1 /* $NetBSD: subr_pool.c,v 1.216 2017/11/14 15:02:06 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 11 * Maxime Villard. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.216 2017/11/14 15:02:06 christos Exp $"); 37 38 #ifdef _KERNEL_OPT 39 #include "opt_ddb.h" 40 #include "opt_lockdebug.h" 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysctl.h> 46 #include <sys/bitops.h> 47 #include <sys/proc.h> 48 #include <sys/errno.h> 49 #include <sys/kernel.h> 50 #include <sys/vmem.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 #include <sys/debug.h> 54 #include <sys/lockdebug.h> 55 #include <sys/xcall.h> 56 #include <sys/cpu.h> 57 #include <sys/atomic.h> 58 59 #include <uvm/uvm_extern.h> 60 61 /* 62 * Pool resource management utility. 63 * 64 * Memory is allocated in pages which are split into pieces according to 65 * the pool item size. Each page is kept on one of three lists in the 66 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 67 * for empty, full and partially-full pages respectively. The individual 68 * pool items are on a linked list headed by `ph_itemlist' in each page 69 * header. The memory for building the page list is either taken from 70 * the allocated pages themselves (for small pool items) or taken from 71 * an internal pool of page headers (`phpool'). 72 */ 73 74 /* List of all pools. Non static as needed by 'vmstat -i' */ 75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 76 77 /* Private pool for page header structures */ 78 #define PHPOOL_MAX 8 79 static struct pool phpool[PHPOOL_MAX]; 80 #define PHPOOL_FREELIST_NELEM(idx) \ 81 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 82 83 #ifdef POOL_SUBPAGE 84 /* Pool of subpages for use by normal pools. */ 85 static struct pool psppool; 86 #endif 87 88 #ifdef POOL_REDZONE 89 # define POOL_REDZONE_SIZE 2 90 static void pool_redzone_init(struct pool *, size_t); 91 static void pool_redzone_fill(struct pool *, void *); 92 static void pool_redzone_check(struct pool *, void *); 93 #else 94 # define pool_redzone_init(pp, sz) /* NOTHING */ 95 # define pool_redzone_fill(pp, ptr) /* NOTHING */ 96 # define pool_redzone_check(pp, ptr) /* NOTHING */ 97 #endif 98 99 static void *pool_page_alloc_meta(struct pool *, int); 100 static void pool_page_free_meta(struct pool *, void *); 101 102 /* allocator for pool metadata */ 103 struct pool_allocator pool_allocator_meta = { 104 .pa_alloc = pool_page_alloc_meta, 105 .pa_free = pool_page_free_meta, 106 .pa_pagesz = 0 107 }; 108 109 #define POOL_ALLOCATOR_BIG_BASE 13 110 extern struct pool_allocator pool_allocator_big[]; 111 static int pool_bigidx(size_t); 112 113 /* # of seconds to retain page after last use */ 114 int pool_inactive_time = 10; 115 116 /* Next candidate for drainage (see pool_drain()) */ 117 static struct pool *drainpp; 118 119 /* This lock protects both pool_head and drainpp. */ 120 static kmutex_t pool_head_lock; 121 static kcondvar_t pool_busy; 122 123 /* This lock protects initialization of a potentially shared pool allocator */ 124 static kmutex_t pool_allocator_lock; 125 126 typedef uint32_t pool_item_bitmap_t; 127 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 128 #define BITMAP_MASK (BITMAP_SIZE - 1) 129 130 struct pool_item_header { 131 /* Page headers */ 132 LIST_ENTRY(pool_item_header) 133 ph_pagelist; /* pool page list */ 134 SPLAY_ENTRY(pool_item_header) 135 ph_node; /* Off-page page headers */ 136 void * ph_page; /* this page's address */ 137 uint32_t ph_time; /* last referenced */ 138 uint16_t ph_nmissing; /* # of chunks in use */ 139 uint16_t ph_off; /* start offset in page */ 140 union { 141 /* !PR_NOTOUCH */ 142 struct { 143 LIST_HEAD(, pool_item) 144 phu_itemlist; /* chunk list for this page */ 145 } phu_normal; 146 /* PR_NOTOUCH */ 147 struct { 148 pool_item_bitmap_t phu_bitmap[1]; 149 } phu_notouch; 150 } ph_u; 151 }; 152 #define ph_itemlist ph_u.phu_normal.phu_itemlist 153 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 154 155 struct pool_item { 156 #ifdef DIAGNOSTIC 157 u_int pi_magic; 158 #endif 159 #define PI_MAGIC 0xdeaddeadU 160 /* Other entries use only this list entry */ 161 LIST_ENTRY(pool_item) pi_list; 162 }; 163 164 #define POOL_NEEDS_CATCHUP(pp) \ 165 ((pp)->pr_nitems < (pp)->pr_minitems) 166 167 /* 168 * Pool cache management. 169 * 170 * Pool caches provide a way for constructed objects to be cached by the 171 * pool subsystem. This can lead to performance improvements by avoiding 172 * needless object construction/destruction; it is deferred until absolutely 173 * necessary. 174 * 175 * Caches are grouped into cache groups. Each cache group references up 176 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 177 * object from the pool, it calls the object's constructor and places it 178 * into a cache group. When a cache group frees an object back to the 179 * pool, it first calls the object's destructor. This allows the object 180 * to persist in constructed form while freed to the cache. 181 * 182 * The pool references each cache, so that when a pool is drained by the 183 * pagedaemon, it can drain each individual cache as well. Each time a 184 * cache is drained, the most idle cache group is freed to the pool in 185 * its entirety. 186 * 187 * Pool caches are layed on top of pools. By layering them, we can avoid 188 * the complexity of cache management for pools which would not benefit 189 * from it. 190 */ 191 192 static struct pool pcg_normal_pool; 193 static struct pool pcg_large_pool; 194 static struct pool cache_pool; 195 static struct pool cache_cpu_pool; 196 197 pool_cache_t pnbuf_cache; /* pathname buffer cache */ 198 199 /* List of all caches. */ 200 TAILQ_HEAD(,pool_cache) pool_cache_head = 201 TAILQ_HEAD_INITIALIZER(pool_cache_head); 202 203 int pool_cache_disable; /* global disable for caching */ 204 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 205 206 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 207 void *); 208 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 209 void **, paddr_t *, int); 210 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 211 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 212 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 213 static void pool_cache_transfer(pool_cache_t); 214 215 static int pool_catchup(struct pool *); 216 static void pool_prime_page(struct pool *, void *, 217 struct pool_item_header *); 218 static void pool_update_curpage(struct pool *); 219 220 static int pool_grow(struct pool *, int); 221 static void *pool_allocator_alloc(struct pool *, int); 222 static void pool_allocator_free(struct pool *, void *); 223 224 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 225 void (*)(const char *, ...) __printflike(1, 2)); 226 static void pool_print1(struct pool *, const char *, 227 void (*)(const char *, ...) __printflike(1, 2)); 228 229 static int pool_chk_page(struct pool *, const char *, 230 struct pool_item_header *); 231 232 static inline unsigned int 233 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 234 const void *v) 235 { 236 const char *cp = v; 237 unsigned int idx; 238 239 KASSERT(pp->pr_roflags & PR_NOTOUCH); 240 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 241 KASSERT(idx < pp->pr_itemsperpage); 242 return idx; 243 } 244 245 static inline void 246 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 247 void *obj) 248 { 249 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 250 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 251 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 252 253 KASSERT((*bitmap & mask) == 0); 254 *bitmap |= mask; 255 } 256 257 static inline void * 258 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 259 { 260 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 261 unsigned int idx; 262 int i; 263 264 for (i = 0; ; i++) { 265 int bit; 266 267 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 268 bit = ffs32(bitmap[i]); 269 if (bit) { 270 pool_item_bitmap_t mask; 271 272 bit--; 273 idx = (i * BITMAP_SIZE) + bit; 274 mask = 1 << bit; 275 KASSERT((bitmap[i] & mask) != 0); 276 bitmap[i] &= ~mask; 277 break; 278 } 279 } 280 KASSERT(idx < pp->pr_itemsperpage); 281 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 282 } 283 284 static inline void 285 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 286 { 287 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 288 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 289 int i; 290 291 for (i = 0; i < n; i++) { 292 bitmap[i] = (pool_item_bitmap_t)-1; 293 } 294 } 295 296 static inline int 297 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 298 { 299 300 /* 301 * we consider pool_item_header with smaller ph_page bigger. 302 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 303 */ 304 305 if (a->ph_page < b->ph_page) 306 return (1); 307 else if (a->ph_page > b->ph_page) 308 return (-1); 309 else 310 return (0); 311 } 312 313 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 314 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 315 316 static inline struct pool_item_header * 317 pr_find_pagehead_noalign(struct pool *pp, void *v) 318 { 319 struct pool_item_header *ph, tmp; 320 321 tmp.ph_page = (void *)(uintptr_t)v; 322 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 323 if (ph == NULL) { 324 ph = SPLAY_ROOT(&pp->pr_phtree); 325 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 326 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 327 } 328 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 329 } 330 331 return ph; 332 } 333 334 /* 335 * Return the pool page header based on item address. 336 */ 337 static inline struct pool_item_header * 338 pr_find_pagehead(struct pool *pp, void *v) 339 { 340 struct pool_item_header *ph, tmp; 341 342 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 343 ph = pr_find_pagehead_noalign(pp, v); 344 } else { 345 void *page = 346 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 347 348 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 349 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 350 } else { 351 tmp.ph_page = page; 352 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 353 } 354 } 355 356 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 357 ((char *)ph->ph_page <= (char *)v && 358 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 359 return ph; 360 } 361 362 static void 363 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 364 { 365 struct pool_item_header *ph; 366 367 while ((ph = LIST_FIRST(pq)) != NULL) { 368 LIST_REMOVE(ph, ph_pagelist); 369 pool_allocator_free(pp, ph->ph_page); 370 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 371 pool_put(pp->pr_phpool, ph); 372 } 373 } 374 375 /* 376 * Remove a page from the pool. 377 */ 378 static inline void 379 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 380 struct pool_pagelist *pq) 381 { 382 383 KASSERT(mutex_owned(&pp->pr_lock)); 384 385 /* 386 * If the page was idle, decrement the idle page count. 387 */ 388 if (ph->ph_nmissing == 0) { 389 KASSERT(pp->pr_nidle != 0); 390 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 391 "nitems=%u < itemsperpage=%u", 392 pp->pr_nitems, pp->pr_itemsperpage); 393 pp->pr_nidle--; 394 } 395 396 pp->pr_nitems -= pp->pr_itemsperpage; 397 398 /* 399 * Unlink the page from the pool and queue it for release. 400 */ 401 LIST_REMOVE(ph, ph_pagelist); 402 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 403 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 404 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 405 406 pp->pr_npages--; 407 pp->pr_npagefree++; 408 409 pool_update_curpage(pp); 410 } 411 412 /* 413 * Initialize all the pools listed in the "pools" link set. 414 */ 415 void 416 pool_subsystem_init(void) 417 { 418 size_t size; 419 int idx; 420 421 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 422 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 423 cv_init(&pool_busy, "poolbusy"); 424 425 /* 426 * Initialize private page header pool and cache magazine pool if we 427 * haven't done so yet. 428 */ 429 for (idx = 0; idx < PHPOOL_MAX; idx++) { 430 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 431 int nelem; 432 size_t sz; 433 434 nelem = PHPOOL_FREELIST_NELEM(idx); 435 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 436 "phpool-%d", nelem); 437 sz = sizeof(struct pool_item_header); 438 if (nelem) { 439 sz = offsetof(struct pool_item_header, 440 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 441 } 442 pool_init(&phpool[idx], sz, 0, 0, 0, 443 phpool_names[idx], &pool_allocator_meta, IPL_VM); 444 } 445 #ifdef POOL_SUBPAGE 446 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 447 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 448 #endif 449 450 size = sizeof(pcg_t) + 451 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 452 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 453 "pcgnormal", &pool_allocator_meta, IPL_VM); 454 455 size = sizeof(pcg_t) + 456 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 457 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 458 "pcglarge", &pool_allocator_meta, IPL_VM); 459 460 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 461 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 462 463 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 464 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 465 } 466 467 /* 468 * Initialize the given pool resource structure. 469 * 470 * We export this routine to allow other kernel parts to declare 471 * static pools that must be initialized before kmem(9) is available. 472 */ 473 void 474 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 475 const char *wchan, struct pool_allocator *palloc, int ipl) 476 { 477 struct pool *pp1; 478 size_t trysize, phsize, prsize; 479 int off, slack; 480 481 #ifdef DEBUG 482 if (__predict_true(!cold)) 483 mutex_enter(&pool_head_lock); 484 /* 485 * Check that the pool hasn't already been initialised and 486 * added to the list of all pools. 487 */ 488 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 489 if (pp == pp1) 490 panic("%s: [%s] already initialised", __func__, 491 wchan); 492 } 493 if (__predict_true(!cold)) 494 mutex_exit(&pool_head_lock); 495 #endif 496 497 if (palloc == NULL) 498 palloc = &pool_allocator_kmem; 499 #ifdef POOL_SUBPAGE 500 if (size > palloc->pa_pagesz) { 501 if (palloc == &pool_allocator_kmem) 502 palloc = &pool_allocator_kmem_fullpage; 503 else if (palloc == &pool_allocator_nointr) 504 palloc = &pool_allocator_nointr_fullpage; 505 } 506 #endif /* POOL_SUBPAGE */ 507 if (!cold) 508 mutex_enter(&pool_allocator_lock); 509 if (palloc->pa_refcnt++ == 0) { 510 if (palloc->pa_pagesz == 0) 511 palloc->pa_pagesz = PAGE_SIZE; 512 513 TAILQ_INIT(&palloc->pa_list); 514 515 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 516 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 517 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 518 } 519 if (!cold) 520 mutex_exit(&pool_allocator_lock); 521 522 if (align == 0) 523 align = ALIGN(1); 524 525 prsize = size; 526 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 527 prsize = sizeof(struct pool_item); 528 529 prsize = roundup(prsize, align); 530 KASSERTMSG((prsize <= palloc->pa_pagesz), 531 "%s: [%s] pool item size (%zu) larger than page size (%u)", 532 __func__, wchan, prsize, palloc->pa_pagesz); 533 534 /* 535 * Initialize the pool structure. 536 */ 537 LIST_INIT(&pp->pr_emptypages); 538 LIST_INIT(&pp->pr_fullpages); 539 LIST_INIT(&pp->pr_partpages); 540 pp->pr_cache = NULL; 541 pp->pr_curpage = NULL; 542 pp->pr_npages = 0; 543 pp->pr_minitems = 0; 544 pp->pr_minpages = 0; 545 pp->pr_maxpages = UINT_MAX; 546 pp->pr_roflags = flags; 547 pp->pr_flags = 0; 548 pp->pr_size = prsize; 549 pp->pr_align = align; 550 pp->pr_wchan = wchan; 551 pp->pr_alloc = palloc; 552 pp->pr_nitems = 0; 553 pp->pr_nout = 0; 554 pp->pr_hardlimit = UINT_MAX; 555 pp->pr_hardlimit_warning = NULL; 556 pp->pr_hardlimit_ratecap.tv_sec = 0; 557 pp->pr_hardlimit_ratecap.tv_usec = 0; 558 pp->pr_hardlimit_warning_last.tv_sec = 0; 559 pp->pr_hardlimit_warning_last.tv_usec = 0; 560 pp->pr_drain_hook = NULL; 561 pp->pr_drain_hook_arg = NULL; 562 pp->pr_freecheck = NULL; 563 pool_redzone_init(pp, size); 564 565 /* 566 * Decide whether to put the page header off page to avoid 567 * wasting too large a part of the page or too big item. 568 * Off-page page headers go on a hash table, so we can match 569 * a returned item with its header based on the page address. 570 * We use 1/16 of the page size and about 8 times of the item 571 * size as the threshold (XXX: tune) 572 * 573 * However, we'll put the header into the page if we can put 574 * it without wasting any items. 575 * 576 * Silently enforce `0 <= ioff < align'. 577 */ 578 pp->pr_itemoffset = ioff %= align; 579 /* See the comment below about reserved bytes. */ 580 trysize = palloc->pa_pagesz - ((align - ioff) % align); 581 phsize = ALIGN(sizeof(struct pool_item_header)); 582 if (pp->pr_roflags & PR_PHINPAGE || 583 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 584 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 585 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) { 586 /* Use the end of the page for the page header */ 587 pp->pr_roflags |= PR_PHINPAGE; 588 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 589 } else { 590 /* The page header will be taken from our page header pool */ 591 pp->pr_phoffset = 0; 592 off = palloc->pa_pagesz; 593 SPLAY_INIT(&pp->pr_phtree); 594 } 595 596 /* 597 * Alignment is to take place at `ioff' within the item. This means 598 * we must reserve up to `align - 1' bytes on the page to allow 599 * appropriate positioning of each item. 600 */ 601 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 602 KASSERT(pp->pr_itemsperpage != 0); 603 if ((pp->pr_roflags & PR_NOTOUCH)) { 604 int idx; 605 606 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 607 idx++) { 608 /* nothing */ 609 } 610 if (idx >= PHPOOL_MAX) { 611 /* 612 * if you see this panic, consider to tweak 613 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 614 */ 615 panic("%s: [%s] too large itemsperpage(%d) for " 616 "PR_NOTOUCH", __func__, 617 pp->pr_wchan, pp->pr_itemsperpage); 618 } 619 pp->pr_phpool = &phpool[idx]; 620 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 621 pp->pr_phpool = &phpool[0]; 622 } 623 #if defined(DIAGNOSTIC) 624 else { 625 pp->pr_phpool = NULL; 626 } 627 #endif 628 629 /* 630 * Use the slack between the chunks and the page header 631 * for "cache coloring". 632 */ 633 slack = off - pp->pr_itemsperpage * pp->pr_size; 634 pp->pr_maxcolor = (slack / align) * align; 635 pp->pr_curcolor = 0; 636 637 pp->pr_nget = 0; 638 pp->pr_nfail = 0; 639 pp->pr_nput = 0; 640 pp->pr_npagealloc = 0; 641 pp->pr_npagefree = 0; 642 pp->pr_hiwat = 0; 643 pp->pr_nidle = 0; 644 pp->pr_refcnt = 0; 645 646 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 647 cv_init(&pp->pr_cv, wchan); 648 pp->pr_ipl = ipl; 649 650 /* Insert into the list of all pools. */ 651 if (!cold) 652 mutex_enter(&pool_head_lock); 653 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 654 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 655 break; 656 } 657 if (pp1 == NULL) 658 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 659 else 660 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 661 if (!cold) 662 mutex_exit(&pool_head_lock); 663 664 /* Insert this into the list of pools using this allocator. */ 665 if (!cold) 666 mutex_enter(&palloc->pa_lock); 667 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 668 if (!cold) 669 mutex_exit(&palloc->pa_lock); 670 } 671 672 /* 673 * De-commision a pool resource. 674 */ 675 void 676 pool_destroy(struct pool *pp) 677 { 678 struct pool_pagelist pq; 679 struct pool_item_header *ph; 680 681 /* Remove from global pool list */ 682 mutex_enter(&pool_head_lock); 683 while (pp->pr_refcnt != 0) 684 cv_wait(&pool_busy, &pool_head_lock); 685 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 686 if (drainpp == pp) 687 drainpp = NULL; 688 mutex_exit(&pool_head_lock); 689 690 /* Remove this pool from its allocator's list of pools. */ 691 mutex_enter(&pp->pr_alloc->pa_lock); 692 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 693 mutex_exit(&pp->pr_alloc->pa_lock); 694 695 mutex_enter(&pool_allocator_lock); 696 if (--pp->pr_alloc->pa_refcnt == 0) 697 mutex_destroy(&pp->pr_alloc->pa_lock); 698 mutex_exit(&pool_allocator_lock); 699 700 mutex_enter(&pp->pr_lock); 701 702 KASSERT(pp->pr_cache == NULL); 703 KASSERTMSG((pp->pr_nout == 0), 704 "%s: pool busy: still out: %u", __func__, pp->pr_nout); 705 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 706 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 707 708 /* Remove all pages */ 709 LIST_INIT(&pq); 710 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 711 pr_rmpage(pp, ph, &pq); 712 713 mutex_exit(&pp->pr_lock); 714 715 pr_pagelist_free(pp, &pq); 716 cv_destroy(&pp->pr_cv); 717 mutex_destroy(&pp->pr_lock); 718 } 719 720 void 721 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 722 { 723 724 /* XXX no locking -- must be used just after pool_init() */ 725 KASSERTMSG((pp->pr_drain_hook == NULL), 726 "%s: [%s] already set", __func__, pp->pr_wchan); 727 pp->pr_drain_hook = fn; 728 pp->pr_drain_hook_arg = arg; 729 } 730 731 static struct pool_item_header * 732 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 733 { 734 struct pool_item_header *ph; 735 736 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 737 ph = (void *)((char *)storage + pp->pr_phoffset); 738 else 739 ph = pool_get(pp->pr_phpool, flags); 740 741 return (ph); 742 } 743 744 /* 745 * Grab an item from the pool. 746 */ 747 void * 748 pool_get(struct pool *pp, int flags) 749 { 750 struct pool_item *pi; 751 struct pool_item_header *ph; 752 void *v; 753 754 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 755 KASSERTMSG((pp->pr_itemsperpage != 0), 756 "%s: [%s] pr_itemsperpage is zero, " 757 "pool not initialized?", __func__, pp->pr_wchan); 758 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 759 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 760 "%s: [%s] is IPL_NONE, but called from interrupt context", 761 __func__, pp->pr_wchan); 762 if (flags & PR_WAITOK) { 763 ASSERT_SLEEPABLE(); 764 } 765 766 mutex_enter(&pp->pr_lock); 767 startover: 768 /* 769 * Check to see if we've reached the hard limit. If we have, 770 * and we can wait, then wait until an item has been returned to 771 * the pool. 772 */ 773 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 774 "%s: %s: crossed hard limit", __func__, pp->pr_wchan); 775 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 776 if (pp->pr_drain_hook != NULL) { 777 /* 778 * Since the drain hook is going to free things 779 * back to the pool, unlock, call the hook, re-lock, 780 * and check the hardlimit condition again. 781 */ 782 mutex_exit(&pp->pr_lock); 783 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 784 mutex_enter(&pp->pr_lock); 785 if (pp->pr_nout < pp->pr_hardlimit) 786 goto startover; 787 } 788 789 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 790 /* 791 * XXX: A warning isn't logged in this case. Should 792 * it be? 793 */ 794 pp->pr_flags |= PR_WANTED; 795 do { 796 cv_wait(&pp->pr_cv, &pp->pr_lock); 797 } while (pp->pr_flags & PR_WANTED); 798 goto startover; 799 } 800 801 /* 802 * Log a message that the hard limit has been hit. 803 */ 804 if (pp->pr_hardlimit_warning != NULL && 805 ratecheck(&pp->pr_hardlimit_warning_last, 806 &pp->pr_hardlimit_ratecap)) 807 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 808 809 pp->pr_nfail++; 810 811 mutex_exit(&pp->pr_lock); 812 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 813 return (NULL); 814 } 815 816 /* 817 * The convention we use is that if `curpage' is not NULL, then 818 * it points at a non-empty bucket. In particular, `curpage' 819 * never points at a page header which has PR_PHINPAGE set and 820 * has no items in its bucket. 821 */ 822 if ((ph = pp->pr_curpage) == NULL) { 823 int error; 824 825 KASSERTMSG((pp->pr_nitems == 0), 826 "%s: [%s] curpage NULL, inconsistent nitems %u", 827 __func__, pp->pr_wchan, pp->pr_nitems); 828 829 /* 830 * Call the back-end page allocator for more memory. 831 * Release the pool lock, as the back-end page allocator 832 * may block. 833 */ 834 error = pool_grow(pp, flags); 835 if (error != 0) { 836 /* 837 * pool_grow aborts when another thread 838 * is allocating a new page. Retry if it 839 * waited for it. 840 */ 841 if (error == ERESTART) 842 goto startover; 843 844 /* 845 * We were unable to allocate a page or item 846 * header, but we released the lock during 847 * allocation, so perhaps items were freed 848 * back to the pool. Check for this case. 849 */ 850 if (pp->pr_curpage != NULL) 851 goto startover; 852 853 pp->pr_nfail++; 854 mutex_exit(&pp->pr_lock); 855 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT); 856 return (NULL); 857 } 858 859 /* Start the allocation process over. */ 860 goto startover; 861 } 862 if (pp->pr_roflags & PR_NOTOUCH) { 863 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 864 "%s: %s: page empty", __func__, pp->pr_wchan); 865 v = pr_item_notouch_get(pp, ph); 866 } else { 867 v = pi = LIST_FIRST(&ph->ph_itemlist); 868 if (__predict_false(v == NULL)) { 869 mutex_exit(&pp->pr_lock); 870 panic("%s: [%s] page empty", __func__, pp->pr_wchan); 871 } 872 KASSERTMSG((pp->pr_nitems > 0), 873 "%s: [%s] nitems %u inconsistent on itemlist", 874 __func__, pp->pr_wchan, pp->pr_nitems); 875 KASSERTMSG((pi->pi_magic == PI_MAGIC), 876 "%s: [%s] free list modified: " 877 "magic=%x; page %p; item addr %p", __func__, 878 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 879 880 /* 881 * Remove from item list. 882 */ 883 LIST_REMOVE(pi, pi_list); 884 } 885 pp->pr_nitems--; 886 pp->pr_nout++; 887 if (ph->ph_nmissing == 0) { 888 KASSERT(pp->pr_nidle > 0); 889 pp->pr_nidle--; 890 891 /* 892 * This page was previously empty. Move it to the list of 893 * partially-full pages. This page is already curpage. 894 */ 895 LIST_REMOVE(ph, ph_pagelist); 896 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 897 } 898 ph->ph_nmissing++; 899 if (ph->ph_nmissing == pp->pr_itemsperpage) { 900 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) || 901 LIST_EMPTY(&ph->ph_itemlist)), 902 "%s: [%s] nmissing (%u) inconsistent", __func__, 903 pp->pr_wchan, ph->ph_nmissing); 904 /* 905 * This page is now full. Move it to the full list 906 * and select a new current page. 907 */ 908 LIST_REMOVE(ph, ph_pagelist); 909 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 910 pool_update_curpage(pp); 911 } 912 913 pp->pr_nget++; 914 915 /* 916 * If we have a low water mark and we are now below that low 917 * water mark, add more items to the pool. 918 */ 919 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 920 /* 921 * XXX: Should we log a warning? Should we set up a timeout 922 * to try again in a second or so? The latter could break 923 * a caller's assumptions about interrupt protection, etc. 924 */ 925 } 926 927 mutex_exit(&pp->pr_lock); 928 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 929 FREECHECK_OUT(&pp->pr_freecheck, v); 930 pool_redzone_fill(pp, v); 931 return (v); 932 } 933 934 /* 935 * Internal version of pool_put(). Pool is already locked/entered. 936 */ 937 static void 938 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 939 { 940 struct pool_item *pi = v; 941 struct pool_item_header *ph; 942 943 KASSERT(mutex_owned(&pp->pr_lock)); 944 pool_redzone_check(pp, v); 945 FREECHECK_IN(&pp->pr_freecheck, v); 946 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 947 948 KASSERTMSG((pp->pr_nout > 0), 949 "%s: [%s] putting with none out", __func__, pp->pr_wchan); 950 951 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 952 panic("%s: [%s] page header missing", __func__, pp->pr_wchan); 953 } 954 955 /* 956 * Return to item list. 957 */ 958 if (pp->pr_roflags & PR_NOTOUCH) { 959 pr_item_notouch_put(pp, ph, v); 960 } else { 961 #ifdef DIAGNOSTIC 962 pi->pi_magic = PI_MAGIC; 963 #endif 964 #ifdef DEBUG 965 { 966 int i, *ip = v; 967 968 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 969 *ip++ = PI_MAGIC; 970 } 971 } 972 #endif 973 974 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 975 } 976 KDASSERT(ph->ph_nmissing != 0); 977 ph->ph_nmissing--; 978 pp->pr_nput++; 979 pp->pr_nitems++; 980 pp->pr_nout--; 981 982 /* Cancel "pool empty" condition if it exists */ 983 if (pp->pr_curpage == NULL) 984 pp->pr_curpage = ph; 985 986 if (pp->pr_flags & PR_WANTED) { 987 pp->pr_flags &= ~PR_WANTED; 988 cv_broadcast(&pp->pr_cv); 989 } 990 991 /* 992 * If this page is now empty, do one of two things: 993 * 994 * (1) If we have more pages than the page high water mark, 995 * free the page back to the system. ONLY CONSIDER 996 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 997 * CLAIM. 998 * 999 * (2) Otherwise, move the page to the empty page list. 1000 * 1001 * Either way, select a new current page (so we use a partially-full 1002 * page if one is available). 1003 */ 1004 if (ph->ph_nmissing == 0) { 1005 pp->pr_nidle++; 1006 if (pp->pr_npages > pp->pr_minpages && 1007 pp->pr_npages > pp->pr_maxpages) { 1008 pr_rmpage(pp, ph, pq); 1009 } else { 1010 LIST_REMOVE(ph, ph_pagelist); 1011 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1012 1013 /* 1014 * Update the timestamp on the page. A page must 1015 * be idle for some period of time before it can 1016 * be reclaimed by the pagedaemon. This minimizes 1017 * ping-pong'ing for memory. 1018 * 1019 * note for 64-bit time_t: truncating to 32-bit is not 1020 * a problem for our usage. 1021 */ 1022 ph->ph_time = time_uptime; 1023 } 1024 pool_update_curpage(pp); 1025 } 1026 1027 /* 1028 * If the page was previously completely full, move it to the 1029 * partially-full list and make it the current page. The next 1030 * allocation will get the item from this page, instead of 1031 * further fragmenting the pool. 1032 */ 1033 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1034 LIST_REMOVE(ph, ph_pagelist); 1035 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1036 pp->pr_curpage = ph; 1037 } 1038 } 1039 1040 void 1041 pool_put(struct pool *pp, void *v) 1042 { 1043 struct pool_pagelist pq; 1044 1045 LIST_INIT(&pq); 1046 1047 mutex_enter(&pp->pr_lock); 1048 pool_do_put(pp, v, &pq); 1049 mutex_exit(&pp->pr_lock); 1050 1051 pr_pagelist_free(pp, &pq); 1052 } 1053 1054 /* 1055 * pool_grow: grow a pool by a page. 1056 * 1057 * => called with pool locked. 1058 * => unlock and relock the pool. 1059 * => return with pool locked. 1060 */ 1061 1062 static int 1063 pool_grow(struct pool *pp, int flags) 1064 { 1065 /* 1066 * If there's a pool_grow in progress, wait for it to complete 1067 * and try again from the top. 1068 */ 1069 if (pp->pr_flags & PR_GROWING) { 1070 if (flags & PR_WAITOK) { 1071 do { 1072 cv_wait(&pp->pr_cv, &pp->pr_lock); 1073 } while (pp->pr_flags & PR_GROWING); 1074 return ERESTART; 1075 } else { 1076 return EWOULDBLOCK; 1077 } 1078 } 1079 pp->pr_flags |= PR_GROWING; 1080 1081 mutex_exit(&pp->pr_lock); 1082 char *cp = pool_allocator_alloc(pp, flags); 1083 if (__predict_false(cp == NULL)) 1084 goto out; 1085 1086 struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags); 1087 if (__predict_false(ph == NULL)) { 1088 pool_allocator_free(pp, cp); 1089 goto out; 1090 } 1091 1092 mutex_enter(&pp->pr_lock); 1093 pool_prime_page(pp, cp, ph); 1094 pp->pr_npagealloc++; 1095 KASSERT(pp->pr_flags & PR_GROWING); 1096 pp->pr_flags &= ~PR_GROWING; 1097 /* 1098 * If anyone was waiting for pool_grow, notify them that we 1099 * may have just done it. 1100 */ 1101 cv_broadcast(&pp->pr_cv); 1102 return 0; 1103 out: 1104 KASSERT(pp->pr_flags & PR_GROWING); 1105 pp->pr_flags &= ~PR_GROWING; 1106 mutex_enter(&pp->pr_lock); 1107 return ENOMEM; 1108 } 1109 1110 /* 1111 * Add N items to the pool. 1112 */ 1113 int 1114 pool_prime(struct pool *pp, int n) 1115 { 1116 int newpages; 1117 int error = 0; 1118 1119 mutex_enter(&pp->pr_lock); 1120 1121 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1122 1123 while (newpages > 0) { 1124 error = pool_grow(pp, PR_NOWAIT); 1125 if (error) { 1126 if (error == ERESTART) 1127 continue; 1128 break; 1129 } 1130 pp->pr_minpages++; 1131 newpages--; 1132 } 1133 1134 if (pp->pr_minpages >= pp->pr_maxpages) 1135 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1136 1137 mutex_exit(&pp->pr_lock); 1138 return error; 1139 } 1140 1141 /* 1142 * Add a page worth of items to the pool. 1143 * 1144 * Note, we must be called with the pool descriptor LOCKED. 1145 */ 1146 static void 1147 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1148 { 1149 struct pool_item *pi; 1150 void *cp = storage; 1151 const unsigned int align = pp->pr_align; 1152 const unsigned int ioff = pp->pr_itemoffset; 1153 int n; 1154 1155 KASSERT(mutex_owned(&pp->pr_lock)); 1156 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1157 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1158 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp); 1159 1160 /* 1161 * Insert page header. 1162 */ 1163 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1164 LIST_INIT(&ph->ph_itemlist); 1165 ph->ph_page = storage; 1166 ph->ph_nmissing = 0; 1167 ph->ph_time = time_uptime; 1168 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1169 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1170 1171 pp->pr_nidle++; 1172 1173 /* 1174 * Color this page. 1175 */ 1176 ph->ph_off = pp->pr_curcolor; 1177 cp = (char *)cp + ph->ph_off; 1178 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1179 pp->pr_curcolor = 0; 1180 1181 /* 1182 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1183 */ 1184 if (ioff != 0) 1185 cp = (char *)cp + align - ioff; 1186 1187 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1188 1189 /* 1190 * Insert remaining chunks on the bucket list. 1191 */ 1192 n = pp->pr_itemsperpage; 1193 pp->pr_nitems += n; 1194 1195 if (pp->pr_roflags & PR_NOTOUCH) { 1196 pr_item_notouch_init(pp, ph); 1197 } else { 1198 while (n--) { 1199 pi = (struct pool_item *)cp; 1200 1201 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1202 1203 /* Insert on page list */ 1204 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1205 #ifdef DIAGNOSTIC 1206 pi->pi_magic = PI_MAGIC; 1207 #endif 1208 cp = (char *)cp + pp->pr_size; 1209 1210 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1211 } 1212 } 1213 1214 /* 1215 * If the pool was depleted, point at the new page. 1216 */ 1217 if (pp->pr_curpage == NULL) 1218 pp->pr_curpage = ph; 1219 1220 if (++pp->pr_npages > pp->pr_hiwat) 1221 pp->pr_hiwat = pp->pr_npages; 1222 } 1223 1224 /* 1225 * Used by pool_get() when nitems drops below the low water mark. This 1226 * is used to catch up pr_nitems with the low water mark. 1227 * 1228 * Note 1, we never wait for memory here, we let the caller decide what to do. 1229 * 1230 * Note 2, we must be called with the pool already locked, and we return 1231 * with it locked. 1232 */ 1233 static int 1234 pool_catchup(struct pool *pp) 1235 { 1236 int error = 0; 1237 1238 while (POOL_NEEDS_CATCHUP(pp)) { 1239 error = pool_grow(pp, PR_NOWAIT); 1240 if (error) { 1241 if (error == ERESTART) 1242 continue; 1243 break; 1244 } 1245 } 1246 return error; 1247 } 1248 1249 static void 1250 pool_update_curpage(struct pool *pp) 1251 { 1252 1253 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1254 if (pp->pr_curpage == NULL) { 1255 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1256 } 1257 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1258 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1259 } 1260 1261 void 1262 pool_setlowat(struct pool *pp, int n) 1263 { 1264 1265 mutex_enter(&pp->pr_lock); 1266 1267 pp->pr_minitems = n; 1268 pp->pr_minpages = (n == 0) 1269 ? 0 1270 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1271 1272 /* Make sure we're caught up with the newly-set low water mark. */ 1273 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1274 /* 1275 * XXX: Should we log a warning? Should we set up a timeout 1276 * to try again in a second or so? The latter could break 1277 * a caller's assumptions about interrupt protection, etc. 1278 */ 1279 } 1280 1281 mutex_exit(&pp->pr_lock); 1282 } 1283 1284 void 1285 pool_sethiwat(struct pool *pp, int n) 1286 { 1287 1288 mutex_enter(&pp->pr_lock); 1289 1290 pp->pr_maxpages = (n == 0) 1291 ? 0 1292 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1293 1294 mutex_exit(&pp->pr_lock); 1295 } 1296 1297 void 1298 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1299 { 1300 1301 mutex_enter(&pp->pr_lock); 1302 1303 pp->pr_hardlimit = n; 1304 pp->pr_hardlimit_warning = warnmess; 1305 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1306 pp->pr_hardlimit_warning_last.tv_sec = 0; 1307 pp->pr_hardlimit_warning_last.tv_usec = 0; 1308 1309 /* 1310 * In-line version of pool_sethiwat(), because we don't want to 1311 * release the lock. 1312 */ 1313 pp->pr_maxpages = (n == 0) 1314 ? 0 1315 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1316 1317 mutex_exit(&pp->pr_lock); 1318 } 1319 1320 /* 1321 * Release all complete pages that have not been used recently. 1322 * 1323 * Must not be called from interrupt context. 1324 */ 1325 int 1326 pool_reclaim(struct pool *pp) 1327 { 1328 struct pool_item_header *ph, *phnext; 1329 struct pool_pagelist pq; 1330 uint32_t curtime; 1331 bool klock; 1332 int rv; 1333 1334 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1335 1336 if (pp->pr_drain_hook != NULL) { 1337 /* 1338 * The drain hook must be called with the pool unlocked. 1339 */ 1340 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1341 } 1342 1343 /* 1344 * XXXSMP Because we do not want to cause non-MPSAFE code 1345 * to block. 1346 */ 1347 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1348 pp->pr_ipl == IPL_SOFTSERIAL) { 1349 KERNEL_LOCK(1, NULL); 1350 klock = true; 1351 } else 1352 klock = false; 1353 1354 /* Reclaim items from the pool's cache (if any). */ 1355 if (pp->pr_cache != NULL) 1356 pool_cache_invalidate(pp->pr_cache); 1357 1358 if (mutex_tryenter(&pp->pr_lock) == 0) { 1359 if (klock) { 1360 KERNEL_UNLOCK_ONE(NULL); 1361 } 1362 return (0); 1363 } 1364 1365 LIST_INIT(&pq); 1366 1367 curtime = time_uptime; 1368 1369 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1370 phnext = LIST_NEXT(ph, ph_pagelist); 1371 1372 /* Check our minimum page claim */ 1373 if (pp->pr_npages <= pp->pr_minpages) 1374 break; 1375 1376 KASSERT(ph->ph_nmissing == 0); 1377 if (curtime - ph->ph_time < pool_inactive_time) 1378 continue; 1379 1380 /* 1381 * If freeing this page would put us below 1382 * the low water mark, stop now. 1383 */ 1384 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1385 pp->pr_minitems) 1386 break; 1387 1388 pr_rmpage(pp, ph, &pq); 1389 } 1390 1391 mutex_exit(&pp->pr_lock); 1392 1393 if (LIST_EMPTY(&pq)) 1394 rv = 0; 1395 else { 1396 pr_pagelist_free(pp, &pq); 1397 rv = 1; 1398 } 1399 1400 if (klock) { 1401 KERNEL_UNLOCK_ONE(NULL); 1402 } 1403 1404 return (rv); 1405 } 1406 1407 /* 1408 * Drain pools, one at a time. The drained pool is returned within ppp. 1409 * 1410 * Note, must never be called from interrupt context. 1411 */ 1412 bool 1413 pool_drain(struct pool **ppp) 1414 { 1415 bool reclaimed; 1416 struct pool *pp; 1417 1418 KASSERT(!TAILQ_EMPTY(&pool_head)); 1419 1420 pp = NULL; 1421 1422 /* Find next pool to drain, and add a reference. */ 1423 mutex_enter(&pool_head_lock); 1424 do { 1425 if (drainpp == NULL) { 1426 drainpp = TAILQ_FIRST(&pool_head); 1427 } 1428 if (drainpp != NULL) { 1429 pp = drainpp; 1430 drainpp = TAILQ_NEXT(pp, pr_poollist); 1431 } 1432 /* 1433 * Skip completely idle pools. We depend on at least 1434 * one pool in the system being active. 1435 */ 1436 } while (pp == NULL || pp->pr_npages == 0); 1437 pp->pr_refcnt++; 1438 mutex_exit(&pool_head_lock); 1439 1440 /* Drain the cache (if any) and pool.. */ 1441 reclaimed = pool_reclaim(pp); 1442 1443 /* Finally, unlock the pool. */ 1444 mutex_enter(&pool_head_lock); 1445 pp->pr_refcnt--; 1446 cv_broadcast(&pool_busy); 1447 mutex_exit(&pool_head_lock); 1448 1449 if (ppp != NULL) 1450 *ppp = pp; 1451 1452 return reclaimed; 1453 } 1454 1455 /* 1456 * Diagnostic helpers. 1457 */ 1458 1459 void 1460 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1461 { 1462 struct pool *pp; 1463 1464 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1465 pool_printit(pp, modif, pr); 1466 } 1467 } 1468 1469 void 1470 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1471 { 1472 1473 if (pp == NULL) { 1474 (*pr)("Must specify a pool to print.\n"); 1475 return; 1476 } 1477 1478 pool_print1(pp, modif, pr); 1479 } 1480 1481 static void 1482 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1483 void (*pr)(const char *, ...)) 1484 { 1485 struct pool_item_header *ph; 1486 struct pool_item *pi __diagused; 1487 1488 LIST_FOREACH(ph, pl, ph_pagelist) { 1489 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1490 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1491 #ifdef DIAGNOSTIC 1492 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1493 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1494 if (pi->pi_magic != PI_MAGIC) { 1495 (*pr)("\t\t\titem %p, magic 0x%x\n", 1496 pi, pi->pi_magic); 1497 } 1498 } 1499 } 1500 #endif 1501 } 1502 } 1503 1504 static void 1505 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1506 { 1507 struct pool_item_header *ph; 1508 pool_cache_t pc; 1509 pcg_t *pcg; 1510 pool_cache_cpu_t *cc; 1511 uint64_t cpuhit, cpumiss; 1512 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1513 char c; 1514 1515 while ((c = *modif++) != '\0') { 1516 if (c == 'l') 1517 print_log = 1; 1518 if (c == 'p') 1519 print_pagelist = 1; 1520 if (c == 'c') 1521 print_cache = 1; 1522 } 1523 1524 if ((pc = pp->pr_cache) != NULL) { 1525 (*pr)("POOL CACHE"); 1526 } else { 1527 (*pr)("POOL"); 1528 } 1529 1530 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1531 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1532 pp->pr_roflags); 1533 (*pr)("\talloc %p\n", pp->pr_alloc); 1534 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1535 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1536 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1537 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1538 1539 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1540 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1541 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1542 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1543 1544 if (print_pagelist == 0) 1545 goto skip_pagelist; 1546 1547 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1548 (*pr)("\n\tempty page list:\n"); 1549 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1550 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1551 (*pr)("\n\tfull page list:\n"); 1552 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1553 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1554 (*pr)("\n\tpartial-page list:\n"); 1555 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1556 1557 if (pp->pr_curpage == NULL) 1558 (*pr)("\tno current page\n"); 1559 else 1560 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1561 1562 skip_pagelist: 1563 if (print_log == 0) 1564 goto skip_log; 1565 1566 (*pr)("\n"); 1567 1568 skip_log: 1569 1570 #define PR_GROUPLIST(pcg) \ 1571 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1572 for (i = 0; i < pcg->pcg_size; i++) { \ 1573 if (pcg->pcg_objects[i].pcgo_pa != \ 1574 POOL_PADDR_INVALID) { \ 1575 (*pr)("\t\t\t%p, 0x%llx\n", \ 1576 pcg->pcg_objects[i].pcgo_va, \ 1577 (unsigned long long) \ 1578 pcg->pcg_objects[i].pcgo_pa); \ 1579 } else { \ 1580 (*pr)("\t\t\t%p\n", \ 1581 pcg->pcg_objects[i].pcgo_va); \ 1582 } \ 1583 } 1584 1585 if (pc != NULL) { 1586 cpuhit = 0; 1587 cpumiss = 0; 1588 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1589 if ((cc = pc->pc_cpus[i]) == NULL) 1590 continue; 1591 cpuhit += cc->cc_hits; 1592 cpumiss += cc->cc_misses; 1593 } 1594 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1595 (*pr)("\tcache layer hits %llu misses %llu\n", 1596 pc->pc_hits, pc->pc_misses); 1597 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1598 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1599 pc->pc_contended); 1600 (*pr)("\tcache layer empty groups %u full groups %u\n", 1601 pc->pc_nempty, pc->pc_nfull); 1602 if (print_cache) { 1603 (*pr)("\tfull cache groups:\n"); 1604 for (pcg = pc->pc_fullgroups; pcg != NULL; 1605 pcg = pcg->pcg_next) { 1606 PR_GROUPLIST(pcg); 1607 } 1608 (*pr)("\tempty cache groups:\n"); 1609 for (pcg = pc->pc_emptygroups; pcg != NULL; 1610 pcg = pcg->pcg_next) { 1611 PR_GROUPLIST(pcg); 1612 } 1613 } 1614 } 1615 #undef PR_GROUPLIST 1616 } 1617 1618 static int 1619 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1620 { 1621 struct pool_item *pi; 1622 void *page; 1623 int n; 1624 1625 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1626 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1627 if (page != ph->ph_page && 1628 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1629 if (label != NULL) 1630 printf("%s: ", label); 1631 printf("pool(%p:%s): page inconsistency: page %p;" 1632 " at page head addr %p (p %p)\n", pp, 1633 pp->pr_wchan, ph->ph_page, 1634 ph, page); 1635 return 1; 1636 } 1637 } 1638 1639 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1640 return 0; 1641 1642 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1643 pi != NULL; 1644 pi = LIST_NEXT(pi,pi_list), n++) { 1645 1646 #ifdef DIAGNOSTIC 1647 if (pi->pi_magic != PI_MAGIC) { 1648 if (label != NULL) 1649 printf("%s: ", label); 1650 printf("pool(%s): free list modified: magic=%x;" 1651 " page %p; item ordinal %d; addr %p\n", 1652 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1653 n, pi); 1654 panic("pool"); 1655 } 1656 #endif 1657 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1658 continue; 1659 } 1660 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1661 if (page == ph->ph_page) 1662 continue; 1663 1664 if (label != NULL) 1665 printf("%s: ", label); 1666 printf("pool(%p:%s): page inconsistency: page %p;" 1667 " item ordinal %d; addr %p (p %p)\n", pp, 1668 pp->pr_wchan, ph->ph_page, 1669 n, pi, page); 1670 return 1; 1671 } 1672 return 0; 1673 } 1674 1675 1676 int 1677 pool_chk(struct pool *pp, const char *label) 1678 { 1679 struct pool_item_header *ph; 1680 int r = 0; 1681 1682 mutex_enter(&pp->pr_lock); 1683 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1684 r = pool_chk_page(pp, label, ph); 1685 if (r) { 1686 goto out; 1687 } 1688 } 1689 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1690 r = pool_chk_page(pp, label, ph); 1691 if (r) { 1692 goto out; 1693 } 1694 } 1695 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1696 r = pool_chk_page(pp, label, ph); 1697 if (r) { 1698 goto out; 1699 } 1700 } 1701 1702 out: 1703 mutex_exit(&pp->pr_lock); 1704 return (r); 1705 } 1706 1707 /* 1708 * pool_cache_init: 1709 * 1710 * Initialize a pool cache. 1711 */ 1712 pool_cache_t 1713 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 1714 const char *wchan, struct pool_allocator *palloc, int ipl, 1715 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 1716 { 1717 pool_cache_t pc; 1718 1719 pc = pool_get(&cache_pool, PR_WAITOK); 1720 if (pc == NULL) 1721 return NULL; 1722 1723 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 1724 palloc, ipl, ctor, dtor, arg); 1725 1726 return pc; 1727 } 1728 1729 /* 1730 * pool_cache_bootstrap: 1731 * 1732 * Kernel-private version of pool_cache_init(). The caller 1733 * provides initial storage. 1734 */ 1735 void 1736 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 1737 u_int align_offset, u_int flags, const char *wchan, 1738 struct pool_allocator *palloc, int ipl, 1739 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 1740 void *arg) 1741 { 1742 CPU_INFO_ITERATOR cii; 1743 pool_cache_t pc1; 1744 struct cpu_info *ci; 1745 struct pool *pp; 1746 1747 pp = &pc->pc_pool; 1748 if (palloc == NULL && ipl == IPL_NONE) { 1749 if (size > PAGE_SIZE) { 1750 int bigidx = pool_bigidx(size); 1751 1752 palloc = &pool_allocator_big[bigidx]; 1753 } else 1754 palloc = &pool_allocator_nointr; 1755 } 1756 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 1757 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 1758 1759 if (ctor == NULL) { 1760 ctor = (int (*)(void *, void *, int))nullop; 1761 } 1762 if (dtor == NULL) { 1763 dtor = (void (*)(void *, void *))nullop; 1764 } 1765 1766 pc->pc_emptygroups = NULL; 1767 pc->pc_fullgroups = NULL; 1768 pc->pc_partgroups = NULL; 1769 pc->pc_ctor = ctor; 1770 pc->pc_dtor = dtor; 1771 pc->pc_arg = arg; 1772 pc->pc_hits = 0; 1773 pc->pc_misses = 0; 1774 pc->pc_nempty = 0; 1775 pc->pc_npart = 0; 1776 pc->pc_nfull = 0; 1777 pc->pc_contended = 0; 1778 pc->pc_refcnt = 0; 1779 pc->pc_freecheck = NULL; 1780 1781 if ((flags & PR_LARGECACHE) != 0) { 1782 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 1783 pc->pc_pcgpool = &pcg_large_pool; 1784 } else { 1785 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 1786 pc->pc_pcgpool = &pcg_normal_pool; 1787 } 1788 1789 /* Allocate per-CPU caches. */ 1790 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 1791 pc->pc_ncpu = 0; 1792 if (ncpu < 2) { 1793 /* XXX For sparc: boot CPU is not attached yet. */ 1794 pool_cache_cpu_init1(curcpu(), pc); 1795 } else { 1796 for (CPU_INFO_FOREACH(cii, ci)) { 1797 pool_cache_cpu_init1(ci, pc); 1798 } 1799 } 1800 1801 /* Add to list of all pools. */ 1802 if (__predict_true(!cold)) 1803 mutex_enter(&pool_head_lock); 1804 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 1805 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 1806 break; 1807 } 1808 if (pc1 == NULL) 1809 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 1810 else 1811 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 1812 if (__predict_true(!cold)) 1813 mutex_exit(&pool_head_lock); 1814 1815 membar_sync(); 1816 pp->pr_cache = pc; 1817 } 1818 1819 /* 1820 * pool_cache_destroy: 1821 * 1822 * Destroy a pool cache. 1823 */ 1824 void 1825 pool_cache_destroy(pool_cache_t pc) 1826 { 1827 1828 pool_cache_bootstrap_destroy(pc); 1829 pool_put(&cache_pool, pc); 1830 } 1831 1832 /* 1833 * pool_cache_bootstrap_destroy: 1834 * 1835 * Destroy a pool cache. 1836 */ 1837 void 1838 pool_cache_bootstrap_destroy(pool_cache_t pc) 1839 { 1840 struct pool *pp = &pc->pc_pool; 1841 u_int i; 1842 1843 /* Remove it from the global list. */ 1844 mutex_enter(&pool_head_lock); 1845 while (pc->pc_refcnt != 0) 1846 cv_wait(&pool_busy, &pool_head_lock); 1847 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 1848 mutex_exit(&pool_head_lock); 1849 1850 /* First, invalidate the entire cache. */ 1851 pool_cache_invalidate(pc); 1852 1853 /* Disassociate it from the pool. */ 1854 mutex_enter(&pp->pr_lock); 1855 pp->pr_cache = NULL; 1856 mutex_exit(&pp->pr_lock); 1857 1858 /* Destroy per-CPU data */ 1859 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 1860 pool_cache_invalidate_cpu(pc, i); 1861 1862 /* Finally, destroy it. */ 1863 mutex_destroy(&pc->pc_lock); 1864 pool_destroy(pp); 1865 } 1866 1867 /* 1868 * pool_cache_cpu_init1: 1869 * 1870 * Called for each pool_cache whenever a new CPU is attached. 1871 */ 1872 static void 1873 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 1874 { 1875 pool_cache_cpu_t *cc; 1876 int index; 1877 1878 index = ci->ci_index; 1879 1880 KASSERT(index < __arraycount(pc->pc_cpus)); 1881 1882 if ((cc = pc->pc_cpus[index]) != NULL) { 1883 KASSERT(cc->cc_cpuindex == index); 1884 return; 1885 } 1886 1887 /* 1888 * The first CPU is 'free'. This needs to be the case for 1889 * bootstrap - we may not be able to allocate yet. 1890 */ 1891 if (pc->pc_ncpu == 0) { 1892 cc = &pc->pc_cpu0; 1893 pc->pc_ncpu = 1; 1894 } else { 1895 mutex_enter(&pc->pc_lock); 1896 pc->pc_ncpu++; 1897 mutex_exit(&pc->pc_lock); 1898 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 1899 } 1900 1901 cc->cc_ipl = pc->pc_pool.pr_ipl; 1902 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 1903 cc->cc_cache = pc; 1904 cc->cc_cpuindex = index; 1905 cc->cc_hits = 0; 1906 cc->cc_misses = 0; 1907 cc->cc_current = __UNCONST(&pcg_dummy); 1908 cc->cc_previous = __UNCONST(&pcg_dummy); 1909 1910 pc->pc_cpus[index] = cc; 1911 } 1912 1913 /* 1914 * pool_cache_cpu_init: 1915 * 1916 * Called whenever a new CPU is attached. 1917 */ 1918 void 1919 pool_cache_cpu_init(struct cpu_info *ci) 1920 { 1921 pool_cache_t pc; 1922 1923 mutex_enter(&pool_head_lock); 1924 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 1925 pc->pc_refcnt++; 1926 mutex_exit(&pool_head_lock); 1927 1928 pool_cache_cpu_init1(ci, pc); 1929 1930 mutex_enter(&pool_head_lock); 1931 pc->pc_refcnt--; 1932 cv_broadcast(&pool_busy); 1933 } 1934 mutex_exit(&pool_head_lock); 1935 } 1936 1937 /* 1938 * pool_cache_reclaim: 1939 * 1940 * Reclaim memory from a pool cache. 1941 */ 1942 bool 1943 pool_cache_reclaim(pool_cache_t pc) 1944 { 1945 1946 return pool_reclaim(&pc->pc_pool); 1947 } 1948 1949 static void 1950 pool_cache_destruct_object1(pool_cache_t pc, void *object) 1951 { 1952 1953 (*pc->pc_dtor)(pc->pc_arg, object); 1954 pool_put(&pc->pc_pool, object); 1955 } 1956 1957 /* 1958 * pool_cache_destruct_object: 1959 * 1960 * Force destruction of an object and its release back into 1961 * the pool. 1962 */ 1963 void 1964 pool_cache_destruct_object(pool_cache_t pc, void *object) 1965 { 1966 1967 FREECHECK_IN(&pc->pc_freecheck, object); 1968 1969 pool_cache_destruct_object1(pc, object); 1970 } 1971 1972 /* 1973 * pool_cache_invalidate_groups: 1974 * 1975 * Invalidate a chain of groups and destruct all objects. 1976 */ 1977 static void 1978 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 1979 { 1980 void *object; 1981 pcg_t *next; 1982 int i; 1983 1984 for (; pcg != NULL; pcg = next) { 1985 next = pcg->pcg_next; 1986 1987 for (i = 0; i < pcg->pcg_avail; i++) { 1988 object = pcg->pcg_objects[i].pcgo_va; 1989 pool_cache_destruct_object1(pc, object); 1990 } 1991 1992 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 1993 pool_put(&pcg_large_pool, pcg); 1994 } else { 1995 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 1996 pool_put(&pcg_normal_pool, pcg); 1997 } 1998 } 1999 } 2000 2001 /* 2002 * pool_cache_invalidate: 2003 * 2004 * Invalidate a pool cache (destruct and release all of the 2005 * cached objects). Does not reclaim objects from the pool. 2006 * 2007 * Note: For pool caches that provide constructed objects, there 2008 * is an assumption that another level of synchronization is occurring 2009 * between the input to the constructor and the cache invalidation. 2010 * 2011 * Invalidation is a costly process and should not be called from 2012 * interrupt context. 2013 */ 2014 void 2015 pool_cache_invalidate(pool_cache_t pc) 2016 { 2017 uint64_t where; 2018 pcg_t *full, *empty, *part; 2019 2020 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 2021 2022 if (ncpu < 2 || !mp_online) { 2023 /* 2024 * We might be called early enough in the boot process 2025 * for the CPU data structures to not be fully initialized. 2026 * In this case, transfer the content of the local CPU's 2027 * cache back into global cache as only this CPU is currently 2028 * running. 2029 */ 2030 pool_cache_transfer(pc); 2031 } else { 2032 /* 2033 * Signal all CPUs that they must transfer their local 2034 * cache back to the global pool then wait for the xcall to 2035 * complete. 2036 */ 2037 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer, 2038 pc, NULL); 2039 xc_wait(where); 2040 } 2041 2042 /* Empty pool caches, then invalidate objects */ 2043 mutex_enter(&pc->pc_lock); 2044 full = pc->pc_fullgroups; 2045 empty = pc->pc_emptygroups; 2046 part = pc->pc_partgroups; 2047 pc->pc_fullgroups = NULL; 2048 pc->pc_emptygroups = NULL; 2049 pc->pc_partgroups = NULL; 2050 pc->pc_nfull = 0; 2051 pc->pc_nempty = 0; 2052 pc->pc_npart = 0; 2053 mutex_exit(&pc->pc_lock); 2054 2055 pool_cache_invalidate_groups(pc, full); 2056 pool_cache_invalidate_groups(pc, empty); 2057 pool_cache_invalidate_groups(pc, part); 2058 } 2059 2060 /* 2061 * pool_cache_invalidate_cpu: 2062 * 2063 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2064 * identified by its associated index. 2065 * It is caller's responsibility to ensure that no operation is 2066 * taking place on this pool cache while doing this invalidation. 2067 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2068 * pool cached objects from a CPU different from the one currently running 2069 * may result in an undefined behaviour. 2070 */ 2071 static void 2072 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2073 { 2074 pool_cache_cpu_t *cc; 2075 pcg_t *pcg; 2076 2077 if ((cc = pc->pc_cpus[index]) == NULL) 2078 return; 2079 2080 if ((pcg = cc->cc_current) != &pcg_dummy) { 2081 pcg->pcg_next = NULL; 2082 pool_cache_invalidate_groups(pc, pcg); 2083 } 2084 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2085 pcg->pcg_next = NULL; 2086 pool_cache_invalidate_groups(pc, pcg); 2087 } 2088 if (cc != &pc->pc_cpu0) 2089 pool_put(&cache_cpu_pool, cc); 2090 2091 } 2092 2093 void 2094 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2095 { 2096 2097 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2098 } 2099 2100 void 2101 pool_cache_setlowat(pool_cache_t pc, int n) 2102 { 2103 2104 pool_setlowat(&pc->pc_pool, n); 2105 } 2106 2107 void 2108 pool_cache_sethiwat(pool_cache_t pc, int n) 2109 { 2110 2111 pool_sethiwat(&pc->pc_pool, n); 2112 } 2113 2114 void 2115 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2116 { 2117 2118 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2119 } 2120 2121 static bool __noinline 2122 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2123 paddr_t *pap, int flags) 2124 { 2125 pcg_t *pcg, *cur; 2126 uint64_t ncsw; 2127 pool_cache_t pc; 2128 void *object; 2129 2130 KASSERT(cc->cc_current->pcg_avail == 0); 2131 KASSERT(cc->cc_previous->pcg_avail == 0); 2132 2133 pc = cc->cc_cache; 2134 cc->cc_misses++; 2135 2136 /* 2137 * Nothing was available locally. Try and grab a group 2138 * from the cache. 2139 */ 2140 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2141 ncsw = curlwp->l_ncsw; 2142 mutex_enter(&pc->pc_lock); 2143 pc->pc_contended++; 2144 2145 /* 2146 * If we context switched while locking, then 2147 * our view of the per-CPU data is invalid: 2148 * retry. 2149 */ 2150 if (curlwp->l_ncsw != ncsw) { 2151 mutex_exit(&pc->pc_lock); 2152 return true; 2153 } 2154 } 2155 2156 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2157 /* 2158 * If there's a full group, release our empty 2159 * group back to the cache. Install the full 2160 * group as cc_current and return. 2161 */ 2162 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2163 KASSERT(cur->pcg_avail == 0); 2164 cur->pcg_next = pc->pc_emptygroups; 2165 pc->pc_emptygroups = cur; 2166 pc->pc_nempty++; 2167 } 2168 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2169 cc->cc_current = pcg; 2170 pc->pc_fullgroups = pcg->pcg_next; 2171 pc->pc_hits++; 2172 pc->pc_nfull--; 2173 mutex_exit(&pc->pc_lock); 2174 return true; 2175 } 2176 2177 /* 2178 * Nothing available locally or in cache. Take the slow 2179 * path: fetch a new object from the pool and construct 2180 * it. 2181 */ 2182 pc->pc_misses++; 2183 mutex_exit(&pc->pc_lock); 2184 splx(s); 2185 2186 object = pool_get(&pc->pc_pool, flags); 2187 *objectp = object; 2188 if (__predict_false(object == NULL)) { 2189 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT); 2190 return false; 2191 } 2192 2193 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2194 pool_put(&pc->pc_pool, object); 2195 *objectp = NULL; 2196 return false; 2197 } 2198 2199 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2200 (pc->pc_pool.pr_align - 1)) == 0); 2201 2202 if (pap != NULL) { 2203 #ifdef POOL_VTOPHYS 2204 *pap = POOL_VTOPHYS(object); 2205 #else 2206 *pap = POOL_PADDR_INVALID; 2207 #endif 2208 } 2209 2210 FREECHECK_OUT(&pc->pc_freecheck, object); 2211 pool_redzone_fill(&pc->pc_pool, object); 2212 return false; 2213 } 2214 2215 /* 2216 * pool_cache_get{,_paddr}: 2217 * 2218 * Get an object from a pool cache (optionally returning 2219 * the physical address of the object). 2220 */ 2221 void * 2222 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2223 { 2224 pool_cache_cpu_t *cc; 2225 pcg_t *pcg; 2226 void *object; 2227 int s; 2228 2229 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 2230 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2231 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2232 "%s: [%s] is IPL_NONE, but called from interrupt context", 2233 __func__, pc->pc_pool.pr_wchan); 2234 2235 if (flags & PR_WAITOK) { 2236 ASSERT_SLEEPABLE(); 2237 } 2238 2239 /* Lock out interrupts and disable preemption. */ 2240 s = splvm(); 2241 while (/* CONSTCOND */ true) { 2242 /* Try and allocate an object from the current group. */ 2243 cc = pc->pc_cpus[curcpu()->ci_index]; 2244 KASSERT(cc->cc_cache == pc); 2245 pcg = cc->cc_current; 2246 if (__predict_true(pcg->pcg_avail > 0)) { 2247 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2248 if (__predict_false(pap != NULL)) 2249 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2250 #if defined(DIAGNOSTIC) 2251 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2252 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2253 KASSERT(object != NULL); 2254 #endif 2255 cc->cc_hits++; 2256 splx(s); 2257 FREECHECK_OUT(&pc->pc_freecheck, object); 2258 pool_redzone_fill(&pc->pc_pool, object); 2259 return object; 2260 } 2261 2262 /* 2263 * That failed. If the previous group isn't empty, swap 2264 * it with the current group and allocate from there. 2265 */ 2266 pcg = cc->cc_previous; 2267 if (__predict_true(pcg->pcg_avail > 0)) { 2268 cc->cc_previous = cc->cc_current; 2269 cc->cc_current = pcg; 2270 continue; 2271 } 2272 2273 /* 2274 * Can't allocate from either group: try the slow path. 2275 * If get_slow() allocated an object for us, or if 2276 * no more objects are available, it will return false. 2277 * Otherwise, we need to retry. 2278 */ 2279 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2280 break; 2281 } 2282 2283 /* 2284 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but 2285 * pool_cache_get can fail even in the PR_WAITOK case, if the 2286 * constructor fails. 2287 */ 2288 return object; 2289 } 2290 2291 static bool __noinline 2292 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2293 { 2294 struct lwp *l = curlwp; 2295 pcg_t *pcg, *cur; 2296 uint64_t ncsw; 2297 pool_cache_t pc; 2298 2299 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2300 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2301 2302 pc = cc->cc_cache; 2303 pcg = NULL; 2304 cc->cc_misses++; 2305 ncsw = l->l_ncsw; 2306 2307 /* 2308 * If there are no empty groups in the cache then allocate one 2309 * while still unlocked. 2310 */ 2311 if (__predict_false(pc->pc_emptygroups == NULL)) { 2312 if (__predict_true(!pool_cache_disable)) { 2313 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2314 } 2315 /* 2316 * If pool_get() blocked, then our view of 2317 * the per-CPU data is invalid: retry. 2318 */ 2319 if (__predict_false(l->l_ncsw != ncsw)) { 2320 if (pcg != NULL) { 2321 pool_put(pc->pc_pcgpool, pcg); 2322 } 2323 return true; 2324 } 2325 if (__predict_true(pcg != NULL)) { 2326 pcg->pcg_avail = 0; 2327 pcg->pcg_size = pc->pc_pcgsize; 2328 } 2329 } 2330 2331 /* Lock the cache. */ 2332 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2333 mutex_enter(&pc->pc_lock); 2334 pc->pc_contended++; 2335 2336 /* 2337 * If we context switched while locking, then our view of 2338 * the per-CPU data is invalid: retry. 2339 */ 2340 if (__predict_false(l->l_ncsw != ncsw)) { 2341 mutex_exit(&pc->pc_lock); 2342 if (pcg != NULL) { 2343 pool_put(pc->pc_pcgpool, pcg); 2344 } 2345 return true; 2346 } 2347 } 2348 2349 /* If there are no empty groups in the cache then allocate one. */ 2350 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2351 pcg = pc->pc_emptygroups; 2352 pc->pc_emptygroups = pcg->pcg_next; 2353 pc->pc_nempty--; 2354 } 2355 2356 /* 2357 * If there's a empty group, release our full group back 2358 * to the cache. Install the empty group to the local CPU 2359 * and return. 2360 */ 2361 if (pcg != NULL) { 2362 KASSERT(pcg->pcg_avail == 0); 2363 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2364 cc->cc_previous = pcg; 2365 } else { 2366 cur = cc->cc_current; 2367 if (__predict_true(cur != &pcg_dummy)) { 2368 KASSERT(cur->pcg_avail == cur->pcg_size); 2369 cur->pcg_next = pc->pc_fullgroups; 2370 pc->pc_fullgroups = cur; 2371 pc->pc_nfull++; 2372 } 2373 cc->cc_current = pcg; 2374 } 2375 pc->pc_hits++; 2376 mutex_exit(&pc->pc_lock); 2377 return true; 2378 } 2379 2380 /* 2381 * Nothing available locally or in cache, and we didn't 2382 * allocate an empty group. Take the slow path and destroy 2383 * the object here and now. 2384 */ 2385 pc->pc_misses++; 2386 mutex_exit(&pc->pc_lock); 2387 splx(s); 2388 pool_cache_destruct_object(pc, object); 2389 2390 return false; 2391 } 2392 2393 /* 2394 * pool_cache_put{,_paddr}: 2395 * 2396 * Put an object back to the pool cache (optionally caching the 2397 * physical address of the object). 2398 */ 2399 void 2400 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2401 { 2402 pool_cache_cpu_t *cc; 2403 pcg_t *pcg; 2404 int s; 2405 2406 KASSERT(object != NULL); 2407 pool_redzone_check(&pc->pc_pool, object); 2408 FREECHECK_IN(&pc->pc_freecheck, object); 2409 2410 /* Lock out interrupts and disable preemption. */ 2411 s = splvm(); 2412 while (/* CONSTCOND */ true) { 2413 /* If the current group isn't full, release it there. */ 2414 cc = pc->pc_cpus[curcpu()->ci_index]; 2415 KASSERT(cc->cc_cache == pc); 2416 pcg = cc->cc_current; 2417 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2418 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2419 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2420 pcg->pcg_avail++; 2421 cc->cc_hits++; 2422 splx(s); 2423 return; 2424 } 2425 2426 /* 2427 * That failed. If the previous group isn't full, swap 2428 * it with the current group and try again. 2429 */ 2430 pcg = cc->cc_previous; 2431 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2432 cc->cc_previous = cc->cc_current; 2433 cc->cc_current = pcg; 2434 continue; 2435 } 2436 2437 /* 2438 * Can't free to either group: try the slow path. 2439 * If put_slow() releases the object for us, it 2440 * will return false. Otherwise we need to retry. 2441 */ 2442 if (!pool_cache_put_slow(cc, s, object)) 2443 break; 2444 } 2445 } 2446 2447 /* 2448 * pool_cache_transfer: 2449 * 2450 * Transfer objects from the per-CPU cache to the global cache. 2451 * Run within a cross-call thread. 2452 */ 2453 static void 2454 pool_cache_transfer(pool_cache_t pc) 2455 { 2456 pool_cache_cpu_t *cc; 2457 pcg_t *prev, *cur, **list; 2458 int s; 2459 2460 s = splvm(); 2461 mutex_enter(&pc->pc_lock); 2462 cc = pc->pc_cpus[curcpu()->ci_index]; 2463 cur = cc->cc_current; 2464 cc->cc_current = __UNCONST(&pcg_dummy); 2465 prev = cc->cc_previous; 2466 cc->cc_previous = __UNCONST(&pcg_dummy); 2467 if (cur != &pcg_dummy) { 2468 if (cur->pcg_avail == cur->pcg_size) { 2469 list = &pc->pc_fullgroups; 2470 pc->pc_nfull++; 2471 } else if (cur->pcg_avail == 0) { 2472 list = &pc->pc_emptygroups; 2473 pc->pc_nempty++; 2474 } else { 2475 list = &pc->pc_partgroups; 2476 pc->pc_npart++; 2477 } 2478 cur->pcg_next = *list; 2479 *list = cur; 2480 } 2481 if (prev != &pcg_dummy) { 2482 if (prev->pcg_avail == prev->pcg_size) { 2483 list = &pc->pc_fullgroups; 2484 pc->pc_nfull++; 2485 } else if (prev->pcg_avail == 0) { 2486 list = &pc->pc_emptygroups; 2487 pc->pc_nempty++; 2488 } else { 2489 list = &pc->pc_partgroups; 2490 pc->pc_npart++; 2491 } 2492 prev->pcg_next = *list; 2493 *list = prev; 2494 } 2495 mutex_exit(&pc->pc_lock); 2496 splx(s); 2497 } 2498 2499 /* 2500 * Pool backend allocators. 2501 * 2502 * Each pool has a backend allocator that handles allocation, deallocation, 2503 * and any additional draining that might be needed. 2504 * 2505 * We provide two standard allocators: 2506 * 2507 * pool_allocator_kmem - the default when no allocator is specified 2508 * 2509 * pool_allocator_nointr - used for pools that will not be accessed 2510 * in interrupt context. 2511 */ 2512 void *pool_page_alloc(struct pool *, int); 2513 void pool_page_free(struct pool *, void *); 2514 2515 #ifdef POOL_SUBPAGE 2516 struct pool_allocator pool_allocator_kmem_fullpage = { 2517 .pa_alloc = pool_page_alloc, 2518 .pa_free = pool_page_free, 2519 .pa_pagesz = 0 2520 }; 2521 #else 2522 struct pool_allocator pool_allocator_kmem = { 2523 .pa_alloc = pool_page_alloc, 2524 .pa_free = pool_page_free, 2525 .pa_pagesz = 0 2526 }; 2527 #endif 2528 2529 #ifdef POOL_SUBPAGE 2530 struct pool_allocator pool_allocator_nointr_fullpage = { 2531 .pa_alloc = pool_page_alloc, 2532 .pa_free = pool_page_free, 2533 .pa_pagesz = 0 2534 }; 2535 #else 2536 struct pool_allocator pool_allocator_nointr = { 2537 .pa_alloc = pool_page_alloc, 2538 .pa_free = pool_page_free, 2539 .pa_pagesz = 0 2540 }; 2541 #endif 2542 2543 #ifdef POOL_SUBPAGE 2544 void *pool_subpage_alloc(struct pool *, int); 2545 void pool_subpage_free(struct pool *, void *); 2546 2547 struct pool_allocator pool_allocator_kmem = { 2548 .pa_alloc = pool_subpage_alloc, 2549 .pa_free = pool_subpage_free, 2550 .pa_pagesz = POOL_SUBPAGE 2551 }; 2552 2553 struct pool_allocator pool_allocator_nointr = { 2554 .pa_alloc = pool_subpage_alloc, 2555 .pa_free = pool_subpage_free, 2556 .pa_pagesz = POOL_SUBPAGE 2557 }; 2558 #endif /* POOL_SUBPAGE */ 2559 2560 struct pool_allocator pool_allocator_big[] = { 2561 { 2562 .pa_alloc = pool_page_alloc, 2563 .pa_free = pool_page_free, 2564 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0), 2565 }, 2566 { 2567 .pa_alloc = pool_page_alloc, 2568 .pa_free = pool_page_free, 2569 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1), 2570 }, 2571 { 2572 .pa_alloc = pool_page_alloc, 2573 .pa_free = pool_page_free, 2574 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2), 2575 }, 2576 { 2577 .pa_alloc = pool_page_alloc, 2578 .pa_free = pool_page_free, 2579 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3), 2580 }, 2581 { 2582 .pa_alloc = pool_page_alloc, 2583 .pa_free = pool_page_free, 2584 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4), 2585 }, 2586 { 2587 .pa_alloc = pool_page_alloc, 2588 .pa_free = pool_page_free, 2589 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5), 2590 }, 2591 { 2592 .pa_alloc = pool_page_alloc, 2593 .pa_free = pool_page_free, 2594 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6), 2595 }, 2596 { 2597 .pa_alloc = pool_page_alloc, 2598 .pa_free = pool_page_free, 2599 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7), 2600 } 2601 }; 2602 2603 static int 2604 pool_bigidx(size_t size) 2605 { 2606 int i; 2607 2608 for (i = 0; i < __arraycount(pool_allocator_big); i++) { 2609 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size) 2610 return i; 2611 } 2612 panic("pool item size %zu too large, use a custom allocator", size); 2613 } 2614 2615 static void * 2616 pool_allocator_alloc(struct pool *pp, int flags) 2617 { 2618 struct pool_allocator *pa = pp->pr_alloc; 2619 void *res; 2620 2621 res = (*pa->pa_alloc)(pp, flags); 2622 if (res == NULL && (flags & PR_WAITOK) == 0) { 2623 /* 2624 * We only run the drain hook here if PR_NOWAIT. 2625 * In other cases, the hook will be run in 2626 * pool_reclaim(). 2627 */ 2628 if (pp->pr_drain_hook != NULL) { 2629 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2630 res = (*pa->pa_alloc)(pp, flags); 2631 } 2632 } 2633 return res; 2634 } 2635 2636 static void 2637 pool_allocator_free(struct pool *pp, void *v) 2638 { 2639 struct pool_allocator *pa = pp->pr_alloc; 2640 2641 (*pa->pa_free)(pp, v); 2642 } 2643 2644 void * 2645 pool_page_alloc(struct pool *pp, int flags) 2646 { 2647 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2648 vmem_addr_t va; 2649 int ret; 2650 2651 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2652 vflags | VM_INSTANTFIT, &va); 2653 2654 return ret ? NULL : (void *)va; 2655 } 2656 2657 void 2658 pool_page_free(struct pool *pp, void *v) 2659 { 2660 2661 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2662 } 2663 2664 static void * 2665 pool_page_alloc_meta(struct pool *pp, int flags) 2666 { 2667 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2668 vmem_addr_t va; 2669 int ret; 2670 2671 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2672 vflags | VM_INSTANTFIT, &va); 2673 2674 return ret ? NULL : (void *)va; 2675 } 2676 2677 static void 2678 pool_page_free_meta(struct pool *pp, void *v) 2679 { 2680 2681 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2682 } 2683 2684 #ifdef POOL_REDZONE 2685 #if defined(_LP64) 2686 # define PRIME 0x9e37fffffffc0000UL 2687 #else /* defined(_LP64) */ 2688 # define PRIME 0x9e3779b1 2689 #endif /* defined(_LP64) */ 2690 #define STATIC_BYTE 0xFE 2691 CTASSERT(POOL_REDZONE_SIZE > 1); 2692 2693 static inline uint8_t 2694 pool_pattern_generate(const void *p) 2695 { 2696 return (uint8_t)(((uintptr_t)p) * PRIME 2697 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 2698 } 2699 2700 static void 2701 pool_redzone_init(struct pool *pp, size_t requested_size) 2702 { 2703 size_t nsz; 2704 2705 if (pp->pr_roflags & PR_NOTOUCH) { 2706 pp->pr_reqsize = 0; 2707 pp->pr_redzone = false; 2708 return; 2709 } 2710 2711 /* 2712 * We may have extended the requested size earlier; check if 2713 * there's naturally space in the padding for a red zone. 2714 */ 2715 if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) { 2716 pp->pr_reqsize = requested_size; 2717 pp->pr_redzone = true; 2718 return; 2719 } 2720 2721 /* 2722 * No space in the natural padding; check if we can extend a 2723 * bit the size of the pool. 2724 */ 2725 nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align); 2726 if (nsz <= pp->pr_alloc->pa_pagesz) { 2727 /* Ok, we can */ 2728 pp->pr_size = nsz; 2729 pp->pr_reqsize = requested_size; 2730 pp->pr_redzone = true; 2731 } else { 2732 /* No space for a red zone... snif :'( */ 2733 pp->pr_reqsize = 0; 2734 pp->pr_redzone = false; 2735 printf("pool redzone disabled for '%s'\n", pp->pr_wchan); 2736 } 2737 } 2738 2739 static void 2740 pool_redzone_fill(struct pool *pp, void *p) 2741 { 2742 uint8_t *cp, pat; 2743 const uint8_t *ep; 2744 2745 if (!pp->pr_redzone) 2746 return; 2747 2748 cp = (uint8_t *)p + pp->pr_reqsize; 2749 ep = cp + POOL_REDZONE_SIZE; 2750 2751 /* 2752 * We really don't want the first byte of the red zone to be '\0'; 2753 * an off-by-one in a string may not be properly detected. 2754 */ 2755 pat = pool_pattern_generate(cp); 2756 *cp = (pat == '\0') ? STATIC_BYTE: pat; 2757 cp++; 2758 2759 while (cp < ep) { 2760 *cp = pool_pattern_generate(cp); 2761 cp++; 2762 } 2763 } 2764 2765 static void 2766 pool_redzone_check(struct pool *pp, void *p) 2767 { 2768 uint8_t *cp, pat, expected; 2769 const uint8_t *ep; 2770 2771 if (!pp->pr_redzone) 2772 return; 2773 2774 cp = (uint8_t *)p + pp->pr_reqsize; 2775 ep = cp + POOL_REDZONE_SIZE; 2776 2777 pat = pool_pattern_generate(cp); 2778 expected = (pat == '\0') ? STATIC_BYTE: pat; 2779 if (expected != *cp) { 2780 panic("%s: %p: 0x%02x != 0x%02x\n", 2781 __func__, cp, *cp, expected); 2782 } 2783 cp++; 2784 2785 while (cp < ep) { 2786 expected = pool_pattern_generate(cp); 2787 if (*cp != expected) { 2788 panic("%s: %p: 0x%02x != 0x%02x\n", 2789 __func__, cp, *cp, expected); 2790 } 2791 cp++; 2792 } 2793 } 2794 2795 #endif /* POOL_REDZONE */ 2796 2797 2798 #ifdef POOL_SUBPAGE 2799 /* Sub-page allocator, for machines with large hardware pages. */ 2800 void * 2801 pool_subpage_alloc(struct pool *pp, int flags) 2802 { 2803 return pool_get(&psppool, flags); 2804 } 2805 2806 void 2807 pool_subpage_free(struct pool *pp, void *v) 2808 { 2809 pool_put(&psppool, v); 2810 } 2811 2812 #endif /* POOL_SUBPAGE */ 2813 2814 #if defined(DDB) 2815 static bool 2816 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2817 { 2818 2819 return (uintptr_t)ph->ph_page <= addr && 2820 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2821 } 2822 2823 static bool 2824 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2825 { 2826 2827 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2828 } 2829 2830 static bool 2831 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2832 { 2833 int i; 2834 2835 if (pcg == NULL) { 2836 return false; 2837 } 2838 for (i = 0; i < pcg->pcg_avail; i++) { 2839 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2840 return true; 2841 } 2842 } 2843 return false; 2844 } 2845 2846 static bool 2847 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2848 { 2849 2850 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2851 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2852 pool_item_bitmap_t *bitmap = 2853 ph->ph_bitmap + (idx / BITMAP_SIZE); 2854 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2855 2856 return (*bitmap & mask) == 0; 2857 } else { 2858 struct pool_item *pi; 2859 2860 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2861 if (pool_in_item(pp, pi, addr)) { 2862 return false; 2863 } 2864 } 2865 return true; 2866 } 2867 } 2868 2869 void 2870 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2871 { 2872 struct pool *pp; 2873 2874 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2875 struct pool_item_header *ph; 2876 uintptr_t item; 2877 bool allocated = true; 2878 bool incache = false; 2879 bool incpucache = false; 2880 char cpucachestr[32]; 2881 2882 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 2883 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2884 if (pool_in_page(pp, ph, addr)) { 2885 goto found; 2886 } 2887 } 2888 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2889 if (pool_in_page(pp, ph, addr)) { 2890 allocated = 2891 pool_allocated(pp, ph, addr); 2892 goto found; 2893 } 2894 } 2895 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2896 if (pool_in_page(pp, ph, addr)) { 2897 allocated = false; 2898 goto found; 2899 } 2900 } 2901 continue; 2902 } else { 2903 ph = pr_find_pagehead_noalign(pp, (void *)addr); 2904 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 2905 continue; 2906 } 2907 allocated = pool_allocated(pp, ph, addr); 2908 } 2909 found: 2910 if (allocated && pp->pr_cache) { 2911 pool_cache_t pc = pp->pr_cache; 2912 struct pool_cache_group *pcg; 2913 int i; 2914 2915 for (pcg = pc->pc_fullgroups; pcg != NULL; 2916 pcg = pcg->pcg_next) { 2917 if (pool_in_cg(pp, pcg, addr)) { 2918 incache = true; 2919 goto print; 2920 } 2921 } 2922 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 2923 pool_cache_cpu_t *cc; 2924 2925 if ((cc = pc->pc_cpus[i]) == NULL) { 2926 continue; 2927 } 2928 if (pool_in_cg(pp, cc->cc_current, addr) || 2929 pool_in_cg(pp, cc->cc_previous, addr)) { 2930 struct cpu_info *ci = 2931 cpu_lookup(i); 2932 2933 incpucache = true; 2934 snprintf(cpucachestr, 2935 sizeof(cpucachestr), 2936 "cached by CPU %u", 2937 ci->ci_index); 2938 goto print; 2939 } 2940 } 2941 } 2942 print: 2943 item = (uintptr_t)ph->ph_page + ph->ph_off; 2944 item = item + rounddown(addr - item, pp->pr_size); 2945 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 2946 (void *)addr, item, (size_t)(addr - item), 2947 pp->pr_wchan, 2948 incpucache ? cpucachestr : 2949 incache ? "cached" : allocated ? "allocated" : "free"); 2950 } 2951 } 2952 #endif /* defined(DDB) */ 2953 2954 static int 2955 pool_sysctl(SYSCTLFN_ARGS) 2956 { 2957 struct pool_sysctl data; 2958 struct pool *pp; 2959 struct pool_cache *pc; 2960 pool_cache_cpu_t *cc; 2961 int error; 2962 size_t i, written; 2963 2964 if (oldp == NULL) { 2965 *oldlenp = 0; 2966 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 2967 *oldlenp += sizeof(data); 2968 return 0; 2969 } 2970 2971 memset(&data, 0, sizeof(data)); 2972 error = 0; 2973 written = 0; 2974 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2975 if (written + sizeof(data) > *oldlenp) 2976 break; 2977 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 2978 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 2979 data.pr_flags = pp->pr_roflags | pp->pr_flags; 2980 #define COPY(field) data.field = pp->field 2981 COPY(pr_size); 2982 2983 COPY(pr_itemsperpage); 2984 COPY(pr_nitems); 2985 COPY(pr_nout); 2986 COPY(pr_hardlimit); 2987 COPY(pr_npages); 2988 COPY(pr_minpages); 2989 COPY(pr_maxpages); 2990 2991 COPY(pr_nget); 2992 COPY(pr_nfail); 2993 COPY(pr_nput); 2994 COPY(pr_npagealloc); 2995 COPY(pr_npagefree); 2996 COPY(pr_hiwat); 2997 COPY(pr_nidle); 2998 #undef COPY 2999 3000 data.pr_cache_nmiss_pcpu = 0; 3001 data.pr_cache_nhit_pcpu = 0; 3002 if (pp->pr_cache) { 3003 pc = pp->pr_cache; 3004 data.pr_cache_meta_size = pc->pc_pcgsize; 3005 data.pr_cache_nfull = pc->pc_nfull; 3006 data.pr_cache_npartial = pc->pc_npart; 3007 data.pr_cache_nempty = pc->pc_nempty; 3008 data.pr_cache_ncontended = pc->pc_contended; 3009 data.pr_cache_nmiss_global = pc->pc_misses; 3010 data.pr_cache_nhit_global = pc->pc_hits; 3011 for (i = 0; i < pc->pc_ncpu; ++i) { 3012 cc = pc->pc_cpus[i]; 3013 if (cc == NULL) 3014 continue; 3015 data.pr_cache_nmiss_pcpu += cc->cc_misses; 3016 data.pr_cache_nhit_pcpu += cc->cc_hits; 3017 } 3018 } else { 3019 data.pr_cache_meta_size = 0; 3020 data.pr_cache_nfull = 0; 3021 data.pr_cache_npartial = 0; 3022 data.pr_cache_nempty = 0; 3023 data.pr_cache_ncontended = 0; 3024 data.pr_cache_nmiss_global = 0; 3025 data.pr_cache_nhit_global = 0; 3026 } 3027 3028 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 3029 if (error) 3030 break; 3031 written += sizeof(data); 3032 oldp = (char *)oldp + sizeof(data); 3033 } 3034 3035 *oldlenp = written; 3036 return error; 3037 } 3038 3039 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 3040 { 3041 const struct sysctlnode *rnode = NULL; 3042 3043 sysctl_createv(clog, 0, NULL, &rnode, 3044 CTLFLAG_PERMANENT, 3045 CTLTYPE_STRUCT, "pool", 3046 SYSCTL_DESCR("Get pool statistics"), 3047 pool_sysctl, 0, NULL, 0, 3048 CTL_KERN, CTL_CREATE, CTL_EOL); 3049 } 3050