1 /* $NetBSD: subr_pool.c,v 1.207 2017/03/14 03:13:50 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 11 * Maxime Villard. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.207 2017/03/14 03:13:50 riastradh Exp $"); 37 38 #ifdef _KERNEL_OPT 39 #include "opt_ddb.h" 40 #include "opt_lockdebug.h" 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysctl.h> 46 #include <sys/bitops.h> 47 #include <sys/proc.h> 48 #include <sys/errno.h> 49 #include <sys/kernel.h> 50 #include <sys/vmem.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 #include <sys/debug.h> 54 #include <sys/lockdebug.h> 55 #include <sys/xcall.h> 56 #include <sys/cpu.h> 57 #include <sys/atomic.h> 58 59 #include <uvm/uvm_extern.h> 60 61 /* 62 * Pool resource management utility. 63 * 64 * Memory is allocated in pages which are split into pieces according to 65 * the pool item size. Each page is kept on one of three lists in the 66 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 67 * for empty, full and partially-full pages respectively. The individual 68 * pool items are on a linked list headed by `ph_itemlist' in each page 69 * header. The memory for building the page list is either taken from 70 * the allocated pages themselves (for small pool items) or taken from 71 * an internal pool of page headers (`phpool'). 72 */ 73 74 /* List of all pools. Non static as needed by 'vmstat -i' */ 75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 76 77 /* Private pool for page header structures */ 78 #define PHPOOL_MAX 8 79 static struct pool phpool[PHPOOL_MAX]; 80 #define PHPOOL_FREELIST_NELEM(idx) \ 81 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 82 83 #ifdef POOL_SUBPAGE 84 /* Pool of subpages for use by normal pools. */ 85 static struct pool psppool; 86 #endif 87 88 #ifdef POOL_REDZONE 89 # define POOL_REDZONE_SIZE 2 90 static void pool_redzone_init(struct pool *, size_t); 91 static void pool_redzone_fill(struct pool *, void *); 92 static void pool_redzone_check(struct pool *, void *); 93 #else 94 # define pool_redzone_init(pp, sz) /* NOTHING */ 95 # define pool_redzone_fill(pp, ptr) /* NOTHING */ 96 # define pool_redzone_check(pp, ptr) /* NOTHING */ 97 #endif 98 99 static void *pool_page_alloc_meta(struct pool *, int); 100 static void pool_page_free_meta(struct pool *, void *); 101 102 /* allocator for pool metadata */ 103 struct pool_allocator pool_allocator_meta = { 104 .pa_alloc = pool_page_alloc_meta, 105 .pa_free = pool_page_free_meta, 106 .pa_pagesz = 0 107 }; 108 109 /* # of seconds to retain page after last use */ 110 int pool_inactive_time = 10; 111 112 /* Next candidate for drainage (see pool_drain()) */ 113 static struct pool *drainpp; 114 115 /* This lock protects both pool_head and drainpp. */ 116 static kmutex_t pool_head_lock; 117 static kcondvar_t pool_busy; 118 119 /* This lock protects initialization of a potentially shared pool allocator */ 120 static kmutex_t pool_allocator_lock; 121 122 typedef uint32_t pool_item_bitmap_t; 123 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 124 #define BITMAP_MASK (BITMAP_SIZE - 1) 125 126 struct pool_item_header { 127 /* Page headers */ 128 LIST_ENTRY(pool_item_header) 129 ph_pagelist; /* pool page list */ 130 SPLAY_ENTRY(pool_item_header) 131 ph_node; /* Off-page page headers */ 132 void * ph_page; /* this page's address */ 133 uint32_t ph_time; /* last referenced */ 134 uint16_t ph_nmissing; /* # of chunks in use */ 135 uint16_t ph_off; /* start offset in page */ 136 union { 137 /* !PR_NOTOUCH */ 138 struct { 139 LIST_HEAD(, pool_item) 140 phu_itemlist; /* chunk list for this page */ 141 } phu_normal; 142 /* PR_NOTOUCH */ 143 struct { 144 pool_item_bitmap_t phu_bitmap[1]; 145 } phu_notouch; 146 } ph_u; 147 }; 148 #define ph_itemlist ph_u.phu_normal.phu_itemlist 149 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 150 151 struct pool_item { 152 #ifdef DIAGNOSTIC 153 u_int pi_magic; 154 #endif 155 #define PI_MAGIC 0xdeaddeadU 156 /* Other entries use only this list entry */ 157 LIST_ENTRY(pool_item) pi_list; 158 }; 159 160 #define POOL_NEEDS_CATCHUP(pp) \ 161 ((pp)->pr_nitems < (pp)->pr_minitems) 162 163 /* 164 * Pool cache management. 165 * 166 * Pool caches provide a way for constructed objects to be cached by the 167 * pool subsystem. This can lead to performance improvements by avoiding 168 * needless object construction/destruction; it is deferred until absolutely 169 * necessary. 170 * 171 * Caches are grouped into cache groups. Each cache group references up 172 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 173 * object from the pool, it calls the object's constructor and places it 174 * into a cache group. When a cache group frees an object back to the 175 * pool, it first calls the object's destructor. This allows the object 176 * to persist in constructed form while freed to the cache. 177 * 178 * The pool references each cache, so that when a pool is drained by the 179 * pagedaemon, it can drain each individual cache as well. Each time a 180 * cache is drained, the most idle cache group is freed to the pool in 181 * its entirety. 182 * 183 * Pool caches are layed on top of pools. By layering them, we can avoid 184 * the complexity of cache management for pools which would not benefit 185 * from it. 186 */ 187 188 static struct pool pcg_normal_pool; 189 static struct pool pcg_large_pool; 190 static struct pool cache_pool; 191 static struct pool cache_cpu_pool; 192 193 pool_cache_t pnbuf_cache; /* pathname buffer cache */ 194 195 /* List of all caches. */ 196 TAILQ_HEAD(,pool_cache) pool_cache_head = 197 TAILQ_HEAD_INITIALIZER(pool_cache_head); 198 199 int pool_cache_disable; /* global disable for caching */ 200 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 201 202 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 203 void *); 204 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 205 void **, paddr_t *, int); 206 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 207 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 208 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 209 static void pool_cache_transfer(pool_cache_t); 210 211 static int pool_catchup(struct pool *); 212 static void pool_prime_page(struct pool *, void *, 213 struct pool_item_header *); 214 static void pool_update_curpage(struct pool *); 215 216 static int pool_grow(struct pool *, int); 217 static void *pool_allocator_alloc(struct pool *, int); 218 static void pool_allocator_free(struct pool *, void *); 219 220 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 221 void (*)(const char *, ...) __printflike(1, 2)); 222 static void pool_print1(struct pool *, const char *, 223 void (*)(const char *, ...) __printflike(1, 2)); 224 225 static int pool_chk_page(struct pool *, const char *, 226 struct pool_item_header *); 227 228 static inline unsigned int 229 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 230 const void *v) 231 { 232 const char *cp = v; 233 unsigned int idx; 234 235 KASSERT(pp->pr_roflags & PR_NOTOUCH); 236 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 237 KASSERT(idx < pp->pr_itemsperpage); 238 return idx; 239 } 240 241 static inline void 242 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 243 void *obj) 244 { 245 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 246 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 247 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 248 249 KASSERT((*bitmap & mask) == 0); 250 *bitmap |= mask; 251 } 252 253 static inline void * 254 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 255 { 256 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 257 unsigned int idx; 258 int i; 259 260 for (i = 0; ; i++) { 261 int bit; 262 263 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 264 bit = ffs32(bitmap[i]); 265 if (bit) { 266 pool_item_bitmap_t mask; 267 268 bit--; 269 idx = (i * BITMAP_SIZE) + bit; 270 mask = 1 << bit; 271 KASSERT((bitmap[i] & mask) != 0); 272 bitmap[i] &= ~mask; 273 break; 274 } 275 } 276 KASSERT(idx < pp->pr_itemsperpage); 277 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 278 } 279 280 static inline void 281 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 282 { 283 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 284 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 285 int i; 286 287 for (i = 0; i < n; i++) { 288 bitmap[i] = (pool_item_bitmap_t)-1; 289 } 290 } 291 292 static inline int 293 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 294 { 295 296 /* 297 * we consider pool_item_header with smaller ph_page bigger. 298 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 299 */ 300 301 if (a->ph_page < b->ph_page) 302 return (1); 303 else if (a->ph_page > b->ph_page) 304 return (-1); 305 else 306 return (0); 307 } 308 309 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 310 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 311 312 static inline struct pool_item_header * 313 pr_find_pagehead_noalign(struct pool *pp, void *v) 314 { 315 struct pool_item_header *ph, tmp; 316 317 tmp.ph_page = (void *)(uintptr_t)v; 318 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 319 if (ph == NULL) { 320 ph = SPLAY_ROOT(&pp->pr_phtree); 321 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 322 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 323 } 324 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 325 } 326 327 return ph; 328 } 329 330 /* 331 * Return the pool page header based on item address. 332 */ 333 static inline struct pool_item_header * 334 pr_find_pagehead(struct pool *pp, void *v) 335 { 336 struct pool_item_header *ph, tmp; 337 338 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 339 ph = pr_find_pagehead_noalign(pp, v); 340 } else { 341 void *page = 342 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 343 344 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 345 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 346 } else { 347 tmp.ph_page = page; 348 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 349 } 350 } 351 352 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 353 ((char *)ph->ph_page <= (char *)v && 354 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 355 return ph; 356 } 357 358 static void 359 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 360 { 361 struct pool_item_header *ph; 362 363 while ((ph = LIST_FIRST(pq)) != NULL) { 364 LIST_REMOVE(ph, ph_pagelist); 365 pool_allocator_free(pp, ph->ph_page); 366 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 367 pool_put(pp->pr_phpool, ph); 368 } 369 } 370 371 /* 372 * Remove a page from the pool. 373 */ 374 static inline void 375 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 376 struct pool_pagelist *pq) 377 { 378 379 KASSERT(mutex_owned(&pp->pr_lock)); 380 381 /* 382 * If the page was idle, decrement the idle page count. 383 */ 384 if (ph->ph_nmissing == 0) { 385 KASSERT(pp->pr_nidle != 0); 386 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 387 "nitems=%u < itemsperpage=%u", 388 pp->pr_nitems, pp->pr_itemsperpage); 389 pp->pr_nidle--; 390 } 391 392 pp->pr_nitems -= pp->pr_itemsperpage; 393 394 /* 395 * Unlink the page from the pool and queue it for release. 396 */ 397 LIST_REMOVE(ph, ph_pagelist); 398 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 399 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 400 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 401 402 pp->pr_npages--; 403 pp->pr_npagefree++; 404 405 pool_update_curpage(pp); 406 } 407 408 /* 409 * Initialize all the pools listed in the "pools" link set. 410 */ 411 void 412 pool_subsystem_init(void) 413 { 414 size_t size; 415 int idx; 416 417 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 418 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 419 cv_init(&pool_busy, "poolbusy"); 420 421 /* 422 * Initialize private page header pool and cache magazine pool if we 423 * haven't done so yet. 424 */ 425 for (idx = 0; idx < PHPOOL_MAX; idx++) { 426 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 427 int nelem; 428 size_t sz; 429 430 nelem = PHPOOL_FREELIST_NELEM(idx); 431 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 432 "phpool-%d", nelem); 433 sz = sizeof(struct pool_item_header); 434 if (nelem) { 435 sz = offsetof(struct pool_item_header, 436 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 437 } 438 pool_init(&phpool[idx], sz, 0, 0, 0, 439 phpool_names[idx], &pool_allocator_meta, IPL_VM); 440 } 441 #ifdef POOL_SUBPAGE 442 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 443 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 444 #endif 445 446 size = sizeof(pcg_t) + 447 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 448 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 449 "pcgnormal", &pool_allocator_meta, IPL_VM); 450 451 size = sizeof(pcg_t) + 452 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 453 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 454 "pcglarge", &pool_allocator_meta, IPL_VM); 455 456 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 457 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 458 459 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 460 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 461 } 462 463 /* 464 * Initialize the given pool resource structure. 465 * 466 * We export this routine to allow other kernel parts to declare 467 * static pools that must be initialized before kmem(9) is available. 468 */ 469 void 470 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 471 const char *wchan, struct pool_allocator *palloc, int ipl) 472 { 473 struct pool *pp1; 474 size_t trysize, phsize, prsize; 475 int off, slack; 476 477 #ifdef DEBUG 478 if (__predict_true(!cold)) 479 mutex_enter(&pool_head_lock); 480 /* 481 * Check that the pool hasn't already been initialised and 482 * added to the list of all pools. 483 */ 484 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 485 if (pp == pp1) 486 panic("pool_init: pool %s already initialised", 487 wchan); 488 } 489 if (__predict_true(!cold)) 490 mutex_exit(&pool_head_lock); 491 #endif 492 493 if (palloc == NULL) 494 palloc = &pool_allocator_kmem; 495 #ifdef POOL_SUBPAGE 496 if (size > palloc->pa_pagesz) { 497 if (palloc == &pool_allocator_kmem) 498 palloc = &pool_allocator_kmem_fullpage; 499 else if (palloc == &pool_allocator_nointr) 500 palloc = &pool_allocator_nointr_fullpage; 501 } 502 #endif /* POOL_SUBPAGE */ 503 if (!cold) 504 mutex_enter(&pool_allocator_lock); 505 if (palloc->pa_refcnt++ == 0) { 506 if (palloc->pa_pagesz == 0) 507 palloc->pa_pagesz = PAGE_SIZE; 508 509 TAILQ_INIT(&palloc->pa_list); 510 511 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 512 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 513 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 514 } 515 if (!cold) 516 mutex_exit(&pool_allocator_lock); 517 518 if (align == 0) 519 align = ALIGN(1); 520 521 prsize = size; 522 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 523 prsize = sizeof(struct pool_item); 524 525 prsize = roundup(prsize, align); 526 KASSERTMSG((prsize <= palloc->pa_pagesz), 527 "pool_init: pool item size (%zu) larger than page size (%u)", 528 prsize, palloc->pa_pagesz); 529 530 /* 531 * Initialize the pool structure. 532 */ 533 LIST_INIT(&pp->pr_emptypages); 534 LIST_INIT(&pp->pr_fullpages); 535 LIST_INIT(&pp->pr_partpages); 536 pp->pr_cache = NULL; 537 pp->pr_curpage = NULL; 538 pp->pr_npages = 0; 539 pp->pr_minitems = 0; 540 pp->pr_minpages = 0; 541 pp->pr_maxpages = UINT_MAX; 542 pp->pr_roflags = flags; 543 pp->pr_flags = 0; 544 pp->pr_size = prsize; 545 pp->pr_align = align; 546 pp->pr_wchan = wchan; 547 pp->pr_alloc = palloc; 548 pp->pr_nitems = 0; 549 pp->pr_nout = 0; 550 pp->pr_hardlimit = UINT_MAX; 551 pp->pr_hardlimit_warning = NULL; 552 pp->pr_hardlimit_ratecap.tv_sec = 0; 553 pp->pr_hardlimit_ratecap.tv_usec = 0; 554 pp->pr_hardlimit_warning_last.tv_sec = 0; 555 pp->pr_hardlimit_warning_last.tv_usec = 0; 556 pp->pr_drain_hook = NULL; 557 pp->pr_drain_hook_arg = NULL; 558 pp->pr_freecheck = NULL; 559 pool_redzone_init(pp, size); 560 561 /* 562 * Decide whether to put the page header off page to avoid 563 * wasting too large a part of the page or too big item. 564 * Off-page page headers go on a hash table, so we can match 565 * a returned item with its header based on the page address. 566 * We use 1/16 of the page size and about 8 times of the item 567 * size as the threshold (XXX: tune) 568 * 569 * However, we'll put the header into the page if we can put 570 * it without wasting any items. 571 * 572 * Silently enforce `0 <= ioff < align'. 573 */ 574 pp->pr_itemoffset = ioff %= align; 575 /* See the comment below about reserved bytes. */ 576 trysize = palloc->pa_pagesz - ((align - ioff) % align); 577 phsize = ALIGN(sizeof(struct pool_item_header)); 578 if (pp->pr_roflags & PR_PHINPAGE || 579 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 580 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 581 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) { 582 /* Use the end of the page for the page header */ 583 pp->pr_roflags |= PR_PHINPAGE; 584 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 585 } else { 586 /* The page header will be taken from our page header pool */ 587 pp->pr_phoffset = 0; 588 off = palloc->pa_pagesz; 589 SPLAY_INIT(&pp->pr_phtree); 590 } 591 592 /* 593 * Alignment is to take place at `ioff' within the item. This means 594 * we must reserve up to `align - 1' bytes on the page to allow 595 * appropriate positioning of each item. 596 */ 597 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 598 KASSERT(pp->pr_itemsperpage != 0); 599 if ((pp->pr_roflags & PR_NOTOUCH)) { 600 int idx; 601 602 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 603 idx++) { 604 /* nothing */ 605 } 606 if (idx >= PHPOOL_MAX) { 607 /* 608 * if you see this panic, consider to tweak 609 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 610 */ 611 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 612 pp->pr_wchan, pp->pr_itemsperpage); 613 } 614 pp->pr_phpool = &phpool[idx]; 615 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 616 pp->pr_phpool = &phpool[0]; 617 } 618 #if defined(DIAGNOSTIC) 619 else { 620 pp->pr_phpool = NULL; 621 } 622 #endif 623 624 /* 625 * Use the slack between the chunks and the page header 626 * for "cache coloring". 627 */ 628 slack = off - pp->pr_itemsperpage * pp->pr_size; 629 pp->pr_maxcolor = (slack / align) * align; 630 pp->pr_curcolor = 0; 631 632 pp->pr_nget = 0; 633 pp->pr_nfail = 0; 634 pp->pr_nput = 0; 635 pp->pr_npagealloc = 0; 636 pp->pr_npagefree = 0; 637 pp->pr_hiwat = 0; 638 pp->pr_nidle = 0; 639 pp->pr_refcnt = 0; 640 641 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 642 cv_init(&pp->pr_cv, wchan); 643 pp->pr_ipl = ipl; 644 645 /* Insert into the list of all pools. */ 646 if (!cold) 647 mutex_enter(&pool_head_lock); 648 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 649 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 650 break; 651 } 652 if (pp1 == NULL) 653 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 654 else 655 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 656 if (!cold) 657 mutex_exit(&pool_head_lock); 658 659 /* Insert this into the list of pools using this allocator. */ 660 if (!cold) 661 mutex_enter(&palloc->pa_lock); 662 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 663 if (!cold) 664 mutex_exit(&palloc->pa_lock); 665 } 666 667 /* 668 * De-commision a pool resource. 669 */ 670 void 671 pool_destroy(struct pool *pp) 672 { 673 struct pool_pagelist pq; 674 struct pool_item_header *ph; 675 676 /* Remove from global pool list */ 677 mutex_enter(&pool_head_lock); 678 while (pp->pr_refcnt != 0) 679 cv_wait(&pool_busy, &pool_head_lock); 680 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 681 if (drainpp == pp) 682 drainpp = NULL; 683 mutex_exit(&pool_head_lock); 684 685 /* Remove this pool from its allocator's list of pools. */ 686 mutex_enter(&pp->pr_alloc->pa_lock); 687 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 688 mutex_exit(&pp->pr_alloc->pa_lock); 689 690 mutex_enter(&pool_allocator_lock); 691 if (--pp->pr_alloc->pa_refcnt == 0) 692 mutex_destroy(&pp->pr_alloc->pa_lock); 693 mutex_exit(&pool_allocator_lock); 694 695 mutex_enter(&pp->pr_lock); 696 697 KASSERT(pp->pr_cache == NULL); 698 KASSERTMSG((pp->pr_nout == 0), 699 "pool_destroy: pool busy: still out: %u", pp->pr_nout); 700 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 701 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 702 703 /* Remove all pages */ 704 LIST_INIT(&pq); 705 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 706 pr_rmpage(pp, ph, &pq); 707 708 mutex_exit(&pp->pr_lock); 709 710 pr_pagelist_free(pp, &pq); 711 cv_destroy(&pp->pr_cv); 712 mutex_destroy(&pp->pr_lock); 713 } 714 715 void 716 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 717 { 718 719 /* XXX no locking -- must be used just after pool_init() */ 720 KASSERTMSG((pp->pr_drain_hook == NULL), 721 "pool_set_drain_hook(%s): already set", pp->pr_wchan); 722 pp->pr_drain_hook = fn; 723 pp->pr_drain_hook_arg = arg; 724 } 725 726 static struct pool_item_header * 727 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 728 { 729 struct pool_item_header *ph; 730 731 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 732 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 733 else 734 ph = pool_get(pp->pr_phpool, flags); 735 736 return (ph); 737 } 738 739 /* 740 * Grab an item from the pool. 741 */ 742 void * 743 pool_get(struct pool *pp, int flags) 744 { 745 struct pool_item *pi; 746 struct pool_item_header *ph; 747 void *v; 748 749 KASSERTMSG((pp->pr_itemsperpage != 0), 750 "pool_get: pool '%s': pr_itemsperpage is zero, " 751 "pool not initialized?", pp->pr_wchan); 752 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 753 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 754 "pool '%s' is IPL_NONE, but called from interrupt context", 755 pp->pr_wchan); 756 if (flags & PR_WAITOK) { 757 ASSERT_SLEEPABLE(); 758 } 759 760 mutex_enter(&pp->pr_lock); 761 startover: 762 /* 763 * Check to see if we've reached the hard limit. If we have, 764 * and we can wait, then wait until an item has been returned to 765 * the pool. 766 */ 767 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 768 "pool_get: %s: crossed hard limit", pp->pr_wchan); 769 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 770 if (pp->pr_drain_hook != NULL) { 771 /* 772 * Since the drain hook is going to free things 773 * back to the pool, unlock, call the hook, re-lock, 774 * and check the hardlimit condition again. 775 */ 776 mutex_exit(&pp->pr_lock); 777 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 778 mutex_enter(&pp->pr_lock); 779 if (pp->pr_nout < pp->pr_hardlimit) 780 goto startover; 781 } 782 783 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 784 /* 785 * XXX: A warning isn't logged in this case. Should 786 * it be? 787 */ 788 pp->pr_flags |= PR_WANTED; 789 cv_wait(&pp->pr_cv, &pp->pr_lock); 790 goto startover; 791 } 792 793 /* 794 * Log a message that the hard limit has been hit. 795 */ 796 if (pp->pr_hardlimit_warning != NULL && 797 ratecheck(&pp->pr_hardlimit_warning_last, 798 &pp->pr_hardlimit_ratecap)) 799 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 800 801 pp->pr_nfail++; 802 803 mutex_exit(&pp->pr_lock); 804 return (NULL); 805 } 806 807 /* 808 * The convention we use is that if `curpage' is not NULL, then 809 * it points at a non-empty bucket. In particular, `curpage' 810 * never points at a page header which has PR_PHINPAGE set and 811 * has no items in its bucket. 812 */ 813 if ((ph = pp->pr_curpage) == NULL) { 814 int error; 815 816 KASSERTMSG((pp->pr_nitems == 0), 817 "pool_get: nitems inconsistent" 818 ": %s: curpage NULL, nitems %u", 819 pp->pr_wchan, pp->pr_nitems); 820 821 /* 822 * Call the back-end page allocator for more memory. 823 * Release the pool lock, as the back-end page allocator 824 * may block. 825 */ 826 error = pool_grow(pp, flags); 827 if (error != 0) { 828 /* 829 * We were unable to allocate a page or item 830 * header, but we released the lock during 831 * allocation, so perhaps items were freed 832 * back to the pool. Check for this case. 833 */ 834 if (pp->pr_curpage != NULL) 835 goto startover; 836 837 pp->pr_nfail++; 838 mutex_exit(&pp->pr_lock); 839 return (NULL); 840 } 841 842 /* Start the allocation process over. */ 843 goto startover; 844 } 845 if (pp->pr_roflags & PR_NOTOUCH) { 846 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 847 "pool_get: %s: page empty", pp->pr_wchan); 848 v = pr_item_notouch_get(pp, ph); 849 } else { 850 v = pi = LIST_FIRST(&ph->ph_itemlist); 851 if (__predict_false(v == NULL)) { 852 mutex_exit(&pp->pr_lock); 853 panic("pool_get: %s: page empty", pp->pr_wchan); 854 } 855 KASSERTMSG((pp->pr_nitems > 0), 856 "pool_get: nitems inconsistent" 857 ": %s: items on itemlist, nitems %u", 858 pp->pr_wchan, pp->pr_nitems); 859 KASSERTMSG((pi->pi_magic == PI_MAGIC), 860 "pool_get(%s): free list modified: " 861 "magic=%x; page %p; item addr %p", 862 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 863 864 /* 865 * Remove from item list. 866 */ 867 LIST_REMOVE(pi, pi_list); 868 } 869 pp->pr_nitems--; 870 pp->pr_nout++; 871 if (ph->ph_nmissing == 0) { 872 KASSERT(pp->pr_nidle > 0); 873 pp->pr_nidle--; 874 875 /* 876 * This page was previously empty. Move it to the list of 877 * partially-full pages. This page is already curpage. 878 */ 879 LIST_REMOVE(ph, ph_pagelist); 880 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 881 } 882 ph->ph_nmissing++; 883 if (ph->ph_nmissing == pp->pr_itemsperpage) { 884 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) || 885 LIST_EMPTY(&ph->ph_itemlist)), 886 "pool_get: %s: nmissing inconsistent", pp->pr_wchan); 887 /* 888 * This page is now full. Move it to the full list 889 * and select a new current page. 890 */ 891 LIST_REMOVE(ph, ph_pagelist); 892 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 893 pool_update_curpage(pp); 894 } 895 896 pp->pr_nget++; 897 898 /* 899 * If we have a low water mark and we are now below that low 900 * water mark, add more items to the pool. 901 */ 902 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 903 /* 904 * XXX: Should we log a warning? Should we set up a timeout 905 * to try again in a second or so? The latter could break 906 * a caller's assumptions about interrupt protection, etc. 907 */ 908 } 909 910 mutex_exit(&pp->pr_lock); 911 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 912 FREECHECK_OUT(&pp->pr_freecheck, v); 913 pool_redzone_fill(pp, v); 914 return (v); 915 } 916 917 /* 918 * Internal version of pool_put(). Pool is already locked/entered. 919 */ 920 static void 921 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 922 { 923 struct pool_item *pi = v; 924 struct pool_item_header *ph; 925 926 KASSERT(mutex_owned(&pp->pr_lock)); 927 pool_redzone_check(pp, v); 928 FREECHECK_IN(&pp->pr_freecheck, v); 929 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 930 931 KASSERTMSG((pp->pr_nout > 0), 932 "pool_put: pool %s: putting with none out", pp->pr_wchan); 933 934 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 935 panic("pool_put: %s: page header missing", pp->pr_wchan); 936 } 937 938 /* 939 * Return to item list. 940 */ 941 if (pp->pr_roflags & PR_NOTOUCH) { 942 pr_item_notouch_put(pp, ph, v); 943 } else { 944 #ifdef DIAGNOSTIC 945 pi->pi_magic = PI_MAGIC; 946 #endif 947 #ifdef DEBUG 948 { 949 int i, *ip = v; 950 951 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 952 *ip++ = PI_MAGIC; 953 } 954 } 955 #endif 956 957 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 958 } 959 KDASSERT(ph->ph_nmissing != 0); 960 ph->ph_nmissing--; 961 pp->pr_nput++; 962 pp->pr_nitems++; 963 pp->pr_nout--; 964 965 /* Cancel "pool empty" condition if it exists */ 966 if (pp->pr_curpage == NULL) 967 pp->pr_curpage = ph; 968 969 if (pp->pr_flags & PR_WANTED) { 970 pp->pr_flags &= ~PR_WANTED; 971 cv_broadcast(&pp->pr_cv); 972 } 973 974 /* 975 * If this page is now empty, do one of two things: 976 * 977 * (1) If we have more pages than the page high water mark, 978 * free the page back to the system. ONLY CONSIDER 979 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 980 * CLAIM. 981 * 982 * (2) Otherwise, move the page to the empty page list. 983 * 984 * Either way, select a new current page (so we use a partially-full 985 * page if one is available). 986 */ 987 if (ph->ph_nmissing == 0) { 988 pp->pr_nidle++; 989 if (pp->pr_npages > pp->pr_minpages && 990 pp->pr_npages > pp->pr_maxpages) { 991 pr_rmpage(pp, ph, pq); 992 } else { 993 LIST_REMOVE(ph, ph_pagelist); 994 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 995 996 /* 997 * Update the timestamp on the page. A page must 998 * be idle for some period of time before it can 999 * be reclaimed by the pagedaemon. This minimizes 1000 * ping-pong'ing for memory. 1001 * 1002 * note for 64-bit time_t: truncating to 32-bit is not 1003 * a problem for our usage. 1004 */ 1005 ph->ph_time = time_uptime; 1006 } 1007 pool_update_curpage(pp); 1008 } 1009 1010 /* 1011 * If the page was previously completely full, move it to the 1012 * partially-full list and make it the current page. The next 1013 * allocation will get the item from this page, instead of 1014 * further fragmenting the pool. 1015 */ 1016 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1017 LIST_REMOVE(ph, ph_pagelist); 1018 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1019 pp->pr_curpage = ph; 1020 } 1021 } 1022 1023 void 1024 pool_put(struct pool *pp, void *v) 1025 { 1026 struct pool_pagelist pq; 1027 1028 LIST_INIT(&pq); 1029 1030 mutex_enter(&pp->pr_lock); 1031 pool_do_put(pp, v, &pq); 1032 mutex_exit(&pp->pr_lock); 1033 1034 pr_pagelist_free(pp, &pq); 1035 } 1036 1037 /* 1038 * pool_grow: grow a pool by a page. 1039 * 1040 * => called with pool locked. 1041 * => unlock and relock the pool. 1042 * => return with pool locked. 1043 */ 1044 1045 static int 1046 pool_grow(struct pool *pp, int flags) 1047 { 1048 struct pool_item_header *ph = NULL; 1049 char *cp; 1050 1051 mutex_exit(&pp->pr_lock); 1052 cp = pool_allocator_alloc(pp, flags); 1053 if (__predict_true(cp != NULL)) { 1054 ph = pool_alloc_item_header(pp, cp, flags); 1055 } 1056 if (__predict_false(cp == NULL || ph == NULL)) { 1057 if (cp != NULL) { 1058 pool_allocator_free(pp, cp); 1059 } 1060 mutex_enter(&pp->pr_lock); 1061 return ENOMEM; 1062 } 1063 1064 mutex_enter(&pp->pr_lock); 1065 pool_prime_page(pp, cp, ph); 1066 pp->pr_npagealloc++; 1067 return 0; 1068 } 1069 1070 /* 1071 * Add N items to the pool. 1072 */ 1073 int 1074 pool_prime(struct pool *pp, int n) 1075 { 1076 int newpages; 1077 int error = 0; 1078 1079 mutex_enter(&pp->pr_lock); 1080 1081 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1082 1083 while (newpages-- > 0) { 1084 error = pool_grow(pp, PR_NOWAIT); 1085 if (error) { 1086 break; 1087 } 1088 pp->pr_minpages++; 1089 } 1090 1091 if (pp->pr_minpages >= pp->pr_maxpages) 1092 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1093 1094 mutex_exit(&pp->pr_lock); 1095 return error; 1096 } 1097 1098 /* 1099 * Add a page worth of items to the pool. 1100 * 1101 * Note, we must be called with the pool descriptor LOCKED. 1102 */ 1103 static void 1104 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1105 { 1106 struct pool_item *pi; 1107 void *cp = storage; 1108 const unsigned int align = pp->pr_align; 1109 const unsigned int ioff = pp->pr_itemoffset; 1110 int n; 1111 1112 KASSERT(mutex_owned(&pp->pr_lock)); 1113 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1114 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1115 "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp); 1116 1117 /* 1118 * Insert page header. 1119 */ 1120 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1121 LIST_INIT(&ph->ph_itemlist); 1122 ph->ph_page = storage; 1123 ph->ph_nmissing = 0; 1124 ph->ph_time = time_uptime; 1125 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1126 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1127 1128 pp->pr_nidle++; 1129 1130 /* 1131 * Color this page. 1132 */ 1133 ph->ph_off = pp->pr_curcolor; 1134 cp = (char *)cp + ph->ph_off; 1135 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1136 pp->pr_curcolor = 0; 1137 1138 /* 1139 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1140 */ 1141 if (ioff != 0) 1142 cp = (char *)cp + align - ioff; 1143 1144 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1145 1146 /* 1147 * Insert remaining chunks on the bucket list. 1148 */ 1149 n = pp->pr_itemsperpage; 1150 pp->pr_nitems += n; 1151 1152 if (pp->pr_roflags & PR_NOTOUCH) { 1153 pr_item_notouch_init(pp, ph); 1154 } else { 1155 while (n--) { 1156 pi = (struct pool_item *)cp; 1157 1158 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1159 1160 /* Insert on page list */ 1161 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1162 #ifdef DIAGNOSTIC 1163 pi->pi_magic = PI_MAGIC; 1164 #endif 1165 cp = (char *)cp + pp->pr_size; 1166 1167 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1168 } 1169 } 1170 1171 /* 1172 * If the pool was depleted, point at the new page. 1173 */ 1174 if (pp->pr_curpage == NULL) 1175 pp->pr_curpage = ph; 1176 1177 if (++pp->pr_npages > pp->pr_hiwat) 1178 pp->pr_hiwat = pp->pr_npages; 1179 } 1180 1181 /* 1182 * Used by pool_get() when nitems drops below the low water mark. This 1183 * is used to catch up pr_nitems with the low water mark. 1184 * 1185 * Note 1, we never wait for memory here, we let the caller decide what to do. 1186 * 1187 * Note 2, we must be called with the pool already locked, and we return 1188 * with it locked. 1189 */ 1190 static int 1191 pool_catchup(struct pool *pp) 1192 { 1193 int error = 0; 1194 1195 while (POOL_NEEDS_CATCHUP(pp)) { 1196 error = pool_grow(pp, PR_NOWAIT); 1197 if (error) { 1198 break; 1199 } 1200 } 1201 return error; 1202 } 1203 1204 static void 1205 pool_update_curpage(struct pool *pp) 1206 { 1207 1208 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1209 if (pp->pr_curpage == NULL) { 1210 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1211 } 1212 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1213 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1214 } 1215 1216 void 1217 pool_setlowat(struct pool *pp, int n) 1218 { 1219 1220 mutex_enter(&pp->pr_lock); 1221 1222 pp->pr_minitems = n; 1223 pp->pr_minpages = (n == 0) 1224 ? 0 1225 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1226 1227 /* Make sure we're caught up with the newly-set low water mark. */ 1228 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1229 /* 1230 * XXX: Should we log a warning? Should we set up a timeout 1231 * to try again in a second or so? The latter could break 1232 * a caller's assumptions about interrupt protection, etc. 1233 */ 1234 } 1235 1236 mutex_exit(&pp->pr_lock); 1237 } 1238 1239 void 1240 pool_sethiwat(struct pool *pp, int n) 1241 { 1242 1243 mutex_enter(&pp->pr_lock); 1244 1245 pp->pr_maxpages = (n == 0) 1246 ? 0 1247 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1248 1249 mutex_exit(&pp->pr_lock); 1250 } 1251 1252 void 1253 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1254 { 1255 1256 mutex_enter(&pp->pr_lock); 1257 1258 pp->pr_hardlimit = n; 1259 pp->pr_hardlimit_warning = warnmess; 1260 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1261 pp->pr_hardlimit_warning_last.tv_sec = 0; 1262 pp->pr_hardlimit_warning_last.tv_usec = 0; 1263 1264 /* 1265 * In-line version of pool_sethiwat(), because we don't want to 1266 * release the lock. 1267 */ 1268 pp->pr_maxpages = (n == 0) 1269 ? 0 1270 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1271 1272 mutex_exit(&pp->pr_lock); 1273 } 1274 1275 /* 1276 * Release all complete pages that have not been used recently. 1277 * 1278 * Must not be called from interrupt context. 1279 */ 1280 int 1281 pool_reclaim(struct pool *pp) 1282 { 1283 struct pool_item_header *ph, *phnext; 1284 struct pool_pagelist pq; 1285 uint32_t curtime; 1286 bool klock; 1287 int rv; 1288 1289 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1290 1291 if (pp->pr_drain_hook != NULL) { 1292 /* 1293 * The drain hook must be called with the pool unlocked. 1294 */ 1295 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1296 } 1297 1298 /* 1299 * XXXSMP Because we do not want to cause non-MPSAFE code 1300 * to block. 1301 */ 1302 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1303 pp->pr_ipl == IPL_SOFTSERIAL) { 1304 KERNEL_LOCK(1, NULL); 1305 klock = true; 1306 } else 1307 klock = false; 1308 1309 /* Reclaim items from the pool's cache (if any). */ 1310 if (pp->pr_cache != NULL) 1311 pool_cache_invalidate(pp->pr_cache); 1312 1313 if (mutex_tryenter(&pp->pr_lock) == 0) { 1314 if (klock) { 1315 KERNEL_UNLOCK_ONE(NULL); 1316 } 1317 return (0); 1318 } 1319 1320 LIST_INIT(&pq); 1321 1322 curtime = time_uptime; 1323 1324 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1325 phnext = LIST_NEXT(ph, ph_pagelist); 1326 1327 /* Check our minimum page claim */ 1328 if (pp->pr_npages <= pp->pr_minpages) 1329 break; 1330 1331 KASSERT(ph->ph_nmissing == 0); 1332 if (curtime - ph->ph_time < pool_inactive_time) 1333 continue; 1334 1335 /* 1336 * If freeing this page would put us below 1337 * the low water mark, stop now. 1338 */ 1339 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1340 pp->pr_minitems) 1341 break; 1342 1343 pr_rmpage(pp, ph, &pq); 1344 } 1345 1346 mutex_exit(&pp->pr_lock); 1347 1348 if (LIST_EMPTY(&pq)) 1349 rv = 0; 1350 else { 1351 pr_pagelist_free(pp, &pq); 1352 rv = 1; 1353 } 1354 1355 if (klock) { 1356 KERNEL_UNLOCK_ONE(NULL); 1357 } 1358 1359 return (rv); 1360 } 1361 1362 /* 1363 * Drain pools, one at a time. The drained pool is returned within ppp. 1364 * 1365 * Note, must never be called from interrupt context. 1366 */ 1367 bool 1368 pool_drain(struct pool **ppp) 1369 { 1370 bool reclaimed; 1371 struct pool *pp; 1372 1373 KASSERT(!TAILQ_EMPTY(&pool_head)); 1374 1375 pp = NULL; 1376 1377 /* Find next pool to drain, and add a reference. */ 1378 mutex_enter(&pool_head_lock); 1379 do { 1380 if (drainpp == NULL) { 1381 drainpp = TAILQ_FIRST(&pool_head); 1382 } 1383 if (drainpp != NULL) { 1384 pp = drainpp; 1385 drainpp = TAILQ_NEXT(pp, pr_poollist); 1386 } 1387 /* 1388 * Skip completely idle pools. We depend on at least 1389 * one pool in the system being active. 1390 */ 1391 } while (pp == NULL || pp->pr_npages == 0); 1392 pp->pr_refcnt++; 1393 mutex_exit(&pool_head_lock); 1394 1395 /* Drain the cache (if any) and pool.. */ 1396 reclaimed = pool_reclaim(pp); 1397 1398 /* Finally, unlock the pool. */ 1399 mutex_enter(&pool_head_lock); 1400 pp->pr_refcnt--; 1401 cv_broadcast(&pool_busy); 1402 mutex_exit(&pool_head_lock); 1403 1404 if (ppp != NULL) 1405 *ppp = pp; 1406 1407 return reclaimed; 1408 } 1409 1410 /* 1411 * Diagnostic helpers. 1412 */ 1413 1414 void 1415 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1416 { 1417 struct pool *pp; 1418 1419 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1420 pool_printit(pp, modif, pr); 1421 } 1422 } 1423 1424 void 1425 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1426 { 1427 1428 if (pp == NULL) { 1429 (*pr)("Must specify a pool to print.\n"); 1430 return; 1431 } 1432 1433 pool_print1(pp, modif, pr); 1434 } 1435 1436 static void 1437 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1438 void (*pr)(const char *, ...)) 1439 { 1440 struct pool_item_header *ph; 1441 struct pool_item *pi __diagused; 1442 1443 LIST_FOREACH(ph, pl, ph_pagelist) { 1444 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1445 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1446 #ifdef DIAGNOSTIC 1447 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1448 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1449 if (pi->pi_magic != PI_MAGIC) { 1450 (*pr)("\t\t\titem %p, magic 0x%x\n", 1451 pi, pi->pi_magic); 1452 } 1453 } 1454 } 1455 #endif 1456 } 1457 } 1458 1459 static void 1460 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1461 { 1462 struct pool_item_header *ph; 1463 pool_cache_t pc; 1464 pcg_t *pcg; 1465 pool_cache_cpu_t *cc; 1466 uint64_t cpuhit, cpumiss; 1467 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1468 char c; 1469 1470 while ((c = *modif++) != '\0') { 1471 if (c == 'l') 1472 print_log = 1; 1473 if (c == 'p') 1474 print_pagelist = 1; 1475 if (c == 'c') 1476 print_cache = 1; 1477 } 1478 1479 if ((pc = pp->pr_cache) != NULL) { 1480 (*pr)("POOL CACHE"); 1481 } else { 1482 (*pr)("POOL"); 1483 } 1484 1485 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1486 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1487 pp->pr_roflags); 1488 (*pr)("\talloc %p\n", pp->pr_alloc); 1489 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1490 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1491 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1492 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1493 1494 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1495 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1496 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1497 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1498 1499 if (print_pagelist == 0) 1500 goto skip_pagelist; 1501 1502 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1503 (*pr)("\n\tempty page list:\n"); 1504 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1505 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1506 (*pr)("\n\tfull page list:\n"); 1507 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1508 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1509 (*pr)("\n\tpartial-page list:\n"); 1510 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1511 1512 if (pp->pr_curpage == NULL) 1513 (*pr)("\tno current page\n"); 1514 else 1515 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1516 1517 skip_pagelist: 1518 if (print_log == 0) 1519 goto skip_log; 1520 1521 (*pr)("\n"); 1522 1523 skip_log: 1524 1525 #define PR_GROUPLIST(pcg) \ 1526 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1527 for (i = 0; i < pcg->pcg_size; i++) { \ 1528 if (pcg->pcg_objects[i].pcgo_pa != \ 1529 POOL_PADDR_INVALID) { \ 1530 (*pr)("\t\t\t%p, 0x%llx\n", \ 1531 pcg->pcg_objects[i].pcgo_va, \ 1532 (unsigned long long) \ 1533 pcg->pcg_objects[i].pcgo_pa); \ 1534 } else { \ 1535 (*pr)("\t\t\t%p\n", \ 1536 pcg->pcg_objects[i].pcgo_va); \ 1537 } \ 1538 } 1539 1540 if (pc != NULL) { 1541 cpuhit = 0; 1542 cpumiss = 0; 1543 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1544 if ((cc = pc->pc_cpus[i]) == NULL) 1545 continue; 1546 cpuhit += cc->cc_hits; 1547 cpumiss += cc->cc_misses; 1548 } 1549 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1550 (*pr)("\tcache layer hits %llu misses %llu\n", 1551 pc->pc_hits, pc->pc_misses); 1552 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1553 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1554 pc->pc_contended); 1555 (*pr)("\tcache layer empty groups %u full groups %u\n", 1556 pc->pc_nempty, pc->pc_nfull); 1557 if (print_cache) { 1558 (*pr)("\tfull cache groups:\n"); 1559 for (pcg = pc->pc_fullgroups; pcg != NULL; 1560 pcg = pcg->pcg_next) { 1561 PR_GROUPLIST(pcg); 1562 } 1563 (*pr)("\tempty cache groups:\n"); 1564 for (pcg = pc->pc_emptygroups; pcg != NULL; 1565 pcg = pcg->pcg_next) { 1566 PR_GROUPLIST(pcg); 1567 } 1568 } 1569 } 1570 #undef PR_GROUPLIST 1571 } 1572 1573 static int 1574 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1575 { 1576 struct pool_item *pi; 1577 void *page; 1578 int n; 1579 1580 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1581 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1582 if (page != ph->ph_page && 1583 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1584 if (label != NULL) 1585 printf("%s: ", label); 1586 printf("pool(%p:%s): page inconsistency: page %p;" 1587 " at page head addr %p (p %p)\n", pp, 1588 pp->pr_wchan, ph->ph_page, 1589 ph, page); 1590 return 1; 1591 } 1592 } 1593 1594 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1595 return 0; 1596 1597 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1598 pi != NULL; 1599 pi = LIST_NEXT(pi,pi_list), n++) { 1600 1601 #ifdef DIAGNOSTIC 1602 if (pi->pi_magic != PI_MAGIC) { 1603 if (label != NULL) 1604 printf("%s: ", label); 1605 printf("pool(%s): free list modified: magic=%x;" 1606 " page %p; item ordinal %d; addr %p\n", 1607 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1608 n, pi); 1609 panic("pool"); 1610 } 1611 #endif 1612 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1613 continue; 1614 } 1615 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1616 if (page == ph->ph_page) 1617 continue; 1618 1619 if (label != NULL) 1620 printf("%s: ", label); 1621 printf("pool(%p:%s): page inconsistency: page %p;" 1622 " item ordinal %d; addr %p (p %p)\n", pp, 1623 pp->pr_wchan, ph->ph_page, 1624 n, pi, page); 1625 return 1; 1626 } 1627 return 0; 1628 } 1629 1630 1631 int 1632 pool_chk(struct pool *pp, const char *label) 1633 { 1634 struct pool_item_header *ph; 1635 int r = 0; 1636 1637 mutex_enter(&pp->pr_lock); 1638 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1639 r = pool_chk_page(pp, label, ph); 1640 if (r) { 1641 goto out; 1642 } 1643 } 1644 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1645 r = pool_chk_page(pp, label, ph); 1646 if (r) { 1647 goto out; 1648 } 1649 } 1650 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1651 r = pool_chk_page(pp, label, ph); 1652 if (r) { 1653 goto out; 1654 } 1655 } 1656 1657 out: 1658 mutex_exit(&pp->pr_lock); 1659 return (r); 1660 } 1661 1662 /* 1663 * pool_cache_init: 1664 * 1665 * Initialize a pool cache. 1666 */ 1667 pool_cache_t 1668 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 1669 const char *wchan, struct pool_allocator *palloc, int ipl, 1670 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 1671 { 1672 pool_cache_t pc; 1673 1674 pc = pool_get(&cache_pool, PR_WAITOK); 1675 if (pc == NULL) 1676 return NULL; 1677 1678 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 1679 palloc, ipl, ctor, dtor, arg); 1680 1681 return pc; 1682 } 1683 1684 /* 1685 * pool_cache_bootstrap: 1686 * 1687 * Kernel-private version of pool_cache_init(). The caller 1688 * provides initial storage. 1689 */ 1690 void 1691 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 1692 u_int align_offset, u_int flags, const char *wchan, 1693 struct pool_allocator *palloc, int ipl, 1694 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 1695 void *arg) 1696 { 1697 CPU_INFO_ITERATOR cii; 1698 pool_cache_t pc1; 1699 struct cpu_info *ci; 1700 struct pool *pp; 1701 1702 pp = &pc->pc_pool; 1703 if (palloc == NULL && ipl == IPL_NONE) 1704 palloc = &pool_allocator_nointr; 1705 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 1706 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 1707 1708 if (ctor == NULL) { 1709 ctor = (int (*)(void *, void *, int))nullop; 1710 } 1711 if (dtor == NULL) { 1712 dtor = (void (*)(void *, void *))nullop; 1713 } 1714 1715 pc->pc_emptygroups = NULL; 1716 pc->pc_fullgroups = NULL; 1717 pc->pc_partgroups = NULL; 1718 pc->pc_ctor = ctor; 1719 pc->pc_dtor = dtor; 1720 pc->pc_arg = arg; 1721 pc->pc_hits = 0; 1722 pc->pc_misses = 0; 1723 pc->pc_nempty = 0; 1724 pc->pc_npart = 0; 1725 pc->pc_nfull = 0; 1726 pc->pc_contended = 0; 1727 pc->pc_refcnt = 0; 1728 pc->pc_freecheck = NULL; 1729 1730 if ((flags & PR_LARGECACHE) != 0) { 1731 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 1732 pc->pc_pcgpool = &pcg_large_pool; 1733 } else { 1734 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 1735 pc->pc_pcgpool = &pcg_normal_pool; 1736 } 1737 1738 /* Allocate per-CPU caches. */ 1739 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 1740 pc->pc_ncpu = 0; 1741 if (ncpu < 2) { 1742 /* XXX For sparc: boot CPU is not attached yet. */ 1743 pool_cache_cpu_init1(curcpu(), pc); 1744 } else { 1745 for (CPU_INFO_FOREACH(cii, ci)) { 1746 pool_cache_cpu_init1(ci, pc); 1747 } 1748 } 1749 1750 /* Add to list of all pools. */ 1751 if (__predict_true(!cold)) 1752 mutex_enter(&pool_head_lock); 1753 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 1754 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 1755 break; 1756 } 1757 if (pc1 == NULL) 1758 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 1759 else 1760 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 1761 if (__predict_true(!cold)) 1762 mutex_exit(&pool_head_lock); 1763 1764 membar_sync(); 1765 pp->pr_cache = pc; 1766 } 1767 1768 /* 1769 * pool_cache_destroy: 1770 * 1771 * Destroy a pool cache. 1772 */ 1773 void 1774 pool_cache_destroy(pool_cache_t pc) 1775 { 1776 1777 pool_cache_bootstrap_destroy(pc); 1778 pool_put(&cache_pool, pc); 1779 } 1780 1781 /* 1782 * pool_cache_bootstrap_destroy: 1783 * 1784 * Destroy a pool cache. 1785 */ 1786 void 1787 pool_cache_bootstrap_destroy(pool_cache_t pc) 1788 { 1789 struct pool *pp = &pc->pc_pool; 1790 u_int i; 1791 1792 /* Remove it from the global list. */ 1793 mutex_enter(&pool_head_lock); 1794 while (pc->pc_refcnt != 0) 1795 cv_wait(&pool_busy, &pool_head_lock); 1796 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 1797 mutex_exit(&pool_head_lock); 1798 1799 /* First, invalidate the entire cache. */ 1800 pool_cache_invalidate(pc); 1801 1802 /* Disassociate it from the pool. */ 1803 mutex_enter(&pp->pr_lock); 1804 pp->pr_cache = NULL; 1805 mutex_exit(&pp->pr_lock); 1806 1807 /* Destroy per-CPU data */ 1808 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 1809 pool_cache_invalidate_cpu(pc, i); 1810 1811 /* Finally, destroy it. */ 1812 mutex_destroy(&pc->pc_lock); 1813 pool_destroy(pp); 1814 } 1815 1816 /* 1817 * pool_cache_cpu_init1: 1818 * 1819 * Called for each pool_cache whenever a new CPU is attached. 1820 */ 1821 static void 1822 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 1823 { 1824 pool_cache_cpu_t *cc; 1825 int index; 1826 1827 index = ci->ci_index; 1828 1829 KASSERT(index < __arraycount(pc->pc_cpus)); 1830 1831 if ((cc = pc->pc_cpus[index]) != NULL) { 1832 KASSERT(cc->cc_cpuindex == index); 1833 return; 1834 } 1835 1836 /* 1837 * The first CPU is 'free'. This needs to be the case for 1838 * bootstrap - we may not be able to allocate yet. 1839 */ 1840 if (pc->pc_ncpu == 0) { 1841 cc = &pc->pc_cpu0; 1842 pc->pc_ncpu = 1; 1843 } else { 1844 mutex_enter(&pc->pc_lock); 1845 pc->pc_ncpu++; 1846 mutex_exit(&pc->pc_lock); 1847 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 1848 } 1849 1850 cc->cc_ipl = pc->pc_pool.pr_ipl; 1851 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 1852 cc->cc_cache = pc; 1853 cc->cc_cpuindex = index; 1854 cc->cc_hits = 0; 1855 cc->cc_misses = 0; 1856 cc->cc_current = __UNCONST(&pcg_dummy); 1857 cc->cc_previous = __UNCONST(&pcg_dummy); 1858 1859 pc->pc_cpus[index] = cc; 1860 } 1861 1862 /* 1863 * pool_cache_cpu_init: 1864 * 1865 * Called whenever a new CPU is attached. 1866 */ 1867 void 1868 pool_cache_cpu_init(struct cpu_info *ci) 1869 { 1870 pool_cache_t pc; 1871 1872 mutex_enter(&pool_head_lock); 1873 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 1874 pc->pc_refcnt++; 1875 mutex_exit(&pool_head_lock); 1876 1877 pool_cache_cpu_init1(ci, pc); 1878 1879 mutex_enter(&pool_head_lock); 1880 pc->pc_refcnt--; 1881 cv_broadcast(&pool_busy); 1882 } 1883 mutex_exit(&pool_head_lock); 1884 } 1885 1886 /* 1887 * pool_cache_reclaim: 1888 * 1889 * Reclaim memory from a pool cache. 1890 */ 1891 bool 1892 pool_cache_reclaim(pool_cache_t pc) 1893 { 1894 1895 return pool_reclaim(&pc->pc_pool); 1896 } 1897 1898 static void 1899 pool_cache_destruct_object1(pool_cache_t pc, void *object) 1900 { 1901 1902 (*pc->pc_dtor)(pc->pc_arg, object); 1903 pool_put(&pc->pc_pool, object); 1904 } 1905 1906 /* 1907 * pool_cache_destruct_object: 1908 * 1909 * Force destruction of an object and its release back into 1910 * the pool. 1911 */ 1912 void 1913 pool_cache_destruct_object(pool_cache_t pc, void *object) 1914 { 1915 1916 FREECHECK_IN(&pc->pc_freecheck, object); 1917 1918 pool_cache_destruct_object1(pc, object); 1919 } 1920 1921 /* 1922 * pool_cache_invalidate_groups: 1923 * 1924 * Invalidate a chain of groups and destruct all objects. 1925 */ 1926 static void 1927 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 1928 { 1929 void *object; 1930 pcg_t *next; 1931 int i; 1932 1933 for (; pcg != NULL; pcg = next) { 1934 next = pcg->pcg_next; 1935 1936 for (i = 0; i < pcg->pcg_avail; i++) { 1937 object = pcg->pcg_objects[i].pcgo_va; 1938 pool_cache_destruct_object1(pc, object); 1939 } 1940 1941 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 1942 pool_put(&pcg_large_pool, pcg); 1943 } else { 1944 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 1945 pool_put(&pcg_normal_pool, pcg); 1946 } 1947 } 1948 } 1949 1950 /* 1951 * pool_cache_invalidate: 1952 * 1953 * Invalidate a pool cache (destruct and release all of the 1954 * cached objects). Does not reclaim objects from the pool. 1955 * 1956 * Note: For pool caches that provide constructed objects, there 1957 * is an assumption that another level of synchronization is occurring 1958 * between the input to the constructor and the cache invalidation. 1959 * 1960 * Invalidation is a costly process and should not be called from 1961 * interrupt context. 1962 */ 1963 void 1964 pool_cache_invalidate(pool_cache_t pc) 1965 { 1966 uint64_t where; 1967 pcg_t *full, *empty, *part; 1968 1969 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1970 1971 if (ncpu < 2 || !mp_online) { 1972 /* 1973 * We might be called early enough in the boot process 1974 * for the CPU data structures to not be fully initialized. 1975 * In this case, transfer the content of the local CPU's 1976 * cache back into global cache as only this CPU is currently 1977 * running. 1978 */ 1979 pool_cache_transfer(pc); 1980 } else { 1981 /* 1982 * Signal all CPUs that they must transfer their local 1983 * cache back to the global pool then wait for the xcall to 1984 * complete. 1985 */ 1986 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer, 1987 pc, NULL); 1988 xc_wait(where); 1989 } 1990 1991 /* Empty pool caches, then invalidate objects */ 1992 mutex_enter(&pc->pc_lock); 1993 full = pc->pc_fullgroups; 1994 empty = pc->pc_emptygroups; 1995 part = pc->pc_partgroups; 1996 pc->pc_fullgroups = NULL; 1997 pc->pc_emptygroups = NULL; 1998 pc->pc_partgroups = NULL; 1999 pc->pc_nfull = 0; 2000 pc->pc_nempty = 0; 2001 pc->pc_npart = 0; 2002 mutex_exit(&pc->pc_lock); 2003 2004 pool_cache_invalidate_groups(pc, full); 2005 pool_cache_invalidate_groups(pc, empty); 2006 pool_cache_invalidate_groups(pc, part); 2007 } 2008 2009 /* 2010 * pool_cache_invalidate_cpu: 2011 * 2012 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2013 * identified by its associated index. 2014 * It is caller's responsibility to ensure that no operation is 2015 * taking place on this pool cache while doing this invalidation. 2016 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2017 * pool cached objects from a CPU different from the one currently running 2018 * may result in an undefined behaviour. 2019 */ 2020 static void 2021 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2022 { 2023 pool_cache_cpu_t *cc; 2024 pcg_t *pcg; 2025 2026 if ((cc = pc->pc_cpus[index]) == NULL) 2027 return; 2028 2029 if ((pcg = cc->cc_current) != &pcg_dummy) { 2030 pcg->pcg_next = NULL; 2031 pool_cache_invalidate_groups(pc, pcg); 2032 } 2033 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2034 pcg->pcg_next = NULL; 2035 pool_cache_invalidate_groups(pc, pcg); 2036 } 2037 if (cc != &pc->pc_cpu0) 2038 pool_put(&cache_cpu_pool, cc); 2039 2040 } 2041 2042 void 2043 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2044 { 2045 2046 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2047 } 2048 2049 void 2050 pool_cache_setlowat(pool_cache_t pc, int n) 2051 { 2052 2053 pool_setlowat(&pc->pc_pool, n); 2054 } 2055 2056 void 2057 pool_cache_sethiwat(pool_cache_t pc, int n) 2058 { 2059 2060 pool_sethiwat(&pc->pc_pool, n); 2061 } 2062 2063 void 2064 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2065 { 2066 2067 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2068 } 2069 2070 static bool __noinline 2071 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2072 paddr_t *pap, int flags) 2073 { 2074 pcg_t *pcg, *cur; 2075 uint64_t ncsw; 2076 pool_cache_t pc; 2077 void *object; 2078 2079 KASSERT(cc->cc_current->pcg_avail == 0); 2080 KASSERT(cc->cc_previous->pcg_avail == 0); 2081 2082 pc = cc->cc_cache; 2083 cc->cc_misses++; 2084 2085 /* 2086 * Nothing was available locally. Try and grab a group 2087 * from the cache. 2088 */ 2089 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2090 ncsw = curlwp->l_ncsw; 2091 mutex_enter(&pc->pc_lock); 2092 pc->pc_contended++; 2093 2094 /* 2095 * If we context switched while locking, then 2096 * our view of the per-CPU data is invalid: 2097 * retry. 2098 */ 2099 if (curlwp->l_ncsw != ncsw) { 2100 mutex_exit(&pc->pc_lock); 2101 return true; 2102 } 2103 } 2104 2105 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2106 /* 2107 * If there's a full group, release our empty 2108 * group back to the cache. Install the full 2109 * group as cc_current and return. 2110 */ 2111 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2112 KASSERT(cur->pcg_avail == 0); 2113 cur->pcg_next = pc->pc_emptygroups; 2114 pc->pc_emptygroups = cur; 2115 pc->pc_nempty++; 2116 } 2117 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2118 cc->cc_current = pcg; 2119 pc->pc_fullgroups = pcg->pcg_next; 2120 pc->pc_hits++; 2121 pc->pc_nfull--; 2122 mutex_exit(&pc->pc_lock); 2123 return true; 2124 } 2125 2126 /* 2127 * Nothing available locally or in cache. Take the slow 2128 * path: fetch a new object from the pool and construct 2129 * it. 2130 */ 2131 pc->pc_misses++; 2132 mutex_exit(&pc->pc_lock); 2133 splx(s); 2134 2135 object = pool_get(&pc->pc_pool, flags); 2136 *objectp = object; 2137 if (__predict_false(object == NULL)) 2138 return false; 2139 2140 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2141 pool_put(&pc->pc_pool, object); 2142 *objectp = NULL; 2143 return false; 2144 } 2145 2146 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2147 (pc->pc_pool.pr_align - 1)) == 0); 2148 2149 if (pap != NULL) { 2150 #ifdef POOL_VTOPHYS 2151 *pap = POOL_VTOPHYS(object); 2152 #else 2153 *pap = POOL_PADDR_INVALID; 2154 #endif 2155 } 2156 2157 FREECHECK_OUT(&pc->pc_freecheck, object); 2158 pool_redzone_fill(&pc->pc_pool, object); 2159 return false; 2160 } 2161 2162 /* 2163 * pool_cache_get{,_paddr}: 2164 * 2165 * Get an object from a pool cache (optionally returning 2166 * the physical address of the object). 2167 */ 2168 void * 2169 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2170 { 2171 pool_cache_cpu_t *cc; 2172 pcg_t *pcg; 2173 void *object; 2174 int s; 2175 2176 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2177 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2178 "pool '%s' is IPL_NONE, but called from interrupt context\n", 2179 pc->pc_pool.pr_wchan); 2180 2181 if (flags & PR_WAITOK) { 2182 ASSERT_SLEEPABLE(); 2183 } 2184 2185 /* Lock out interrupts and disable preemption. */ 2186 s = splvm(); 2187 while (/* CONSTCOND */ true) { 2188 /* Try and allocate an object from the current group. */ 2189 cc = pc->pc_cpus[curcpu()->ci_index]; 2190 KASSERT(cc->cc_cache == pc); 2191 pcg = cc->cc_current; 2192 if (__predict_true(pcg->pcg_avail > 0)) { 2193 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2194 if (__predict_false(pap != NULL)) 2195 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2196 #if defined(DIAGNOSTIC) 2197 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2198 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2199 KASSERT(object != NULL); 2200 #endif 2201 cc->cc_hits++; 2202 splx(s); 2203 FREECHECK_OUT(&pc->pc_freecheck, object); 2204 pool_redzone_fill(&pc->pc_pool, object); 2205 return object; 2206 } 2207 2208 /* 2209 * That failed. If the previous group isn't empty, swap 2210 * it with the current group and allocate from there. 2211 */ 2212 pcg = cc->cc_previous; 2213 if (__predict_true(pcg->pcg_avail > 0)) { 2214 cc->cc_previous = cc->cc_current; 2215 cc->cc_current = pcg; 2216 continue; 2217 } 2218 2219 /* 2220 * Can't allocate from either group: try the slow path. 2221 * If get_slow() allocated an object for us, or if 2222 * no more objects are available, it will return false. 2223 * Otherwise, we need to retry. 2224 */ 2225 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2226 break; 2227 } 2228 2229 return object; 2230 } 2231 2232 static bool __noinline 2233 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2234 { 2235 struct lwp *l = curlwp; 2236 pcg_t *pcg, *cur; 2237 uint64_t ncsw; 2238 pool_cache_t pc; 2239 2240 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2241 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2242 2243 pc = cc->cc_cache; 2244 pcg = NULL; 2245 cc->cc_misses++; 2246 ncsw = l->l_ncsw; 2247 2248 /* 2249 * If there are no empty groups in the cache then allocate one 2250 * while still unlocked. 2251 */ 2252 if (__predict_false(pc->pc_emptygroups == NULL)) { 2253 if (__predict_true(!pool_cache_disable)) { 2254 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2255 } 2256 /* 2257 * If pool_get() blocked, then our view of 2258 * the per-CPU data is invalid: retry. 2259 */ 2260 if (__predict_false(l->l_ncsw != ncsw)) { 2261 if (pcg != NULL) { 2262 pool_put(pc->pc_pcgpool, pcg); 2263 } 2264 return true; 2265 } 2266 if (__predict_true(pcg != NULL)) { 2267 pcg->pcg_avail = 0; 2268 pcg->pcg_size = pc->pc_pcgsize; 2269 } 2270 } 2271 2272 /* Lock the cache. */ 2273 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2274 mutex_enter(&pc->pc_lock); 2275 pc->pc_contended++; 2276 2277 /* 2278 * If we context switched while locking, then our view of 2279 * the per-CPU data is invalid: retry. 2280 */ 2281 if (__predict_false(l->l_ncsw != ncsw)) { 2282 mutex_exit(&pc->pc_lock); 2283 if (pcg != NULL) { 2284 pool_put(pc->pc_pcgpool, pcg); 2285 } 2286 return true; 2287 } 2288 } 2289 2290 /* If there are no empty groups in the cache then allocate one. */ 2291 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2292 pcg = pc->pc_emptygroups; 2293 pc->pc_emptygroups = pcg->pcg_next; 2294 pc->pc_nempty--; 2295 } 2296 2297 /* 2298 * If there's a empty group, release our full group back 2299 * to the cache. Install the empty group to the local CPU 2300 * and return. 2301 */ 2302 if (pcg != NULL) { 2303 KASSERT(pcg->pcg_avail == 0); 2304 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2305 cc->cc_previous = pcg; 2306 } else { 2307 cur = cc->cc_current; 2308 if (__predict_true(cur != &pcg_dummy)) { 2309 KASSERT(cur->pcg_avail == cur->pcg_size); 2310 cur->pcg_next = pc->pc_fullgroups; 2311 pc->pc_fullgroups = cur; 2312 pc->pc_nfull++; 2313 } 2314 cc->cc_current = pcg; 2315 } 2316 pc->pc_hits++; 2317 mutex_exit(&pc->pc_lock); 2318 return true; 2319 } 2320 2321 /* 2322 * Nothing available locally or in cache, and we didn't 2323 * allocate an empty group. Take the slow path and destroy 2324 * the object here and now. 2325 */ 2326 pc->pc_misses++; 2327 mutex_exit(&pc->pc_lock); 2328 splx(s); 2329 pool_cache_destruct_object(pc, object); 2330 2331 return false; 2332 } 2333 2334 /* 2335 * pool_cache_put{,_paddr}: 2336 * 2337 * Put an object back to the pool cache (optionally caching the 2338 * physical address of the object). 2339 */ 2340 void 2341 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2342 { 2343 pool_cache_cpu_t *cc; 2344 pcg_t *pcg; 2345 int s; 2346 2347 KASSERT(object != NULL); 2348 pool_redzone_check(&pc->pc_pool, object); 2349 FREECHECK_IN(&pc->pc_freecheck, object); 2350 2351 /* Lock out interrupts and disable preemption. */ 2352 s = splvm(); 2353 while (/* CONSTCOND */ true) { 2354 /* If the current group isn't full, release it there. */ 2355 cc = pc->pc_cpus[curcpu()->ci_index]; 2356 KASSERT(cc->cc_cache == pc); 2357 pcg = cc->cc_current; 2358 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2359 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2360 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2361 pcg->pcg_avail++; 2362 cc->cc_hits++; 2363 splx(s); 2364 return; 2365 } 2366 2367 /* 2368 * That failed. If the previous group isn't full, swap 2369 * it with the current group and try again. 2370 */ 2371 pcg = cc->cc_previous; 2372 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2373 cc->cc_previous = cc->cc_current; 2374 cc->cc_current = pcg; 2375 continue; 2376 } 2377 2378 /* 2379 * Can't free to either group: try the slow path. 2380 * If put_slow() releases the object for us, it 2381 * will return false. Otherwise we need to retry. 2382 */ 2383 if (!pool_cache_put_slow(cc, s, object)) 2384 break; 2385 } 2386 } 2387 2388 /* 2389 * pool_cache_transfer: 2390 * 2391 * Transfer objects from the per-CPU cache to the global cache. 2392 * Run within a cross-call thread. 2393 */ 2394 static void 2395 pool_cache_transfer(pool_cache_t pc) 2396 { 2397 pool_cache_cpu_t *cc; 2398 pcg_t *prev, *cur, **list; 2399 int s; 2400 2401 s = splvm(); 2402 mutex_enter(&pc->pc_lock); 2403 cc = pc->pc_cpus[curcpu()->ci_index]; 2404 cur = cc->cc_current; 2405 cc->cc_current = __UNCONST(&pcg_dummy); 2406 prev = cc->cc_previous; 2407 cc->cc_previous = __UNCONST(&pcg_dummy); 2408 if (cur != &pcg_dummy) { 2409 if (cur->pcg_avail == cur->pcg_size) { 2410 list = &pc->pc_fullgroups; 2411 pc->pc_nfull++; 2412 } else if (cur->pcg_avail == 0) { 2413 list = &pc->pc_emptygroups; 2414 pc->pc_nempty++; 2415 } else { 2416 list = &pc->pc_partgroups; 2417 pc->pc_npart++; 2418 } 2419 cur->pcg_next = *list; 2420 *list = cur; 2421 } 2422 if (prev != &pcg_dummy) { 2423 if (prev->pcg_avail == prev->pcg_size) { 2424 list = &pc->pc_fullgroups; 2425 pc->pc_nfull++; 2426 } else if (prev->pcg_avail == 0) { 2427 list = &pc->pc_emptygroups; 2428 pc->pc_nempty++; 2429 } else { 2430 list = &pc->pc_partgroups; 2431 pc->pc_npart++; 2432 } 2433 prev->pcg_next = *list; 2434 *list = prev; 2435 } 2436 mutex_exit(&pc->pc_lock); 2437 splx(s); 2438 } 2439 2440 /* 2441 * Pool backend allocators. 2442 * 2443 * Each pool has a backend allocator that handles allocation, deallocation, 2444 * and any additional draining that might be needed. 2445 * 2446 * We provide two standard allocators: 2447 * 2448 * pool_allocator_kmem - the default when no allocator is specified 2449 * 2450 * pool_allocator_nointr - used for pools that will not be accessed 2451 * in interrupt context. 2452 */ 2453 void *pool_page_alloc(struct pool *, int); 2454 void pool_page_free(struct pool *, void *); 2455 2456 #ifdef POOL_SUBPAGE 2457 struct pool_allocator pool_allocator_kmem_fullpage = { 2458 .pa_alloc = pool_page_alloc, 2459 .pa_free = pool_page_free, 2460 .pa_pagesz = 0 2461 }; 2462 #else 2463 struct pool_allocator pool_allocator_kmem = { 2464 .pa_alloc = pool_page_alloc, 2465 .pa_free = pool_page_free, 2466 .pa_pagesz = 0 2467 }; 2468 #endif 2469 2470 #ifdef POOL_SUBPAGE 2471 struct pool_allocator pool_allocator_nointr_fullpage = { 2472 .pa_alloc = pool_page_alloc, 2473 .pa_free = pool_page_free, 2474 .pa_pagesz = 0 2475 }; 2476 #else 2477 struct pool_allocator pool_allocator_nointr = { 2478 .pa_alloc = pool_page_alloc, 2479 .pa_free = pool_page_free, 2480 .pa_pagesz = 0 2481 }; 2482 #endif 2483 2484 #ifdef POOL_SUBPAGE 2485 void *pool_subpage_alloc(struct pool *, int); 2486 void pool_subpage_free(struct pool *, void *); 2487 2488 struct pool_allocator pool_allocator_kmem = { 2489 .pa_alloc = pool_subpage_alloc, 2490 .pa_free = pool_subpage_free, 2491 .pa_pagesz = POOL_SUBPAGE 2492 }; 2493 2494 struct pool_allocator pool_allocator_nointr = { 2495 .pa_alloc = pool_subpage_alloc, 2496 .pa_free = pool_subpage_free, 2497 .pa_pagesz = POOL_SUBPAGE 2498 }; 2499 #endif /* POOL_SUBPAGE */ 2500 2501 static void * 2502 pool_allocator_alloc(struct pool *pp, int flags) 2503 { 2504 struct pool_allocator *pa = pp->pr_alloc; 2505 void *res; 2506 2507 res = (*pa->pa_alloc)(pp, flags); 2508 if (res == NULL && (flags & PR_WAITOK) == 0) { 2509 /* 2510 * We only run the drain hook here if PR_NOWAIT. 2511 * In other cases, the hook will be run in 2512 * pool_reclaim(). 2513 */ 2514 if (pp->pr_drain_hook != NULL) { 2515 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2516 res = (*pa->pa_alloc)(pp, flags); 2517 } 2518 } 2519 return res; 2520 } 2521 2522 static void 2523 pool_allocator_free(struct pool *pp, void *v) 2524 { 2525 struct pool_allocator *pa = pp->pr_alloc; 2526 2527 (*pa->pa_free)(pp, v); 2528 } 2529 2530 void * 2531 pool_page_alloc(struct pool *pp, int flags) 2532 { 2533 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2534 vmem_addr_t va; 2535 int ret; 2536 2537 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2538 vflags | VM_INSTANTFIT, &va); 2539 2540 return ret ? NULL : (void *)va; 2541 } 2542 2543 void 2544 pool_page_free(struct pool *pp, void *v) 2545 { 2546 2547 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2548 } 2549 2550 static void * 2551 pool_page_alloc_meta(struct pool *pp, int flags) 2552 { 2553 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2554 vmem_addr_t va; 2555 int ret; 2556 2557 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2558 vflags | VM_INSTANTFIT, &va); 2559 2560 return ret ? NULL : (void *)va; 2561 } 2562 2563 static void 2564 pool_page_free_meta(struct pool *pp, void *v) 2565 { 2566 2567 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2568 } 2569 2570 #ifdef POOL_REDZONE 2571 #if defined(_LP64) 2572 # define PRIME 0x9e37fffffffc0000UL 2573 #else /* defined(_LP64) */ 2574 # define PRIME 0x9e3779b1 2575 #endif /* defined(_LP64) */ 2576 #define STATIC_BYTE 0xFE 2577 CTASSERT(POOL_REDZONE_SIZE > 1); 2578 2579 static inline uint8_t 2580 pool_pattern_generate(const void *p) 2581 { 2582 return (uint8_t)(((uintptr_t)p) * PRIME 2583 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 2584 } 2585 2586 static void 2587 pool_redzone_init(struct pool *pp, size_t requested_size) 2588 { 2589 size_t nsz; 2590 2591 if (pp->pr_roflags & PR_NOTOUCH) { 2592 pp->pr_reqsize = 0; 2593 pp->pr_redzone = false; 2594 return; 2595 } 2596 2597 /* 2598 * We may have extended the requested size earlier; check if 2599 * there's naturally space in the padding for a red zone. 2600 */ 2601 if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) { 2602 pp->pr_reqsize = requested_size; 2603 pp->pr_redzone = true; 2604 return; 2605 } 2606 2607 /* 2608 * No space in the natural padding; check if we can extend a 2609 * bit the size of the pool. 2610 */ 2611 nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align); 2612 if (nsz <= pp->pr_alloc->pa_pagesz) { 2613 /* Ok, we can */ 2614 pp->pr_size = nsz; 2615 pp->pr_reqsize = requested_size; 2616 pp->pr_redzone = true; 2617 } else { 2618 /* No space for a red zone... snif :'( */ 2619 pp->pr_reqsize = 0; 2620 pp->pr_redzone = false; 2621 printf("pool redzone disabled for '%s'\n", pp->pr_wchan); 2622 } 2623 } 2624 2625 static void 2626 pool_redzone_fill(struct pool *pp, void *p) 2627 { 2628 uint8_t *cp, pat; 2629 const uint8_t *ep; 2630 2631 if (!pp->pr_redzone) 2632 return; 2633 2634 cp = (uint8_t *)p + pp->pr_reqsize; 2635 ep = cp + POOL_REDZONE_SIZE; 2636 2637 /* 2638 * We really don't want the first byte of the red zone to be '\0'; 2639 * an off-by-one in a string may not be properly detected. 2640 */ 2641 pat = pool_pattern_generate(cp); 2642 *cp = (pat == '\0') ? STATIC_BYTE: pat; 2643 cp++; 2644 2645 while (cp < ep) { 2646 *cp = pool_pattern_generate(cp); 2647 cp++; 2648 } 2649 } 2650 2651 static void 2652 pool_redzone_check(struct pool *pp, void *p) 2653 { 2654 uint8_t *cp, pat, expected; 2655 const uint8_t *ep; 2656 2657 if (!pp->pr_redzone) 2658 return; 2659 2660 cp = (uint8_t *)p + pp->pr_reqsize; 2661 ep = cp + POOL_REDZONE_SIZE; 2662 2663 pat = pool_pattern_generate(cp); 2664 expected = (pat == '\0') ? STATIC_BYTE: pat; 2665 if (expected != *cp) { 2666 panic("%s: %p: 0x%02x != 0x%02x\n", 2667 __func__, cp, *cp, expected); 2668 } 2669 cp++; 2670 2671 while (cp < ep) { 2672 expected = pool_pattern_generate(cp); 2673 if (*cp != expected) { 2674 panic("%s: %p: 0x%02x != 0x%02x\n", 2675 __func__, cp, *cp, expected); 2676 } 2677 cp++; 2678 } 2679 } 2680 2681 #endif /* POOL_REDZONE */ 2682 2683 2684 #ifdef POOL_SUBPAGE 2685 /* Sub-page allocator, for machines with large hardware pages. */ 2686 void * 2687 pool_subpage_alloc(struct pool *pp, int flags) 2688 { 2689 return pool_get(&psppool, flags); 2690 } 2691 2692 void 2693 pool_subpage_free(struct pool *pp, void *v) 2694 { 2695 pool_put(&psppool, v); 2696 } 2697 2698 #endif /* POOL_SUBPAGE */ 2699 2700 #if defined(DDB) 2701 static bool 2702 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2703 { 2704 2705 return (uintptr_t)ph->ph_page <= addr && 2706 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2707 } 2708 2709 static bool 2710 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2711 { 2712 2713 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2714 } 2715 2716 static bool 2717 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2718 { 2719 int i; 2720 2721 if (pcg == NULL) { 2722 return false; 2723 } 2724 for (i = 0; i < pcg->pcg_avail; i++) { 2725 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2726 return true; 2727 } 2728 } 2729 return false; 2730 } 2731 2732 static bool 2733 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2734 { 2735 2736 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2737 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2738 pool_item_bitmap_t *bitmap = 2739 ph->ph_bitmap + (idx / BITMAP_SIZE); 2740 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2741 2742 return (*bitmap & mask) == 0; 2743 } else { 2744 struct pool_item *pi; 2745 2746 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2747 if (pool_in_item(pp, pi, addr)) { 2748 return false; 2749 } 2750 } 2751 return true; 2752 } 2753 } 2754 2755 void 2756 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2757 { 2758 struct pool *pp; 2759 2760 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2761 struct pool_item_header *ph; 2762 uintptr_t item; 2763 bool allocated = true; 2764 bool incache = false; 2765 bool incpucache = false; 2766 char cpucachestr[32]; 2767 2768 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 2769 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2770 if (pool_in_page(pp, ph, addr)) { 2771 goto found; 2772 } 2773 } 2774 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2775 if (pool_in_page(pp, ph, addr)) { 2776 allocated = 2777 pool_allocated(pp, ph, addr); 2778 goto found; 2779 } 2780 } 2781 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2782 if (pool_in_page(pp, ph, addr)) { 2783 allocated = false; 2784 goto found; 2785 } 2786 } 2787 continue; 2788 } else { 2789 ph = pr_find_pagehead_noalign(pp, (void *)addr); 2790 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 2791 continue; 2792 } 2793 allocated = pool_allocated(pp, ph, addr); 2794 } 2795 found: 2796 if (allocated && pp->pr_cache) { 2797 pool_cache_t pc = pp->pr_cache; 2798 struct pool_cache_group *pcg; 2799 int i; 2800 2801 for (pcg = pc->pc_fullgroups; pcg != NULL; 2802 pcg = pcg->pcg_next) { 2803 if (pool_in_cg(pp, pcg, addr)) { 2804 incache = true; 2805 goto print; 2806 } 2807 } 2808 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 2809 pool_cache_cpu_t *cc; 2810 2811 if ((cc = pc->pc_cpus[i]) == NULL) { 2812 continue; 2813 } 2814 if (pool_in_cg(pp, cc->cc_current, addr) || 2815 pool_in_cg(pp, cc->cc_previous, addr)) { 2816 struct cpu_info *ci = 2817 cpu_lookup(i); 2818 2819 incpucache = true; 2820 snprintf(cpucachestr, 2821 sizeof(cpucachestr), 2822 "cached by CPU %u", 2823 ci->ci_index); 2824 goto print; 2825 } 2826 } 2827 } 2828 print: 2829 item = (uintptr_t)ph->ph_page + ph->ph_off; 2830 item = item + rounddown(addr - item, pp->pr_size); 2831 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 2832 (void *)addr, item, (size_t)(addr - item), 2833 pp->pr_wchan, 2834 incpucache ? cpucachestr : 2835 incache ? "cached" : allocated ? "allocated" : "free"); 2836 } 2837 } 2838 #endif /* defined(DDB) */ 2839 2840 static int 2841 pool_sysctl(SYSCTLFN_ARGS) 2842 { 2843 struct pool_sysctl data; 2844 struct pool *pp; 2845 struct pool_cache *pc; 2846 pool_cache_cpu_t *cc; 2847 int error; 2848 size_t i, written; 2849 2850 if (oldp == NULL) { 2851 *oldlenp = 0; 2852 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 2853 *oldlenp += sizeof(data); 2854 return 0; 2855 } 2856 2857 memset(&data, 0, sizeof(data)); 2858 error = 0; 2859 written = 0; 2860 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2861 if (written + sizeof(data) > *oldlenp) 2862 break; 2863 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 2864 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 2865 data.pr_flags = pp->pr_roflags | pp->pr_flags; 2866 #define COPY(field) data.field = pp->field 2867 COPY(pr_size); 2868 2869 COPY(pr_itemsperpage); 2870 COPY(pr_nitems); 2871 COPY(pr_nout); 2872 COPY(pr_hardlimit); 2873 COPY(pr_npages); 2874 COPY(pr_minpages); 2875 COPY(pr_maxpages); 2876 2877 COPY(pr_nget); 2878 COPY(pr_nfail); 2879 COPY(pr_nput); 2880 COPY(pr_npagealloc); 2881 COPY(pr_npagefree); 2882 COPY(pr_hiwat); 2883 COPY(pr_nidle); 2884 #undef COPY 2885 2886 data.pr_cache_nmiss_pcpu = 0; 2887 data.pr_cache_nhit_pcpu = 0; 2888 if (pp->pr_cache) { 2889 pc = pp->pr_cache; 2890 data.pr_cache_meta_size = pc->pc_pcgsize; 2891 data.pr_cache_nfull = pc->pc_nfull; 2892 data.pr_cache_npartial = pc->pc_npart; 2893 data.pr_cache_nempty = pc->pc_nempty; 2894 data.pr_cache_ncontended = pc->pc_contended; 2895 data.pr_cache_nmiss_global = pc->pc_misses; 2896 data.pr_cache_nhit_global = pc->pc_hits; 2897 for (i = 0; i < pc->pc_ncpu; ++i) { 2898 cc = pc->pc_cpus[i]; 2899 if (cc == NULL) 2900 continue; 2901 data.pr_cache_nmiss_pcpu += cc->cc_misses; 2902 data.pr_cache_nhit_pcpu += cc->cc_hits; 2903 } 2904 } else { 2905 data.pr_cache_meta_size = 0; 2906 data.pr_cache_nfull = 0; 2907 data.pr_cache_npartial = 0; 2908 data.pr_cache_nempty = 0; 2909 data.pr_cache_ncontended = 0; 2910 data.pr_cache_nmiss_global = 0; 2911 data.pr_cache_nhit_global = 0; 2912 } 2913 2914 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 2915 if (error) 2916 break; 2917 written += sizeof(data); 2918 oldp = (char *)oldp + sizeof(data); 2919 } 2920 2921 *oldlenp = written; 2922 return error; 2923 } 2924 2925 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 2926 { 2927 const struct sysctlnode *rnode = NULL; 2928 2929 sysctl_createv(clog, 0, NULL, &rnode, 2930 CTLFLAG_PERMANENT, 2931 CTLTYPE_STRUCT, "pool", 2932 SYSCTL_DESCR("Get pool statistics"), 2933 pool_sysctl, 0, NULL, 0, 2934 CTL_KERN, CTL_CREATE, CTL_EOL); 2935 } 2936