xref: /netbsd-src/sys/kern/subr_pool.c (revision 817cd315412cb2ce0bc4e6bf3f12a866fd948396)
1 /*	$NetBSD: subr_pool.c,v 1.177 2009/10/20 17:24:22 jym Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.177 2009/10/20 17:24:22 jym Exp $");
35 
36 #include "opt_ddb.h"
37 #include "opt_pool.h"
38 #include "opt_poollog.h"
39 #include "opt_lockdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bitops.h>
44 #include <sys/proc.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/debug.h>
51 #include <sys/lockdebug.h>
52 #include <sys/xcall.h>
53 #include <sys/cpu.h>
54 #include <sys/atomic.h>
55 
56 #include <uvm/uvm.h>
57 
58 /*
59  * Pool resource management utility.
60  *
61  * Memory is allocated in pages which are split into pieces according to
62  * the pool item size. Each page is kept on one of three lists in the
63  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
64  * for empty, full and partially-full pages respectively. The individual
65  * pool items are on a linked list headed by `ph_itemlist' in each page
66  * header. The memory for building the page list is either taken from
67  * the allocated pages themselves (for small pool items) or taken from
68  * an internal pool of page headers (`phpool').
69  */
70 
71 /* List of all pools */
72 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
73 
74 /* Private pool for page header structures */
75 #define	PHPOOL_MAX	8
76 static struct pool phpool[PHPOOL_MAX];
77 #define	PHPOOL_FREELIST_NELEM(idx) \
78 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
79 
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84 
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
87 
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90 
91 /* allocator for pool metadata */
92 struct pool_allocator pool_allocator_meta = {
93 	pool_page_alloc_meta, pool_page_free_meta,
94 	.pa_backingmapptr = &kmem_map,
95 };
96 
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99 
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool	*drainpp;
102 
103 /* This lock protects both pool_head and drainpp. */
104 static kmutex_t pool_head_lock;
105 static kcondvar_t pool_busy;
106 
107 typedef uint32_t pool_item_bitmap_t;
108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
110 
111 struct pool_item_header {
112 	/* Page headers */
113 	LIST_ENTRY(pool_item_header)
114 				ph_pagelist;	/* pool page list */
115 	SPLAY_ENTRY(pool_item_header)
116 				ph_node;	/* Off-page page headers */
117 	void *			ph_page;	/* this page's address */
118 	uint32_t		ph_time;	/* last referenced */
119 	uint16_t		ph_nmissing;	/* # of chunks in use */
120 	uint16_t		ph_off;		/* start offset in page */
121 	union {
122 		/* !PR_NOTOUCH */
123 		struct {
124 			LIST_HEAD(, pool_item)
125 				phu_itemlist;	/* chunk list for this page */
126 		} phu_normal;
127 		/* PR_NOTOUCH */
128 		struct {
129 			pool_item_bitmap_t phu_bitmap[1];
130 		} phu_notouch;
131 	} ph_u;
132 };
133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
135 
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 	u_int pi_magic;
139 #endif
140 #define	PI_MAGIC 0xdeaddeadU
141 	/* Other entries use only this list entry */
142 	LIST_ENTRY(pool_item)	pi_list;
143 };
144 
145 #define	POOL_NEEDS_CATCHUP(pp)						\
146 	((pp)->pr_nitems < (pp)->pr_minitems)
147 
148 /*
149  * Pool cache management.
150  *
151  * Pool caches provide a way for constructed objects to be cached by the
152  * pool subsystem.  This can lead to performance improvements by avoiding
153  * needless object construction/destruction; it is deferred until absolutely
154  * necessary.
155  *
156  * Caches are grouped into cache groups.  Each cache group references up
157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
158  * object from the pool, it calls the object's constructor and places it
159  * into a cache group.  When a cache group frees an object back to the
160  * pool, it first calls the object's destructor.  This allows the object
161  * to persist in constructed form while freed to the cache.
162  *
163  * The pool references each cache, so that when a pool is drained by the
164  * pagedaemon, it can drain each individual cache as well.  Each time a
165  * cache is drained, the most idle cache group is freed to the pool in
166  * its entirety.
167  *
168  * Pool caches are layed on top of pools.  By layering them, we can avoid
169  * the complexity of cache management for pools which would not benefit
170  * from it.
171  */
172 
173 static struct pool pcg_normal_pool;
174 static struct pool pcg_large_pool;
175 static struct pool cache_pool;
176 static struct pool cache_cpu_pool;
177 
178 /* List of all caches. */
179 TAILQ_HEAD(,pool_cache) pool_cache_head =
180     TAILQ_HEAD_INITIALIZER(pool_cache_head);
181 
182 int pool_cache_disable;		/* global disable for caching */
183 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
184 
185 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
186 				    void *);
187 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
188 				    void **, paddr_t *, int);
189 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
190 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
191 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
192 static void	pool_cache_xcall(pool_cache_t);
193 
194 static int	pool_catchup(struct pool *);
195 static void	pool_prime_page(struct pool *, void *,
196 		    struct pool_item_header *);
197 static void	pool_update_curpage(struct pool *);
198 
199 static int	pool_grow(struct pool *, int);
200 static void	*pool_allocator_alloc(struct pool *, int);
201 static void	pool_allocator_free(struct pool *, void *);
202 
203 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
204 	void (*)(const char *, ...));
205 static void pool_print1(struct pool *, const char *,
206 	void (*)(const char *, ...));
207 
208 static int pool_chk_page(struct pool *, const char *,
209 			 struct pool_item_header *);
210 
211 /*
212  * Pool log entry. An array of these is allocated in pool_init().
213  */
214 struct pool_log {
215 	const char	*pl_file;
216 	long		pl_line;
217 	int		pl_action;
218 #define	PRLOG_GET	1
219 #define	PRLOG_PUT	2
220 	void		*pl_addr;
221 };
222 
223 #ifdef POOL_DIAGNOSTIC
224 /* Number of entries in pool log buffers */
225 #ifndef POOL_LOGSIZE
226 #define	POOL_LOGSIZE	10
227 #endif
228 
229 int pool_logsize = POOL_LOGSIZE;
230 
231 static inline void
232 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
233 {
234 	int n = pp->pr_curlogentry;
235 	struct pool_log *pl;
236 
237 	if ((pp->pr_roflags & PR_LOGGING) == 0)
238 		return;
239 
240 	/*
241 	 * Fill in the current entry. Wrap around and overwrite
242 	 * the oldest entry if necessary.
243 	 */
244 	pl = &pp->pr_log[n];
245 	pl->pl_file = file;
246 	pl->pl_line = line;
247 	pl->pl_action = action;
248 	pl->pl_addr = v;
249 	if (++n >= pp->pr_logsize)
250 		n = 0;
251 	pp->pr_curlogentry = n;
252 }
253 
254 static void
255 pr_printlog(struct pool *pp, struct pool_item *pi,
256     void (*pr)(const char *, ...))
257 {
258 	int i = pp->pr_logsize;
259 	int n = pp->pr_curlogentry;
260 
261 	if ((pp->pr_roflags & PR_LOGGING) == 0)
262 		return;
263 
264 	/*
265 	 * Print all entries in this pool's log.
266 	 */
267 	while (i-- > 0) {
268 		struct pool_log *pl = &pp->pr_log[n];
269 		if (pl->pl_action != 0) {
270 			if (pi == NULL || pi == pl->pl_addr) {
271 				(*pr)("\tlog entry %d:\n", i);
272 				(*pr)("\t\taction = %s, addr = %p\n",
273 				    pl->pl_action == PRLOG_GET ? "get" : "put",
274 				    pl->pl_addr);
275 				(*pr)("\t\tfile: %s at line %lu\n",
276 				    pl->pl_file, pl->pl_line);
277 			}
278 		}
279 		if (++n >= pp->pr_logsize)
280 			n = 0;
281 	}
282 }
283 
284 static inline void
285 pr_enter(struct pool *pp, const char *file, long line)
286 {
287 
288 	if (__predict_false(pp->pr_entered_file != NULL)) {
289 		printf("pool %s: reentrancy at file %s line %ld\n",
290 		    pp->pr_wchan, file, line);
291 		printf("         previous entry at file %s line %ld\n",
292 		    pp->pr_entered_file, pp->pr_entered_line);
293 		panic("pr_enter");
294 	}
295 
296 	pp->pr_entered_file = file;
297 	pp->pr_entered_line = line;
298 }
299 
300 static inline void
301 pr_leave(struct pool *pp)
302 {
303 
304 	if (__predict_false(pp->pr_entered_file == NULL)) {
305 		printf("pool %s not entered?\n", pp->pr_wchan);
306 		panic("pr_leave");
307 	}
308 
309 	pp->pr_entered_file = NULL;
310 	pp->pr_entered_line = 0;
311 }
312 
313 static inline void
314 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
315 {
316 
317 	if (pp->pr_entered_file != NULL)
318 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
319 		    pp->pr_entered_file, pp->pr_entered_line);
320 }
321 #else
322 #define	pr_log(pp, v, action, file, line)
323 #define	pr_printlog(pp, pi, pr)
324 #define	pr_enter(pp, file, line)
325 #define	pr_leave(pp)
326 #define	pr_enter_check(pp, pr)
327 #endif /* POOL_DIAGNOSTIC */
328 
329 static inline unsigned int
330 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
331     const void *v)
332 {
333 	const char *cp = v;
334 	unsigned int idx;
335 
336 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
337 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
338 	KASSERT(idx < pp->pr_itemsperpage);
339 	return idx;
340 }
341 
342 static inline void
343 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
344     void *obj)
345 {
346 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
347 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
348 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
349 
350 	KASSERT((*bitmap & mask) == 0);
351 	*bitmap |= mask;
352 }
353 
354 static inline void *
355 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
356 {
357 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
358 	unsigned int idx;
359 	int i;
360 
361 	for (i = 0; ; i++) {
362 		int bit;
363 
364 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
365 		bit = ffs32(bitmap[i]);
366 		if (bit) {
367 			pool_item_bitmap_t mask;
368 
369 			bit--;
370 			idx = (i * BITMAP_SIZE) + bit;
371 			mask = 1 << bit;
372 			KASSERT((bitmap[i] & mask) != 0);
373 			bitmap[i] &= ~mask;
374 			break;
375 		}
376 	}
377 	KASSERT(idx < pp->pr_itemsperpage);
378 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
379 }
380 
381 static inline void
382 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
383 {
384 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
385 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
386 	int i;
387 
388 	for (i = 0; i < n; i++) {
389 		bitmap[i] = (pool_item_bitmap_t)-1;
390 	}
391 }
392 
393 static inline int
394 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
395 {
396 
397 	/*
398 	 * we consider pool_item_header with smaller ph_page bigger.
399 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
400 	 */
401 
402 	if (a->ph_page < b->ph_page)
403 		return (1);
404 	else if (a->ph_page > b->ph_page)
405 		return (-1);
406 	else
407 		return (0);
408 }
409 
410 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
411 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
412 
413 static inline struct pool_item_header *
414 pr_find_pagehead_noalign(struct pool *pp, void *v)
415 {
416 	struct pool_item_header *ph, tmp;
417 
418 	tmp.ph_page = (void *)(uintptr_t)v;
419 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
420 	if (ph == NULL) {
421 		ph = SPLAY_ROOT(&pp->pr_phtree);
422 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
423 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
424 		}
425 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
426 	}
427 
428 	return ph;
429 }
430 
431 /*
432  * Return the pool page header based on item address.
433  */
434 static inline struct pool_item_header *
435 pr_find_pagehead(struct pool *pp, void *v)
436 {
437 	struct pool_item_header *ph, tmp;
438 
439 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
440 		ph = pr_find_pagehead_noalign(pp, v);
441 	} else {
442 		void *page =
443 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
444 
445 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
446 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
447 		} else {
448 			tmp.ph_page = page;
449 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
450 		}
451 	}
452 
453 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
454 	    ((char *)ph->ph_page <= (char *)v &&
455 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
456 	return ph;
457 }
458 
459 static void
460 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
461 {
462 	struct pool_item_header *ph;
463 
464 	while ((ph = LIST_FIRST(pq)) != NULL) {
465 		LIST_REMOVE(ph, ph_pagelist);
466 		pool_allocator_free(pp, ph->ph_page);
467 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
468 			pool_put(pp->pr_phpool, ph);
469 	}
470 }
471 
472 /*
473  * Remove a page from the pool.
474  */
475 static inline void
476 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
477      struct pool_pagelist *pq)
478 {
479 
480 	KASSERT(mutex_owned(&pp->pr_lock));
481 
482 	/*
483 	 * If the page was idle, decrement the idle page count.
484 	 */
485 	if (ph->ph_nmissing == 0) {
486 #ifdef DIAGNOSTIC
487 		if (pp->pr_nidle == 0)
488 			panic("pr_rmpage: nidle inconsistent");
489 		if (pp->pr_nitems < pp->pr_itemsperpage)
490 			panic("pr_rmpage: nitems inconsistent");
491 #endif
492 		pp->pr_nidle--;
493 	}
494 
495 	pp->pr_nitems -= pp->pr_itemsperpage;
496 
497 	/*
498 	 * Unlink the page from the pool and queue it for release.
499 	 */
500 	LIST_REMOVE(ph, ph_pagelist);
501 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
502 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
503 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
504 
505 	pp->pr_npages--;
506 	pp->pr_npagefree++;
507 
508 	pool_update_curpage(pp);
509 }
510 
511 static bool
512 pa_starved_p(struct pool_allocator *pa)
513 {
514 
515 	if (pa->pa_backingmap != NULL) {
516 		return vm_map_starved_p(pa->pa_backingmap);
517 	}
518 	return false;
519 }
520 
521 static int
522 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
523 {
524 	struct pool *pp = obj;
525 	struct pool_allocator *pa = pp->pr_alloc;
526 
527 	KASSERT(&pp->pr_reclaimerentry == ce);
528 	pool_reclaim(pp);
529 	if (!pa_starved_p(pa)) {
530 		return CALLBACK_CHAIN_ABORT;
531 	}
532 	return CALLBACK_CHAIN_CONTINUE;
533 }
534 
535 static void
536 pool_reclaim_register(struct pool *pp)
537 {
538 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
539 	int s;
540 
541 	if (map == NULL) {
542 		return;
543 	}
544 
545 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
546 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
547 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
548 	splx(s);
549 }
550 
551 static void
552 pool_reclaim_unregister(struct pool *pp)
553 {
554 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
555 	int s;
556 
557 	if (map == NULL) {
558 		return;
559 	}
560 
561 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
562 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
563 	    &pp->pr_reclaimerentry);
564 	splx(s);
565 }
566 
567 static void
568 pa_reclaim_register(struct pool_allocator *pa)
569 {
570 	struct vm_map *map = *pa->pa_backingmapptr;
571 	struct pool *pp;
572 
573 	KASSERT(pa->pa_backingmap == NULL);
574 	if (map == NULL) {
575 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
576 		return;
577 	}
578 	pa->pa_backingmap = map;
579 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
580 		pool_reclaim_register(pp);
581 	}
582 }
583 
584 /*
585  * Initialize all the pools listed in the "pools" link set.
586  */
587 void
588 pool_subsystem_init(void)
589 {
590 	struct pool_allocator *pa;
591 
592 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
593 	cv_init(&pool_busy, "poolbusy");
594 
595 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
596 		KASSERT(pa->pa_backingmapptr != NULL);
597 		KASSERT(*pa->pa_backingmapptr != NULL);
598 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
599 		pa_reclaim_register(pa);
600 	}
601 
602 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
603 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
604 
605 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
606 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
607 }
608 
609 /*
610  * Initialize the given pool resource structure.
611  *
612  * We export this routine to allow other kernel parts to declare
613  * static pools that must be initialized before malloc() is available.
614  */
615 void
616 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
617     const char *wchan, struct pool_allocator *palloc, int ipl)
618 {
619 	struct pool *pp1;
620 	size_t trysize, phsize;
621 	int off, slack;
622 
623 #ifdef DEBUG
624 	/*
625 	 * Check that the pool hasn't already been initialised and
626 	 * added to the list of all pools.
627 	 */
628 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
629 		if (pp == pp1)
630 			panic("pool_init: pool %s already initialised",
631 			    wchan);
632 	}
633 #endif
634 
635 #ifdef POOL_DIAGNOSTIC
636 	/*
637 	 * Always log if POOL_DIAGNOSTIC is defined.
638 	 */
639 	if (pool_logsize != 0)
640 		flags |= PR_LOGGING;
641 #endif
642 
643 	if (palloc == NULL)
644 		palloc = &pool_allocator_kmem;
645 #ifdef POOL_SUBPAGE
646 	if (size > palloc->pa_pagesz) {
647 		if (palloc == &pool_allocator_kmem)
648 			palloc = &pool_allocator_kmem_fullpage;
649 		else if (palloc == &pool_allocator_nointr)
650 			palloc = &pool_allocator_nointr_fullpage;
651 	}
652 #endif /* POOL_SUBPAGE */
653 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
654 		if (palloc->pa_pagesz == 0)
655 			palloc->pa_pagesz = PAGE_SIZE;
656 
657 		TAILQ_INIT(&palloc->pa_list);
658 
659 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
660 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
661 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
662 
663 		if (palloc->pa_backingmapptr != NULL) {
664 			pa_reclaim_register(palloc);
665 		}
666 		palloc->pa_flags |= PA_INITIALIZED;
667 	}
668 
669 	if (align == 0)
670 		align = ALIGN(1);
671 
672 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
673 		size = sizeof(struct pool_item);
674 
675 	size = roundup(size, align);
676 #ifdef DIAGNOSTIC
677 	if (size > palloc->pa_pagesz)
678 		panic("pool_init: pool item size (%zu) too large", size);
679 #endif
680 
681 	/*
682 	 * Initialize the pool structure.
683 	 */
684 	LIST_INIT(&pp->pr_emptypages);
685 	LIST_INIT(&pp->pr_fullpages);
686 	LIST_INIT(&pp->pr_partpages);
687 	pp->pr_cache = NULL;
688 	pp->pr_curpage = NULL;
689 	pp->pr_npages = 0;
690 	pp->pr_minitems = 0;
691 	pp->pr_minpages = 0;
692 	pp->pr_maxpages = UINT_MAX;
693 	pp->pr_roflags = flags;
694 	pp->pr_flags = 0;
695 	pp->pr_size = size;
696 	pp->pr_align = align;
697 	pp->pr_wchan = wchan;
698 	pp->pr_alloc = palloc;
699 	pp->pr_nitems = 0;
700 	pp->pr_nout = 0;
701 	pp->pr_hardlimit = UINT_MAX;
702 	pp->pr_hardlimit_warning = NULL;
703 	pp->pr_hardlimit_ratecap.tv_sec = 0;
704 	pp->pr_hardlimit_ratecap.tv_usec = 0;
705 	pp->pr_hardlimit_warning_last.tv_sec = 0;
706 	pp->pr_hardlimit_warning_last.tv_usec = 0;
707 	pp->pr_drain_hook = NULL;
708 	pp->pr_drain_hook_arg = NULL;
709 	pp->pr_freecheck = NULL;
710 
711 	/*
712 	 * Decide whether to put the page header off page to avoid
713 	 * wasting too large a part of the page or too big item.
714 	 * Off-page page headers go on a hash table, so we can match
715 	 * a returned item with its header based on the page address.
716 	 * We use 1/16 of the page size and about 8 times of the item
717 	 * size as the threshold (XXX: tune)
718 	 *
719 	 * However, we'll put the header into the page if we can put
720 	 * it without wasting any items.
721 	 *
722 	 * Silently enforce `0 <= ioff < align'.
723 	 */
724 	pp->pr_itemoffset = ioff %= align;
725 	/* See the comment below about reserved bytes. */
726 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
727 	phsize = ALIGN(sizeof(struct pool_item_header));
728 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
729 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
730 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
731 		/* Use the end of the page for the page header */
732 		pp->pr_roflags |= PR_PHINPAGE;
733 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
734 	} else {
735 		/* The page header will be taken from our page header pool */
736 		pp->pr_phoffset = 0;
737 		off = palloc->pa_pagesz;
738 		SPLAY_INIT(&pp->pr_phtree);
739 	}
740 
741 	/*
742 	 * Alignment is to take place at `ioff' within the item. This means
743 	 * we must reserve up to `align - 1' bytes on the page to allow
744 	 * appropriate positioning of each item.
745 	 */
746 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
747 	KASSERT(pp->pr_itemsperpage != 0);
748 	if ((pp->pr_roflags & PR_NOTOUCH)) {
749 		int idx;
750 
751 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
752 		    idx++) {
753 			/* nothing */
754 		}
755 		if (idx >= PHPOOL_MAX) {
756 			/*
757 			 * if you see this panic, consider to tweak
758 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
759 			 */
760 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
761 			    pp->pr_wchan, pp->pr_itemsperpage);
762 		}
763 		pp->pr_phpool = &phpool[idx];
764 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
765 		pp->pr_phpool = &phpool[0];
766 	}
767 #if defined(DIAGNOSTIC)
768 	else {
769 		pp->pr_phpool = NULL;
770 	}
771 #endif
772 
773 	/*
774 	 * Use the slack between the chunks and the page header
775 	 * for "cache coloring".
776 	 */
777 	slack = off - pp->pr_itemsperpage * pp->pr_size;
778 	pp->pr_maxcolor = (slack / align) * align;
779 	pp->pr_curcolor = 0;
780 
781 	pp->pr_nget = 0;
782 	pp->pr_nfail = 0;
783 	pp->pr_nput = 0;
784 	pp->pr_npagealloc = 0;
785 	pp->pr_npagefree = 0;
786 	pp->pr_hiwat = 0;
787 	pp->pr_nidle = 0;
788 	pp->pr_refcnt = 0;
789 
790 #ifdef POOL_DIAGNOSTIC
791 	if (flags & PR_LOGGING) {
792 		if (kmem_map == NULL ||
793 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
794 		     M_TEMP, M_NOWAIT)) == NULL)
795 			pp->pr_roflags &= ~PR_LOGGING;
796 		pp->pr_curlogentry = 0;
797 		pp->pr_logsize = pool_logsize;
798 	}
799 #endif
800 
801 	pp->pr_entered_file = NULL;
802 	pp->pr_entered_line = 0;
803 
804 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
805 	cv_init(&pp->pr_cv, wchan);
806 	pp->pr_ipl = ipl;
807 
808 	/*
809 	 * Initialize private page header pool and cache magazine pool if we
810 	 * haven't done so yet.
811 	 * XXX LOCKING.
812 	 */
813 	if (phpool[0].pr_size == 0) {
814 		int idx;
815 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
816 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
817 			int nelem;
818 			size_t sz;
819 
820 			nelem = PHPOOL_FREELIST_NELEM(idx);
821 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
822 			    "phpool-%d", nelem);
823 			sz = sizeof(struct pool_item_header);
824 			if (nelem) {
825 				sz = offsetof(struct pool_item_header,
826 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
827 			}
828 			pool_init(&phpool[idx], sz, 0, 0, 0,
829 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
830 		}
831 #ifdef POOL_SUBPAGE
832 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
833 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
834 #endif
835 
836 		size = sizeof(pcg_t) +
837 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
838 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
839 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
840 
841 		size = sizeof(pcg_t) +
842 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
843 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
844 		    "pcglarge", &pool_allocator_meta, IPL_VM);
845 	}
846 
847 	/* Insert into the list of all pools. */
848 	if (__predict_true(!cold))
849 		mutex_enter(&pool_head_lock);
850 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
851 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
852 			break;
853 	}
854 	if (pp1 == NULL)
855 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
856 	else
857 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
858 	if (__predict_true(!cold))
859 		mutex_exit(&pool_head_lock);
860 
861 	/* Insert this into the list of pools using this allocator. */
862 	if (__predict_true(!cold))
863 		mutex_enter(&palloc->pa_lock);
864 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
865 	if (__predict_true(!cold))
866 		mutex_exit(&palloc->pa_lock);
867 
868 	pool_reclaim_register(pp);
869 }
870 
871 /*
872  * De-commision a pool resource.
873  */
874 void
875 pool_destroy(struct pool *pp)
876 {
877 	struct pool_pagelist pq;
878 	struct pool_item_header *ph;
879 
880 	/* Remove from global pool list */
881 	mutex_enter(&pool_head_lock);
882 	while (pp->pr_refcnt != 0)
883 		cv_wait(&pool_busy, &pool_head_lock);
884 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
885 	if (drainpp == pp)
886 		drainpp = NULL;
887 	mutex_exit(&pool_head_lock);
888 
889 	/* Remove this pool from its allocator's list of pools. */
890 	pool_reclaim_unregister(pp);
891 	mutex_enter(&pp->pr_alloc->pa_lock);
892 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
893 	mutex_exit(&pp->pr_alloc->pa_lock);
894 
895 	mutex_enter(&pp->pr_lock);
896 
897 	KASSERT(pp->pr_cache == NULL);
898 
899 #ifdef DIAGNOSTIC
900 	if (pp->pr_nout != 0) {
901 		pr_printlog(pp, NULL, printf);
902 		panic("pool_destroy: pool busy: still out: %u",
903 		    pp->pr_nout);
904 	}
905 #endif
906 
907 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
908 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
909 
910 	/* Remove all pages */
911 	LIST_INIT(&pq);
912 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
913 		pr_rmpage(pp, ph, &pq);
914 
915 	mutex_exit(&pp->pr_lock);
916 
917 	pr_pagelist_free(pp, &pq);
918 
919 #ifdef POOL_DIAGNOSTIC
920 	if ((pp->pr_roflags & PR_LOGGING) != 0)
921 		free(pp->pr_log, M_TEMP);
922 #endif
923 
924 	cv_destroy(&pp->pr_cv);
925 	mutex_destroy(&pp->pr_lock);
926 }
927 
928 void
929 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
930 {
931 
932 	/* XXX no locking -- must be used just after pool_init() */
933 #ifdef DIAGNOSTIC
934 	if (pp->pr_drain_hook != NULL)
935 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
936 #endif
937 	pp->pr_drain_hook = fn;
938 	pp->pr_drain_hook_arg = arg;
939 }
940 
941 static struct pool_item_header *
942 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
943 {
944 	struct pool_item_header *ph;
945 
946 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
947 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
948 	else
949 		ph = pool_get(pp->pr_phpool, flags);
950 
951 	return (ph);
952 }
953 
954 /*
955  * Grab an item from the pool.
956  */
957 void *
958 #ifdef POOL_DIAGNOSTIC
959 _pool_get(struct pool *pp, int flags, const char *file, long line)
960 #else
961 pool_get(struct pool *pp, int flags)
962 #endif
963 {
964 	struct pool_item *pi;
965 	struct pool_item_header *ph;
966 	void *v;
967 
968 #ifdef DIAGNOSTIC
969 	if (__predict_false(pp->pr_itemsperpage == 0))
970 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
971 		    "pool not initialized?", pp);
972 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
973 			    (flags & PR_WAITOK) != 0))
974 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
975 
976 #endif /* DIAGNOSTIC */
977 #ifdef LOCKDEBUG
978 	if (flags & PR_WAITOK) {
979 		ASSERT_SLEEPABLE();
980 	}
981 #endif
982 
983 	mutex_enter(&pp->pr_lock);
984 	pr_enter(pp, file, line);
985 
986  startover:
987 	/*
988 	 * Check to see if we've reached the hard limit.  If we have,
989 	 * and we can wait, then wait until an item has been returned to
990 	 * the pool.
991 	 */
992 #ifdef DIAGNOSTIC
993 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
994 		pr_leave(pp);
995 		mutex_exit(&pp->pr_lock);
996 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
997 	}
998 #endif
999 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1000 		if (pp->pr_drain_hook != NULL) {
1001 			/*
1002 			 * Since the drain hook is going to free things
1003 			 * back to the pool, unlock, call the hook, re-lock,
1004 			 * and check the hardlimit condition again.
1005 			 */
1006 			pr_leave(pp);
1007 			mutex_exit(&pp->pr_lock);
1008 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1009 			mutex_enter(&pp->pr_lock);
1010 			pr_enter(pp, file, line);
1011 			if (pp->pr_nout < pp->pr_hardlimit)
1012 				goto startover;
1013 		}
1014 
1015 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1016 			/*
1017 			 * XXX: A warning isn't logged in this case.  Should
1018 			 * it be?
1019 			 */
1020 			pp->pr_flags |= PR_WANTED;
1021 			pr_leave(pp);
1022 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1023 			pr_enter(pp, file, line);
1024 			goto startover;
1025 		}
1026 
1027 		/*
1028 		 * Log a message that the hard limit has been hit.
1029 		 */
1030 		if (pp->pr_hardlimit_warning != NULL &&
1031 		    ratecheck(&pp->pr_hardlimit_warning_last,
1032 			      &pp->pr_hardlimit_ratecap))
1033 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1034 
1035 		pp->pr_nfail++;
1036 
1037 		pr_leave(pp);
1038 		mutex_exit(&pp->pr_lock);
1039 		return (NULL);
1040 	}
1041 
1042 	/*
1043 	 * The convention we use is that if `curpage' is not NULL, then
1044 	 * it points at a non-empty bucket. In particular, `curpage'
1045 	 * never points at a page header which has PR_PHINPAGE set and
1046 	 * has no items in its bucket.
1047 	 */
1048 	if ((ph = pp->pr_curpage) == NULL) {
1049 		int error;
1050 
1051 #ifdef DIAGNOSTIC
1052 		if (pp->pr_nitems != 0) {
1053 			mutex_exit(&pp->pr_lock);
1054 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1055 			    pp->pr_wchan, pp->pr_nitems);
1056 			panic("pool_get: nitems inconsistent");
1057 		}
1058 #endif
1059 
1060 		/*
1061 		 * Call the back-end page allocator for more memory.
1062 		 * Release the pool lock, as the back-end page allocator
1063 		 * may block.
1064 		 */
1065 		pr_leave(pp);
1066 		error = pool_grow(pp, flags);
1067 		pr_enter(pp, file, line);
1068 		if (error != 0) {
1069 			/*
1070 			 * We were unable to allocate a page or item
1071 			 * header, but we released the lock during
1072 			 * allocation, so perhaps items were freed
1073 			 * back to the pool.  Check for this case.
1074 			 */
1075 			if (pp->pr_curpage != NULL)
1076 				goto startover;
1077 
1078 			pp->pr_nfail++;
1079 			pr_leave(pp);
1080 			mutex_exit(&pp->pr_lock);
1081 			return (NULL);
1082 		}
1083 
1084 		/* Start the allocation process over. */
1085 		goto startover;
1086 	}
1087 	if (pp->pr_roflags & PR_NOTOUCH) {
1088 #ifdef DIAGNOSTIC
1089 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1090 			pr_leave(pp);
1091 			mutex_exit(&pp->pr_lock);
1092 			panic("pool_get: %s: page empty", pp->pr_wchan);
1093 		}
1094 #endif
1095 		v = pr_item_notouch_get(pp, ph);
1096 #ifdef POOL_DIAGNOSTIC
1097 		pr_log(pp, v, PRLOG_GET, file, line);
1098 #endif
1099 	} else {
1100 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1101 		if (__predict_false(v == NULL)) {
1102 			pr_leave(pp);
1103 			mutex_exit(&pp->pr_lock);
1104 			panic("pool_get: %s: page empty", pp->pr_wchan);
1105 		}
1106 #ifdef DIAGNOSTIC
1107 		if (__predict_false(pp->pr_nitems == 0)) {
1108 			pr_leave(pp);
1109 			mutex_exit(&pp->pr_lock);
1110 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1111 			    pp->pr_wchan, pp->pr_nitems);
1112 			panic("pool_get: nitems inconsistent");
1113 		}
1114 #endif
1115 
1116 #ifdef POOL_DIAGNOSTIC
1117 		pr_log(pp, v, PRLOG_GET, file, line);
1118 #endif
1119 
1120 #ifdef DIAGNOSTIC
1121 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1122 			pr_printlog(pp, pi, printf);
1123 			panic("pool_get(%s): free list modified: "
1124 			    "magic=%x; page %p; item addr %p\n",
1125 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1126 		}
1127 #endif
1128 
1129 		/*
1130 		 * Remove from item list.
1131 		 */
1132 		LIST_REMOVE(pi, pi_list);
1133 	}
1134 	pp->pr_nitems--;
1135 	pp->pr_nout++;
1136 	if (ph->ph_nmissing == 0) {
1137 #ifdef DIAGNOSTIC
1138 		if (__predict_false(pp->pr_nidle == 0))
1139 			panic("pool_get: nidle inconsistent");
1140 #endif
1141 		pp->pr_nidle--;
1142 
1143 		/*
1144 		 * This page was previously empty.  Move it to the list of
1145 		 * partially-full pages.  This page is already curpage.
1146 		 */
1147 		LIST_REMOVE(ph, ph_pagelist);
1148 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1149 	}
1150 	ph->ph_nmissing++;
1151 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1152 #ifdef DIAGNOSTIC
1153 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1154 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1155 			pr_leave(pp);
1156 			mutex_exit(&pp->pr_lock);
1157 			panic("pool_get: %s: nmissing inconsistent",
1158 			    pp->pr_wchan);
1159 		}
1160 #endif
1161 		/*
1162 		 * This page is now full.  Move it to the full list
1163 		 * and select a new current page.
1164 		 */
1165 		LIST_REMOVE(ph, ph_pagelist);
1166 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1167 		pool_update_curpage(pp);
1168 	}
1169 
1170 	pp->pr_nget++;
1171 	pr_leave(pp);
1172 
1173 	/*
1174 	 * If we have a low water mark and we are now below that low
1175 	 * water mark, add more items to the pool.
1176 	 */
1177 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1178 		/*
1179 		 * XXX: Should we log a warning?  Should we set up a timeout
1180 		 * to try again in a second or so?  The latter could break
1181 		 * a caller's assumptions about interrupt protection, etc.
1182 		 */
1183 	}
1184 
1185 	mutex_exit(&pp->pr_lock);
1186 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1187 	FREECHECK_OUT(&pp->pr_freecheck, v);
1188 	return (v);
1189 }
1190 
1191 /*
1192  * Internal version of pool_put().  Pool is already locked/entered.
1193  */
1194 static void
1195 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1196 {
1197 	struct pool_item *pi = v;
1198 	struct pool_item_header *ph;
1199 
1200 	KASSERT(mutex_owned(&pp->pr_lock));
1201 	FREECHECK_IN(&pp->pr_freecheck, v);
1202 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1203 
1204 #ifdef DIAGNOSTIC
1205 	if (__predict_false(pp->pr_nout == 0)) {
1206 		printf("pool %s: putting with none out\n",
1207 		    pp->pr_wchan);
1208 		panic("pool_put");
1209 	}
1210 #endif
1211 
1212 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1213 		pr_printlog(pp, NULL, printf);
1214 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1215 	}
1216 
1217 	/*
1218 	 * Return to item list.
1219 	 */
1220 	if (pp->pr_roflags & PR_NOTOUCH) {
1221 		pr_item_notouch_put(pp, ph, v);
1222 	} else {
1223 #ifdef DIAGNOSTIC
1224 		pi->pi_magic = PI_MAGIC;
1225 #endif
1226 #ifdef DEBUG
1227 		{
1228 			int i, *ip = v;
1229 
1230 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1231 				*ip++ = PI_MAGIC;
1232 			}
1233 		}
1234 #endif
1235 
1236 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1237 	}
1238 	KDASSERT(ph->ph_nmissing != 0);
1239 	ph->ph_nmissing--;
1240 	pp->pr_nput++;
1241 	pp->pr_nitems++;
1242 	pp->pr_nout--;
1243 
1244 	/* Cancel "pool empty" condition if it exists */
1245 	if (pp->pr_curpage == NULL)
1246 		pp->pr_curpage = ph;
1247 
1248 	if (pp->pr_flags & PR_WANTED) {
1249 		pp->pr_flags &= ~PR_WANTED;
1250 		cv_broadcast(&pp->pr_cv);
1251 	}
1252 
1253 	/*
1254 	 * If this page is now empty, do one of two things:
1255 	 *
1256 	 *	(1) If we have more pages than the page high water mark,
1257 	 *	    free the page back to the system.  ONLY CONSIDER
1258 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1259 	 *	    CLAIM.
1260 	 *
1261 	 *	(2) Otherwise, move the page to the empty page list.
1262 	 *
1263 	 * Either way, select a new current page (so we use a partially-full
1264 	 * page if one is available).
1265 	 */
1266 	if (ph->ph_nmissing == 0) {
1267 		pp->pr_nidle++;
1268 		if (pp->pr_npages > pp->pr_minpages &&
1269 		    pp->pr_npages > pp->pr_maxpages) {
1270 			pr_rmpage(pp, ph, pq);
1271 		} else {
1272 			LIST_REMOVE(ph, ph_pagelist);
1273 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1274 
1275 			/*
1276 			 * Update the timestamp on the page.  A page must
1277 			 * be idle for some period of time before it can
1278 			 * be reclaimed by the pagedaemon.  This minimizes
1279 			 * ping-pong'ing for memory.
1280 			 *
1281 			 * note for 64-bit time_t: truncating to 32-bit is not
1282 			 * a problem for our usage.
1283 			 */
1284 			ph->ph_time = time_uptime;
1285 		}
1286 		pool_update_curpage(pp);
1287 	}
1288 
1289 	/*
1290 	 * If the page was previously completely full, move it to the
1291 	 * partially-full list and make it the current page.  The next
1292 	 * allocation will get the item from this page, instead of
1293 	 * further fragmenting the pool.
1294 	 */
1295 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1296 		LIST_REMOVE(ph, ph_pagelist);
1297 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1298 		pp->pr_curpage = ph;
1299 	}
1300 }
1301 
1302 /*
1303  * Return resource to the pool.
1304  */
1305 #ifdef POOL_DIAGNOSTIC
1306 void
1307 _pool_put(struct pool *pp, void *v, const char *file, long line)
1308 {
1309 	struct pool_pagelist pq;
1310 
1311 	LIST_INIT(&pq);
1312 
1313 	mutex_enter(&pp->pr_lock);
1314 	pr_enter(pp, file, line);
1315 
1316 	pr_log(pp, v, PRLOG_PUT, file, line);
1317 
1318 	pool_do_put(pp, v, &pq);
1319 
1320 	pr_leave(pp);
1321 	mutex_exit(&pp->pr_lock);
1322 
1323 	pr_pagelist_free(pp, &pq);
1324 }
1325 #undef pool_put
1326 #endif /* POOL_DIAGNOSTIC */
1327 
1328 void
1329 pool_put(struct pool *pp, void *v)
1330 {
1331 	struct pool_pagelist pq;
1332 
1333 	LIST_INIT(&pq);
1334 
1335 	mutex_enter(&pp->pr_lock);
1336 	pool_do_put(pp, v, &pq);
1337 	mutex_exit(&pp->pr_lock);
1338 
1339 	pr_pagelist_free(pp, &pq);
1340 }
1341 
1342 #ifdef POOL_DIAGNOSTIC
1343 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1344 #endif
1345 
1346 /*
1347  * pool_grow: grow a pool by a page.
1348  *
1349  * => called with pool locked.
1350  * => unlock and relock the pool.
1351  * => return with pool locked.
1352  */
1353 
1354 static int
1355 pool_grow(struct pool *pp, int flags)
1356 {
1357 	struct pool_item_header *ph = NULL;
1358 	char *cp;
1359 
1360 	mutex_exit(&pp->pr_lock);
1361 	cp = pool_allocator_alloc(pp, flags);
1362 	if (__predict_true(cp != NULL)) {
1363 		ph = pool_alloc_item_header(pp, cp, flags);
1364 	}
1365 	if (__predict_false(cp == NULL || ph == NULL)) {
1366 		if (cp != NULL) {
1367 			pool_allocator_free(pp, cp);
1368 		}
1369 		mutex_enter(&pp->pr_lock);
1370 		return ENOMEM;
1371 	}
1372 
1373 	mutex_enter(&pp->pr_lock);
1374 	pool_prime_page(pp, cp, ph);
1375 	pp->pr_npagealloc++;
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Add N items to the pool.
1381  */
1382 int
1383 pool_prime(struct pool *pp, int n)
1384 {
1385 	int newpages;
1386 	int error = 0;
1387 
1388 	mutex_enter(&pp->pr_lock);
1389 
1390 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1391 
1392 	while (newpages-- > 0) {
1393 		error = pool_grow(pp, PR_NOWAIT);
1394 		if (error) {
1395 			break;
1396 		}
1397 		pp->pr_minpages++;
1398 	}
1399 
1400 	if (pp->pr_minpages >= pp->pr_maxpages)
1401 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1402 
1403 	mutex_exit(&pp->pr_lock);
1404 	return error;
1405 }
1406 
1407 /*
1408  * Add a page worth of items to the pool.
1409  *
1410  * Note, we must be called with the pool descriptor LOCKED.
1411  */
1412 static void
1413 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1414 {
1415 	struct pool_item *pi;
1416 	void *cp = storage;
1417 	const unsigned int align = pp->pr_align;
1418 	const unsigned int ioff = pp->pr_itemoffset;
1419 	int n;
1420 
1421 	KASSERT(mutex_owned(&pp->pr_lock));
1422 
1423 #ifdef DIAGNOSTIC
1424 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1425 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1426 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1427 #endif
1428 
1429 	/*
1430 	 * Insert page header.
1431 	 */
1432 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1433 	LIST_INIT(&ph->ph_itemlist);
1434 	ph->ph_page = storage;
1435 	ph->ph_nmissing = 0;
1436 	ph->ph_time = time_uptime;
1437 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1438 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1439 
1440 	pp->pr_nidle++;
1441 
1442 	/*
1443 	 * Color this page.
1444 	 */
1445 	ph->ph_off = pp->pr_curcolor;
1446 	cp = (char *)cp + ph->ph_off;
1447 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1448 		pp->pr_curcolor = 0;
1449 
1450 	/*
1451 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1452 	 */
1453 	if (ioff != 0)
1454 		cp = (char *)cp + align - ioff;
1455 
1456 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1457 
1458 	/*
1459 	 * Insert remaining chunks on the bucket list.
1460 	 */
1461 	n = pp->pr_itemsperpage;
1462 	pp->pr_nitems += n;
1463 
1464 	if (pp->pr_roflags & PR_NOTOUCH) {
1465 		pr_item_notouch_init(pp, ph);
1466 	} else {
1467 		while (n--) {
1468 			pi = (struct pool_item *)cp;
1469 
1470 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1471 
1472 			/* Insert on page list */
1473 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1474 #ifdef DIAGNOSTIC
1475 			pi->pi_magic = PI_MAGIC;
1476 #endif
1477 			cp = (char *)cp + pp->pr_size;
1478 
1479 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * If the pool was depleted, point at the new page.
1485 	 */
1486 	if (pp->pr_curpage == NULL)
1487 		pp->pr_curpage = ph;
1488 
1489 	if (++pp->pr_npages > pp->pr_hiwat)
1490 		pp->pr_hiwat = pp->pr_npages;
1491 }
1492 
1493 /*
1494  * Used by pool_get() when nitems drops below the low water mark.  This
1495  * is used to catch up pr_nitems with the low water mark.
1496  *
1497  * Note 1, we never wait for memory here, we let the caller decide what to do.
1498  *
1499  * Note 2, we must be called with the pool already locked, and we return
1500  * with it locked.
1501  */
1502 static int
1503 pool_catchup(struct pool *pp)
1504 {
1505 	int error = 0;
1506 
1507 	while (POOL_NEEDS_CATCHUP(pp)) {
1508 		error = pool_grow(pp, PR_NOWAIT);
1509 		if (error) {
1510 			break;
1511 		}
1512 	}
1513 	return error;
1514 }
1515 
1516 static void
1517 pool_update_curpage(struct pool *pp)
1518 {
1519 
1520 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1521 	if (pp->pr_curpage == NULL) {
1522 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1523 	}
1524 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1525 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1526 }
1527 
1528 void
1529 pool_setlowat(struct pool *pp, int n)
1530 {
1531 
1532 	mutex_enter(&pp->pr_lock);
1533 
1534 	pp->pr_minitems = n;
1535 	pp->pr_minpages = (n == 0)
1536 		? 0
1537 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1538 
1539 	/* Make sure we're caught up with the newly-set low water mark. */
1540 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1541 		/*
1542 		 * XXX: Should we log a warning?  Should we set up a timeout
1543 		 * to try again in a second or so?  The latter could break
1544 		 * a caller's assumptions about interrupt protection, etc.
1545 		 */
1546 	}
1547 
1548 	mutex_exit(&pp->pr_lock);
1549 }
1550 
1551 void
1552 pool_sethiwat(struct pool *pp, int n)
1553 {
1554 
1555 	mutex_enter(&pp->pr_lock);
1556 
1557 	pp->pr_maxpages = (n == 0)
1558 		? 0
1559 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1560 
1561 	mutex_exit(&pp->pr_lock);
1562 }
1563 
1564 void
1565 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1566 {
1567 
1568 	mutex_enter(&pp->pr_lock);
1569 
1570 	pp->pr_hardlimit = n;
1571 	pp->pr_hardlimit_warning = warnmess;
1572 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1573 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1574 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1575 
1576 	/*
1577 	 * In-line version of pool_sethiwat(), because we don't want to
1578 	 * release the lock.
1579 	 */
1580 	pp->pr_maxpages = (n == 0)
1581 		? 0
1582 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1583 
1584 	mutex_exit(&pp->pr_lock);
1585 }
1586 
1587 /*
1588  * Release all complete pages that have not been used recently.
1589  */
1590 int
1591 #ifdef POOL_DIAGNOSTIC
1592 _pool_reclaim(struct pool *pp, const char *file, long line)
1593 #else
1594 pool_reclaim(struct pool *pp)
1595 #endif
1596 {
1597 	struct pool_item_header *ph, *phnext;
1598 	struct pool_pagelist pq;
1599 	uint32_t curtime;
1600 	bool klock;
1601 	int rv;
1602 
1603 	if (pp->pr_drain_hook != NULL) {
1604 		/*
1605 		 * The drain hook must be called with the pool unlocked.
1606 		 */
1607 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1608 	}
1609 
1610 	/*
1611 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1612 	 * to block.
1613 	 */
1614 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1615 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1616 		KERNEL_LOCK(1, NULL);
1617 		klock = true;
1618 	} else
1619 		klock = false;
1620 
1621 	/* Reclaim items from the pool's cache (if any). */
1622 	if (pp->pr_cache != NULL)
1623 		pool_cache_invalidate(pp->pr_cache);
1624 
1625 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1626 		if (klock) {
1627 			KERNEL_UNLOCK_ONE(NULL);
1628 		}
1629 		return (0);
1630 	}
1631 	pr_enter(pp, file, line);
1632 
1633 	LIST_INIT(&pq);
1634 
1635 	curtime = time_uptime;
1636 
1637 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1638 		phnext = LIST_NEXT(ph, ph_pagelist);
1639 
1640 		/* Check our minimum page claim */
1641 		if (pp->pr_npages <= pp->pr_minpages)
1642 			break;
1643 
1644 		KASSERT(ph->ph_nmissing == 0);
1645 		if (curtime - ph->ph_time < pool_inactive_time
1646 		    && !pa_starved_p(pp->pr_alloc))
1647 			continue;
1648 
1649 		/*
1650 		 * If freeing this page would put us below
1651 		 * the low water mark, stop now.
1652 		 */
1653 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1654 		    pp->pr_minitems)
1655 			break;
1656 
1657 		pr_rmpage(pp, ph, &pq);
1658 	}
1659 
1660 	pr_leave(pp);
1661 	mutex_exit(&pp->pr_lock);
1662 
1663 	if (LIST_EMPTY(&pq))
1664 		rv = 0;
1665 	else {
1666 		pr_pagelist_free(pp, &pq);
1667 		rv = 1;
1668 	}
1669 
1670 	if (klock) {
1671 		KERNEL_UNLOCK_ONE(NULL);
1672 	}
1673 
1674 	return (rv);
1675 }
1676 
1677 /*
1678  * Drain pools, one at a time.  This is a two stage process;
1679  * drain_start kicks off a cross call to drain CPU-level caches
1680  * if the pool has an associated pool_cache.  drain_end waits
1681  * for those cross calls to finish, and then drains the cache
1682  * (if any) and pool.
1683  *
1684  * Note, must never be called from interrupt context.
1685  */
1686 void
1687 pool_drain_start(struct pool **ppp, uint64_t *wp)
1688 {
1689 	struct pool *pp;
1690 
1691 	KASSERT(!TAILQ_EMPTY(&pool_head));
1692 
1693 	pp = NULL;
1694 
1695 	/* Find next pool to drain, and add a reference. */
1696 	mutex_enter(&pool_head_lock);
1697 	do {
1698 		if (drainpp == NULL) {
1699 			drainpp = TAILQ_FIRST(&pool_head);
1700 		}
1701 		if (drainpp != NULL) {
1702 			pp = drainpp;
1703 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1704 		}
1705 		/*
1706 		 * Skip completely idle pools.  We depend on at least
1707 		 * one pool in the system being active.
1708 		 */
1709 	} while (pp == NULL || pp->pr_npages == 0);
1710 	pp->pr_refcnt++;
1711 	mutex_exit(&pool_head_lock);
1712 
1713 	/* If there is a pool_cache, drain CPU level caches. */
1714 	*ppp = pp;
1715 	if (pp->pr_cache != NULL) {
1716 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1717 		    pp->pr_cache, NULL);
1718 	}
1719 }
1720 
1721 void
1722 pool_drain_end(struct pool *pp, uint64_t where)
1723 {
1724 
1725 	if (pp == NULL)
1726 		return;
1727 
1728 	KASSERT(pp->pr_refcnt > 0);
1729 
1730 	/* Wait for remote draining to complete. */
1731 	if (pp->pr_cache != NULL)
1732 		xc_wait(where);
1733 
1734 	/* Drain the cache (if any) and pool.. */
1735 	pool_reclaim(pp);
1736 
1737 	/* Finally, unlock the pool. */
1738 	mutex_enter(&pool_head_lock);
1739 	pp->pr_refcnt--;
1740 	cv_broadcast(&pool_busy);
1741 	mutex_exit(&pool_head_lock);
1742 }
1743 
1744 /*
1745  * Diagnostic helpers.
1746  */
1747 void
1748 pool_print(struct pool *pp, const char *modif)
1749 {
1750 
1751 	pool_print1(pp, modif, printf);
1752 }
1753 
1754 void
1755 pool_printall(const char *modif, void (*pr)(const char *, ...))
1756 {
1757 	struct pool *pp;
1758 
1759 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1760 		pool_printit(pp, modif, pr);
1761 	}
1762 }
1763 
1764 void
1765 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1766 {
1767 
1768 	if (pp == NULL) {
1769 		(*pr)("Must specify a pool to print.\n");
1770 		return;
1771 	}
1772 
1773 	pool_print1(pp, modif, pr);
1774 }
1775 
1776 static void
1777 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1778     void (*pr)(const char *, ...))
1779 {
1780 	struct pool_item_header *ph;
1781 #ifdef DIAGNOSTIC
1782 	struct pool_item *pi;
1783 #endif
1784 
1785 	LIST_FOREACH(ph, pl, ph_pagelist) {
1786 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1787 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1788 #ifdef DIAGNOSTIC
1789 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1790 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1791 				if (pi->pi_magic != PI_MAGIC) {
1792 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1793 					    pi, pi->pi_magic);
1794 				}
1795 			}
1796 		}
1797 #endif
1798 	}
1799 }
1800 
1801 static void
1802 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1803 {
1804 	struct pool_item_header *ph;
1805 	pool_cache_t pc;
1806 	pcg_t *pcg;
1807 	pool_cache_cpu_t *cc;
1808 	uint64_t cpuhit, cpumiss;
1809 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1810 	char c;
1811 
1812 	while ((c = *modif++) != '\0') {
1813 		if (c == 'l')
1814 			print_log = 1;
1815 		if (c == 'p')
1816 			print_pagelist = 1;
1817 		if (c == 'c')
1818 			print_cache = 1;
1819 	}
1820 
1821 	if ((pc = pp->pr_cache) != NULL) {
1822 		(*pr)("POOL CACHE");
1823 	} else {
1824 		(*pr)("POOL");
1825 	}
1826 
1827 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1828 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1829 	    pp->pr_roflags);
1830 	(*pr)("\talloc %p\n", pp->pr_alloc);
1831 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1832 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1833 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1834 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1835 
1836 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1837 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1838 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1839 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1840 
1841 	if (print_pagelist == 0)
1842 		goto skip_pagelist;
1843 
1844 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1845 		(*pr)("\n\tempty page list:\n");
1846 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1847 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1848 		(*pr)("\n\tfull page list:\n");
1849 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1850 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1851 		(*pr)("\n\tpartial-page list:\n");
1852 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1853 
1854 	if (pp->pr_curpage == NULL)
1855 		(*pr)("\tno current page\n");
1856 	else
1857 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1858 
1859  skip_pagelist:
1860 	if (print_log == 0)
1861 		goto skip_log;
1862 
1863 	(*pr)("\n");
1864 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1865 		(*pr)("\tno log\n");
1866 	else {
1867 		pr_printlog(pp, NULL, pr);
1868 	}
1869 
1870  skip_log:
1871 
1872 #define PR_GROUPLIST(pcg)						\
1873 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1874 	for (i = 0; i < pcg->pcg_size; i++) {				\
1875 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1876 		    POOL_PADDR_INVALID) {				\
1877 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1878 			    pcg->pcg_objects[i].pcgo_va,		\
1879 			    (unsigned long long)			\
1880 			    pcg->pcg_objects[i].pcgo_pa);		\
1881 		} else {						\
1882 			(*pr)("\t\t\t%p\n",				\
1883 			    pcg->pcg_objects[i].pcgo_va);		\
1884 		}							\
1885 	}
1886 
1887 	if (pc != NULL) {
1888 		cpuhit = 0;
1889 		cpumiss = 0;
1890 		for (i = 0; i < MAXCPUS; i++) {
1891 			if ((cc = pc->pc_cpus[i]) == NULL)
1892 				continue;
1893 			cpuhit += cc->cc_hits;
1894 			cpumiss += cc->cc_misses;
1895 		}
1896 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1897 		(*pr)("\tcache layer hits %llu misses %llu\n",
1898 		    pc->pc_hits, pc->pc_misses);
1899 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1900 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1901 		    pc->pc_contended);
1902 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1903 		    pc->pc_nempty, pc->pc_nfull);
1904 		if (print_cache) {
1905 			(*pr)("\tfull cache groups:\n");
1906 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1907 			    pcg = pcg->pcg_next) {
1908 				PR_GROUPLIST(pcg);
1909 			}
1910 			(*pr)("\tempty cache groups:\n");
1911 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1912 			    pcg = pcg->pcg_next) {
1913 				PR_GROUPLIST(pcg);
1914 			}
1915 		}
1916 	}
1917 #undef PR_GROUPLIST
1918 
1919 	pr_enter_check(pp, pr);
1920 }
1921 
1922 static int
1923 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1924 {
1925 	struct pool_item *pi;
1926 	void *page;
1927 	int n;
1928 
1929 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1930 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1931 		if (page != ph->ph_page &&
1932 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1933 			if (label != NULL)
1934 				printf("%s: ", label);
1935 			printf("pool(%p:%s): page inconsistency: page %p;"
1936 			       " at page head addr %p (p %p)\n", pp,
1937 				pp->pr_wchan, ph->ph_page,
1938 				ph, page);
1939 			return 1;
1940 		}
1941 	}
1942 
1943 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1944 		return 0;
1945 
1946 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1947 	     pi != NULL;
1948 	     pi = LIST_NEXT(pi,pi_list), n++) {
1949 
1950 #ifdef DIAGNOSTIC
1951 		if (pi->pi_magic != PI_MAGIC) {
1952 			if (label != NULL)
1953 				printf("%s: ", label);
1954 			printf("pool(%s): free list modified: magic=%x;"
1955 			       " page %p; item ordinal %d; addr %p\n",
1956 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1957 				n, pi);
1958 			panic("pool");
1959 		}
1960 #endif
1961 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1962 			continue;
1963 		}
1964 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1965 		if (page == ph->ph_page)
1966 			continue;
1967 
1968 		if (label != NULL)
1969 			printf("%s: ", label);
1970 		printf("pool(%p:%s): page inconsistency: page %p;"
1971 		       " item ordinal %d; addr %p (p %p)\n", pp,
1972 			pp->pr_wchan, ph->ph_page,
1973 			n, pi, page);
1974 		return 1;
1975 	}
1976 	return 0;
1977 }
1978 
1979 
1980 int
1981 pool_chk(struct pool *pp, const char *label)
1982 {
1983 	struct pool_item_header *ph;
1984 	int r = 0;
1985 
1986 	mutex_enter(&pp->pr_lock);
1987 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1988 		r = pool_chk_page(pp, label, ph);
1989 		if (r) {
1990 			goto out;
1991 		}
1992 	}
1993 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1994 		r = pool_chk_page(pp, label, ph);
1995 		if (r) {
1996 			goto out;
1997 		}
1998 	}
1999 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2000 		r = pool_chk_page(pp, label, ph);
2001 		if (r) {
2002 			goto out;
2003 		}
2004 	}
2005 
2006 out:
2007 	mutex_exit(&pp->pr_lock);
2008 	return (r);
2009 }
2010 
2011 /*
2012  * pool_cache_init:
2013  *
2014  *	Initialize a pool cache.
2015  */
2016 pool_cache_t
2017 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2018     const char *wchan, struct pool_allocator *palloc, int ipl,
2019     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2020 {
2021 	pool_cache_t pc;
2022 
2023 	pc = pool_get(&cache_pool, PR_WAITOK);
2024 	if (pc == NULL)
2025 		return NULL;
2026 
2027 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2028 	   palloc, ipl, ctor, dtor, arg);
2029 
2030 	return pc;
2031 }
2032 
2033 /*
2034  * pool_cache_bootstrap:
2035  *
2036  *	Kernel-private version of pool_cache_init().  The caller
2037  *	provides initial storage.
2038  */
2039 void
2040 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2041     u_int align_offset, u_int flags, const char *wchan,
2042     struct pool_allocator *palloc, int ipl,
2043     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2044     void *arg)
2045 {
2046 	CPU_INFO_ITERATOR cii;
2047 	pool_cache_t pc1;
2048 	struct cpu_info *ci;
2049 	struct pool *pp;
2050 
2051 	pp = &pc->pc_pool;
2052 	if (palloc == NULL && ipl == IPL_NONE)
2053 		palloc = &pool_allocator_nointr;
2054 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2055 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2056 
2057 	if (ctor == NULL) {
2058 		ctor = (int (*)(void *, void *, int))nullop;
2059 	}
2060 	if (dtor == NULL) {
2061 		dtor = (void (*)(void *, void *))nullop;
2062 	}
2063 
2064 	pc->pc_emptygroups = NULL;
2065 	pc->pc_fullgroups = NULL;
2066 	pc->pc_partgroups = NULL;
2067 	pc->pc_ctor = ctor;
2068 	pc->pc_dtor = dtor;
2069 	pc->pc_arg  = arg;
2070 	pc->pc_hits  = 0;
2071 	pc->pc_misses = 0;
2072 	pc->pc_nempty = 0;
2073 	pc->pc_npart = 0;
2074 	pc->pc_nfull = 0;
2075 	pc->pc_contended = 0;
2076 	pc->pc_refcnt = 0;
2077 	pc->pc_freecheck = NULL;
2078 
2079 	if ((flags & PR_LARGECACHE) != 0) {
2080 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2081 		pc->pc_pcgpool = &pcg_large_pool;
2082 	} else {
2083 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2084 		pc->pc_pcgpool = &pcg_normal_pool;
2085 	}
2086 
2087 	/* Allocate per-CPU caches. */
2088 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2089 	pc->pc_ncpu = 0;
2090 	if (ncpu < 2) {
2091 		/* XXX For sparc: boot CPU is not attached yet. */
2092 		pool_cache_cpu_init1(curcpu(), pc);
2093 	} else {
2094 		for (CPU_INFO_FOREACH(cii, ci)) {
2095 			pool_cache_cpu_init1(ci, pc);
2096 		}
2097 	}
2098 
2099 	/* Add to list of all pools. */
2100 	if (__predict_true(!cold))
2101 		mutex_enter(&pool_head_lock);
2102 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2103 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2104 			break;
2105 	}
2106 	if (pc1 == NULL)
2107 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2108 	else
2109 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2110 	if (__predict_true(!cold))
2111 		mutex_exit(&pool_head_lock);
2112 
2113 	membar_sync();
2114 	pp->pr_cache = pc;
2115 }
2116 
2117 /*
2118  * pool_cache_destroy:
2119  *
2120  *	Destroy a pool cache.
2121  */
2122 void
2123 pool_cache_destroy(pool_cache_t pc)
2124 {
2125 	struct pool *pp = &pc->pc_pool;
2126 	u_int i;
2127 
2128 	/* Remove it from the global list. */
2129 	mutex_enter(&pool_head_lock);
2130 	while (pc->pc_refcnt != 0)
2131 		cv_wait(&pool_busy, &pool_head_lock);
2132 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2133 	mutex_exit(&pool_head_lock);
2134 
2135 	/* First, invalidate the entire cache. */
2136 	pool_cache_invalidate(pc);
2137 
2138 	/* Disassociate it from the pool. */
2139 	mutex_enter(&pp->pr_lock);
2140 	pp->pr_cache = NULL;
2141 	mutex_exit(&pp->pr_lock);
2142 
2143 	/* Destroy per-CPU data */
2144 	for (i = 0; i < MAXCPUS; i++)
2145 		pool_cache_invalidate_cpu(pc, i);
2146 
2147 	/* Finally, destroy it. */
2148 	mutex_destroy(&pc->pc_lock);
2149 	pool_destroy(pp);
2150 	pool_put(&cache_pool, pc);
2151 }
2152 
2153 /*
2154  * pool_cache_cpu_init1:
2155  *
2156  *	Called for each pool_cache whenever a new CPU is attached.
2157  */
2158 static void
2159 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2160 {
2161 	pool_cache_cpu_t *cc;
2162 	int index;
2163 
2164 	index = ci->ci_index;
2165 
2166 	KASSERT(index < MAXCPUS);
2167 
2168 	if ((cc = pc->pc_cpus[index]) != NULL) {
2169 		KASSERT(cc->cc_cpuindex == index);
2170 		return;
2171 	}
2172 
2173 	/*
2174 	 * The first CPU is 'free'.  This needs to be the case for
2175 	 * bootstrap - we may not be able to allocate yet.
2176 	 */
2177 	if (pc->pc_ncpu == 0) {
2178 		cc = &pc->pc_cpu0;
2179 		pc->pc_ncpu = 1;
2180 	} else {
2181 		mutex_enter(&pc->pc_lock);
2182 		pc->pc_ncpu++;
2183 		mutex_exit(&pc->pc_lock);
2184 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2185 	}
2186 
2187 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2188 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2189 	cc->cc_cache = pc;
2190 	cc->cc_cpuindex = index;
2191 	cc->cc_hits = 0;
2192 	cc->cc_misses = 0;
2193 	cc->cc_current = __UNCONST(&pcg_dummy);
2194 	cc->cc_previous = __UNCONST(&pcg_dummy);
2195 
2196 	pc->pc_cpus[index] = cc;
2197 }
2198 
2199 /*
2200  * pool_cache_cpu_init:
2201  *
2202  *	Called whenever a new CPU is attached.
2203  */
2204 void
2205 pool_cache_cpu_init(struct cpu_info *ci)
2206 {
2207 	pool_cache_t pc;
2208 
2209 	mutex_enter(&pool_head_lock);
2210 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2211 		pc->pc_refcnt++;
2212 		mutex_exit(&pool_head_lock);
2213 
2214 		pool_cache_cpu_init1(ci, pc);
2215 
2216 		mutex_enter(&pool_head_lock);
2217 		pc->pc_refcnt--;
2218 		cv_broadcast(&pool_busy);
2219 	}
2220 	mutex_exit(&pool_head_lock);
2221 }
2222 
2223 /*
2224  * pool_cache_reclaim:
2225  *
2226  *	Reclaim memory from a pool cache.
2227  */
2228 bool
2229 pool_cache_reclaim(pool_cache_t pc)
2230 {
2231 
2232 	return pool_reclaim(&pc->pc_pool);
2233 }
2234 
2235 static void
2236 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2237 {
2238 
2239 	(*pc->pc_dtor)(pc->pc_arg, object);
2240 	pool_put(&pc->pc_pool, object);
2241 }
2242 
2243 /*
2244  * pool_cache_destruct_object:
2245  *
2246  *	Force destruction of an object and its release back into
2247  *	the pool.
2248  */
2249 void
2250 pool_cache_destruct_object(pool_cache_t pc, void *object)
2251 {
2252 
2253 	FREECHECK_IN(&pc->pc_freecheck, object);
2254 
2255 	pool_cache_destruct_object1(pc, object);
2256 }
2257 
2258 /*
2259  * pool_cache_invalidate_groups:
2260  *
2261  *	Invalidate a chain of groups and destruct all objects.
2262  */
2263 static void
2264 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2265 {
2266 	void *object;
2267 	pcg_t *next;
2268 	int i;
2269 
2270 	for (; pcg != NULL; pcg = next) {
2271 		next = pcg->pcg_next;
2272 
2273 		for (i = 0; i < pcg->pcg_avail; i++) {
2274 			object = pcg->pcg_objects[i].pcgo_va;
2275 			pool_cache_destruct_object1(pc, object);
2276 		}
2277 
2278 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2279 			pool_put(&pcg_large_pool, pcg);
2280 		} else {
2281 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2282 			pool_put(&pcg_normal_pool, pcg);
2283 		}
2284 	}
2285 }
2286 
2287 /*
2288  * pool_cache_invalidate:
2289  *
2290  *	Invalidate a pool cache (destruct and release all of the
2291  *	cached objects).  Does not reclaim objects from the pool.
2292  *
2293  *	Note: For pool caches that provide constructed objects, there
2294  *	is an assumption that another level of synchronization is occurring
2295  *	between the input to the constructor and the cache invalidation.
2296  */
2297 void
2298 pool_cache_invalidate(pool_cache_t pc)
2299 {
2300 	pcg_t *full, *empty, *part;
2301 	uint64_t where;
2302 
2303 	if (ncpu < 2 || !mp_online) {
2304 		/*
2305 		 * We might be called early enough in the boot process
2306 		 * for the CPU data structures to not be fully initialized.
2307 		 * In this case, simply gather the local CPU's cache now
2308 		 * since it will be the only one running.
2309 		 */
2310 		pool_cache_xcall(pc);
2311 	} else {
2312 		/*
2313 		 * Gather all of the CPU-specific caches into the
2314 		 * global cache.
2315 		 */
2316 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2317 		xc_wait(where);
2318 	}
2319 
2320 	mutex_enter(&pc->pc_lock);
2321 	full = pc->pc_fullgroups;
2322 	empty = pc->pc_emptygroups;
2323 	part = pc->pc_partgroups;
2324 	pc->pc_fullgroups = NULL;
2325 	pc->pc_emptygroups = NULL;
2326 	pc->pc_partgroups = NULL;
2327 	pc->pc_nfull = 0;
2328 	pc->pc_nempty = 0;
2329 	pc->pc_npart = 0;
2330 	mutex_exit(&pc->pc_lock);
2331 
2332 	pool_cache_invalidate_groups(pc, full);
2333 	pool_cache_invalidate_groups(pc, empty);
2334 	pool_cache_invalidate_groups(pc, part);
2335 }
2336 
2337 /*
2338  * pool_cache_invalidate_cpu:
2339  *
2340  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2341  *	identified by its associated index.
2342  *	It is caller's responsibility to ensure that no operation is
2343  *	taking place on this pool cache while doing this invalidation.
2344  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2345  *	pool cached objects from a CPU different from the one currently running
2346  *	may result in an undefined behaviour.
2347  */
2348 static void
2349 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2350 {
2351 
2352 	pool_cache_cpu_t *cc;
2353 	pcg_t *pcg;
2354 
2355 	if ((cc = pc->pc_cpus[index]) == NULL)
2356 		return;
2357 
2358 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2359 		pcg->pcg_next = NULL;
2360 		pool_cache_invalidate_groups(pc, pcg);
2361 	}
2362 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2363 		pcg->pcg_next = NULL;
2364 		pool_cache_invalidate_groups(pc, pcg);
2365 	}
2366 	if (cc != &pc->pc_cpu0)
2367 		pool_put(&cache_cpu_pool, cc);
2368 
2369 }
2370 
2371 void
2372 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2373 {
2374 
2375 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2376 }
2377 
2378 void
2379 pool_cache_setlowat(pool_cache_t pc, int n)
2380 {
2381 
2382 	pool_setlowat(&pc->pc_pool, n);
2383 }
2384 
2385 void
2386 pool_cache_sethiwat(pool_cache_t pc, int n)
2387 {
2388 
2389 	pool_sethiwat(&pc->pc_pool, n);
2390 }
2391 
2392 void
2393 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2394 {
2395 
2396 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2397 }
2398 
2399 static bool __noinline
2400 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2401 		    paddr_t *pap, int flags)
2402 {
2403 	pcg_t *pcg, *cur;
2404 	uint64_t ncsw;
2405 	pool_cache_t pc;
2406 	void *object;
2407 
2408 	KASSERT(cc->cc_current->pcg_avail == 0);
2409 	KASSERT(cc->cc_previous->pcg_avail == 0);
2410 
2411 	pc = cc->cc_cache;
2412 	cc->cc_misses++;
2413 
2414 	/*
2415 	 * Nothing was available locally.  Try and grab a group
2416 	 * from the cache.
2417 	 */
2418 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2419 		ncsw = curlwp->l_ncsw;
2420 		mutex_enter(&pc->pc_lock);
2421 		pc->pc_contended++;
2422 
2423 		/*
2424 		 * If we context switched while locking, then
2425 		 * our view of the per-CPU data is invalid:
2426 		 * retry.
2427 		 */
2428 		if (curlwp->l_ncsw != ncsw) {
2429 			mutex_exit(&pc->pc_lock);
2430 			return true;
2431 		}
2432 	}
2433 
2434 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2435 		/*
2436 		 * If there's a full group, release our empty
2437 		 * group back to the cache.  Install the full
2438 		 * group as cc_current and return.
2439 		 */
2440 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2441 			KASSERT(cur->pcg_avail == 0);
2442 			cur->pcg_next = pc->pc_emptygroups;
2443 			pc->pc_emptygroups = cur;
2444 			pc->pc_nempty++;
2445 		}
2446 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2447 		cc->cc_current = pcg;
2448 		pc->pc_fullgroups = pcg->pcg_next;
2449 		pc->pc_hits++;
2450 		pc->pc_nfull--;
2451 		mutex_exit(&pc->pc_lock);
2452 		return true;
2453 	}
2454 
2455 	/*
2456 	 * Nothing available locally or in cache.  Take the slow
2457 	 * path: fetch a new object from the pool and construct
2458 	 * it.
2459 	 */
2460 	pc->pc_misses++;
2461 	mutex_exit(&pc->pc_lock);
2462 	splx(s);
2463 
2464 	object = pool_get(&pc->pc_pool, flags);
2465 	*objectp = object;
2466 	if (__predict_false(object == NULL))
2467 		return false;
2468 
2469 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2470 		pool_put(&pc->pc_pool, object);
2471 		*objectp = NULL;
2472 		return false;
2473 	}
2474 
2475 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2476 	    (pc->pc_pool.pr_align - 1)) == 0);
2477 
2478 	if (pap != NULL) {
2479 #ifdef POOL_VTOPHYS
2480 		*pap = POOL_VTOPHYS(object);
2481 #else
2482 		*pap = POOL_PADDR_INVALID;
2483 #endif
2484 	}
2485 
2486 	FREECHECK_OUT(&pc->pc_freecheck, object);
2487 	return false;
2488 }
2489 
2490 /*
2491  * pool_cache_get{,_paddr}:
2492  *
2493  *	Get an object from a pool cache (optionally returning
2494  *	the physical address of the object).
2495  */
2496 void *
2497 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2498 {
2499 	pool_cache_cpu_t *cc;
2500 	pcg_t *pcg;
2501 	void *object;
2502 	int s;
2503 
2504 #ifdef LOCKDEBUG
2505 	if (flags & PR_WAITOK) {
2506 		ASSERT_SLEEPABLE();
2507 	}
2508 #endif
2509 
2510 	/* Lock out interrupts and disable preemption. */
2511 	s = splvm();
2512 	while (/* CONSTCOND */ true) {
2513 		/* Try and allocate an object from the current group. */
2514 		cc = pc->pc_cpus[curcpu()->ci_index];
2515 		KASSERT(cc->cc_cache == pc);
2516 	 	pcg = cc->cc_current;
2517 		if (__predict_true(pcg->pcg_avail > 0)) {
2518 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2519 			if (__predict_false(pap != NULL))
2520 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2521 #if defined(DIAGNOSTIC)
2522 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2523 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2524 			KASSERT(object != NULL);
2525 #endif
2526 			cc->cc_hits++;
2527 			splx(s);
2528 			FREECHECK_OUT(&pc->pc_freecheck, object);
2529 			return object;
2530 		}
2531 
2532 		/*
2533 		 * That failed.  If the previous group isn't empty, swap
2534 		 * it with the current group and allocate from there.
2535 		 */
2536 		pcg = cc->cc_previous;
2537 		if (__predict_true(pcg->pcg_avail > 0)) {
2538 			cc->cc_previous = cc->cc_current;
2539 			cc->cc_current = pcg;
2540 			continue;
2541 		}
2542 
2543 		/*
2544 		 * Can't allocate from either group: try the slow path.
2545 		 * If get_slow() allocated an object for us, or if
2546 		 * no more objects are available, it will return false.
2547 		 * Otherwise, we need to retry.
2548 		 */
2549 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2550 			break;
2551 	}
2552 
2553 	return object;
2554 }
2555 
2556 static bool __noinline
2557 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2558 {
2559 	pcg_t *pcg, *cur;
2560 	uint64_t ncsw;
2561 	pool_cache_t pc;
2562 
2563 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2564 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2565 
2566 	pc = cc->cc_cache;
2567 	pcg = NULL;
2568 	cc->cc_misses++;
2569 
2570 	/*
2571 	 * If there are no empty groups in the cache then allocate one
2572 	 * while still unlocked.
2573 	 */
2574 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2575 		if (__predict_true(!pool_cache_disable)) {
2576 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2577 		}
2578 		if (__predict_true(pcg != NULL)) {
2579 			pcg->pcg_avail = 0;
2580 			pcg->pcg_size = pc->pc_pcgsize;
2581 		}
2582 	}
2583 
2584 	/* Lock the cache. */
2585 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2586 		ncsw = curlwp->l_ncsw;
2587 		mutex_enter(&pc->pc_lock);
2588 		pc->pc_contended++;
2589 
2590 		/*
2591 		 * If we context switched while locking, then our view of
2592 		 * the per-CPU data is invalid: retry.
2593 		 */
2594 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
2595 			mutex_exit(&pc->pc_lock);
2596 			if (pcg != NULL) {
2597 				pool_put(pc->pc_pcgpool, pcg);
2598 			}
2599 			return true;
2600 		}
2601 	}
2602 
2603 	/* If there are no empty groups in the cache then allocate one. */
2604 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2605 		pcg = pc->pc_emptygroups;
2606 		pc->pc_emptygroups = pcg->pcg_next;
2607 		pc->pc_nempty--;
2608 	}
2609 
2610 	/*
2611 	 * If there's a empty group, release our full group back
2612 	 * to the cache.  Install the empty group to the local CPU
2613 	 * and return.
2614 	 */
2615 	if (pcg != NULL) {
2616 		KASSERT(pcg->pcg_avail == 0);
2617 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2618 			cc->cc_previous = pcg;
2619 		} else {
2620 			cur = cc->cc_current;
2621 			if (__predict_true(cur != &pcg_dummy)) {
2622 				KASSERT(cur->pcg_avail == cur->pcg_size);
2623 				cur->pcg_next = pc->pc_fullgroups;
2624 				pc->pc_fullgroups = cur;
2625 				pc->pc_nfull++;
2626 			}
2627 			cc->cc_current = pcg;
2628 		}
2629 		pc->pc_hits++;
2630 		mutex_exit(&pc->pc_lock);
2631 		return true;
2632 	}
2633 
2634 	/*
2635 	 * Nothing available locally or in cache, and we didn't
2636 	 * allocate an empty group.  Take the slow path and destroy
2637 	 * the object here and now.
2638 	 */
2639 	pc->pc_misses++;
2640 	mutex_exit(&pc->pc_lock);
2641 	splx(s);
2642 	pool_cache_destruct_object(pc, object);
2643 
2644 	return false;
2645 }
2646 
2647 /*
2648  * pool_cache_put{,_paddr}:
2649  *
2650  *	Put an object back to the pool cache (optionally caching the
2651  *	physical address of the object).
2652  */
2653 void
2654 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2655 {
2656 	pool_cache_cpu_t *cc;
2657 	pcg_t *pcg;
2658 	int s;
2659 
2660 	KASSERT(object != NULL);
2661 	FREECHECK_IN(&pc->pc_freecheck, object);
2662 
2663 	/* Lock out interrupts and disable preemption. */
2664 	s = splvm();
2665 	while (/* CONSTCOND */ true) {
2666 		/* If the current group isn't full, release it there. */
2667 		cc = pc->pc_cpus[curcpu()->ci_index];
2668 		KASSERT(cc->cc_cache == pc);
2669 	 	pcg = cc->cc_current;
2670 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2671 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2672 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2673 			pcg->pcg_avail++;
2674 			cc->cc_hits++;
2675 			splx(s);
2676 			return;
2677 		}
2678 
2679 		/*
2680 		 * That failed.  If the previous group isn't full, swap
2681 		 * it with the current group and try again.
2682 		 */
2683 		pcg = cc->cc_previous;
2684 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2685 			cc->cc_previous = cc->cc_current;
2686 			cc->cc_current = pcg;
2687 			continue;
2688 		}
2689 
2690 		/*
2691 		 * Can't free to either group: try the slow path.
2692 		 * If put_slow() releases the object for us, it
2693 		 * will return false.  Otherwise we need to retry.
2694 		 */
2695 		if (!pool_cache_put_slow(cc, s, object))
2696 			break;
2697 	}
2698 }
2699 
2700 /*
2701  * pool_cache_xcall:
2702  *
2703  *	Transfer objects from the per-CPU cache to the global cache.
2704  *	Run within a cross-call thread.
2705  */
2706 static void
2707 pool_cache_xcall(pool_cache_t pc)
2708 {
2709 	pool_cache_cpu_t *cc;
2710 	pcg_t *prev, *cur, **list;
2711 	int s;
2712 
2713 	s = splvm();
2714 	mutex_enter(&pc->pc_lock);
2715 	cc = pc->pc_cpus[curcpu()->ci_index];
2716 	cur = cc->cc_current;
2717 	cc->cc_current = __UNCONST(&pcg_dummy);
2718 	prev = cc->cc_previous;
2719 	cc->cc_previous = __UNCONST(&pcg_dummy);
2720 	if (cur != &pcg_dummy) {
2721 		if (cur->pcg_avail == cur->pcg_size) {
2722 			list = &pc->pc_fullgroups;
2723 			pc->pc_nfull++;
2724 		} else if (cur->pcg_avail == 0) {
2725 			list = &pc->pc_emptygroups;
2726 			pc->pc_nempty++;
2727 		} else {
2728 			list = &pc->pc_partgroups;
2729 			pc->pc_npart++;
2730 		}
2731 		cur->pcg_next = *list;
2732 		*list = cur;
2733 	}
2734 	if (prev != &pcg_dummy) {
2735 		if (prev->pcg_avail == prev->pcg_size) {
2736 			list = &pc->pc_fullgroups;
2737 			pc->pc_nfull++;
2738 		} else if (prev->pcg_avail == 0) {
2739 			list = &pc->pc_emptygroups;
2740 			pc->pc_nempty++;
2741 		} else {
2742 			list = &pc->pc_partgroups;
2743 			pc->pc_npart++;
2744 		}
2745 		prev->pcg_next = *list;
2746 		*list = prev;
2747 	}
2748 	mutex_exit(&pc->pc_lock);
2749 	splx(s);
2750 }
2751 
2752 /*
2753  * Pool backend allocators.
2754  *
2755  * Each pool has a backend allocator that handles allocation, deallocation,
2756  * and any additional draining that might be needed.
2757  *
2758  * We provide two standard allocators:
2759  *
2760  *	pool_allocator_kmem - the default when no allocator is specified
2761  *
2762  *	pool_allocator_nointr - used for pools that will not be accessed
2763  *	in interrupt context.
2764  */
2765 void	*pool_page_alloc(struct pool *, int);
2766 void	pool_page_free(struct pool *, void *);
2767 
2768 #ifdef POOL_SUBPAGE
2769 struct pool_allocator pool_allocator_kmem_fullpage = {
2770 	pool_page_alloc, pool_page_free, 0,
2771 	.pa_backingmapptr = &kmem_map,
2772 };
2773 #else
2774 struct pool_allocator pool_allocator_kmem = {
2775 	pool_page_alloc, pool_page_free, 0,
2776 	.pa_backingmapptr = &kmem_map,
2777 };
2778 #endif
2779 
2780 void	*pool_page_alloc_nointr(struct pool *, int);
2781 void	pool_page_free_nointr(struct pool *, void *);
2782 
2783 #ifdef POOL_SUBPAGE
2784 struct pool_allocator pool_allocator_nointr_fullpage = {
2785 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2786 	.pa_backingmapptr = &kernel_map,
2787 };
2788 #else
2789 struct pool_allocator pool_allocator_nointr = {
2790 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2791 	.pa_backingmapptr = &kernel_map,
2792 };
2793 #endif
2794 
2795 #ifdef POOL_SUBPAGE
2796 void	*pool_subpage_alloc(struct pool *, int);
2797 void	pool_subpage_free(struct pool *, void *);
2798 
2799 struct pool_allocator pool_allocator_kmem = {
2800 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2801 	.pa_backingmapptr = &kmem_map,
2802 };
2803 
2804 void	*pool_subpage_alloc_nointr(struct pool *, int);
2805 void	pool_subpage_free_nointr(struct pool *, void *);
2806 
2807 struct pool_allocator pool_allocator_nointr = {
2808 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2809 	.pa_backingmapptr = &kmem_map,
2810 };
2811 #endif /* POOL_SUBPAGE */
2812 
2813 static void *
2814 pool_allocator_alloc(struct pool *pp, int flags)
2815 {
2816 	struct pool_allocator *pa = pp->pr_alloc;
2817 	void *res;
2818 
2819 	res = (*pa->pa_alloc)(pp, flags);
2820 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2821 		/*
2822 		 * We only run the drain hook here if PR_NOWAIT.
2823 		 * In other cases, the hook will be run in
2824 		 * pool_reclaim().
2825 		 */
2826 		if (pp->pr_drain_hook != NULL) {
2827 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2828 			res = (*pa->pa_alloc)(pp, flags);
2829 		}
2830 	}
2831 	return res;
2832 }
2833 
2834 static void
2835 pool_allocator_free(struct pool *pp, void *v)
2836 {
2837 	struct pool_allocator *pa = pp->pr_alloc;
2838 
2839 	(*pa->pa_free)(pp, v);
2840 }
2841 
2842 void *
2843 pool_page_alloc(struct pool *pp, int flags)
2844 {
2845 	bool waitok = (flags & PR_WAITOK) ? true : false;
2846 
2847 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2848 }
2849 
2850 void
2851 pool_page_free(struct pool *pp, void *v)
2852 {
2853 
2854 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2855 }
2856 
2857 static void *
2858 pool_page_alloc_meta(struct pool *pp, int flags)
2859 {
2860 	bool waitok = (flags & PR_WAITOK) ? true : false;
2861 
2862 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2863 }
2864 
2865 static void
2866 pool_page_free_meta(struct pool *pp, void *v)
2867 {
2868 
2869 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2870 }
2871 
2872 #ifdef POOL_SUBPAGE
2873 /* Sub-page allocator, for machines with large hardware pages. */
2874 void *
2875 pool_subpage_alloc(struct pool *pp, int flags)
2876 {
2877 	return pool_get(&psppool, flags);
2878 }
2879 
2880 void
2881 pool_subpage_free(struct pool *pp, void *v)
2882 {
2883 	pool_put(&psppool, v);
2884 }
2885 
2886 /* We don't provide a real nointr allocator.  Maybe later. */
2887 void *
2888 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2889 {
2890 
2891 	return (pool_subpage_alloc(pp, flags));
2892 }
2893 
2894 void
2895 pool_subpage_free_nointr(struct pool *pp, void *v)
2896 {
2897 
2898 	pool_subpage_free(pp, v);
2899 }
2900 #endif /* POOL_SUBPAGE */
2901 void *
2902 pool_page_alloc_nointr(struct pool *pp, int flags)
2903 {
2904 	bool waitok = (flags & PR_WAITOK) ? true : false;
2905 
2906 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2907 }
2908 
2909 void
2910 pool_page_free_nointr(struct pool *pp, void *v)
2911 {
2912 
2913 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2914 }
2915 
2916 #if defined(DDB)
2917 static bool
2918 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2919 {
2920 
2921 	return (uintptr_t)ph->ph_page <= addr &&
2922 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2923 }
2924 
2925 static bool
2926 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2927 {
2928 
2929 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2930 }
2931 
2932 static bool
2933 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2934 {
2935 	int i;
2936 
2937 	if (pcg == NULL) {
2938 		return false;
2939 	}
2940 	for (i = 0; i < pcg->pcg_avail; i++) {
2941 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2942 			return true;
2943 		}
2944 	}
2945 	return false;
2946 }
2947 
2948 static bool
2949 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2950 {
2951 
2952 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2953 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2954 		pool_item_bitmap_t *bitmap =
2955 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2956 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2957 
2958 		return (*bitmap & mask) == 0;
2959 	} else {
2960 		struct pool_item *pi;
2961 
2962 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2963 			if (pool_in_item(pp, pi, addr)) {
2964 				return false;
2965 			}
2966 		}
2967 		return true;
2968 	}
2969 }
2970 
2971 void
2972 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2973 {
2974 	struct pool *pp;
2975 
2976 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2977 		struct pool_item_header *ph;
2978 		uintptr_t item;
2979 		bool allocated = true;
2980 		bool incache = false;
2981 		bool incpucache = false;
2982 		char cpucachestr[32];
2983 
2984 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2985 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2986 				if (pool_in_page(pp, ph, addr)) {
2987 					goto found;
2988 				}
2989 			}
2990 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2991 				if (pool_in_page(pp, ph, addr)) {
2992 					allocated =
2993 					    pool_allocated(pp, ph, addr);
2994 					goto found;
2995 				}
2996 			}
2997 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2998 				if (pool_in_page(pp, ph, addr)) {
2999 					allocated = false;
3000 					goto found;
3001 				}
3002 			}
3003 			continue;
3004 		} else {
3005 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3006 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3007 				continue;
3008 			}
3009 			allocated = pool_allocated(pp, ph, addr);
3010 		}
3011 found:
3012 		if (allocated && pp->pr_cache) {
3013 			pool_cache_t pc = pp->pr_cache;
3014 			struct pool_cache_group *pcg;
3015 			int i;
3016 
3017 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3018 			    pcg = pcg->pcg_next) {
3019 				if (pool_in_cg(pp, pcg, addr)) {
3020 					incache = true;
3021 					goto print;
3022 				}
3023 			}
3024 			for (i = 0; i < MAXCPUS; i++) {
3025 				pool_cache_cpu_t *cc;
3026 
3027 				if ((cc = pc->pc_cpus[i]) == NULL) {
3028 					continue;
3029 				}
3030 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3031 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3032 					struct cpu_info *ci =
3033 					    cpu_lookup(i);
3034 
3035 					incpucache = true;
3036 					snprintf(cpucachestr,
3037 					    sizeof(cpucachestr),
3038 					    "cached by CPU %u",
3039 					    ci->ci_index);
3040 					goto print;
3041 				}
3042 			}
3043 		}
3044 print:
3045 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3046 		item = item + rounddown(addr - item, pp->pr_size);
3047 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3048 		    (void *)addr, item, (size_t)(addr - item),
3049 		    pp->pr_wchan,
3050 		    incpucache ? cpucachestr :
3051 		    incache ? "cached" : allocated ? "allocated" : "free");
3052 	}
3053 }
3054 #endif /* defined(DDB) */
3055