1 /* $NetBSD: subr_pool.c,v 1.156 2008/03/27 18:30:15 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.156 2008/03/27 18:30:15 ad Exp $"); 42 43 #include "opt_ddb.h" 44 #include "opt_pool.h" 45 #include "opt_poollog.h" 46 #include "opt_lockdebug.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bitops.h> 51 #include <sys/proc.h> 52 #include <sys/errno.h> 53 #include <sys/kernel.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/syslog.h> 57 #include <sys/debug.h> 58 #include <sys/lockdebug.h> 59 #include <sys/xcall.h> 60 #include <sys/cpu.h> 61 #include <sys/atomic.h> 62 63 #include <uvm/uvm.h> 64 65 /* 66 * Pool resource management utility. 67 * 68 * Memory is allocated in pages which are split into pieces according to 69 * the pool item size. Each page is kept on one of three lists in the 70 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 71 * for empty, full and partially-full pages respectively. The individual 72 * pool items are on a linked list headed by `ph_itemlist' in each page 73 * header. The memory for building the page list is either taken from 74 * the allocated pages themselves (for small pool items) or taken from 75 * an internal pool of page headers (`phpool'). 76 */ 77 78 /* List of all pools */ 79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 80 81 /* Private pool for page header structures */ 82 #define PHPOOL_MAX 8 83 static struct pool phpool[PHPOOL_MAX]; 84 #define PHPOOL_FREELIST_NELEM(idx) \ 85 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 86 87 #ifdef POOL_SUBPAGE 88 /* Pool of subpages for use by normal pools. */ 89 static struct pool psppool; 90 #endif 91 92 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 93 SLIST_HEAD_INITIALIZER(pa_deferinitq); 94 95 static void *pool_page_alloc_meta(struct pool *, int); 96 static void pool_page_free_meta(struct pool *, void *); 97 98 /* allocator for pool metadata */ 99 struct pool_allocator pool_allocator_meta = { 100 pool_page_alloc_meta, pool_page_free_meta, 101 .pa_backingmapptr = &kmem_map, 102 }; 103 104 /* # of seconds to retain page after last use */ 105 int pool_inactive_time = 10; 106 107 /* Next candidate for drainage (see pool_drain()) */ 108 static struct pool *drainpp; 109 110 /* This lock protects both pool_head and drainpp. */ 111 static kmutex_t pool_head_lock; 112 static kcondvar_t pool_busy; 113 114 typedef uint32_t pool_item_bitmap_t; 115 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 116 #define BITMAP_MASK (BITMAP_SIZE - 1) 117 118 struct pool_item_header { 119 /* Page headers */ 120 LIST_ENTRY(pool_item_header) 121 ph_pagelist; /* pool page list */ 122 SPLAY_ENTRY(pool_item_header) 123 ph_node; /* Off-page page headers */ 124 void * ph_page; /* this page's address */ 125 uint32_t ph_time; /* last referenced */ 126 uint16_t ph_nmissing; /* # of chunks in use */ 127 uint16_t ph_off; /* start offset in page */ 128 union { 129 /* !PR_NOTOUCH */ 130 struct { 131 LIST_HEAD(, pool_item) 132 phu_itemlist; /* chunk list for this page */ 133 } phu_normal; 134 /* PR_NOTOUCH */ 135 struct { 136 pool_item_bitmap_t phu_bitmap[1]; 137 } phu_notouch; 138 } ph_u; 139 }; 140 #define ph_itemlist ph_u.phu_normal.phu_itemlist 141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 142 143 struct pool_item { 144 #ifdef DIAGNOSTIC 145 u_int pi_magic; 146 #endif 147 #define PI_MAGIC 0xdeaddeadU 148 /* Other entries use only this list entry */ 149 LIST_ENTRY(pool_item) pi_list; 150 }; 151 152 #define POOL_NEEDS_CATCHUP(pp) \ 153 ((pp)->pr_nitems < (pp)->pr_minitems) 154 155 /* 156 * Pool cache management. 157 * 158 * Pool caches provide a way for constructed objects to be cached by the 159 * pool subsystem. This can lead to performance improvements by avoiding 160 * needless object construction/destruction; it is deferred until absolutely 161 * necessary. 162 * 163 * Caches are grouped into cache groups. Each cache group references up 164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 165 * object from the pool, it calls the object's constructor and places it 166 * into a cache group. When a cache group frees an object back to the 167 * pool, it first calls the object's destructor. This allows the object 168 * to persist in constructed form while freed to the cache. 169 * 170 * The pool references each cache, so that when a pool is drained by the 171 * pagedaemon, it can drain each individual cache as well. Each time a 172 * cache is drained, the most idle cache group is freed to the pool in 173 * its entirety. 174 * 175 * Pool caches are layed on top of pools. By layering them, we can avoid 176 * the complexity of cache management for pools which would not benefit 177 * from it. 178 */ 179 180 static struct pool pcg_normal_pool; 181 static struct pool pcg_large_pool; 182 static struct pool cache_pool; 183 static struct pool cache_cpu_pool; 184 185 /* List of all caches. */ 186 TAILQ_HEAD(,pool_cache) pool_cache_head = 187 TAILQ_HEAD_INITIALIZER(pool_cache_head); 188 189 int pool_cache_disable; 190 191 192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *, 193 void *, paddr_t); 194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *, 195 void **, paddr_t *, int); 196 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 197 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 198 static void pool_cache_xcall(pool_cache_t); 199 200 static int pool_catchup(struct pool *); 201 static void pool_prime_page(struct pool *, void *, 202 struct pool_item_header *); 203 static void pool_update_curpage(struct pool *); 204 205 static int pool_grow(struct pool *, int); 206 static void *pool_allocator_alloc(struct pool *, int); 207 static void pool_allocator_free(struct pool *, void *); 208 209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 210 void (*)(const char *, ...)); 211 static void pool_print1(struct pool *, const char *, 212 void (*)(const char *, ...)); 213 214 static int pool_chk_page(struct pool *, const char *, 215 struct pool_item_header *); 216 217 /* 218 * Pool log entry. An array of these is allocated in pool_init(). 219 */ 220 struct pool_log { 221 const char *pl_file; 222 long pl_line; 223 int pl_action; 224 #define PRLOG_GET 1 225 #define PRLOG_PUT 2 226 void *pl_addr; 227 }; 228 229 #ifdef POOL_DIAGNOSTIC 230 /* Number of entries in pool log buffers */ 231 #ifndef POOL_LOGSIZE 232 #define POOL_LOGSIZE 10 233 #endif 234 235 int pool_logsize = POOL_LOGSIZE; 236 237 static inline void 238 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 239 { 240 int n = pp->pr_curlogentry; 241 struct pool_log *pl; 242 243 if ((pp->pr_roflags & PR_LOGGING) == 0) 244 return; 245 246 /* 247 * Fill in the current entry. Wrap around and overwrite 248 * the oldest entry if necessary. 249 */ 250 pl = &pp->pr_log[n]; 251 pl->pl_file = file; 252 pl->pl_line = line; 253 pl->pl_action = action; 254 pl->pl_addr = v; 255 if (++n >= pp->pr_logsize) 256 n = 0; 257 pp->pr_curlogentry = n; 258 } 259 260 static void 261 pr_printlog(struct pool *pp, struct pool_item *pi, 262 void (*pr)(const char *, ...)) 263 { 264 int i = pp->pr_logsize; 265 int n = pp->pr_curlogentry; 266 267 if ((pp->pr_roflags & PR_LOGGING) == 0) 268 return; 269 270 /* 271 * Print all entries in this pool's log. 272 */ 273 while (i-- > 0) { 274 struct pool_log *pl = &pp->pr_log[n]; 275 if (pl->pl_action != 0) { 276 if (pi == NULL || pi == pl->pl_addr) { 277 (*pr)("\tlog entry %d:\n", i); 278 (*pr)("\t\taction = %s, addr = %p\n", 279 pl->pl_action == PRLOG_GET ? "get" : "put", 280 pl->pl_addr); 281 (*pr)("\t\tfile: %s at line %lu\n", 282 pl->pl_file, pl->pl_line); 283 } 284 } 285 if (++n >= pp->pr_logsize) 286 n = 0; 287 } 288 } 289 290 static inline void 291 pr_enter(struct pool *pp, const char *file, long line) 292 { 293 294 if (__predict_false(pp->pr_entered_file != NULL)) { 295 printf("pool %s: reentrancy at file %s line %ld\n", 296 pp->pr_wchan, file, line); 297 printf(" previous entry at file %s line %ld\n", 298 pp->pr_entered_file, pp->pr_entered_line); 299 panic("pr_enter"); 300 } 301 302 pp->pr_entered_file = file; 303 pp->pr_entered_line = line; 304 } 305 306 static inline void 307 pr_leave(struct pool *pp) 308 { 309 310 if (__predict_false(pp->pr_entered_file == NULL)) { 311 printf("pool %s not entered?\n", pp->pr_wchan); 312 panic("pr_leave"); 313 } 314 315 pp->pr_entered_file = NULL; 316 pp->pr_entered_line = 0; 317 } 318 319 static inline void 320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 321 { 322 323 if (pp->pr_entered_file != NULL) 324 (*pr)("\n\tcurrently entered from file %s line %ld\n", 325 pp->pr_entered_file, pp->pr_entered_line); 326 } 327 #else 328 #define pr_log(pp, v, action, file, line) 329 #define pr_printlog(pp, pi, pr) 330 #define pr_enter(pp, file, line) 331 #define pr_leave(pp) 332 #define pr_enter_check(pp, pr) 333 #endif /* POOL_DIAGNOSTIC */ 334 335 static inline unsigned int 336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 337 const void *v) 338 { 339 const char *cp = v; 340 unsigned int idx; 341 342 KASSERT(pp->pr_roflags & PR_NOTOUCH); 343 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 344 KASSERT(idx < pp->pr_itemsperpage); 345 return idx; 346 } 347 348 static inline void 349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 350 void *obj) 351 { 352 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 353 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 354 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 355 356 KASSERT((*bitmap & mask) == 0); 357 *bitmap |= mask; 358 } 359 360 static inline void * 361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 362 { 363 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 364 unsigned int idx; 365 int i; 366 367 for (i = 0; ; i++) { 368 int bit; 369 370 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 371 bit = ffs32(bitmap[i]); 372 if (bit) { 373 pool_item_bitmap_t mask; 374 375 bit--; 376 idx = (i * BITMAP_SIZE) + bit; 377 mask = 1 << bit; 378 KASSERT((bitmap[i] & mask) != 0); 379 bitmap[i] &= ~mask; 380 break; 381 } 382 } 383 KASSERT(idx < pp->pr_itemsperpage); 384 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 385 } 386 387 static inline void 388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 389 { 390 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 391 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 392 int i; 393 394 for (i = 0; i < n; i++) { 395 bitmap[i] = (pool_item_bitmap_t)-1; 396 } 397 } 398 399 static inline int 400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 401 { 402 403 /* 404 * we consider pool_item_header with smaller ph_page bigger. 405 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 406 */ 407 408 if (a->ph_page < b->ph_page) 409 return (1); 410 else if (a->ph_page > b->ph_page) 411 return (-1); 412 else 413 return (0); 414 } 415 416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 418 419 static inline struct pool_item_header * 420 pr_find_pagehead_noalign(struct pool *pp, void *v) 421 { 422 struct pool_item_header *ph, tmp; 423 424 tmp.ph_page = (void *)(uintptr_t)v; 425 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 426 if (ph == NULL) { 427 ph = SPLAY_ROOT(&pp->pr_phtree); 428 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 429 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 430 } 431 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 432 } 433 434 return ph; 435 } 436 437 /* 438 * Return the pool page header based on item address. 439 */ 440 static inline struct pool_item_header * 441 pr_find_pagehead(struct pool *pp, void *v) 442 { 443 struct pool_item_header *ph, tmp; 444 445 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 446 ph = pr_find_pagehead_noalign(pp, v); 447 } else { 448 void *page = 449 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 450 451 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 452 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 453 } else { 454 tmp.ph_page = page; 455 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 456 } 457 } 458 459 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 460 ((char *)ph->ph_page <= (char *)v && 461 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 462 return ph; 463 } 464 465 static void 466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 467 { 468 struct pool_item_header *ph; 469 470 while ((ph = LIST_FIRST(pq)) != NULL) { 471 LIST_REMOVE(ph, ph_pagelist); 472 pool_allocator_free(pp, ph->ph_page); 473 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 474 pool_put(pp->pr_phpool, ph); 475 } 476 } 477 478 /* 479 * Remove a page from the pool. 480 */ 481 static inline void 482 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 483 struct pool_pagelist *pq) 484 { 485 486 KASSERT(mutex_owned(&pp->pr_lock)); 487 488 /* 489 * If the page was idle, decrement the idle page count. 490 */ 491 if (ph->ph_nmissing == 0) { 492 #ifdef DIAGNOSTIC 493 if (pp->pr_nidle == 0) 494 panic("pr_rmpage: nidle inconsistent"); 495 if (pp->pr_nitems < pp->pr_itemsperpage) 496 panic("pr_rmpage: nitems inconsistent"); 497 #endif 498 pp->pr_nidle--; 499 } 500 501 pp->pr_nitems -= pp->pr_itemsperpage; 502 503 /* 504 * Unlink the page from the pool and queue it for release. 505 */ 506 LIST_REMOVE(ph, ph_pagelist); 507 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 508 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 509 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 510 511 pp->pr_npages--; 512 pp->pr_npagefree++; 513 514 pool_update_curpage(pp); 515 } 516 517 static bool 518 pa_starved_p(struct pool_allocator *pa) 519 { 520 521 if (pa->pa_backingmap != NULL) { 522 return vm_map_starved_p(pa->pa_backingmap); 523 } 524 return false; 525 } 526 527 static int 528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 529 { 530 struct pool *pp = obj; 531 struct pool_allocator *pa = pp->pr_alloc; 532 533 KASSERT(&pp->pr_reclaimerentry == ce); 534 pool_reclaim(pp); 535 if (!pa_starved_p(pa)) { 536 return CALLBACK_CHAIN_ABORT; 537 } 538 return CALLBACK_CHAIN_CONTINUE; 539 } 540 541 static void 542 pool_reclaim_register(struct pool *pp) 543 { 544 struct vm_map *map = pp->pr_alloc->pa_backingmap; 545 int s; 546 547 if (map == NULL) { 548 return; 549 } 550 551 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 552 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 553 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 554 splx(s); 555 } 556 557 static void 558 pool_reclaim_unregister(struct pool *pp) 559 { 560 struct vm_map *map = pp->pr_alloc->pa_backingmap; 561 int s; 562 563 if (map == NULL) { 564 return; 565 } 566 567 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 568 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 569 &pp->pr_reclaimerentry); 570 splx(s); 571 } 572 573 static void 574 pa_reclaim_register(struct pool_allocator *pa) 575 { 576 struct vm_map *map = *pa->pa_backingmapptr; 577 struct pool *pp; 578 579 KASSERT(pa->pa_backingmap == NULL); 580 if (map == NULL) { 581 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 582 return; 583 } 584 pa->pa_backingmap = map; 585 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 586 pool_reclaim_register(pp); 587 } 588 } 589 590 /* 591 * Initialize all the pools listed in the "pools" link set. 592 */ 593 void 594 pool_subsystem_init(void) 595 { 596 struct pool_allocator *pa; 597 __link_set_decl(pools, struct link_pool_init); 598 struct link_pool_init * const *pi; 599 600 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 601 cv_init(&pool_busy, "poolbusy"); 602 603 __link_set_foreach(pi, pools) 604 pool_init((*pi)->pp, (*pi)->size, (*pi)->align, 605 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan, 606 (*pi)->palloc, (*pi)->ipl); 607 608 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 609 KASSERT(pa->pa_backingmapptr != NULL); 610 KASSERT(*pa->pa_backingmapptr != NULL); 611 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 612 pa_reclaim_register(pa); 613 } 614 615 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 616 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 617 618 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 619 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 620 } 621 622 /* 623 * Initialize the given pool resource structure. 624 * 625 * We export this routine to allow other kernel parts to declare 626 * static pools that must be initialized before malloc() is available. 627 */ 628 void 629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 630 const char *wchan, struct pool_allocator *palloc, int ipl) 631 { 632 struct pool *pp1; 633 size_t trysize, phsize; 634 int off, slack; 635 636 #ifdef DEBUG 637 /* 638 * Check that the pool hasn't already been initialised and 639 * added to the list of all pools. 640 */ 641 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 642 if (pp == pp1) 643 panic("pool_init: pool %s already initialised", 644 wchan); 645 } 646 #endif 647 648 #ifdef POOL_DIAGNOSTIC 649 /* 650 * Always log if POOL_DIAGNOSTIC is defined. 651 */ 652 if (pool_logsize != 0) 653 flags |= PR_LOGGING; 654 #endif 655 656 if (palloc == NULL) 657 palloc = &pool_allocator_kmem; 658 #ifdef POOL_SUBPAGE 659 if (size > palloc->pa_pagesz) { 660 if (palloc == &pool_allocator_kmem) 661 palloc = &pool_allocator_kmem_fullpage; 662 else if (palloc == &pool_allocator_nointr) 663 palloc = &pool_allocator_nointr_fullpage; 664 } 665 #endif /* POOL_SUBPAGE */ 666 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 667 if (palloc->pa_pagesz == 0) 668 palloc->pa_pagesz = PAGE_SIZE; 669 670 TAILQ_INIT(&palloc->pa_list); 671 672 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 673 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 674 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 675 676 if (palloc->pa_backingmapptr != NULL) { 677 pa_reclaim_register(palloc); 678 } 679 palloc->pa_flags |= PA_INITIALIZED; 680 } 681 682 if (align == 0) 683 align = ALIGN(1); 684 685 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 686 size = sizeof(struct pool_item); 687 688 size = roundup(size, align); 689 #ifdef DIAGNOSTIC 690 if (size > palloc->pa_pagesz) 691 panic("pool_init: pool item size (%zu) too large", size); 692 #endif 693 694 /* 695 * Initialize the pool structure. 696 */ 697 LIST_INIT(&pp->pr_emptypages); 698 LIST_INIT(&pp->pr_fullpages); 699 LIST_INIT(&pp->pr_partpages); 700 pp->pr_cache = NULL; 701 pp->pr_curpage = NULL; 702 pp->pr_npages = 0; 703 pp->pr_minitems = 0; 704 pp->pr_minpages = 0; 705 pp->pr_maxpages = UINT_MAX; 706 pp->pr_roflags = flags; 707 pp->pr_flags = 0; 708 pp->pr_size = size; 709 pp->pr_align = align; 710 pp->pr_wchan = wchan; 711 pp->pr_alloc = palloc; 712 pp->pr_nitems = 0; 713 pp->pr_nout = 0; 714 pp->pr_hardlimit = UINT_MAX; 715 pp->pr_hardlimit_warning = NULL; 716 pp->pr_hardlimit_ratecap.tv_sec = 0; 717 pp->pr_hardlimit_ratecap.tv_usec = 0; 718 pp->pr_hardlimit_warning_last.tv_sec = 0; 719 pp->pr_hardlimit_warning_last.tv_usec = 0; 720 pp->pr_drain_hook = NULL; 721 pp->pr_drain_hook_arg = NULL; 722 pp->pr_freecheck = NULL; 723 724 /* 725 * Decide whether to put the page header off page to avoid 726 * wasting too large a part of the page or too big item. 727 * Off-page page headers go on a hash table, so we can match 728 * a returned item with its header based on the page address. 729 * We use 1/16 of the page size and about 8 times of the item 730 * size as the threshold (XXX: tune) 731 * 732 * However, we'll put the header into the page if we can put 733 * it without wasting any items. 734 * 735 * Silently enforce `0 <= ioff < align'. 736 */ 737 pp->pr_itemoffset = ioff %= align; 738 /* See the comment below about reserved bytes. */ 739 trysize = palloc->pa_pagesz - ((align - ioff) % align); 740 phsize = ALIGN(sizeof(struct pool_item_header)); 741 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 742 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 743 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 744 /* Use the end of the page for the page header */ 745 pp->pr_roflags |= PR_PHINPAGE; 746 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 747 } else { 748 /* The page header will be taken from our page header pool */ 749 pp->pr_phoffset = 0; 750 off = palloc->pa_pagesz; 751 SPLAY_INIT(&pp->pr_phtree); 752 } 753 754 /* 755 * Alignment is to take place at `ioff' within the item. This means 756 * we must reserve up to `align - 1' bytes on the page to allow 757 * appropriate positioning of each item. 758 */ 759 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 760 KASSERT(pp->pr_itemsperpage != 0); 761 if ((pp->pr_roflags & PR_NOTOUCH)) { 762 int idx; 763 764 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 765 idx++) { 766 /* nothing */ 767 } 768 if (idx >= PHPOOL_MAX) { 769 /* 770 * if you see this panic, consider to tweak 771 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 772 */ 773 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 774 pp->pr_wchan, pp->pr_itemsperpage); 775 } 776 pp->pr_phpool = &phpool[idx]; 777 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 778 pp->pr_phpool = &phpool[0]; 779 } 780 #if defined(DIAGNOSTIC) 781 else { 782 pp->pr_phpool = NULL; 783 } 784 #endif 785 786 /* 787 * Use the slack between the chunks and the page header 788 * for "cache coloring". 789 */ 790 slack = off - pp->pr_itemsperpage * pp->pr_size; 791 pp->pr_maxcolor = (slack / align) * align; 792 pp->pr_curcolor = 0; 793 794 pp->pr_nget = 0; 795 pp->pr_nfail = 0; 796 pp->pr_nput = 0; 797 pp->pr_npagealloc = 0; 798 pp->pr_npagefree = 0; 799 pp->pr_hiwat = 0; 800 pp->pr_nidle = 0; 801 pp->pr_refcnt = 0; 802 803 #ifdef POOL_DIAGNOSTIC 804 if (flags & PR_LOGGING) { 805 if (kmem_map == NULL || 806 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 807 M_TEMP, M_NOWAIT)) == NULL) 808 pp->pr_roflags &= ~PR_LOGGING; 809 pp->pr_curlogentry = 0; 810 pp->pr_logsize = pool_logsize; 811 } 812 #endif 813 814 pp->pr_entered_file = NULL; 815 pp->pr_entered_line = 0; 816 817 /* 818 * XXXAD hack to prevent IP input processing from blocking. 819 */ 820 if (ipl == IPL_SOFTNET) { 821 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM); 822 } else { 823 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 824 } 825 cv_init(&pp->pr_cv, wchan); 826 pp->pr_ipl = ipl; 827 828 /* 829 * Initialize private page header pool and cache magazine pool if we 830 * haven't done so yet. 831 * XXX LOCKING. 832 */ 833 if (phpool[0].pr_size == 0) { 834 int idx; 835 for (idx = 0; idx < PHPOOL_MAX; idx++) { 836 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 837 int nelem; 838 size_t sz; 839 840 nelem = PHPOOL_FREELIST_NELEM(idx); 841 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 842 "phpool-%d", nelem); 843 sz = sizeof(struct pool_item_header); 844 if (nelem) { 845 sz = offsetof(struct pool_item_header, 846 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 847 } 848 pool_init(&phpool[idx], sz, 0, 0, 0, 849 phpool_names[idx], &pool_allocator_meta, IPL_VM); 850 } 851 #ifdef POOL_SUBPAGE 852 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 853 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 854 #endif 855 856 size = sizeof(pcg_t) + 857 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 858 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 859 "pcgnormal", &pool_allocator_meta, IPL_VM); 860 861 size = sizeof(pcg_t) + 862 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 863 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 864 "pcglarge", &pool_allocator_meta, IPL_VM); 865 } 866 867 /* Insert into the list of all pools. */ 868 if (__predict_true(!cold)) 869 mutex_enter(&pool_head_lock); 870 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 871 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 872 break; 873 } 874 if (pp1 == NULL) 875 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 876 else 877 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 878 if (__predict_true(!cold)) 879 mutex_exit(&pool_head_lock); 880 881 /* Insert this into the list of pools using this allocator. */ 882 if (__predict_true(!cold)) 883 mutex_enter(&palloc->pa_lock); 884 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 885 if (__predict_true(!cold)) 886 mutex_exit(&palloc->pa_lock); 887 888 pool_reclaim_register(pp); 889 } 890 891 /* 892 * De-commision a pool resource. 893 */ 894 void 895 pool_destroy(struct pool *pp) 896 { 897 struct pool_pagelist pq; 898 struct pool_item_header *ph; 899 900 /* Remove from global pool list */ 901 mutex_enter(&pool_head_lock); 902 while (pp->pr_refcnt != 0) 903 cv_wait(&pool_busy, &pool_head_lock); 904 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 905 if (drainpp == pp) 906 drainpp = NULL; 907 mutex_exit(&pool_head_lock); 908 909 /* Remove this pool from its allocator's list of pools. */ 910 pool_reclaim_unregister(pp); 911 mutex_enter(&pp->pr_alloc->pa_lock); 912 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 913 mutex_exit(&pp->pr_alloc->pa_lock); 914 915 mutex_enter(&pp->pr_lock); 916 917 KASSERT(pp->pr_cache == NULL); 918 919 #ifdef DIAGNOSTIC 920 if (pp->pr_nout != 0) { 921 pr_printlog(pp, NULL, printf); 922 panic("pool_destroy: pool busy: still out: %u", 923 pp->pr_nout); 924 } 925 #endif 926 927 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 928 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 929 930 /* Remove all pages */ 931 LIST_INIT(&pq); 932 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 933 pr_rmpage(pp, ph, &pq); 934 935 mutex_exit(&pp->pr_lock); 936 937 pr_pagelist_free(pp, &pq); 938 939 #ifdef POOL_DIAGNOSTIC 940 if ((pp->pr_roflags & PR_LOGGING) != 0) 941 free(pp->pr_log, M_TEMP); 942 #endif 943 944 cv_destroy(&pp->pr_cv); 945 mutex_destroy(&pp->pr_lock); 946 } 947 948 void 949 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 950 { 951 952 /* XXX no locking -- must be used just after pool_init() */ 953 #ifdef DIAGNOSTIC 954 if (pp->pr_drain_hook != NULL) 955 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 956 #endif 957 pp->pr_drain_hook = fn; 958 pp->pr_drain_hook_arg = arg; 959 } 960 961 static struct pool_item_header * 962 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 963 { 964 struct pool_item_header *ph; 965 966 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 967 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 968 else 969 ph = pool_get(pp->pr_phpool, flags); 970 971 return (ph); 972 } 973 974 /* 975 * Grab an item from the pool. 976 */ 977 void * 978 #ifdef POOL_DIAGNOSTIC 979 _pool_get(struct pool *pp, int flags, const char *file, long line) 980 #else 981 pool_get(struct pool *pp, int flags) 982 #endif 983 { 984 struct pool_item *pi; 985 struct pool_item_header *ph; 986 void *v; 987 988 #ifdef DIAGNOSTIC 989 if (__predict_false(pp->pr_itemsperpage == 0)) 990 panic("pool_get: pool %p: pr_itemsperpage is zero, " 991 "pool not initialized?", pp); 992 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 993 (flags & PR_WAITOK) != 0)) 994 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 995 996 #endif /* DIAGNOSTIC */ 997 #ifdef LOCKDEBUG 998 if (flags & PR_WAITOK) { 999 ASSERT_SLEEPABLE(); 1000 } 1001 #endif 1002 1003 mutex_enter(&pp->pr_lock); 1004 pr_enter(pp, file, line); 1005 1006 startover: 1007 /* 1008 * Check to see if we've reached the hard limit. If we have, 1009 * and we can wait, then wait until an item has been returned to 1010 * the pool. 1011 */ 1012 #ifdef DIAGNOSTIC 1013 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 1014 pr_leave(pp); 1015 mutex_exit(&pp->pr_lock); 1016 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 1017 } 1018 #endif 1019 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1020 if (pp->pr_drain_hook != NULL) { 1021 /* 1022 * Since the drain hook is going to free things 1023 * back to the pool, unlock, call the hook, re-lock, 1024 * and check the hardlimit condition again. 1025 */ 1026 pr_leave(pp); 1027 mutex_exit(&pp->pr_lock); 1028 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1029 mutex_enter(&pp->pr_lock); 1030 pr_enter(pp, file, line); 1031 if (pp->pr_nout < pp->pr_hardlimit) 1032 goto startover; 1033 } 1034 1035 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1036 /* 1037 * XXX: A warning isn't logged in this case. Should 1038 * it be? 1039 */ 1040 pp->pr_flags |= PR_WANTED; 1041 pr_leave(pp); 1042 cv_wait(&pp->pr_cv, &pp->pr_lock); 1043 pr_enter(pp, file, line); 1044 goto startover; 1045 } 1046 1047 /* 1048 * Log a message that the hard limit has been hit. 1049 */ 1050 if (pp->pr_hardlimit_warning != NULL && 1051 ratecheck(&pp->pr_hardlimit_warning_last, 1052 &pp->pr_hardlimit_ratecap)) 1053 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1054 1055 pp->pr_nfail++; 1056 1057 pr_leave(pp); 1058 mutex_exit(&pp->pr_lock); 1059 return (NULL); 1060 } 1061 1062 /* 1063 * The convention we use is that if `curpage' is not NULL, then 1064 * it points at a non-empty bucket. In particular, `curpage' 1065 * never points at a page header which has PR_PHINPAGE set and 1066 * has no items in its bucket. 1067 */ 1068 if ((ph = pp->pr_curpage) == NULL) { 1069 int error; 1070 1071 #ifdef DIAGNOSTIC 1072 if (pp->pr_nitems != 0) { 1073 mutex_exit(&pp->pr_lock); 1074 printf("pool_get: %s: curpage NULL, nitems %u\n", 1075 pp->pr_wchan, pp->pr_nitems); 1076 panic("pool_get: nitems inconsistent"); 1077 } 1078 #endif 1079 1080 /* 1081 * Call the back-end page allocator for more memory. 1082 * Release the pool lock, as the back-end page allocator 1083 * may block. 1084 */ 1085 pr_leave(pp); 1086 error = pool_grow(pp, flags); 1087 pr_enter(pp, file, line); 1088 if (error != 0) { 1089 /* 1090 * We were unable to allocate a page or item 1091 * header, but we released the lock during 1092 * allocation, so perhaps items were freed 1093 * back to the pool. Check for this case. 1094 */ 1095 if (pp->pr_curpage != NULL) 1096 goto startover; 1097 1098 pp->pr_nfail++; 1099 pr_leave(pp); 1100 mutex_exit(&pp->pr_lock); 1101 return (NULL); 1102 } 1103 1104 /* Start the allocation process over. */ 1105 goto startover; 1106 } 1107 if (pp->pr_roflags & PR_NOTOUCH) { 1108 #ifdef DIAGNOSTIC 1109 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1110 pr_leave(pp); 1111 mutex_exit(&pp->pr_lock); 1112 panic("pool_get: %s: page empty", pp->pr_wchan); 1113 } 1114 #endif 1115 v = pr_item_notouch_get(pp, ph); 1116 #ifdef POOL_DIAGNOSTIC 1117 pr_log(pp, v, PRLOG_GET, file, line); 1118 #endif 1119 } else { 1120 v = pi = LIST_FIRST(&ph->ph_itemlist); 1121 if (__predict_false(v == NULL)) { 1122 pr_leave(pp); 1123 mutex_exit(&pp->pr_lock); 1124 panic("pool_get: %s: page empty", pp->pr_wchan); 1125 } 1126 #ifdef DIAGNOSTIC 1127 if (__predict_false(pp->pr_nitems == 0)) { 1128 pr_leave(pp); 1129 mutex_exit(&pp->pr_lock); 1130 printf("pool_get: %s: items on itemlist, nitems %u\n", 1131 pp->pr_wchan, pp->pr_nitems); 1132 panic("pool_get: nitems inconsistent"); 1133 } 1134 #endif 1135 1136 #ifdef POOL_DIAGNOSTIC 1137 pr_log(pp, v, PRLOG_GET, file, line); 1138 #endif 1139 1140 #ifdef DIAGNOSTIC 1141 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1142 pr_printlog(pp, pi, printf); 1143 panic("pool_get(%s): free list modified: " 1144 "magic=%x; page %p; item addr %p\n", 1145 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1146 } 1147 #endif 1148 1149 /* 1150 * Remove from item list. 1151 */ 1152 LIST_REMOVE(pi, pi_list); 1153 } 1154 pp->pr_nitems--; 1155 pp->pr_nout++; 1156 if (ph->ph_nmissing == 0) { 1157 #ifdef DIAGNOSTIC 1158 if (__predict_false(pp->pr_nidle == 0)) 1159 panic("pool_get: nidle inconsistent"); 1160 #endif 1161 pp->pr_nidle--; 1162 1163 /* 1164 * This page was previously empty. Move it to the list of 1165 * partially-full pages. This page is already curpage. 1166 */ 1167 LIST_REMOVE(ph, ph_pagelist); 1168 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1169 } 1170 ph->ph_nmissing++; 1171 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1172 #ifdef DIAGNOSTIC 1173 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1174 !LIST_EMPTY(&ph->ph_itemlist))) { 1175 pr_leave(pp); 1176 mutex_exit(&pp->pr_lock); 1177 panic("pool_get: %s: nmissing inconsistent", 1178 pp->pr_wchan); 1179 } 1180 #endif 1181 /* 1182 * This page is now full. Move it to the full list 1183 * and select a new current page. 1184 */ 1185 LIST_REMOVE(ph, ph_pagelist); 1186 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1187 pool_update_curpage(pp); 1188 } 1189 1190 pp->pr_nget++; 1191 pr_leave(pp); 1192 1193 /* 1194 * If we have a low water mark and we are now below that low 1195 * water mark, add more items to the pool. 1196 */ 1197 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1198 /* 1199 * XXX: Should we log a warning? Should we set up a timeout 1200 * to try again in a second or so? The latter could break 1201 * a caller's assumptions about interrupt protection, etc. 1202 */ 1203 } 1204 1205 mutex_exit(&pp->pr_lock); 1206 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1207 FREECHECK_OUT(&pp->pr_freecheck, v); 1208 return (v); 1209 } 1210 1211 /* 1212 * Internal version of pool_put(). Pool is already locked/entered. 1213 */ 1214 static void 1215 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1216 { 1217 struct pool_item *pi = v; 1218 struct pool_item_header *ph; 1219 1220 KASSERT(mutex_owned(&pp->pr_lock)); 1221 FREECHECK_IN(&pp->pr_freecheck, v); 1222 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1223 1224 #ifdef DIAGNOSTIC 1225 if (__predict_false(pp->pr_nout == 0)) { 1226 printf("pool %s: putting with none out\n", 1227 pp->pr_wchan); 1228 panic("pool_put"); 1229 } 1230 #endif 1231 1232 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1233 pr_printlog(pp, NULL, printf); 1234 panic("pool_put: %s: page header missing", pp->pr_wchan); 1235 } 1236 1237 /* 1238 * Return to item list. 1239 */ 1240 if (pp->pr_roflags & PR_NOTOUCH) { 1241 pr_item_notouch_put(pp, ph, v); 1242 } else { 1243 #ifdef DIAGNOSTIC 1244 pi->pi_magic = PI_MAGIC; 1245 #endif 1246 #ifdef DEBUG 1247 { 1248 int i, *ip = v; 1249 1250 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1251 *ip++ = PI_MAGIC; 1252 } 1253 } 1254 #endif 1255 1256 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1257 } 1258 KDASSERT(ph->ph_nmissing != 0); 1259 ph->ph_nmissing--; 1260 pp->pr_nput++; 1261 pp->pr_nitems++; 1262 pp->pr_nout--; 1263 1264 /* Cancel "pool empty" condition if it exists */ 1265 if (pp->pr_curpage == NULL) 1266 pp->pr_curpage = ph; 1267 1268 if (pp->pr_flags & PR_WANTED) { 1269 pp->pr_flags &= ~PR_WANTED; 1270 if (ph->ph_nmissing == 0) 1271 pp->pr_nidle++; 1272 cv_broadcast(&pp->pr_cv); 1273 return; 1274 } 1275 1276 /* 1277 * If this page is now empty, do one of two things: 1278 * 1279 * (1) If we have more pages than the page high water mark, 1280 * free the page back to the system. ONLY CONSIDER 1281 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1282 * CLAIM. 1283 * 1284 * (2) Otherwise, move the page to the empty page list. 1285 * 1286 * Either way, select a new current page (so we use a partially-full 1287 * page if one is available). 1288 */ 1289 if (ph->ph_nmissing == 0) { 1290 pp->pr_nidle++; 1291 if (pp->pr_npages > pp->pr_minpages && 1292 pp->pr_npages > pp->pr_maxpages) { 1293 pr_rmpage(pp, ph, pq); 1294 } else { 1295 LIST_REMOVE(ph, ph_pagelist); 1296 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1297 1298 /* 1299 * Update the timestamp on the page. A page must 1300 * be idle for some period of time before it can 1301 * be reclaimed by the pagedaemon. This minimizes 1302 * ping-pong'ing for memory. 1303 * 1304 * note for 64-bit time_t: truncating to 32-bit is not 1305 * a problem for our usage. 1306 */ 1307 ph->ph_time = time_uptime; 1308 } 1309 pool_update_curpage(pp); 1310 } 1311 1312 /* 1313 * If the page was previously completely full, move it to the 1314 * partially-full list and make it the current page. The next 1315 * allocation will get the item from this page, instead of 1316 * further fragmenting the pool. 1317 */ 1318 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1319 LIST_REMOVE(ph, ph_pagelist); 1320 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1321 pp->pr_curpage = ph; 1322 } 1323 } 1324 1325 /* 1326 * Return resource to the pool. 1327 */ 1328 #ifdef POOL_DIAGNOSTIC 1329 void 1330 _pool_put(struct pool *pp, void *v, const char *file, long line) 1331 { 1332 struct pool_pagelist pq; 1333 1334 LIST_INIT(&pq); 1335 1336 mutex_enter(&pp->pr_lock); 1337 pr_enter(pp, file, line); 1338 1339 pr_log(pp, v, PRLOG_PUT, file, line); 1340 1341 pool_do_put(pp, v, &pq); 1342 1343 pr_leave(pp); 1344 mutex_exit(&pp->pr_lock); 1345 1346 pr_pagelist_free(pp, &pq); 1347 } 1348 #undef pool_put 1349 #endif /* POOL_DIAGNOSTIC */ 1350 1351 void 1352 pool_put(struct pool *pp, void *v) 1353 { 1354 struct pool_pagelist pq; 1355 1356 LIST_INIT(&pq); 1357 1358 mutex_enter(&pp->pr_lock); 1359 pool_do_put(pp, v, &pq); 1360 mutex_exit(&pp->pr_lock); 1361 1362 pr_pagelist_free(pp, &pq); 1363 } 1364 1365 #ifdef POOL_DIAGNOSTIC 1366 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1367 #endif 1368 1369 /* 1370 * pool_grow: grow a pool by a page. 1371 * 1372 * => called with pool locked. 1373 * => unlock and relock the pool. 1374 * => return with pool locked. 1375 */ 1376 1377 static int 1378 pool_grow(struct pool *pp, int flags) 1379 { 1380 struct pool_item_header *ph = NULL; 1381 char *cp; 1382 1383 mutex_exit(&pp->pr_lock); 1384 cp = pool_allocator_alloc(pp, flags); 1385 if (__predict_true(cp != NULL)) { 1386 ph = pool_alloc_item_header(pp, cp, flags); 1387 } 1388 if (__predict_false(cp == NULL || ph == NULL)) { 1389 if (cp != NULL) { 1390 pool_allocator_free(pp, cp); 1391 } 1392 mutex_enter(&pp->pr_lock); 1393 return ENOMEM; 1394 } 1395 1396 mutex_enter(&pp->pr_lock); 1397 pool_prime_page(pp, cp, ph); 1398 pp->pr_npagealloc++; 1399 return 0; 1400 } 1401 1402 /* 1403 * Add N items to the pool. 1404 */ 1405 int 1406 pool_prime(struct pool *pp, int n) 1407 { 1408 int newpages; 1409 int error = 0; 1410 1411 mutex_enter(&pp->pr_lock); 1412 1413 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1414 1415 while (newpages-- > 0) { 1416 error = pool_grow(pp, PR_NOWAIT); 1417 if (error) { 1418 break; 1419 } 1420 pp->pr_minpages++; 1421 } 1422 1423 if (pp->pr_minpages >= pp->pr_maxpages) 1424 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1425 1426 mutex_exit(&pp->pr_lock); 1427 return error; 1428 } 1429 1430 /* 1431 * Add a page worth of items to the pool. 1432 * 1433 * Note, we must be called with the pool descriptor LOCKED. 1434 */ 1435 static void 1436 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1437 { 1438 struct pool_item *pi; 1439 void *cp = storage; 1440 const unsigned int align = pp->pr_align; 1441 const unsigned int ioff = pp->pr_itemoffset; 1442 int n; 1443 1444 KASSERT(mutex_owned(&pp->pr_lock)); 1445 1446 #ifdef DIAGNOSTIC 1447 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1448 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1449 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1450 #endif 1451 1452 /* 1453 * Insert page header. 1454 */ 1455 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1456 LIST_INIT(&ph->ph_itemlist); 1457 ph->ph_page = storage; 1458 ph->ph_nmissing = 0; 1459 ph->ph_time = time_uptime; 1460 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1461 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1462 1463 pp->pr_nidle++; 1464 1465 /* 1466 * Color this page. 1467 */ 1468 ph->ph_off = pp->pr_curcolor; 1469 cp = (char *)cp + ph->ph_off; 1470 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1471 pp->pr_curcolor = 0; 1472 1473 /* 1474 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1475 */ 1476 if (ioff != 0) 1477 cp = (char *)cp + align - ioff; 1478 1479 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1480 1481 /* 1482 * Insert remaining chunks on the bucket list. 1483 */ 1484 n = pp->pr_itemsperpage; 1485 pp->pr_nitems += n; 1486 1487 if (pp->pr_roflags & PR_NOTOUCH) { 1488 pr_item_notouch_init(pp, ph); 1489 } else { 1490 while (n--) { 1491 pi = (struct pool_item *)cp; 1492 1493 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1494 1495 /* Insert on page list */ 1496 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1497 #ifdef DIAGNOSTIC 1498 pi->pi_magic = PI_MAGIC; 1499 #endif 1500 cp = (char *)cp + pp->pr_size; 1501 1502 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1503 } 1504 } 1505 1506 /* 1507 * If the pool was depleted, point at the new page. 1508 */ 1509 if (pp->pr_curpage == NULL) 1510 pp->pr_curpage = ph; 1511 1512 if (++pp->pr_npages > pp->pr_hiwat) 1513 pp->pr_hiwat = pp->pr_npages; 1514 } 1515 1516 /* 1517 * Used by pool_get() when nitems drops below the low water mark. This 1518 * is used to catch up pr_nitems with the low water mark. 1519 * 1520 * Note 1, we never wait for memory here, we let the caller decide what to do. 1521 * 1522 * Note 2, we must be called with the pool already locked, and we return 1523 * with it locked. 1524 */ 1525 static int 1526 pool_catchup(struct pool *pp) 1527 { 1528 int error = 0; 1529 1530 while (POOL_NEEDS_CATCHUP(pp)) { 1531 error = pool_grow(pp, PR_NOWAIT); 1532 if (error) { 1533 break; 1534 } 1535 } 1536 return error; 1537 } 1538 1539 static void 1540 pool_update_curpage(struct pool *pp) 1541 { 1542 1543 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1544 if (pp->pr_curpage == NULL) { 1545 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1546 } 1547 } 1548 1549 void 1550 pool_setlowat(struct pool *pp, int n) 1551 { 1552 1553 mutex_enter(&pp->pr_lock); 1554 1555 pp->pr_minitems = n; 1556 pp->pr_minpages = (n == 0) 1557 ? 0 1558 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1559 1560 /* Make sure we're caught up with the newly-set low water mark. */ 1561 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1562 /* 1563 * XXX: Should we log a warning? Should we set up a timeout 1564 * to try again in a second or so? The latter could break 1565 * a caller's assumptions about interrupt protection, etc. 1566 */ 1567 } 1568 1569 mutex_exit(&pp->pr_lock); 1570 } 1571 1572 void 1573 pool_sethiwat(struct pool *pp, int n) 1574 { 1575 1576 mutex_enter(&pp->pr_lock); 1577 1578 pp->pr_maxpages = (n == 0) 1579 ? 0 1580 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1581 1582 mutex_exit(&pp->pr_lock); 1583 } 1584 1585 void 1586 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1587 { 1588 1589 mutex_enter(&pp->pr_lock); 1590 1591 pp->pr_hardlimit = n; 1592 pp->pr_hardlimit_warning = warnmess; 1593 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1594 pp->pr_hardlimit_warning_last.tv_sec = 0; 1595 pp->pr_hardlimit_warning_last.tv_usec = 0; 1596 1597 /* 1598 * In-line version of pool_sethiwat(), because we don't want to 1599 * release the lock. 1600 */ 1601 pp->pr_maxpages = (n == 0) 1602 ? 0 1603 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1604 1605 mutex_exit(&pp->pr_lock); 1606 } 1607 1608 /* 1609 * Release all complete pages that have not been used recently. 1610 */ 1611 int 1612 #ifdef POOL_DIAGNOSTIC 1613 _pool_reclaim(struct pool *pp, const char *file, long line) 1614 #else 1615 pool_reclaim(struct pool *pp) 1616 #endif 1617 { 1618 struct pool_item_header *ph, *phnext; 1619 struct pool_pagelist pq; 1620 uint32_t curtime; 1621 bool klock; 1622 int rv; 1623 1624 if (pp->pr_drain_hook != NULL) { 1625 /* 1626 * The drain hook must be called with the pool unlocked. 1627 */ 1628 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1629 } 1630 1631 /* 1632 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks, 1633 * and we are called from the pagedaemon without kernel_lock. 1634 * Does not apply to IPL_SOFTBIO. 1635 */ 1636 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1637 pp->pr_ipl == IPL_SOFTSERIAL) { 1638 KERNEL_LOCK(1, NULL); 1639 klock = true; 1640 } else 1641 klock = false; 1642 1643 /* Reclaim items from the pool's cache (if any). */ 1644 if (pp->pr_cache != NULL) 1645 pool_cache_invalidate(pp->pr_cache); 1646 1647 if (mutex_tryenter(&pp->pr_lock) == 0) { 1648 if (klock) { 1649 KERNEL_UNLOCK_ONE(NULL); 1650 } 1651 return (0); 1652 } 1653 pr_enter(pp, file, line); 1654 1655 LIST_INIT(&pq); 1656 1657 curtime = time_uptime; 1658 1659 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1660 phnext = LIST_NEXT(ph, ph_pagelist); 1661 1662 /* Check our minimum page claim */ 1663 if (pp->pr_npages <= pp->pr_minpages) 1664 break; 1665 1666 KASSERT(ph->ph_nmissing == 0); 1667 if (curtime - ph->ph_time < pool_inactive_time 1668 && !pa_starved_p(pp->pr_alloc)) 1669 continue; 1670 1671 /* 1672 * If freeing this page would put us below 1673 * the low water mark, stop now. 1674 */ 1675 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1676 pp->pr_minitems) 1677 break; 1678 1679 pr_rmpage(pp, ph, &pq); 1680 } 1681 1682 pr_leave(pp); 1683 mutex_exit(&pp->pr_lock); 1684 1685 if (LIST_EMPTY(&pq)) 1686 rv = 0; 1687 else { 1688 pr_pagelist_free(pp, &pq); 1689 rv = 1; 1690 } 1691 1692 if (klock) { 1693 KERNEL_UNLOCK_ONE(NULL); 1694 } 1695 1696 return (rv); 1697 } 1698 1699 /* 1700 * Drain pools, one at a time. This is a two stage process; 1701 * drain_start kicks off a cross call to drain CPU-level caches 1702 * if the pool has an associated pool_cache. drain_end waits 1703 * for those cross calls to finish, and then drains the cache 1704 * (if any) and pool. 1705 * 1706 * Note, must never be called from interrupt context. 1707 */ 1708 void 1709 pool_drain_start(struct pool **ppp, uint64_t *wp) 1710 { 1711 struct pool *pp; 1712 1713 KASSERT(!TAILQ_EMPTY(&pool_head)); 1714 1715 pp = NULL; 1716 1717 /* Find next pool to drain, and add a reference. */ 1718 mutex_enter(&pool_head_lock); 1719 do { 1720 if (drainpp == NULL) { 1721 drainpp = TAILQ_FIRST(&pool_head); 1722 } 1723 if (drainpp != NULL) { 1724 pp = drainpp; 1725 drainpp = TAILQ_NEXT(pp, pr_poollist); 1726 } 1727 /* 1728 * Skip completely idle pools. We depend on at least 1729 * one pool in the system being active. 1730 */ 1731 } while (pp == NULL || pp->pr_npages == 0); 1732 pp->pr_refcnt++; 1733 mutex_exit(&pool_head_lock); 1734 1735 /* If there is a pool_cache, drain CPU level caches. */ 1736 *ppp = pp; 1737 if (pp->pr_cache != NULL) { 1738 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1739 pp->pr_cache, NULL); 1740 } 1741 } 1742 1743 void 1744 pool_drain_end(struct pool *pp, uint64_t where) 1745 { 1746 1747 if (pp == NULL) 1748 return; 1749 1750 KASSERT(pp->pr_refcnt > 0); 1751 1752 /* Wait for remote draining to complete. */ 1753 if (pp->pr_cache != NULL) 1754 xc_wait(where); 1755 1756 /* Drain the cache (if any) and pool.. */ 1757 pool_reclaim(pp); 1758 1759 /* Finally, unlock the pool. */ 1760 mutex_enter(&pool_head_lock); 1761 pp->pr_refcnt--; 1762 cv_broadcast(&pool_busy); 1763 mutex_exit(&pool_head_lock); 1764 } 1765 1766 /* 1767 * Diagnostic helpers. 1768 */ 1769 void 1770 pool_print(struct pool *pp, const char *modif) 1771 { 1772 1773 pool_print1(pp, modif, printf); 1774 } 1775 1776 void 1777 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1778 { 1779 struct pool *pp; 1780 1781 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1782 pool_printit(pp, modif, pr); 1783 } 1784 } 1785 1786 void 1787 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1788 { 1789 1790 if (pp == NULL) { 1791 (*pr)("Must specify a pool to print.\n"); 1792 return; 1793 } 1794 1795 pool_print1(pp, modif, pr); 1796 } 1797 1798 static void 1799 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1800 void (*pr)(const char *, ...)) 1801 { 1802 struct pool_item_header *ph; 1803 #ifdef DIAGNOSTIC 1804 struct pool_item *pi; 1805 #endif 1806 1807 LIST_FOREACH(ph, pl, ph_pagelist) { 1808 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1809 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1810 #ifdef DIAGNOSTIC 1811 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1812 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1813 if (pi->pi_magic != PI_MAGIC) { 1814 (*pr)("\t\t\titem %p, magic 0x%x\n", 1815 pi, pi->pi_magic); 1816 } 1817 } 1818 } 1819 #endif 1820 } 1821 } 1822 1823 static void 1824 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1825 { 1826 struct pool_item_header *ph; 1827 pool_cache_t pc; 1828 pcg_t *pcg; 1829 pool_cache_cpu_t *cc; 1830 uint64_t cpuhit, cpumiss; 1831 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1832 char c; 1833 1834 while ((c = *modif++) != '\0') { 1835 if (c == 'l') 1836 print_log = 1; 1837 if (c == 'p') 1838 print_pagelist = 1; 1839 if (c == 'c') 1840 print_cache = 1; 1841 } 1842 1843 if ((pc = pp->pr_cache) != NULL) { 1844 (*pr)("POOL CACHE"); 1845 } else { 1846 (*pr)("POOL"); 1847 } 1848 1849 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1850 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1851 pp->pr_roflags); 1852 (*pr)("\talloc %p\n", pp->pr_alloc); 1853 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1854 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1855 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1856 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1857 1858 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1859 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1860 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1861 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1862 1863 if (print_pagelist == 0) 1864 goto skip_pagelist; 1865 1866 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1867 (*pr)("\n\tempty page list:\n"); 1868 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1869 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1870 (*pr)("\n\tfull page list:\n"); 1871 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1872 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1873 (*pr)("\n\tpartial-page list:\n"); 1874 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1875 1876 if (pp->pr_curpage == NULL) 1877 (*pr)("\tno current page\n"); 1878 else 1879 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1880 1881 skip_pagelist: 1882 if (print_log == 0) 1883 goto skip_log; 1884 1885 (*pr)("\n"); 1886 if ((pp->pr_roflags & PR_LOGGING) == 0) 1887 (*pr)("\tno log\n"); 1888 else { 1889 pr_printlog(pp, NULL, pr); 1890 } 1891 1892 skip_log: 1893 1894 #define PR_GROUPLIST(pcg) \ 1895 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1896 for (i = 0; i < pcg->pcg_size; i++) { \ 1897 if (pcg->pcg_objects[i].pcgo_pa != \ 1898 POOL_PADDR_INVALID) { \ 1899 (*pr)("\t\t\t%p, 0x%llx\n", \ 1900 pcg->pcg_objects[i].pcgo_va, \ 1901 (unsigned long long) \ 1902 pcg->pcg_objects[i].pcgo_pa); \ 1903 } else { \ 1904 (*pr)("\t\t\t%p\n", \ 1905 pcg->pcg_objects[i].pcgo_va); \ 1906 } \ 1907 } 1908 1909 if (pc != NULL) { 1910 cpuhit = 0; 1911 cpumiss = 0; 1912 for (i = 0; i < MAXCPUS; i++) { 1913 if ((cc = pc->pc_cpus[i]) == NULL) 1914 continue; 1915 cpuhit += cc->cc_hits; 1916 cpumiss += cc->cc_misses; 1917 } 1918 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1919 (*pr)("\tcache layer hits %llu misses %llu\n", 1920 pc->pc_hits, pc->pc_misses); 1921 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1922 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1923 pc->pc_contended); 1924 (*pr)("\tcache layer empty groups %u full groups %u\n", 1925 pc->pc_nempty, pc->pc_nfull); 1926 if (print_cache) { 1927 (*pr)("\tfull cache groups:\n"); 1928 for (pcg = pc->pc_fullgroups; pcg != NULL; 1929 pcg = pcg->pcg_next) { 1930 PR_GROUPLIST(pcg); 1931 } 1932 (*pr)("\tempty cache groups:\n"); 1933 for (pcg = pc->pc_emptygroups; pcg != NULL; 1934 pcg = pcg->pcg_next) { 1935 PR_GROUPLIST(pcg); 1936 } 1937 } 1938 } 1939 #undef PR_GROUPLIST 1940 1941 pr_enter_check(pp, pr); 1942 } 1943 1944 static int 1945 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1946 { 1947 struct pool_item *pi; 1948 void *page; 1949 int n; 1950 1951 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1952 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1953 if (page != ph->ph_page && 1954 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1955 if (label != NULL) 1956 printf("%s: ", label); 1957 printf("pool(%p:%s): page inconsistency: page %p;" 1958 " at page head addr %p (p %p)\n", pp, 1959 pp->pr_wchan, ph->ph_page, 1960 ph, page); 1961 return 1; 1962 } 1963 } 1964 1965 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1966 return 0; 1967 1968 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1969 pi != NULL; 1970 pi = LIST_NEXT(pi,pi_list), n++) { 1971 1972 #ifdef DIAGNOSTIC 1973 if (pi->pi_magic != PI_MAGIC) { 1974 if (label != NULL) 1975 printf("%s: ", label); 1976 printf("pool(%s): free list modified: magic=%x;" 1977 " page %p; item ordinal %d; addr %p\n", 1978 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1979 n, pi); 1980 panic("pool"); 1981 } 1982 #endif 1983 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1984 continue; 1985 } 1986 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1987 if (page == ph->ph_page) 1988 continue; 1989 1990 if (label != NULL) 1991 printf("%s: ", label); 1992 printf("pool(%p:%s): page inconsistency: page %p;" 1993 " item ordinal %d; addr %p (p %p)\n", pp, 1994 pp->pr_wchan, ph->ph_page, 1995 n, pi, page); 1996 return 1; 1997 } 1998 return 0; 1999 } 2000 2001 2002 int 2003 pool_chk(struct pool *pp, const char *label) 2004 { 2005 struct pool_item_header *ph; 2006 int r = 0; 2007 2008 mutex_enter(&pp->pr_lock); 2009 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2010 r = pool_chk_page(pp, label, ph); 2011 if (r) { 2012 goto out; 2013 } 2014 } 2015 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2016 r = pool_chk_page(pp, label, ph); 2017 if (r) { 2018 goto out; 2019 } 2020 } 2021 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2022 r = pool_chk_page(pp, label, ph); 2023 if (r) { 2024 goto out; 2025 } 2026 } 2027 2028 out: 2029 mutex_exit(&pp->pr_lock); 2030 return (r); 2031 } 2032 2033 /* 2034 * pool_cache_init: 2035 * 2036 * Initialize a pool cache. 2037 */ 2038 pool_cache_t 2039 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2040 const char *wchan, struct pool_allocator *palloc, int ipl, 2041 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2042 { 2043 pool_cache_t pc; 2044 2045 pc = pool_get(&cache_pool, PR_WAITOK); 2046 if (pc == NULL) 2047 return NULL; 2048 2049 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2050 palloc, ipl, ctor, dtor, arg); 2051 2052 return pc; 2053 } 2054 2055 /* 2056 * pool_cache_bootstrap: 2057 * 2058 * Kernel-private version of pool_cache_init(). The caller 2059 * provides initial storage. 2060 */ 2061 void 2062 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2063 u_int align_offset, u_int flags, const char *wchan, 2064 struct pool_allocator *palloc, int ipl, 2065 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2066 void *arg) 2067 { 2068 CPU_INFO_ITERATOR cii; 2069 pool_cache_t pc1; 2070 struct cpu_info *ci; 2071 struct pool *pp; 2072 2073 pp = &pc->pc_pool; 2074 if (palloc == NULL && ipl == IPL_NONE) 2075 palloc = &pool_allocator_nointr; 2076 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2077 2078 /* 2079 * XXXAD hack to prevent IP input processing from blocking. 2080 */ 2081 if (ipl == IPL_SOFTNET) { 2082 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM); 2083 } else { 2084 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2085 } 2086 2087 if (ctor == NULL) { 2088 ctor = (int (*)(void *, void *, int))nullop; 2089 } 2090 if (dtor == NULL) { 2091 dtor = (void (*)(void *, void *))nullop; 2092 } 2093 2094 pc->pc_emptygroups = NULL; 2095 pc->pc_fullgroups = NULL; 2096 pc->pc_partgroups = NULL; 2097 pc->pc_ctor = ctor; 2098 pc->pc_dtor = dtor; 2099 pc->pc_arg = arg; 2100 pc->pc_hits = 0; 2101 pc->pc_misses = 0; 2102 pc->pc_nempty = 0; 2103 pc->pc_npart = 0; 2104 pc->pc_nfull = 0; 2105 pc->pc_contended = 0; 2106 pc->pc_refcnt = 0; 2107 pc->pc_freecheck = NULL; 2108 2109 if ((flags & PR_LARGECACHE) != 0) { 2110 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2111 } else { 2112 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2113 } 2114 2115 /* Allocate per-CPU caches. */ 2116 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2117 pc->pc_ncpu = 0; 2118 if (ncpu < 2) { 2119 /* XXX For sparc: boot CPU is not attached yet. */ 2120 pool_cache_cpu_init1(curcpu(), pc); 2121 } else { 2122 for (CPU_INFO_FOREACH(cii, ci)) { 2123 pool_cache_cpu_init1(ci, pc); 2124 } 2125 } 2126 2127 /* Add to list of all pools. */ 2128 if (__predict_true(!cold)) 2129 mutex_enter(&pool_head_lock); 2130 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2131 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2132 break; 2133 } 2134 if (pc1 == NULL) 2135 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2136 else 2137 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2138 if (__predict_true(!cold)) 2139 mutex_exit(&pool_head_lock); 2140 2141 membar_sync(); 2142 pp->pr_cache = pc; 2143 } 2144 2145 /* 2146 * pool_cache_destroy: 2147 * 2148 * Destroy a pool cache. 2149 */ 2150 void 2151 pool_cache_destroy(pool_cache_t pc) 2152 { 2153 struct pool *pp = &pc->pc_pool; 2154 pool_cache_cpu_t *cc; 2155 pcg_t *pcg; 2156 int i; 2157 2158 /* Remove it from the global list. */ 2159 mutex_enter(&pool_head_lock); 2160 while (pc->pc_refcnt != 0) 2161 cv_wait(&pool_busy, &pool_head_lock); 2162 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2163 mutex_exit(&pool_head_lock); 2164 2165 /* First, invalidate the entire cache. */ 2166 pool_cache_invalidate(pc); 2167 2168 /* Disassociate it from the pool. */ 2169 mutex_enter(&pp->pr_lock); 2170 pp->pr_cache = NULL; 2171 mutex_exit(&pp->pr_lock); 2172 2173 /* Destroy per-CPU data */ 2174 for (i = 0; i < MAXCPUS; i++) { 2175 if ((cc = pc->pc_cpus[i]) == NULL) 2176 continue; 2177 if ((pcg = cc->cc_current) != NULL) { 2178 pcg->pcg_next = NULL; 2179 pool_cache_invalidate_groups(pc, pcg); 2180 } 2181 if ((pcg = cc->cc_previous) != NULL) { 2182 pcg->pcg_next = NULL; 2183 pool_cache_invalidate_groups(pc, pcg); 2184 } 2185 if (cc != &pc->pc_cpu0) 2186 pool_put(&cache_cpu_pool, cc); 2187 } 2188 2189 /* Finally, destroy it. */ 2190 mutex_destroy(&pc->pc_lock); 2191 pool_destroy(pp); 2192 pool_put(&cache_pool, pc); 2193 } 2194 2195 /* 2196 * pool_cache_cpu_init1: 2197 * 2198 * Called for each pool_cache whenever a new CPU is attached. 2199 */ 2200 static void 2201 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2202 { 2203 pool_cache_cpu_t *cc; 2204 int index; 2205 2206 index = ci->ci_index; 2207 2208 KASSERT(index < MAXCPUS); 2209 2210 if ((cc = pc->pc_cpus[index]) != NULL) { 2211 KASSERT(cc->cc_cpuindex == index); 2212 return; 2213 } 2214 2215 /* 2216 * The first CPU is 'free'. This needs to be the case for 2217 * bootstrap - we may not be able to allocate yet. 2218 */ 2219 if (pc->pc_ncpu == 0) { 2220 cc = &pc->pc_cpu0; 2221 pc->pc_ncpu = 1; 2222 } else { 2223 mutex_enter(&pc->pc_lock); 2224 pc->pc_ncpu++; 2225 mutex_exit(&pc->pc_lock); 2226 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2227 } 2228 2229 cc->cc_ipl = pc->pc_pool.pr_ipl; 2230 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2231 cc->cc_cache = pc; 2232 cc->cc_cpuindex = index; 2233 cc->cc_hits = 0; 2234 cc->cc_misses = 0; 2235 cc->cc_current = NULL; 2236 cc->cc_previous = NULL; 2237 2238 pc->pc_cpus[index] = cc; 2239 } 2240 2241 /* 2242 * pool_cache_cpu_init: 2243 * 2244 * Called whenever a new CPU is attached. 2245 */ 2246 void 2247 pool_cache_cpu_init(struct cpu_info *ci) 2248 { 2249 pool_cache_t pc; 2250 2251 mutex_enter(&pool_head_lock); 2252 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2253 pc->pc_refcnt++; 2254 mutex_exit(&pool_head_lock); 2255 2256 pool_cache_cpu_init1(ci, pc); 2257 2258 mutex_enter(&pool_head_lock); 2259 pc->pc_refcnt--; 2260 cv_broadcast(&pool_busy); 2261 } 2262 mutex_exit(&pool_head_lock); 2263 } 2264 2265 /* 2266 * pool_cache_reclaim: 2267 * 2268 * Reclaim memory from a pool cache. 2269 */ 2270 bool 2271 pool_cache_reclaim(pool_cache_t pc) 2272 { 2273 2274 return pool_reclaim(&pc->pc_pool); 2275 } 2276 2277 static void 2278 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2279 { 2280 2281 (*pc->pc_dtor)(pc->pc_arg, object); 2282 pool_put(&pc->pc_pool, object); 2283 } 2284 2285 /* 2286 * pool_cache_destruct_object: 2287 * 2288 * Force destruction of an object and its release back into 2289 * the pool. 2290 */ 2291 void 2292 pool_cache_destruct_object(pool_cache_t pc, void *object) 2293 { 2294 2295 FREECHECK_IN(&pc->pc_freecheck, object); 2296 2297 pool_cache_destruct_object1(pc, object); 2298 } 2299 2300 /* 2301 * pool_cache_invalidate_groups: 2302 * 2303 * Invalidate a chain of groups and destruct all objects. 2304 */ 2305 static void 2306 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2307 { 2308 void *object; 2309 pcg_t *next; 2310 int i; 2311 2312 for (; pcg != NULL; pcg = next) { 2313 next = pcg->pcg_next; 2314 2315 for (i = 0; i < pcg->pcg_avail; i++) { 2316 object = pcg->pcg_objects[i].pcgo_va; 2317 pool_cache_destruct_object1(pc, object); 2318 } 2319 2320 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2321 pool_put(&pcg_large_pool, pcg); 2322 } else { 2323 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2324 pool_put(&pcg_normal_pool, pcg); 2325 } 2326 } 2327 } 2328 2329 /* 2330 * pool_cache_invalidate: 2331 * 2332 * Invalidate a pool cache (destruct and release all of the 2333 * cached objects). Does not reclaim objects from the pool. 2334 */ 2335 void 2336 pool_cache_invalidate(pool_cache_t pc) 2337 { 2338 pcg_t *full, *empty, *part; 2339 2340 mutex_enter(&pc->pc_lock); 2341 full = pc->pc_fullgroups; 2342 empty = pc->pc_emptygroups; 2343 part = pc->pc_partgroups; 2344 pc->pc_fullgroups = NULL; 2345 pc->pc_emptygroups = NULL; 2346 pc->pc_partgroups = NULL; 2347 pc->pc_nfull = 0; 2348 pc->pc_nempty = 0; 2349 pc->pc_npart = 0; 2350 mutex_exit(&pc->pc_lock); 2351 2352 pool_cache_invalidate_groups(pc, full); 2353 pool_cache_invalidate_groups(pc, empty); 2354 pool_cache_invalidate_groups(pc, part); 2355 } 2356 2357 void 2358 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2359 { 2360 2361 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2362 } 2363 2364 void 2365 pool_cache_setlowat(pool_cache_t pc, int n) 2366 { 2367 2368 pool_setlowat(&pc->pc_pool, n); 2369 } 2370 2371 void 2372 pool_cache_sethiwat(pool_cache_t pc, int n) 2373 { 2374 2375 pool_sethiwat(&pc->pc_pool, n); 2376 } 2377 2378 void 2379 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2380 { 2381 2382 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2383 } 2384 2385 static inline pool_cache_cpu_t * 2386 pool_cache_cpu_enter(pool_cache_t pc, int *s) 2387 { 2388 pool_cache_cpu_t *cc; 2389 2390 /* 2391 * Prevent other users of the cache from accessing our 2392 * CPU-local data. To avoid touching shared state, we 2393 * pull the neccessary information from CPU local data. 2394 */ 2395 crit_enter(); 2396 cc = pc->pc_cpus[curcpu()->ci_index]; 2397 KASSERT(cc->cc_cache == pc); 2398 if (cc->cc_ipl != IPL_NONE) { 2399 *s = splraiseipl(cc->cc_iplcookie); 2400 } 2401 2402 return cc; 2403 } 2404 2405 static inline void 2406 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s) 2407 { 2408 2409 /* No longer need exclusive access to the per-CPU data. */ 2410 if (cc->cc_ipl != IPL_NONE) { 2411 splx(*s); 2412 } 2413 crit_exit(); 2414 } 2415 2416 #if __GNUC_PREREQ__(3, 0) 2417 __attribute ((noinline)) 2418 #endif 2419 pool_cache_cpu_t * 2420 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp, 2421 paddr_t *pap, int flags) 2422 { 2423 pcg_t *pcg, *cur; 2424 uint64_t ncsw; 2425 pool_cache_t pc; 2426 void *object; 2427 2428 pc = cc->cc_cache; 2429 cc->cc_misses++; 2430 2431 /* 2432 * Nothing was available locally. Try and grab a group 2433 * from the cache. 2434 */ 2435 if (!mutex_tryenter(&pc->pc_lock)) { 2436 ncsw = curlwp->l_ncsw; 2437 mutex_enter(&pc->pc_lock); 2438 pc->pc_contended++; 2439 2440 /* 2441 * If we context switched while locking, then 2442 * our view of the per-CPU data is invalid: 2443 * retry. 2444 */ 2445 if (curlwp->l_ncsw != ncsw) { 2446 mutex_exit(&pc->pc_lock); 2447 pool_cache_cpu_exit(cc, s); 2448 return pool_cache_cpu_enter(pc, s); 2449 } 2450 } 2451 2452 if ((pcg = pc->pc_fullgroups) != NULL) { 2453 /* 2454 * If there's a full group, release our empty 2455 * group back to the cache. Install the full 2456 * group as cc_current and return. 2457 */ 2458 if ((cur = cc->cc_current) != NULL) { 2459 KASSERT(cur->pcg_avail == 0); 2460 cur->pcg_next = pc->pc_emptygroups; 2461 pc->pc_emptygroups = cur; 2462 pc->pc_nempty++; 2463 } 2464 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2465 cc->cc_current = pcg; 2466 pc->pc_fullgroups = pcg->pcg_next; 2467 pc->pc_hits++; 2468 pc->pc_nfull--; 2469 mutex_exit(&pc->pc_lock); 2470 return cc; 2471 } 2472 2473 /* 2474 * Nothing available locally or in cache. Take the slow 2475 * path: fetch a new object from the pool and construct 2476 * it. 2477 */ 2478 pc->pc_misses++; 2479 mutex_exit(&pc->pc_lock); 2480 pool_cache_cpu_exit(cc, s); 2481 2482 object = pool_get(&pc->pc_pool, flags); 2483 *objectp = object; 2484 if (object == NULL) 2485 return NULL; 2486 2487 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 2488 pool_put(&pc->pc_pool, object); 2489 *objectp = NULL; 2490 return NULL; 2491 } 2492 2493 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2494 (pc->pc_pool.pr_align - 1)) == 0); 2495 2496 if (pap != NULL) { 2497 #ifdef POOL_VTOPHYS 2498 *pap = POOL_VTOPHYS(object); 2499 #else 2500 *pap = POOL_PADDR_INVALID; 2501 #endif 2502 } 2503 2504 FREECHECK_OUT(&pc->pc_freecheck, object); 2505 return NULL; 2506 } 2507 2508 /* 2509 * pool_cache_get{,_paddr}: 2510 * 2511 * Get an object from a pool cache (optionally returning 2512 * the physical address of the object). 2513 */ 2514 void * 2515 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2516 { 2517 pool_cache_cpu_t *cc; 2518 pcg_t *pcg; 2519 void *object; 2520 int s; 2521 2522 #ifdef LOCKDEBUG 2523 if (flags & PR_WAITOK) { 2524 ASSERT_SLEEPABLE(); 2525 } 2526 #endif 2527 2528 cc = pool_cache_cpu_enter(pc, &s); 2529 do { 2530 /* Try and allocate an object from the current group. */ 2531 pcg = cc->cc_current; 2532 if (pcg != NULL && pcg->pcg_avail > 0) { 2533 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2534 if (pap != NULL) 2535 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2536 #if defined(DIAGNOSTIC) 2537 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2538 #endif /* defined(DIAGNOSTIC) */ 2539 KASSERT(pcg->pcg_avail <= pcg->pcg_size); 2540 KASSERT(object != NULL); 2541 cc->cc_hits++; 2542 pool_cache_cpu_exit(cc, &s); 2543 FREECHECK_OUT(&pc->pc_freecheck, object); 2544 return object; 2545 } 2546 2547 /* 2548 * That failed. If the previous group isn't empty, swap 2549 * it with the current group and allocate from there. 2550 */ 2551 pcg = cc->cc_previous; 2552 if (pcg != NULL && pcg->pcg_avail > 0) { 2553 cc->cc_previous = cc->cc_current; 2554 cc->cc_current = pcg; 2555 continue; 2556 } 2557 2558 /* 2559 * Can't allocate from either group: try the slow path. 2560 * If get_slow() allocated an object for us, or if 2561 * no more objects are available, it will return NULL. 2562 * Otherwise, we need to retry. 2563 */ 2564 cc = pool_cache_get_slow(cc, &s, &object, pap, flags); 2565 } while (cc != NULL); 2566 2567 return object; 2568 } 2569 2570 #if __GNUC_PREREQ__(3, 0) 2571 __attribute ((noinline)) 2572 #endif 2573 pool_cache_cpu_t * 2574 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa) 2575 { 2576 pcg_t *pcg, *cur; 2577 uint64_t ncsw; 2578 pool_cache_t pc; 2579 u_int nobj; 2580 2581 pc = cc->cc_cache; 2582 cc->cc_misses++; 2583 2584 /* 2585 * No free slots locally. Try to grab an empty, unused 2586 * group from the cache. 2587 */ 2588 if (!mutex_tryenter(&pc->pc_lock)) { 2589 ncsw = curlwp->l_ncsw; 2590 mutex_enter(&pc->pc_lock); 2591 pc->pc_contended++; 2592 2593 /* 2594 * If we context switched while locking, then 2595 * our view of the per-CPU data is invalid: 2596 * retry. 2597 */ 2598 if (curlwp->l_ncsw != ncsw) { 2599 mutex_exit(&pc->pc_lock); 2600 pool_cache_cpu_exit(cc, s); 2601 return pool_cache_cpu_enter(pc, s); 2602 } 2603 } 2604 2605 if ((pcg = pc->pc_emptygroups) != NULL) { 2606 /* 2607 * If there's a empty group, release our full 2608 * group back to the cache. Install the empty 2609 * group and return. 2610 */ 2611 KASSERT(pcg->pcg_avail == 0); 2612 pc->pc_emptygroups = pcg->pcg_next; 2613 if (cc->cc_previous == NULL) { 2614 cc->cc_previous = pcg; 2615 } else { 2616 if ((cur = cc->cc_current) != NULL) { 2617 KASSERT(cur->pcg_avail == pcg->pcg_size); 2618 cur->pcg_next = pc->pc_fullgroups; 2619 pc->pc_fullgroups = cur; 2620 pc->pc_nfull++; 2621 } 2622 cc->cc_current = pcg; 2623 } 2624 pc->pc_hits++; 2625 pc->pc_nempty--; 2626 mutex_exit(&pc->pc_lock); 2627 return cc; 2628 } 2629 2630 /* 2631 * Nothing available locally or in cache. Take the 2632 * slow path and try to allocate a new group that we 2633 * can release to. 2634 */ 2635 pc->pc_misses++; 2636 mutex_exit(&pc->pc_lock); 2637 pool_cache_cpu_exit(cc, s); 2638 2639 /* 2640 * If we can't allocate a new group, just throw the 2641 * object away. 2642 */ 2643 nobj = pc->pc_pcgsize; 2644 if (pool_cache_disable) { 2645 pcg = NULL; 2646 } else if (nobj == PCG_NOBJECTS_LARGE) { 2647 pcg = pool_get(&pcg_large_pool, PR_NOWAIT); 2648 } else { 2649 pcg = pool_get(&pcg_normal_pool, PR_NOWAIT); 2650 } 2651 if (pcg == NULL) { 2652 pool_cache_destruct_object(pc, object); 2653 return NULL; 2654 } 2655 pcg->pcg_avail = 0; 2656 pcg->pcg_size = nobj; 2657 2658 /* 2659 * Add the empty group to the cache and try again. 2660 */ 2661 mutex_enter(&pc->pc_lock); 2662 pcg->pcg_next = pc->pc_emptygroups; 2663 pc->pc_emptygroups = pcg; 2664 pc->pc_nempty++; 2665 mutex_exit(&pc->pc_lock); 2666 2667 return pool_cache_cpu_enter(pc, s); 2668 } 2669 2670 /* 2671 * pool_cache_put{,_paddr}: 2672 * 2673 * Put an object back to the pool cache (optionally caching the 2674 * physical address of the object). 2675 */ 2676 void 2677 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2678 { 2679 pool_cache_cpu_t *cc; 2680 pcg_t *pcg; 2681 int s; 2682 2683 FREECHECK_IN(&pc->pc_freecheck, object); 2684 2685 cc = pool_cache_cpu_enter(pc, &s); 2686 do { 2687 /* If the current group isn't full, release it there. */ 2688 pcg = cc->cc_current; 2689 if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) { 2690 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2691 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2692 pcg->pcg_avail++; 2693 cc->cc_hits++; 2694 pool_cache_cpu_exit(cc, &s); 2695 return; 2696 } 2697 2698 /* 2699 * That failed. If the previous group is empty, swap 2700 * it with the current group and try again. 2701 */ 2702 pcg = cc->cc_previous; 2703 if (pcg != NULL && pcg->pcg_avail == 0) { 2704 cc->cc_previous = cc->cc_current; 2705 cc->cc_current = pcg; 2706 continue; 2707 } 2708 2709 /* 2710 * Can't free to either group: try the slow path. 2711 * If put_slow() releases the object for us, it 2712 * will return NULL. Otherwise we need to retry. 2713 */ 2714 cc = pool_cache_put_slow(cc, &s, object, pa); 2715 } while (cc != NULL); 2716 } 2717 2718 /* 2719 * pool_cache_xcall: 2720 * 2721 * Transfer objects from the per-CPU cache to the global cache. 2722 * Run within a cross-call thread. 2723 */ 2724 static void 2725 pool_cache_xcall(pool_cache_t pc) 2726 { 2727 pool_cache_cpu_t *cc; 2728 pcg_t *prev, *cur, **list; 2729 int s = 0; /* XXXgcc */ 2730 2731 cc = pool_cache_cpu_enter(pc, &s); 2732 cur = cc->cc_current; 2733 cc->cc_current = NULL; 2734 prev = cc->cc_previous; 2735 cc->cc_previous = NULL; 2736 pool_cache_cpu_exit(cc, &s); 2737 2738 /* 2739 * XXXSMP Go to splvm to prevent kernel_lock from being taken, 2740 * because locks at IPL_SOFTXXX are still spinlocks. Does not 2741 * apply to IPL_SOFTBIO. Cross-call threads do not take the 2742 * kernel_lock. 2743 */ 2744 s = splvm(); 2745 mutex_enter(&pc->pc_lock); 2746 if (cur != NULL) { 2747 if (cur->pcg_avail == cur->pcg_size) { 2748 list = &pc->pc_fullgroups; 2749 pc->pc_nfull++; 2750 } else if (cur->pcg_avail == 0) { 2751 list = &pc->pc_emptygroups; 2752 pc->pc_nempty++; 2753 } else { 2754 list = &pc->pc_partgroups; 2755 pc->pc_npart++; 2756 } 2757 cur->pcg_next = *list; 2758 *list = cur; 2759 } 2760 if (prev != NULL) { 2761 if (prev->pcg_avail == prev->pcg_size) { 2762 list = &pc->pc_fullgroups; 2763 pc->pc_nfull++; 2764 } else if (prev->pcg_avail == 0) { 2765 list = &pc->pc_emptygroups; 2766 pc->pc_nempty++; 2767 } else { 2768 list = &pc->pc_partgroups; 2769 pc->pc_npart++; 2770 } 2771 prev->pcg_next = *list; 2772 *list = prev; 2773 } 2774 mutex_exit(&pc->pc_lock); 2775 splx(s); 2776 } 2777 2778 /* 2779 * Pool backend allocators. 2780 * 2781 * Each pool has a backend allocator that handles allocation, deallocation, 2782 * and any additional draining that might be needed. 2783 * 2784 * We provide two standard allocators: 2785 * 2786 * pool_allocator_kmem - the default when no allocator is specified 2787 * 2788 * pool_allocator_nointr - used for pools that will not be accessed 2789 * in interrupt context. 2790 */ 2791 void *pool_page_alloc(struct pool *, int); 2792 void pool_page_free(struct pool *, void *); 2793 2794 #ifdef POOL_SUBPAGE 2795 struct pool_allocator pool_allocator_kmem_fullpage = { 2796 pool_page_alloc, pool_page_free, 0, 2797 .pa_backingmapptr = &kmem_map, 2798 }; 2799 #else 2800 struct pool_allocator pool_allocator_kmem = { 2801 pool_page_alloc, pool_page_free, 0, 2802 .pa_backingmapptr = &kmem_map, 2803 }; 2804 #endif 2805 2806 void *pool_page_alloc_nointr(struct pool *, int); 2807 void pool_page_free_nointr(struct pool *, void *); 2808 2809 #ifdef POOL_SUBPAGE 2810 struct pool_allocator pool_allocator_nointr_fullpage = { 2811 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2812 .pa_backingmapptr = &kernel_map, 2813 }; 2814 #else 2815 struct pool_allocator pool_allocator_nointr = { 2816 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2817 .pa_backingmapptr = &kernel_map, 2818 }; 2819 #endif 2820 2821 #ifdef POOL_SUBPAGE 2822 void *pool_subpage_alloc(struct pool *, int); 2823 void pool_subpage_free(struct pool *, void *); 2824 2825 struct pool_allocator pool_allocator_kmem = { 2826 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2827 .pa_backingmapptr = &kmem_map, 2828 }; 2829 2830 void *pool_subpage_alloc_nointr(struct pool *, int); 2831 void pool_subpage_free_nointr(struct pool *, void *); 2832 2833 struct pool_allocator pool_allocator_nointr = { 2834 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2835 .pa_backingmapptr = &kmem_map, 2836 }; 2837 #endif /* POOL_SUBPAGE */ 2838 2839 static void * 2840 pool_allocator_alloc(struct pool *pp, int flags) 2841 { 2842 struct pool_allocator *pa = pp->pr_alloc; 2843 void *res; 2844 2845 res = (*pa->pa_alloc)(pp, flags); 2846 if (res == NULL && (flags & PR_WAITOK) == 0) { 2847 /* 2848 * We only run the drain hook here if PR_NOWAIT. 2849 * In other cases, the hook will be run in 2850 * pool_reclaim(). 2851 */ 2852 if (pp->pr_drain_hook != NULL) { 2853 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2854 res = (*pa->pa_alloc)(pp, flags); 2855 } 2856 } 2857 return res; 2858 } 2859 2860 static void 2861 pool_allocator_free(struct pool *pp, void *v) 2862 { 2863 struct pool_allocator *pa = pp->pr_alloc; 2864 2865 (*pa->pa_free)(pp, v); 2866 } 2867 2868 void * 2869 pool_page_alloc(struct pool *pp, int flags) 2870 { 2871 bool waitok = (flags & PR_WAITOK) ? true : false; 2872 2873 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2874 } 2875 2876 void 2877 pool_page_free(struct pool *pp, void *v) 2878 { 2879 2880 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2881 } 2882 2883 static void * 2884 pool_page_alloc_meta(struct pool *pp, int flags) 2885 { 2886 bool waitok = (flags & PR_WAITOK) ? true : false; 2887 2888 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2889 } 2890 2891 static void 2892 pool_page_free_meta(struct pool *pp, void *v) 2893 { 2894 2895 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2896 } 2897 2898 #ifdef POOL_SUBPAGE 2899 /* Sub-page allocator, for machines with large hardware pages. */ 2900 void * 2901 pool_subpage_alloc(struct pool *pp, int flags) 2902 { 2903 return pool_get(&psppool, flags); 2904 } 2905 2906 void 2907 pool_subpage_free(struct pool *pp, void *v) 2908 { 2909 pool_put(&psppool, v); 2910 } 2911 2912 /* We don't provide a real nointr allocator. Maybe later. */ 2913 void * 2914 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2915 { 2916 2917 return (pool_subpage_alloc(pp, flags)); 2918 } 2919 2920 void 2921 pool_subpage_free_nointr(struct pool *pp, void *v) 2922 { 2923 2924 pool_subpage_free(pp, v); 2925 } 2926 #endif /* POOL_SUBPAGE */ 2927 void * 2928 pool_page_alloc_nointr(struct pool *pp, int flags) 2929 { 2930 bool waitok = (flags & PR_WAITOK) ? true : false; 2931 2932 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2933 } 2934 2935 void 2936 pool_page_free_nointr(struct pool *pp, void *v) 2937 { 2938 2939 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2940 } 2941 2942 #if defined(DDB) 2943 static bool 2944 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2945 { 2946 2947 return (uintptr_t)ph->ph_page <= addr && 2948 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2949 } 2950 2951 static bool 2952 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2953 { 2954 2955 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2956 } 2957 2958 static bool 2959 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2960 { 2961 int i; 2962 2963 if (pcg == NULL) { 2964 return false; 2965 } 2966 for (i = 0; i < pcg->pcg_avail; i++) { 2967 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2968 return true; 2969 } 2970 } 2971 return false; 2972 } 2973 2974 static bool 2975 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2976 { 2977 2978 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2979 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2980 pool_item_bitmap_t *bitmap = 2981 ph->ph_bitmap + (idx / BITMAP_SIZE); 2982 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2983 2984 return (*bitmap & mask) == 0; 2985 } else { 2986 struct pool_item *pi; 2987 2988 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2989 if (pool_in_item(pp, pi, addr)) { 2990 return false; 2991 } 2992 } 2993 return true; 2994 } 2995 } 2996 2997 void 2998 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2999 { 3000 struct pool *pp; 3001 3002 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3003 struct pool_item_header *ph; 3004 uintptr_t item; 3005 bool allocated = true; 3006 bool incache = false; 3007 bool incpucache = false; 3008 char cpucachestr[32]; 3009 3010 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3011 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3012 if (pool_in_page(pp, ph, addr)) { 3013 goto found; 3014 } 3015 } 3016 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3017 if (pool_in_page(pp, ph, addr)) { 3018 allocated = 3019 pool_allocated(pp, ph, addr); 3020 goto found; 3021 } 3022 } 3023 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3024 if (pool_in_page(pp, ph, addr)) { 3025 allocated = false; 3026 goto found; 3027 } 3028 } 3029 continue; 3030 } else { 3031 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3032 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3033 continue; 3034 } 3035 allocated = pool_allocated(pp, ph, addr); 3036 } 3037 found: 3038 if (allocated && pp->pr_cache) { 3039 pool_cache_t pc = pp->pr_cache; 3040 struct pool_cache_group *pcg; 3041 int i; 3042 3043 for (pcg = pc->pc_fullgroups; pcg != NULL; 3044 pcg = pcg->pcg_next) { 3045 if (pool_in_cg(pp, pcg, addr)) { 3046 incache = true; 3047 goto print; 3048 } 3049 } 3050 for (i = 0; i < MAXCPUS; i++) { 3051 pool_cache_cpu_t *cc; 3052 3053 if ((cc = pc->pc_cpus[i]) == NULL) { 3054 continue; 3055 } 3056 if (pool_in_cg(pp, cc->cc_current, addr) || 3057 pool_in_cg(pp, cc->cc_previous, addr)) { 3058 struct cpu_info *ci = 3059 cpu_lookup_byindex(i); 3060 3061 incpucache = true; 3062 snprintf(cpucachestr, 3063 sizeof(cpucachestr), 3064 "cached by CPU %u", 3065 ci->ci_index); 3066 goto print; 3067 } 3068 } 3069 } 3070 print: 3071 item = (uintptr_t)ph->ph_page + ph->ph_off; 3072 item = item + rounddown(addr - item, pp->pr_size); 3073 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3074 (void *)addr, item, (size_t)(addr - item), 3075 pp->pr_wchan, 3076 incpucache ? cpucachestr : 3077 incache ? "cached" : allocated ? "allocated" : "free"); 3078 } 3079 } 3080 #endif /* defined(DDB) */ 3081