MAGIC; 1232 } 1233 } 1234 #endif 1235 1236 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1237 } 1238 KDASSERT(ph->ph_nmissing != 0); 1239 ph->ph_nmissing--; 1240 pp->pr_nput++; 1241 pp->pr_nitems++; 1242 pp->pr_nout--; 1243 1244 /* Cancel "pool empty" condition if it exists */ 1245 if (pp->pr_curpage == NULL) 1246 pp->pr_curpage = ph; 1247 1248 if (pp->pr_flags & PR_WANTED) { 1249 pp->pr_flags &= ~PR_WANTED; 1250 cv_broadcast(&pp->pr_cv); 1251 } 1252 1253 /* 1254 * If this page is now empty, do one of two things: 1255 * 1256 * (1) If we have more pages than the page high water mark, 1257 * free the page back to the system. ONLY CONSIDER 1258 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1259 * CLAIM. 1260 * 1261 * (2) Otherwise, move the page to the empty page list. 1262 * 1263 * Either way, select a new current page (so we use a partially-full 1264 * page if one is available). 1265 */ 1266 if (ph->ph_nmissing == 0) { 1267 pp->pr_nidle++; 1268 if (pp->pr_npages > pp->pr_minpages && 1269 pp->pr_npages > pp->pr_maxpages) { 1270 pr_rmpage(pp, ph, pq); 1271 } else { 1272 LIST_REMOVE(ph, ph_pagelist); 1273 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1274 1275 /* 1276 * Update the timestamp on the page. A page must 1277 * be idle for some period of time before it can 1278 * be reclaimed by the pagedaemon. This minimizes 1279 * ping-pong'ing for memory. 1280 * 1281 * note for 64-bit time_t: truncating to 32-bit is not 1282 * a problem for our usage. 1283 */ 1284 ph->ph_time = time_uptime; 1285 } 1286 pool_update_curpage(pp); 1287 } 1288 1289 /* 1290 * If the page was previously completely full, move it to the 1291 * partially-full list and make it the current page. The next 1292 * allocation will get the item from this page, instead of 1293 * further fragmenting the pool. 1294 */ 1295 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1296 LIST_REMOVE(ph, ph_pagelist); 1297 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1298 pp->pr_curpage = ph; 1299 } 1300 } 1301 1302 /* 1303 * Return resource to the pool. 1304 */ 1305 #ifdef POOL_DIAGNOSTIC 1306 void 1307 _pool_put(struct pool *pp, void *v, const char *file, long line) 1308 { 1309 struct pool_pagelist pq; 1310 1311 LIST_INIT(&pq); 1312 1313 mutex_enter(&pp->pr_lock); 1314 pr_enter(pp, file, line); 1315 1316 pr_log(pp, v, PRLOG_PUT, file, line); 1317 1318 pool_do_put(pp, v, &pq); 1319 1320 pr_leave(pp); 1321 mutex_exit(&pp->pr_lock); 1322 1323 pr_pagelist_free(pp, &pq); 1324 } 1325 #undef pool_put 1326 #endif /* POOL_DIAGNOSTIC */ 1327 1328 void 1329 pool_put(struct pool *pp, void *v) 1330 { 1331 struct pool_pagelist pq; 1332 1333 LIST_INIT(&pq); 1334 1335 mutex_enter(&pp->pr_lock); 1336 pool_do_put(pp, v, &pq); 1337 mutex_exit(&pp->pr_lock); 1338 1339 pr_pagelist_free(pp, &pq); 1340 } 1341 1342 #ifdef POOL_DIAGNOSTIC 1343 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1344 #endif 1345 1346 /* 1347 * pool_grow: grow a pool by a page. 1348 * 1349 * => called with pool locked. 1350 * => unlock and relock the pool. 1351 * => return with pool locked. 1352 */ 1353 1354 static int 1355 pool_grow(struct pool *pp, int flags) 1356 { 1357 struct pool_item_header *ph = NULL; 1358 char *cp; 1359 1360 mutex_exit(&pp->pr_lock); 1361 cp = pool_allocator_alloc(pp, flags); 1362 if (__predict_true(cp != NULL)) { 1363 ph = pool_alloc_item_header(pp, cp, flags); 1364 } 1365 if (__predict_false(cp == NULL || ph == NULL)) { 1366 if (cp != NULL) { 1367 pool_allocator_free(pp, cp); 1368 } 1369 mutex_enter(&pp->pr_lock); 1370 return ENOMEM; 1371 } 1372 1373 mutex_enter(&pp->pr_lock); 1374 pool_prime_page(pp, cp, ph); 1375 pp->pr_npagealloc++; 1376 return 0; 1377 } 1378 1379 /* 1380 * Add N items to the pool. 1381 */ 1382 int 1383 pool_prime(struct pool *pp, int n) 1384 { 1385 int newpages; 1386 int error = 0; 1387 1388 mutex_enter(&pp->pr_lock); 1389 1390 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1391 1392 while (newpages-- > 0) { 1393 error = pool_grow(pp, PR_NOWAIT); 1394 if (error) { 1395 break; 1396 } 1397 pp->pr_minpages++; 1398 } 1399 1400 if (pp->pr_minpages >= pp->pr_maxpages) 1401 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1402 1403 mutex_exit(&pp->pr_lock); 1404 return error; 1405 } 1406 1407 /* 1408 * Add a page worth of items to the pool. 1409 * 1410 * Note, we must be called with the pool descriptor LOCKED. 1411 */ 1412 static void 1413 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1414 { 1415 struct pool_item *pi; 1416 void *cp = storage; 1417 const unsigned int align = pp->pr_align; 1418 const unsigned int ioff = pp->pr_itemoffset; 1419 int n; 1420 1421 KASSERT(mutex_owned(&pp->pr_lock)); 1422 1423 #ifdef DIAGNOSTIC 1424 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1425 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1426 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1427 #endif 1428 1429 /* 1430 * Insert page header. 1431 */ 1432 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1433 LIST_INIT(&ph->ph_itemlist); 1434 ph->ph_page = storage; 1435 ph->ph_nmissing = 0; 1436 ph->ph_time = time_uptime; 1437 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1438 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1439 1440 pp->pr_nidle++; 1441 1442 /* 1443 * Color this page. 1444 */ 1445 ph->ph_off = pp->pr_curcolor; 1446 cp = (char *)cp + ph->ph_off; 1447 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1448 pp->pr_curcolor = 0; 1449 1450 /* 1451 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1452 */ 1453 if (ioff != 0) 1454 cp = (char *)cp + align - ioff; 1455 1456 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1457 1458 /* 1459 * Insert remaining chunks on the bucket list. 1460 */ 1461 n = pp->pr_itemsperpage; 1462 pp->pr_nitems += n; 1463 1464 if (pp->pr_roflags & PR_NOTOUCH) { 1465 pr_item_notouch_init(pp, ph); 1466 } else { 1467 while (n--) { 1468 pi = (struct pool_item *)cp; 1469 1470 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1471 1472 /* Insert on page list */ 1473 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1474 #ifdef DIAGNOSTIC 1475 pi->pi_magic = PI_MAGIC; 1476 #endif 1477 cp = (char *)cp + pp->pr_size; 1478 1479 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1480 } 1481 } 1482 1483 /* 1484 * If the pool was depleted, point at the new page. 1485 */ 1486 if (pp->pr_curpage == NULL) 1487 pp->pr_curpage = ph; 1488 1489 if (++pp->pr_npages > pp->pr_hiwat) 1490 pp->pr_hiwat = pp->pr_npages; 1491 } 1492 1493 /* 1494 * Used by pool_get() when nitems drops below the low water mark. This 1495 * is used to catch up pr_nitems with the low water mark. 1496 * 1497 * Note 1, we never wait for memory here, we let the caller decide what to do. 1498 * 1499 * Note 2, we must be called with the pool already locked, and we return 1500 * with it locked. 1501 */ 1502 static int 1503 pool_catchup(struct pool *pp) 1504 { 1505 int error = 0; 1506 1507 while (POOL_NEEDS_CATCHUP(pp)) { 1508 error = pool_grow(pp, PR_NOWAIT); 1509 if (error) { 1510 break; 1511 } 1512 } 1513 return error; 1514 } 1515 1516 static void 1517 pool_update_curpage(struct pool *pp) 1518 { 1519 1520 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1521 if (pp->pr_curpage == NULL) { 1522 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1523 } 1524 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1525 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1526 } 1527 1528 void 1529 pool_setlowat(struct pool *pp, int n) 1530 { 1531 1532 mutex_enter(&pp->pr_lock); 1533 1534 pp->pr_minitems = n; 1535 pp->pr_minpages = (n == 0) 1536 ? 0 1537 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1538 1539 /* Make sure we're caught up with the newly-set low water mark. */ 1540 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1541 /* 1542 * XXX: Should we log a warning? Should we set up a timeout 1543 * to try again in a second or so? The latter could break 1544 * a caller's assumptions about interrupt protection, etc. 1545 */ 1546 } 1547 1548 mutex_exit(&pp->pr_lock); 1549 } 1550 1551 void 1552 pool_sethiwat(struct pool *pp, int n) 1553 { 1554 1555 mutex_enter(&pp->pr_lock); 1556 1557 pp->pr_maxpages = (n == 0) 1558 ? 0 1559 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1560 1561 mutex_exit(&pp->pr_lock); 1562 } 1563 1564 void 1565 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1566 { 1567 1568 mutex_enter(&pp->pr_lock); 1569 1570 pp->pr_hardlimit = n; 1571 pp->pr_hardlimit_warning = warnmess; 1572 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1573 pp->pr_hardlimit_warning_last.tv_sec = 0; 1574 pp->pr_hardlimit_warning_last.tv_usec = 0; 1575 1576 /* 1577 * In-line version of pool_sethiwat(), because we don't want to 1578 * release the lock. 1579 */ 1580 pp->pr_maxpages = (n == 0) 1581 ? 0 1582 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1583 1584 mutex_exit(&pp->pr_lock); 1585 } 1586 1587 /* 1588 * Release all complete pages that have not been used recently. 1589 */ 1590 int 1591 #ifdef POOL_DIAGNOSTIC 1592 _pool_reclaim(struct pool *pp, const char *file, long line) 1593 #else 1594 pool_reclaim(struct pool *pp) 1595 #endif 1596 { 1597 struct pool_item_header *ph, *phnext; 1598 struct pool_pagelist pq; 1599 uint32_t curtime; 1600 bool klock; 1601 int rv; 1602 1603 if (pp->pr_drain_hook != NULL) { 1604 /* 1605 * The drain hook must be called with the pool unlocked. 1606 */ 1607 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1608 } 1609 1610 /* 1611 * XXXSMP Because we do not want to cause non-MPSAFE code 1612 * to block. 1613 */ 1614 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1615 pp->pr_ipl == IPL_SOFTSERIAL) { 1616 KERNEL_LOCK(1, NULL); 1617 klock = true; 1618 } else 1619 klock = false; 1620 1621 /* Reclaim items from the pool's cache (if any). */ 1622 if (pp->pr_cache != NULL) 1623 pool_cache_invalidate(pp->pr_cache); 1624 1625 if (mutex_tryenter(&pp->pr_lock) == 0) { 1626 if (klock) { 1627 KERNEL_UNLOCK_ONE(NULL); 1628 } 1629 return (0); 1630 } 1631 pr_enter(pp, file, line); 1632 1633 LIST_INIT(&pq); 1634 1635 curtime = time_uptime; 1636 1637 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1638 phnext = LIST_NEXT(ph, ph_pagelist); 1639 1640 /* Check our minimum page claim */ 1641 if (pp->pr_npages <= pp->pr_minpages) 1642 break; 1643 1644 KASSERT(ph->ph_nmissing == 0); 1645 if (curtime - ph->ph_time < pool_inactive_time 1646 && !pa_starved_p(pp->pr_alloc)) 1647 continue; 1648 1649 /* 1650 * If freeing this page would put us below 1651 * the low water mark, stop now. 1652 */ 1653 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1654 pp->pr_minitems) 1655 break; 1656 1657 pr_rmpage(pp, ph, &pq); 1658 } 1659 1660 pr_leave(pp); 1661 mutex_exit(&pp->pr_lock); 1662 1663 if (LIST_EMPTY(&pq)) 1664 rv = 0; 1665 else { 1666 pr_pagelist_free(pp, &pq); 1667 rv = 1; 1668 } 1669 1670 if (klock) { 1671 KERNEL_UNLOCK_ONE(NULL); 1672 } 1673 1674 return (rv); 1675 } 1676 1677 /* 1678 * Drain pools, one at a time. This is a two stage process; 1679 * drain_start kicks off a cross call to drain CPU-level caches 1680 * if the pool has an associated pool_cache. drain_end waits 1681 * for those cross calls to finish, and then drains the cache 1682 * (if any) and pool. 1683 * 1684 * Note, must never be called from interrupt context. 1685 */ 1686 void 1687 pool_drain_start(struct pool **ppp, uint64_t *wp) 1688 { 1689 struct pool *pp; 1690 1691 KASSERT(!TAILQ_EMPTY(&pool_head)); 1692 1693 pp = NULL; 1694 1695 /* Find next pool to drain, and add a reference. */ 1696 mutex_enter(&pool_head_lock); 1697 do { 1698 if (drainpp == NULL) { 1699 drainpp = TAILQ_FIRST(&pool_head); 1700 } 1701 if (drainpp != NULL) { 1702 pp = drainpp; 1703 drainpp = TAILQ_NEXT(pp, pr_poollist); 1704 } 1705 /* 1706 * Skip completely idle pools. We depend on at least 1707 * one pool in the system being active. 1708 */ 1709 } while (pp == NULL || pp->pr_npages == 0); 1710 pp->pr_refcnt++; 1711 mutex_exit(&pool_head_lock); 1712 1713 /* If there is a pool_cache, drain CPU level caches. */ 1714 *ppp = pp; 1715 if (pp->pr_cache != NULL) { 1716 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1717 pp->pr_cache, NULL); 1718 } 1719 } 1720 1721 void 1722 pool_drain_end(struct pool *pp, uint64_t where) 1723 { 1724 1725 if (pp == NULL) 1726 return; 1727 1728 KASSERT(pp->pr_refcnt > 0); 1729 1730 /* Wait for remote draining to complete. */ 1731 if (pp->pr_cache != NULL) 1732 xc_wait(where); 1733 1734 /* Drain the cache (if any) and pool.. */ 1735 pool_reclaim(pp); 1736 1737 /* Finally, unlock the pool. */ 1738 mutex_enter(&pool_head_lock); 1739 pp->pr_refcnt--; 1740 cv_broadcast(&pool_busy); 1741 mutex_exit(&pool_head_lock); 1742 } 1743 1744 /* 1745 * Diagnostic helpers. 1746 */ 1747 void 1748 pool_print(struct pool *pp, const char *modif) 1749 { 1750 1751 pool_print1(pp, modif, printf); 1752 } 1753 1754 void 1755 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1756 { 1757 struct pool *pp; 1758 1759 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1760 pool_printit(pp, modif, pr); 1761 } 1762 } 1763 1764 void 1765 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1766 { 1767 1768 if (pp == NULL) { 1769 (*pr)("Must specify a pool to print.\n"); 1770 return; 1771 } 1772 1773 pool_print1(pp, modif, pr); 1774 } 1775 1776 static void 1777 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1778 void (*pr)(const char *, ...)) 1779 { 1780 struct pool_item_header *ph; 1781 #ifdef DIAGNOSTIC 1782 struct pool_item *pi; 1783 #endif 1784 1785 LIST_FOREACH(ph, pl, ph_pagelist) { 1786 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1787 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1788 #ifdef DIAGNOSTIC 1789 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1790 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1791 if (pi->pi_magic != PI_MAGIC) { 1792 (*pr)("\t\t\titem %p, magic 0x%x\n", 1793 pi, pi->pi_magic); 1794 } 1795 } 1796 } 1797 #endif 1798 } 1799 } 1800 1801 static void 1802 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1803 { 1804 struct pool_item_header *ph; 1805 pool_cache_t pc; 1806 pcg_t *pcg; 1807 pool_cache_cpu_t *cc; 1808 uint64_t cpuhit, cpumiss; 1809 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1810 char c; 1811 1812 while ((c = *modif++) != '\0') { 1813 if (c == 'l') 1814 print_log = 1; 1815 if (c == 'p') 1816 print_pagelist = 1; 1817 if (c == 'c') 1818 print_cache = 1; 1819 } 1820 1821 if ((pc = pp->pr_cache) != NULL) { 1822 (*pr)("POOL CACHE"); 1823 } else { 1824 (*pr)("POOL"); 1825 } 1826 1827 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1828 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1829 pp->pr_roflags); 1830 (*pr)("\talloc %p\n", pp->pr_alloc); 1831 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1832 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1833 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1834 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1835 1836 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1837 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1838 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1839 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1840 1841 if (print_pagelist == 0) 1842 goto skip_pagelist; 1843 1844 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1845 (*pr)("\n\tempty page list:\n"); 1846 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1847 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1848 (*pr)("\n\tfull page list:\n"); 1849 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1850 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1851 (*pr)("\n\tpartial-page list:\n"); 1852 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1853 1854 if (pp->pr_curpage == NULL) 1855 (*pr)("\tno current page\n"); 1856 else 1857 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1858 1859 skip_pagelist: 1860 if (print_log == 0) 1861 goto skip_log; 1862 1863 (*pr)("\n"); 1864 if ((pp->pr_roflags & PR_LOGGING) == 0) 1865 (*pr)("\tno log\n"); 1866 else { 1867 pr_printlog(pp, NULL, pr); 1868 } 1869 1870 skip_log: 1871 1872 #define PR_GROUPLIST(pcg) \ 1873 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1874 for (i = 0; i < pcg->pcg_size; i++) { \ 1875 if (pcg->pcg_objects[i].pcgo_pa != \ 1876 POOL_PADDR_INVALID) { \ 1877 (*pr)("\t\t\t%p, 0x%llx\n", \ 1878 pcg->pcg_objects[i].pcgo_va, \ 1879 (unsigned long long) \ 1880 pcg->pcg_objects[i].pcgo_pa); \ 1881 } else { \ 1882 (*pr)("\t\t\t%p\n", \ 1883 pcg->pcg_objects[i].pcgo_va); \ 1884 } \ 1885 } 1886 1887 if (pc != NULL) { 1888 cpuhit = 0; 1889 cpumiss = 0; 1890 for (i = 0; i < MAXCPUS; i++) { 1891 if ((cc = pc->pc_cpus[i]) == NULL) 1892 continue; 1893 cpuhit += cc->cc_hits; 1894 cpumiss += cc->cc_misses; 1895 } 1896 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1897 (*pr)("\tcache layer hits %llu misses %llu\n", 1898 pc->pc_hits, pc->pc_misses); 1899 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1900 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1901 pc->pc_contended); 1902 (*pr)("\tcache layer empty groups %u full groups %u\n", 1903 pc->pc_nempty, pc->pc_nfull); 1904 if (print_cache) { 1905 (*pr)("\tfull cache groups:\n"); 1906 for (pcg = pc->pc_fullgroups; pcg != NULL; 1907 pcg = pcg->pcg_next) { 1908 PR_GROUPLIST(pcg); 1909 } 1910 (*pr)("\tempty cache groups:\n"); 1911 for (pcg = pc->pc_emptygroups; pcg != NULL; 1912 pcg = pcg->pcg_next) { 1913 PR_GROUPLIST(pcg); 1914 } 1915 } 1916 } 1917 #undef PR_GROUPLIST 1918 1919 pr_enter_check(pp, pr); 1920 } 1921 1922 static int 1923 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1924 { 1925 struct pool_item *pi; 1926 void *page; 1927 int n; 1928 1929 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1930 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1931 if (page != ph->ph_page && 1932 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1933 if (label != NULL) 1934 printf("%s: ", label); 1935 printf("pool(%p:%s): page inconsistency: page %p;" 1936 " at page head addr %p (p %p)\n", pp, 1937 pp->pr_wchan, ph->ph_page, 1938 ph, page); 1939 return 1; 1940 } 1941 } 1942 1943 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1944 return 0; 1945 1946 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1947 pi != NULL; 1948 pi = LIST_NEXT(pi,pi_list), n++) { 1949 1950 #ifdef DIAGNOSTIC 1951 if (pi->pi_magic != PI_MAGIC) { 1952 if (label != NULL) 1953 printf("%s: ", label); 1954 printf("pool(%s): free list modified: magic=%x;" 1955 " page %p; item ordinal %d; addr %p\n", 1956 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1957 n, pi); 1958 panic("pool"); 1959 } 1960 #endif 1961 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1962 continue; 1963 } 1964 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1965 if (page == ph->ph_page) 1966 continue; 1967 1968 if (label != NULL) 1969 printf("%s: ", label); 1970 printf("pool(%p:%s): page inconsistency: page %p;" 1971 " item ordinal %d; addr %p (p %p)\n", pp, 1972 pp->pr_wchan, ph->ph_page, 1973 n, pi, page); 1974 return 1; 1975 } 1976 return 0; 1977 } 1978 1979 1980 int 1981 pool_chk(struct pool *pp, const char *label) 1982 { 1983 struct pool_item_header *ph; 1984 int r = 0; 1985 1986 mutex_enter(&pp->pr_lock); 1987 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1988 r = pool_chk_page(pp, label, ph); 1989 if (r) { 1990 goto out; 1991 } 1992 } 1993 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1994 r = pool_chk_page(pp, label, ph); 1995 if (r) { 1996 goto out; 1997 } 1998 } 1999 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2000 r = pool_chk_page(pp, label, ph); 2001 if (r) { 2002 goto out; 2003 } 2004 } 2005 2006 out: 2007 mutex_exit(&pp->pr_lock); 2008 return (r); 2009 } 2010 2011 /* 2012 * pool_cache_init: 2013 * 2014 * Initialize a pool cache. 2015 */ 2016 pool_cache_t 2017 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2018 const char *wchan, struct pool_allocator *palloc, int ipl, 2019 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2020 { 2021 pool_cache_t pc; 2022 2023 pc = pool_get(&cache_pool, PR_WAITOK); 2024 if (pc == NULL) 2025 return NULL; 2026 2027 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2028 palloc, ipl, ctor, dtor, arg); 2029 2030 return pc; 2031 } 2032 2033 /* 2034 * pool_cache_bootstrap: 2035 * 2036 * Kernel-private version of pool_cache_init(). The caller 2037 * provides initial storage. 2038 */ 2039 void 2040 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2041 u_int align_offset, u_int flags, const char *wchan, 2042 struct pool_allocator *palloc, int ipl, 2043 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2044 void *arg) 2045 { 2046 CPU_INFO_ITERATOR cii; 2047 pool_cache_t pc1; 2048 struct cpu_info *ci; 2049 struct pool *pp; 2050 2051 pp = &pc->pc_pool; 2052 if (palloc == NULL && ipl == IPL_NONE) 2053 palloc = &pool_allocator_nointr; 2054 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2055 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2056 2057 if (ctor == NULL) { 2058 ctor = (int (*)(void *, void *, int))nullop; 2059 } 2060 if (dtor == NULL) { 2061 dtor = (void (*)(void *, void *))nullop; 2062 } 2063 2064 pc->pc_emptygroups = NULL; 2065 pc->pc_fullgroups = NULL; 2066 pc->pc_partgroups = NULL; 2067 pc->pc_ctor = ctor; 2068 pc->pc_dtor = dtor; 2069 pc->pc_arg = arg; 2070 pc->pc_hits = 0; 2071 pc->pc_misses = 0; 2072 pc->pc_nempty = 0; 2073 pc->pc_npart = 0; 2074 pc->pc_nfull = 0; 2075 pc->pc_contended = 0; 2076 pc->pc_refcnt = 0; 2077 pc->pc_freecheck = NULL; 2078 2079 if ((flags & PR_LARGECACHE) != 0) { 2080 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2081 pc->pc_pcgpool = &pcg_large_pool; 2082 } else { 2083 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2084 pc->pc_pcgpool = &pcg_normal_pool; 2085 } 2086 2087 /* Allocate per-CPU caches. */ 2088 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2089 pc->pc_ncpu = 0; 2090 if (ncpu < 2) { 2091 /* XXX For sparc: boot CPU is not attached yet. */ 2092 pool_cache_cpu_init1(curcpu(), pc); 2093 } else { 2094 for (CPU_INFO_FOREACH(cii, ci)) { 2095 pool_cache_cpu_init1(ci, pc); 2096 } 2097 } 2098 2099 /* Add to list of all pools. */ 2100 if (__predict_true(!cold)) 2101 mutex_enter(&pool_head_lock); 2102 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2103 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2104 break; 2105 } 2106 if (pc1 == NULL) 2107 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2108 else 2109 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2110 if (__predict_true(!cold)) 2111 mutex_exit(&pool_head_lock); 2112 2113 membar_sync(); 2114 pp->pr_cache = pc; 2115 } 2116 2117 /* 2118 * pool_cache_destroy: 2119 * 2120 * Destroy a pool cache. 2121 */ 2122 void 2123 pool_cache_destroy(pool_cache_t pc) 2124 { 2125 struct pool *pp = &pc->pc_pool; 2126 u_int i; 2127 2128 /* Remove it from the global list. */ 2129 mutex_enter(&pool_head_lock); 2130 while (pc->pc_refcnt != 0) 2131 cv_wait(&pool_busy, &pool_head_lock); 2132 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2133 mutex_exit(&pool_head_lock); 2134 2135 /* First, invalidate the entire cache. */ 2136 pool_cache_invalidate(pc); 2137 2138 /* Disassociate it from the pool. */ 2139 mutex_enter(&pp->pr_lock); 2140 pp->pr_cache = NULL; 2141 mutex_exit(&pp->pr_lock); 2142 2143 /* Destroy per-CPU data */ 2144 for (i = 0; i < MAXCPUS; i++) 2145 pool_cache_invalidate_cpu(pc, i); 2146 2147 /* Finally, destroy it. */ 2148 mutex_destroy(&pc->pc_lock); 2149 pool_destroy(pp); 2150 pool_put(&cache_pool, pc); 2151 } 2152 2153 /* 2154 * pool_cache_cpu_init1: 2155 * 2156 * Called for each pool_cache whenever a new CPU is attached. 2157 */ 2158 static void 2159 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2160 { 2161 pool_cache_cpu_t *cc; 2162 int index; 2163 2164 index = ci->ci_index; 2165 2166 KASSERT(index < MAXCPUS); 2167 2168 if ((cc = pc->pc_cpus[index]) != NULL) { 2169 KASSERT(cc->cc_cpuindex == index); 2170 return; 2171 } 2172 2173 /* 2174 * The first CPU is 'free'. This needs to be the case for 2175 * bootstrap - we may not be able to allocate yet. 2176 */ 2177 if (pc->pc_ncpu == 0) { 2178 cc = &pc->pc_cpu0; 2179 pc->pc_ncpu = 1; 2180 } else { 2181 mutex_enter(&pc->pc_lock); 2182 pc->pc_ncpu++; 2183 mutex_exit(&pc->pc_lock); 2184 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2185 } 2186 2187 cc->cc_ipl = pc->pc_pool.pr_ipl; 2188 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2189 cc->cc_cache = pc; 2190 cc->cc_cpuindex = index; 2191 cc->cc_hits = 0; 2192 cc->cc_misses = 0; 2193 cc->cc_current = __UNCONST(&pcg_dummy); 2194 cc->cc_previous = __UNCONST(&pcg_dummy); 2195 2196 pc->pc_cpus[index] = cc; 2197 } 2198 2199 /* 2200 * pool_cache_cpu_init: 2201 * 2202 * Called whenever a new CPU is attached. 2203 */ 2204 void 2205 pool_cache_cpu_init(struct cpu_info *ci) 2206 { 2207 pool_cache_t pc; 2208 2209 mutex_enter(&pool_head_lock); 2210 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2211 pc->pc_refcnt++; 2212 mutex_exit(&pool_head_lock); 2213 2214 pool_cache_cpu_init1(ci, pc); 2215 2216 mutex_enter(&pool_head_lock); 2217 pc->pc_refcnt--; 2218 cv_broadcast(&pool_busy); 2219 } 2220 mutex_exit(&pool_head_lock); 2221 } 2222 2223 /* 2224 * pool_cache_reclaim: 2225 * 2226 * Reclaim memory from a pool cache. 2227 */ 2228 bool 2229 pool_cache_reclaim(pool_cache_t pc) 2230 { 2231 2232 return pool_reclaim(&pc->pc_pool); 2233 } 2234 2235 static void 2236 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2237 { 2238 2239 (*pc->pc_dtor)(pc->pc_arg, object); 2240 pool_put(&pc->pc_pool, object); 2241 } 2242 2243 /* 2244 * pool_cache_destruct_object: 2245 * 2246 * Force destruction of an object and its release back into 2247 * the pool. 2248 */ 2249 void 2250 pool_cache_destruct_object(pool_cache_t pc, void *object) 2251 { 2252 2253 FREECHECK_IN(&pc->pc_freecheck, object); 2254 2255 pool_cache_destruct_object1(pc, object); 2256 } 2257 2258 /* 2259 * pool_cache_invalidate_groups: 2260 * 2261 * Invalidate a chain of groups and destruct all objects. 2262 */ 2263 static void 2264 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2265 { 2266 void *object; 2267 pcg_t *next; 2268 int i; 2269 2270 for (; pcg != NULL; pcg = next) { 2271 next = pcg->pcg_next; 2272 2273 for (i = 0; i < pcg->pcg_avail; i++) { 2274 object = pcg->pcg_objects[i].pcgo_va; 2275 pool_cache_destruct_object1(pc, object); 2276 } 2277 2278 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2279 pool_put(&pcg_large_pool, pcg); 2280 } else { 2281 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2282 pool_put(&pcg_normal_pool, pcg); 2283 } 2284 } 2285 } 2286 2287 /* 2288 * pool_cache_invalidate: 2289 * 2290 * Invalidate a pool cache (destruct and release all of the 2291 * cached objects). Does not reclaim objects from the pool. 2292 * 2293 * Note: For pool caches that provide constructed objects, there 2294 * is an assumption that another level of synchronization is occurring 2295 * between the input to the constructor and the cache invalidation. 2296 */ 2297 void 2298 pool_cache_invalidate(pool_cache_t pc) 2299 { 2300 pcg_t *full, *empty, *part; 2301 uint64_t where; 2302 2303 if (ncpu < 2 || !mp_online) { 2304 /* 2305 * We might be called early enough in the boot process 2306 * for the CPU data structures to not be fully initialized. 2307 * In this case, simply gather the local CPU's cache now 2308 * since it will be the only one running. 2309 */ 2310 pool_cache_xcall(pc); 2311 } else { 2312 /* 2313 * Gather all of the CPU-specific caches into the 2314 * global cache. 2315 */ 2316 where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL); 2317 xc_wait(where); 2318 } 2319 2320 mutex_enter(&pc->pc_lock); 2321 full = pc->pc_fullgroups; 2322 empty = pc->pc_emptygroups; 2323 part = pc->pc_partgroups; 2324 pc->pc_fullgroups = NULL; 2325 pc->pc_emptygroups = NULL; 2326 pc->pc_partgroups = NULL; 2327 pc->pc_nfull = 0; 2328 pc->pc_nempty = 0; 2329 pc->pc_npart = 0; 2330 mutex_exit(&pc->pc_lock); 2331 2332 pool_cache_invalidate_groups(pc, full); 2333 pool_cache_invalidate_groups(pc, empty); 2334 pool_cache_invalidate_groups(pc, part); 2335 } 2336 2337 /* 2338 * pool_cache_invalidate_cpu: 2339 * 2340 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2341 * identified by its associated index. 2342 * It is caller's responsibility to ensure that no operation is 2343 * taking place on this pool cache while doing this invalidation. 2344 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2345 * pool cached objects from a CPU different from the one currently running 2346 * may result in an undefined behaviour. 2347 */ 2348 static void 2349 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2350 { 2351 2352 pool_cache_cpu_t *cc; 2353 pcg_t *pcg; 2354 2355 if ((cc = pc->pc_cpus[index]) == NULL) 2356 return; 2357 2358 if ((pcg = cc->cc_current) != &pcg_dummy) { 2359 pcg->pcg_next = NULL; 2360 pool_cache_invalidate_groups(pc, pcg); 2361 } 2362 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2363 pcg->pcg_next = NULL; 2364 pool_cache_invalidate_groups(pc, pcg); 2365 } 2366 if (cc != &pc->pc_cpu0) 2367 pool_put(&cache_cpu_pool, cc); 2368 2369 } 2370 2371 void 2372 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2373 { 2374 2375 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2376 } 2377 2378 void 2379 pool_cache_setlowat(pool_cache_t pc, int n) 2380 { 2381 2382 pool_setlowat(&pc->pc_pool, n); 2383 } 2384 2385 void 2386 pool_cache_sethiwat(pool_cache_t pc, int n) 2387 { 2388 2389 pool_sethiwat(&pc->pc_pool, n); 2390 } 2391 2392 void 2393 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2394 { 2395 2396 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2397 } 2398 2399 static bool __noinline 2400 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2401 paddr_t *pap, int flags) 2402 { 2403 pcg_t *pcg, *cur; 2404 uint64_t ncsw; 2405 pool_cache_t pc; 2406 void *object; 2407 2408 KASSERT(cc->cc_current->pcg_avail == 0); 2409 KASSERT(cc->cc_previous->pcg_avail == 0); 2410 2411 pc = cc->cc_cache; 2412 cc->cc_misses++; 2413 2414 /* 2415 * Nothing was available locally. Try and grab a group 2416 * from the cache. 2417 */ 2418 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2419 ncsw = curlwp->l_ncsw; 2420 mutex_enter(&pc->pc_lock); 2421 pc->pc_contended++; 2422 2423 /* 2424 * If we context switched while locking, then 2425 * our view of the per-CPU data is invalid: 2426 * retry. 2427 */ 2428 if (curlwp->l_ncsw != ncsw) { 2429 mutex_exit(&pc->pc_lock); 2430 return true; 2431 } 2432 } 2433 2434 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2435 /* 2436 * If there's a full group, release our empty 2437 * group back to the cache. Install the full 2438 * group as cc_current and return. 2439 */ 2440 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2441 KASSERT(cur->pcg_avail == 0); 2442 cur->pcg_next = pc->pc_emptygroups; 2443 pc->pc_emptygroups = cur; 2444 pc->pc_nempty++; 2445 } 2446 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2447 cc->cc_current = pcg; 2448 pc->pc_fullgroups = pcg->pcg_next; 2449 pc->pc_hits++; 2450 pc->pc_nfull--; 2451 mutex_exit(&pc->pc_lock); 2452 return true; 2453 } 2454 2455 /* 2456 * Nothing available locally or in cache. Take the slow 2457 * path: fetch a new object from the pool and construct 2458 * it. 2459 */ 2460 pc->pc_misses++; 2461 mutex_exit(&pc->pc_lock); 2462 splx(s); 2463 2464 object = pool_get(&pc->pc_pool, flags); 2465 *objectp = object; 2466 if (__predict_false(object == NULL)) 2467 return false; 2468 2469 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2470 pool_put(&pc->pc_pool, object); 2471 *objectp = NULL; 2472 return false; 2473 } 2474 2475 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2476 (pc->pc_pool.pr_align - 1)) == 0); 2477 2478 if (pap != NULL) { 2479 #ifdef POOL_VTOPHYS 2480 *pap = POOL_VTOPHYS(object); 2481 #else 2482 *pap = POOL_PADDR_INVALID; 2483 #endif 2484 } 2485 2486 FREECHECK_OUT(&pc->pc_freecheck, object); 2487 return false; 2488 } 2489 2490 /* 2491 * pool_cache_get{,_paddr}: 2492 * 2493 * Get an object from a pool cache (optionally returning 2494 * the physical address of the object). 2495 */ 2496 void * 2497 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2498 { 2499 pool_cache_cpu_t *cc; 2500 pcg_t *pcg; 2501 void *object; 2502 int s; 2503 2504 #ifdef LOCKDEBUG 2505 if (flags & PR_WAITOK) { 2506 ASSERT_SLEEPABLE(); 2507 } 2508 #endif 2509 2510 /* Lock out interrupts and disable preemption. */ 2511 s = splvm(); 2512 while (/* CONSTCOND */ true) { 2513 /* Try and allocate an object from the current group. */ 2514 cc = pc->pc_cpus[curcpu()->ci_index]; 2515 KASSERT(cc->cc_cache == pc); 2516 pcg = cc->cc_current; 2517 if (__predict_true(pcg->pcg_avail > 0)) { 2518 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2519 if (__predict_false(pap != NULL)) 2520 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2521 #if defined(DIAGNOSTIC) 2522 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2523 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2524 KASSERT(object != NULL); 2525 #endif 2526 cc->cc_hits++; 2527 splx(s); 2528 FREECHECK_OUT(&pc->pc_freecheck, object); 2529 return object; 2530 } 2531 2532 /* 2533 * That failed. If the previous group isn't empty, swap 2534 * it with the current group and allocate from there. 2535 */ 2536 pcg = cc->cc_previous; 2537 if (__predict_true(pcg->pcg_avail > 0)) { 2538 cc->cc_previous = cc->cc_current; 2539 cc->cc_current = pcg; 2540 continue; 2541 } 2542 2543 /* 2544 * Can't allocate from either group: try the slow path. 2545 * If get_slow() allocated an object for us, or if 2546 * no more objects are available, it will return false. 2547 * Otherwise, we need to retry. 2548 */ 2549 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2550 break; 2551 } 2552 2553 return object; 2554 } 2555 2556 static bool __noinline 2557 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2558 { 2559 pcg_t *pcg, *cur; 2560 uint64_t ncsw; 2561 pool_cache_t pc; 2562 2563 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2564 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2565 2566 pc = cc->cc_cache; 2567 pcg = NULL; 2568 cc->cc_misses++; 2569 2570 /* 2571 * If there are no empty groups in the cache then allocate one 2572 * while still unlocked. 2573 */ 2574 if (__predict_false(pc->pc_emptygroups == NULL)) { 2575 if (__predict_true(!pool_cache_disable)) { 2576 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2577 } 2578 if (__predict_true(pcg != NULL)) { 2579 pcg->pcg_avail = 0; 2580 pcg->pcg_size = pc->pc_pcgsize; 2581 } 2582 } 2583 2584 /* Lock the cache. */ 2585 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2586 ncsw = curlwp->l_ncsw; 2587 mutex_enter(&pc->pc_lock); 2588 pc->pc_contended++; 2589 2590 /* 2591 * If we context switched while locking, then our view of 2592 * the per-CPU data is invalid: retry. 2593 */ 2594 if (__predict_false(curlwp->l_ncsw != ncsw)) { 2595 mutex_exit(&pc->pc_lock); 2596 if (pcg != NULL) { 2597 pool_put(pc->pc_pcgpool, pcg); 2598 } 2599 return true; 2600 } 2601 } 2602 2603 /* If there are no empty groups in the cache then allocate one. */ 2604 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2605 pcg = pc->pc_emptygroups; 2606 pc->pc_emptygroups = pcg->pcg_next; 2607 pc->pc_nempty--; 2608 } 2609 2610 /* 2611 * If there's a empty group, release our full group back 2612 * to the cache. Install the empty group to the local CPU 2613 * and return. 2614 */ 2615 if (pcg != NULL) { 2616 KASSERT(pcg->pcg_avail == 0); 2617 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2618 cc->cc_previous = pcg; 2619 } else { 2620 cur = cc->cc_current; 2621 if (__predict_true(cur != &pcg_dummy)) { 2622 KASSERT(cur->pcg_avail == cur->pcg_size); 2623 cur->pcg_next = pc->pc_fullgroups; 2624 pc->pc_fullgroups = cur; 2625 pc->pc_nfull++; 2626 } 2627 cc->cc_current = pcg; 2628 } 2629 pc->pc_hits++; 2630 mutex_exit(&pc->pc_lock); 2631 return true; 2632 } 2633 2634 /* 2635 * Nothing available locally or in cache, and we didn't 2636 * allocate an empty group. Take the slow path and destroy 2637 * the object here and now. 2638 */ 2639 pc->pc_misses++; 2640 mutex_exit(&pc->pc_lock); 2641 splx(s); 2642 pool_cache_destruct_object(pc, object); 2643 2644 return false; 2645 } 2646 2647 /* 2648 * pool_cache_put{,_paddr}: 2649 * 2650 * Put an object back to the pool cache (optionally caching the 2651 * physical address of the object). 2652 */ 2653 void 2654 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2655 { 2656 pool_cache_cpu_t *cc; 2657 pcg_t *pcg; 2658 int s; 2659 2660 KASSERT(object != NULL); 2661 FREECHECK_IN(&pc->pc_freecheck, object); 2662 2663 /* Lock out interrupts and disable preemption. */ 2664 s = splvm(); 2665 while (/* CONSTCOND */ true) { 2666 /* If the current group isn't full, release it there. */ 2667 cc = pc->pc_cpus[curcpu()->ci_index]; 2668 KASSERT(cc->cc_cache == pc); 2669 pcg = cc->cc_current; 2670 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2671 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2672 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2673 pcg->pcg_avail++; 2674 cc->cc_hits++; 2675 splx(s); 2676 return; 2677 } 2678 2679 /* 2680 * That failed. If the previous group isn't full, swap 2681 * it with the current group and try again. 2682 */ 2683 pcg = cc->cc_previous; 2684 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2685 cc->cc_previous = cc->cc_current; 2686 cc->cc_current = pcg; 2687 continue; 2688 } 2689 2690 /* 2691 * Can't free to either group: try the slow path. 2692 * If put_slow() releases the object for us, it 2693 * will return false. Otherwise we need to retry. 2694 */ 2695 if (!pool_cache_put_slow(cc, s, object)) 2696 break; 2697 } 2698 } 2699 2700 /* 2701 * pool_cache_xcall: 2702 * 2703 * Transfer objects from the per-CPU cache to the global cache. 2704 * Run within a cross-call thread. 2705 */ 2706 static void 2707 pool_cache_xcall(pool_cache_t pc) 2708 { 2709 pool_cache_cpu_t *cc; 2710 pcg_t *prev, *cur, **list; 2711 int s; 2712 2713 s = splvm(); 2714 mutex_enter(&pc->pc_lock); 2715 cc = pc->pc_cpus[curcpu()->ci_index]; 2716 cur = cc->cc_current; 2717 cc->cc_current = __UNCONST(&pcg_dummy); 2718 prev = cc->cc_previous; 2719 cc->cc_previous = __UNCONST(&pcg_dummy); 2720 if (cur != &pcg_dummy) { 2721 if (cur->pcg_avail == cur->pcg_size) { 2722 list = &pc->pc_fullgroups; 2723 pc->pc_nfull++; 2724 } else if (cur->pcg_avail == 0) { 2725 list = &pc->pc_emptygroups; 2726 pc->pc_nempty++; 2727 } else { 2728 list = &pc->pc_partgroups; 2729 pc->pc_npart++; 2730 } 2731 cur->pcg_next = *list; 2732 *list = cur; 2733 } 2734 if (prev != &pcg_dummy) { 2735 if (prev->pcg_avail == prev->pcg_size) { 2736 list = &pc->pc_fullgroups; 2737 pc->pc_nfull++; 2738 } else if (prev->pcg_avail == 0) { 2739 list = &pc->pc_emptygroups; 2740 pc->pc_nempty++; 2741 } else { 2742 list = &pc->pc_partgroups; 2743 pc->pc_npart++; 2744 } 2745 prev->pcg_next = *list; 2746 *list = prev; 2747 } 2748 mutex_exit(&pc->pc_lock); 2749 splx(s); 2750 } 2751 2752 /* 2753 * Pool backend allocators. 2754 * 2755 * Each pool has a backend allocator that handles allocation, deallocation, 2756 * and any additional draining that might be needed. 2757 * 2758 * We provide two standard allocators: 2759 * 2760 * pool_allocator_kmem - the default when no allocator is specified 2761 * 2762 * pool_allocator_nointr - used for pools that will not be accessed 2763 * in interrupt context. 2764 */ 2765 void *pool_page_alloc(struct pool *, int); 2766 void pool_page_free(struct pool *, void *); 2767 2768 #ifdef POOL_SUBPAGE 2769 struct pool_allocator pool_allocator_kmem_fullpage = { 2770 pool_page_alloc, pool_page_free, 0, 2771 .pa_backingmapptr = &kmem_map, 2772 }; 2773 #else 2774 struct pool_allocator pool_allocator_kmem = { 2775 pool_page_alloc, pool_page_free, 0, 2776 .pa_backingmapptr = &kmem_map, 2777 }; 2778 #endif 2779 2780 void *pool_page_alloc_nointr(struct pool *, int); 2781 void pool_page_free_nointr(struct pool *, void *); 2782 2783 #ifdef POOL_SUBPAGE 2784 struct pool_allocator pool_allocator_nointr_fullpage = { 2785 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2786 .pa_backingmapptr = &kernel_map, 2787 }; 2788 #else 2789 struct pool_allocator pool_allocator_nointr = { 2790 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2791 .pa_backingmapptr = &kernel_map, 2792 }; 2793 #endif 2794 2795 #ifdef POOL_SUBPAGE 2796 void *pool_subpage_alloc(struct pool *, int); 2797 void pool_subpage_free(struct pool *, void *); 2798 2799 struct pool_allocator pool_allocator_kmem = { 2800 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2801 .pa_backingmapptr = &kmem_map, 2802 }; 2803 2804 void *pool_subpage_alloc_nointr(struct pool *, int); 2805 void pool_subpage_free_nointr(struct pool *, void *); 2806 2807 struct pool_allocator pool_allocator_nointr = { 2808 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2809 .pa_backingmapptr = &kmem_map, 2810 }; 2811 #endif /* POOL_SUBPAGE */ 2812 2813 static void * 2814 pool_allocator_alloc(struct pool *pp, int flags) 2815 { 2816 struct pool_allocator *pa = pp->pr_alloc; 2817 void *res; 2818 2819 res = (*pa->pa_alloc)(pp, flags); 2820 if (res == NULL && (flags & PR_WAITOK) == 0) { 2821 /* 2822 * We only run the drain hook here if PR_NOWAIT. 2823 * In other cases, the hook will be run in 2824 * pool_reclaim(). 2825 */ 2826 if (pp->pr_drain_hook != NULL) { 2827 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2828 res = (*pa->pa_alloc)(pp, flags); 2829 } 2830 } 2831 return res; 2832 } 2833 2834 static void 2835 pool_allocator_free(struct pool *pp, void *v) 2836 { 2837 struct pool_allocator *pa = pp->pr_alloc; 2838 2839 (*pa->pa_free)(pp, v); 2840 } 2841 2842 void * 2843 pool_page_alloc(struct pool *pp, int flags) 2844 { 2845 bool waitok = (flags & PR_WAITOK) ? true : false; 2846 2847 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2848 } 2849 2850 void 2851 pool_page_free(struct pool *pp, void *v) 2852 { 2853 2854 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2855 } 2856 2857 static void * 2858 pool_page_alloc_meta(struct pool *pp, int flags) 2859 { 2860 bool waitok = (flags & PR_WAITOK) ? true : false; 2861 2862 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2863 } 2864 2865 static void 2866 pool_page_free_meta(struct pool *pp, void *v) 2867 { 2868 2869 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2870 } 2871 2872 #ifdef POOL_SUBPAGE 2873 /* Sub-page allocator, for machines with large hardware pages. */ 2874 void * 2875 pool_subpage_alloc(struct pool *pp, int flags) 2876 { 2877 return pool_get(&psppool, flags); 2878 } 2879 2880 void 2881 pool_subpage_free(struct pool *pp, void *v) 2882 { 2883 pool_put(&psppool, v); 2884 } 2885 2886 /* We don't provide a real nointr allocator. Maybe later. */ 2887 void * 2888 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2889 { 2890 2891 return (pool_subpage_alloc(pp, flags)); 2892 } 2893 2894 void 2895 pool_subpage_free_nointr(struct pool *pp, void *v) 2896 { 2897 2898 pool_subpage_free(pp, v); 2899 } 2900 #endif /* POOL_SUBPAGE */ 2901 void * 2902 pool_page_alloc_nointr(struct pool *pp, int flags) 2903 { 2904 bool waitok = (flags & PR_WAITOK) ? true : false; 2905 2906 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2907 } 2908 2909 void 2910 pool_page_free_nointr(struct pool *pp, void *v) 2911 { 2912 2913 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2914 } 2915 2916 #if defined(DDB) 2917 static bool 2918 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2919 { 2920 2921 return (uintptr_t)ph->ph_page <= addr && 2922 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2923 } 2924 2925 static bool 2926 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2927 { 2928 2929 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2930 } 2931 2932 static bool 2933 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2934 { 2935 int i; 2936 2937 if (pcg == NULL) { 2938 return false; 2939 } 2940 for (i = 0; i < pcg->pcg_avail; i++) { 2941 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2942 return true; 2943 } 2944 } 2945 return false; 2946 } 2947 2948 static bool 2949 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2950 { 2951 2952 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2953 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2954 pool_item_bitmap_t *bitmap = 2955 ph->ph_bitmap + (idx / BITMAP_SIZE); 2956 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2957 2958 return (*bitmap & mask) == 0; 2959 } else { 2960 struct pool_item *pi; 2961 2962 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2963 if (pool_in_item(pp, pi, addr)) { 2964 return false; 2965 } 2966 } 2967 return true; 2968 } 2969 } 2970 2971 void 2972 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2973 { 2974 struct pool *pp; 2975 2976 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2977 struct pool_item_header *ph; 2978 uintptr_t item; 2979 bool allocated = true; 2980 bool incache = false; 2981 bool incpucache = false; 2982 char cpucachestr[32]; 2983 2984 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 2985 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2986 if (pool_in_page(pp, ph, addr)) { 2987 goto found; 2988 } 2989 } 2990 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2991 if (pool_in_page(pp, ph, addr)) { 2992 allocated = 2993 pool_allocated(pp, ph, addr); 2994 goto found; 2995 } 2996 } 2997 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2998 if (pool_in_page(pp, ph, addr)) { 2999 allocated = false; 3000 goto found; 3001 } 3002 } 3003 continue; 3004 } else { 3005 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3006 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3007 continue; 3008 } 3009 allocated = pool_allocated(pp, ph, addr); 3010 } 3011 found: 3012 if (allocated && pp->pr_cache) { 3013 pool_cache_t pc = pp->pr_cache; 3014 struct pool_cache_group *pcg; 3015 int i; 3016 3017 for (pcg = pc->pc_fullgroups; pcg != NULL; 3018 pcg = pcg->pcg_next) { 3019 if (pool_in_cg(pp, pcg, addr)) { 3020 incache = true; 3021 goto print; 3022 } 3023 } 3024 for (i = 0; i < MAXCPUS; i++) { 3025 pool_cache_cpu_t *cc; 3026 3027 if ((cc = pc->pc_cpus[i]) == NULL) { 3028 continue; 3029 } 3030 if (pool_in_cg(pp, cc->cc_current, addr) || 3031 pool_in_cg(pp, cc->cc_previous, addr)) { 3032 struct cpu_info *ci = 3033 cpu_lookup(i); 3034 3035 incpucache = true; 3036 snprintf(cpucachestr, 3037 sizeof(cpucachestr), 3038 "cached by CPU %u", 3039 ci->ci_index); 3040 goto print; 3041 } 3042 } 3043 } 3044 print: 3045 item = (uintptr_t)ph->ph_page + ph->ph_off; 3046 item = item + rounddown(addr - item, pp->pr_size); 3047 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3048 (void *)addr, item, (size_t)(addr - item), 3049 pp->pr_wchan, 3050 incpucache ? cpucachestr : 3051 incache ? "cached" : allocated ? "allocated" : "free"); 3052 } 3053 } 3054 #endif /* defined(DDB) */ 3055