1 /* $NetBSD: subr_pool.c,v 1.182 2010/01/20 23:40:42 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.182 2010/01/20 23:40:42 rmind Exp $"); 35 36 #include "opt_ddb.h" 37 #include "opt_pool.h" 38 #include "opt_poollog.h" 39 #include "opt_lockdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bitops.h> 44 #include <sys/proc.h> 45 #include <sys/errno.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/pool.h> 49 #include <sys/syslog.h> 50 #include <sys/debug.h> 51 #include <sys/lockdebug.h> 52 #include <sys/xcall.h> 53 #include <sys/cpu.h> 54 #include <sys/atomic.h> 55 56 #include <uvm/uvm.h> 57 58 /* 59 * Pool resource management utility. 60 * 61 * Memory is allocated in pages which are split into pieces according to 62 * the pool item size. Each page is kept on one of three lists in the 63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 64 * for empty, full and partially-full pages respectively. The individual 65 * pool items are on a linked list headed by `ph_itemlist' in each page 66 * header. The memory for building the page list is either taken from 67 * the allocated pages themselves (for small pool items) or taken from 68 * an internal pool of page headers (`phpool'). 69 */ 70 71 /* List of all pools */ 72 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 73 74 /* Private pool for page header structures */ 75 #define PHPOOL_MAX 8 76 static struct pool phpool[PHPOOL_MAX]; 77 #define PHPOOL_FREELIST_NELEM(idx) \ 78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 79 80 #ifdef POOL_SUBPAGE 81 /* Pool of subpages for use by normal pools. */ 82 static struct pool psppool; 83 #endif 84 85 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 86 SLIST_HEAD_INITIALIZER(pa_deferinitq); 87 88 static void *pool_page_alloc_meta(struct pool *, int); 89 static void pool_page_free_meta(struct pool *, void *); 90 91 /* allocator for pool metadata */ 92 struct pool_allocator pool_allocator_meta = { 93 pool_page_alloc_meta, pool_page_free_meta, 94 .pa_backingmapptr = &kmem_map, 95 }; 96 97 /* # of seconds to retain page after last use */ 98 int pool_inactive_time = 10; 99 100 /* Next candidate for drainage (see pool_drain()) */ 101 static struct pool *drainpp; 102 103 /* This lock protects both pool_head and drainpp. */ 104 static kmutex_t pool_head_lock; 105 static kcondvar_t pool_busy; 106 107 /* This lock protects initialization of a potentially shared pool allocator */ 108 static kmutex_t pool_allocator_lock; 109 110 typedef uint32_t pool_item_bitmap_t; 111 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 112 #define BITMAP_MASK (BITMAP_SIZE - 1) 113 114 struct pool_item_header { 115 /* Page headers */ 116 LIST_ENTRY(pool_item_header) 117 ph_pagelist; /* pool page list */ 118 SPLAY_ENTRY(pool_item_header) 119 ph_node; /* Off-page page headers */ 120 void * ph_page; /* this page's address */ 121 uint32_t ph_time; /* last referenced */ 122 uint16_t ph_nmissing; /* # of chunks in use */ 123 uint16_t ph_off; /* start offset in page */ 124 union { 125 /* !PR_NOTOUCH */ 126 struct { 127 LIST_HEAD(, pool_item) 128 phu_itemlist; /* chunk list for this page */ 129 } phu_normal; 130 /* PR_NOTOUCH */ 131 struct { 132 pool_item_bitmap_t phu_bitmap[1]; 133 } phu_notouch; 134 } ph_u; 135 }; 136 #define ph_itemlist ph_u.phu_normal.phu_itemlist 137 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 138 139 struct pool_item { 140 #ifdef DIAGNOSTIC 141 u_int pi_magic; 142 #endif 143 #define PI_MAGIC 0xdeaddeadU 144 /* Other entries use only this list entry */ 145 LIST_ENTRY(pool_item) pi_list; 146 }; 147 148 #define POOL_NEEDS_CATCHUP(pp) \ 149 ((pp)->pr_nitems < (pp)->pr_minitems) 150 151 /* 152 * Pool cache management. 153 * 154 * Pool caches provide a way for constructed objects to be cached by the 155 * pool subsystem. This can lead to performance improvements by avoiding 156 * needless object construction/destruction; it is deferred until absolutely 157 * necessary. 158 * 159 * Caches are grouped into cache groups. Each cache group references up 160 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 161 * object from the pool, it calls the object's constructor and places it 162 * into a cache group. When a cache group frees an object back to the 163 * pool, it first calls the object's destructor. This allows the object 164 * to persist in constructed form while freed to the cache. 165 * 166 * The pool references each cache, so that when a pool is drained by the 167 * pagedaemon, it can drain each individual cache as well. Each time a 168 * cache is drained, the most idle cache group is freed to the pool in 169 * its entirety. 170 * 171 * Pool caches are layed on top of pools. By layering them, we can avoid 172 * the complexity of cache management for pools which would not benefit 173 * from it. 174 */ 175 176 static struct pool pcg_normal_pool; 177 static struct pool pcg_large_pool; 178 static struct pool cache_pool; 179 static struct pool cache_cpu_pool; 180 181 /* List of all caches. */ 182 TAILQ_HEAD(,pool_cache) pool_cache_head = 183 TAILQ_HEAD_INITIALIZER(pool_cache_head); 184 185 int pool_cache_disable; /* global disable for caching */ 186 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 187 188 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 189 void *); 190 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 191 void **, paddr_t *, int); 192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 194 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 195 static void pool_cache_xcall(pool_cache_t); 196 197 static int pool_catchup(struct pool *); 198 static void pool_prime_page(struct pool *, void *, 199 struct pool_item_header *); 200 static void pool_update_curpage(struct pool *); 201 202 static int pool_grow(struct pool *, int); 203 static void *pool_allocator_alloc(struct pool *, int); 204 static void pool_allocator_free(struct pool *, void *); 205 206 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 207 void (*)(const char *, ...)); 208 static void pool_print1(struct pool *, const char *, 209 void (*)(const char *, ...)); 210 211 static int pool_chk_page(struct pool *, const char *, 212 struct pool_item_header *); 213 214 /* 215 * Pool log entry. An array of these is allocated in pool_init(). 216 */ 217 struct pool_log { 218 const char *pl_file; 219 long pl_line; 220 int pl_action; 221 #define PRLOG_GET 1 222 #define PRLOG_PUT 2 223 void *pl_addr; 224 }; 225 226 #ifdef POOL_DIAGNOSTIC 227 /* Number of entries in pool log buffers */ 228 #ifndef POOL_LOGSIZE 229 #define POOL_LOGSIZE 10 230 #endif 231 232 int pool_logsize = POOL_LOGSIZE; 233 234 static inline void 235 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 236 { 237 int n; 238 struct pool_log *pl; 239 240 if ((pp->pr_roflags & PR_LOGGING) == 0) 241 return; 242 243 if (pp->pr_log == NULL) { 244 if (kmem_map != NULL) 245 pp->pr_log = malloc( 246 pool_logsize * sizeof(struct pool_log), 247 M_TEMP, M_NOWAIT | M_ZERO); 248 if (pp->pr_log == NULL) 249 return; 250 pp->pr_curlogentry = 0; 251 pp->pr_logsize = pool_logsize; 252 } 253 254 /* 255 * Fill in the current entry. Wrap around and overwrite 256 * the oldest entry if necessary. 257 */ 258 n = pp->pr_curlogentry; 259 pl = &pp->pr_log[n]; 260 pl->pl_file = file; 261 pl->pl_line = line; 262 pl->pl_action = action; 263 pl->pl_addr = v; 264 if (++n >= pp->pr_logsize) 265 n = 0; 266 pp->pr_curlogentry = n; 267 } 268 269 static void 270 pr_printlog(struct pool *pp, struct pool_item *pi, 271 void (*pr)(const char *, ...)) 272 { 273 int i = pp->pr_logsize; 274 int n = pp->pr_curlogentry; 275 276 if (pp->pr_log == NULL) 277 return; 278 279 /* 280 * Print all entries in this pool's log. 281 */ 282 while (i-- > 0) { 283 struct pool_log *pl = &pp->pr_log[n]; 284 if (pl->pl_action != 0) { 285 if (pi == NULL || pi == pl->pl_addr) { 286 (*pr)("\tlog entry %d:\n", i); 287 (*pr)("\t\taction = %s, addr = %p\n", 288 pl->pl_action == PRLOG_GET ? "get" : "put", 289 pl->pl_addr); 290 (*pr)("\t\tfile: %s at line %lu\n", 291 pl->pl_file, pl->pl_line); 292 } 293 } 294 if (++n >= pp->pr_logsize) 295 n = 0; 296 } 297 } 298 299 static inline void 300 pr_enter(struct pool *pp, const char *file, long line) 301 { 302 303 if (__predict_false(pp->pr_entered_file != NULL)) { 304 printf("pool %s: reentrancy at file %s line %ld\n", 305 pp->pr_wchan, file, line); 306 printf(" previous entry at file %s line %ld\n", 307 pp->pr_entered_file, pp->pr_entered_line); 308 panic("pr_enter"); 309 } 310 311 pp->pr_entered_file = file; 312 pp->pr_entered_line = line; 313 } 314 315 static inline void 316 pr_leave(struct pool *pp) 317 { 318 319 if (__predict_false(pp->pr_entered_file == NULL)) { 320 printf("pool %s not entered?\n", pp->pr_wchan); 321 panic("pr_leave"); 322 } 323 324 pp->pr_entered_file = NULL; 325 pp->pr_entered_line = 0; 326 } 327 328 static inline void 329 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 330 { 331 332 if (pp->pr_entered_file != NULL) 333 (*pr)("\n\tcurrently entered from file %s line %ld\n", 334 pp->pr_entered_file, pp->pr_entered_line); 335 } 336 #else 337 #define pr_log(pp, v, action, file, line) 338 #define pr_printlog(pp, pi, pr) 339 #define pr_enter(pp, file, line) 340 #define pr_leave(pp) 341 #define pr_enter_check(pp, pr) 342 #endif /* POOL_DIAGNOSTIC */ 343 344 static inline unsigned int 345 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 346 const void *v) 347 { 348 const char *cp = v; 349 unsigned int idx; 350 351 KASSERT(pp->pr_roflags & PR_NOTOUCH); 352 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 353 KASSERT(idx < pp->pr_itemsperpage); 354 return idx; 355 } 356 357 static inline void 358 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 359 void *obj) 360 { 361 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 362 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 363 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 364 365 KASSERT((*bitmap & mask) == 0); 366 *bitmap |= mask; 367 } 368 369 static inline void * 370 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 371 { 372 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 373 unsigned int idx; 374 int i; 375 376 for (i = 0; ; i++) { 377 int bit; 378 379 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 380 bit = ffs32(bitmap[i]); 381 if (bit) { 382 pool_item_bitmap_t mask; 383 384 bit--; 385 idx = (i * BITMAP_SIZE) + bit; 386 mask = 1 << bit; 387 KASSERT((bitmap[i] & mask) != 0); 388 bitmap[i] &= ~mask; 389 break; 390 } 391 } 392 KASSERT(idx < pp->pr_itemsperpage); 393 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 394 } 395 396 static inline void 397 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 398 { 399 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 400 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 401 int i; 402 403 for (i = 0; i < n; i++) { 404 bitmap[i] = (pool_item_bitmap_t)-1; 405 } 406 } 407 408 static inline int 409 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 410 { 411 412 /* 413 * we consider pool_item_header with smaller ph_page bigger. 414 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 415 */ 416 417 if (a->ph_page < b->ph_page) 418 return (1); 419 else if (a->ph_page > b->ph_page) 420 return (-1); 421 else 422 return (0); 423 } 424 425 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 426 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 427 428 static inline struct pool_item_header * 429 pr_find_pagehead_noalign(struct pool *pp, void *v) 430 { 431 struct pool_item_header *ph, tmp; 432 433 tmp.ph_page = (void *)(uintptr_t)v; 434 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 435 if (ph == NULL) { 436 ph = SPLAY_ROOT(&pp->pr_phtree); 437 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 438 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 439 } 440 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 441 } 442 443 return ph; 444 } 445 446 /* 447 * Return the pool page header based on item address. 448 */ 449 static inline struct pool_item_header * 450 pr_find_pagehead(struct pool *pp, void *v) 451 { 452 struct pool_item_header *ph, tmp; 453 454 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 455 ph = pr_find_pagehead_noalign(pp, v); 456 } else { 457 void *page = 458 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 459 460 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 461 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 462 } else { 463 tmp.ph_page = page; 464 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 465 } 466 } 467 468 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 469 ((char *)ph->ph_page <= (char *)v && 470 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 471 return ph; 472 } 473 474 static void 475 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 476 { 477 struct pool_item_header *ph; 478 479 while ((ph = LIST_FIRST(pq)) != NULL) { 480 LIST_REMOVE(ph, ph_pagelist); 481 pool_allocator_free(pp, ph->ph_page); 482 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 483 pool_put(pp->pr_phpool, ph); 484 } 485 } 486 487 /* 488 * Remove a page from the pool. 489 */ 490 static inline void 491 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 492 struct pool_pagelist *pq) 493 { 494 495 KASSERT(mutex_owned(&pp->pr_lock)); 496 497 /* 498 * If the page was idle, decrement the idle page count. 499 */ 500 if (ph->ph_nmissing == 0) { 501 #ifdef DIAGNOSTIC 502 if (pp->pr_nidle == 0) 503 panic("pr_rmpage: nidle inconsistent"); 504 if (pp->pr_nitems < pp->pr_itemsperpage) 505 panic("pr_rmpage: nitems inconsistent"); 506 #endif 507 pp->pr_nidle--; 508 } 509 510 pp->pr_nitems -= pp->pr_itemsperpage; 511 512 /* 513 * Unlink the page from the pool and queue it for release. 514 */ 515 LIST_REMOVE(ph, ph_pagelist); 516 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 517 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 518 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 519 520 pp->pr_npages--; 521 pp->pr_npagefree++; 522 523 pool_update_curpage(pp); 524 } 525 526 static bool 527 pa_starved_p(struct pool_allocator *pa) 528 { 529 530 if (pa->pa_backingmap != NULL) { 531 return vm_map_starved_p(pa->pa_backingmap); 532 } 533 return false; 534 } 535 536 static int 537 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 538 { 539 struct pool *pp = obj; 540 struct pool_allocator *pa = pp->pr_alloc; 541 542 KASSERT(&pp->pr_reclaimerentry == ce); 543 pool_reclaim(pp); 544 if (!pa_starved_p(pa)) { 545 return CALLBACK_CHAIN_ABORT; 546 } 547 return CALLBACK_CHAIN_CONTINUE; 548 } 549 550 static void 551 pool_reclaim_register(struct pool *pp) 552 { 553 struct vm_map *map = pp->pr_alloc->pa_backingmap; 554 int s; 555 556 if (map == NULL) { 557 return; 558 } 559 560 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 561 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 562 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 563 splx(s); 564 } 565 566 static void 567 pool_reclaim_unregister(struct pool *pp) 568 { 569 struct vm_map *map = pp->pr_alloc->pa_backingmap; 570 int s; 571 572 if (map == NULL) { 573 return; 574 } 575 576 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 577 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 578 &pp->pr_reclaimerentry); 579 splx(s); 580 } 581 582 static void 583 pa_reclaim_register(struct pool_allocator *pa) 584 { 585 struct vm_map *map = *pa->pa_backingmapptr; 586 struct pool *pp; 587 588 KASSERT(pa->pa_backingmap == NULL); 589 if (map == NULL) { 590 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 591 return; 592 } 593 pa->pa_backingmap = map; 594 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 595 pool_reclaim_register(pp); 596 } 597 } 598 599 /* 600 * Initialize all the pools listed in the "pools" link set. 601 */ 602 void 603 pool_subsystem_init(void) 604 { 605 struct pool_allocator *pa; 606 607 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 608 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 609 cv_init(&pool_busy, "poolbusy"); 610 611 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 612 KASSERT(pa->pa_backingmapptr != NULL); 613 KASSERT(*pa->pa_backingmapptr != NULL); 614 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 615 pa_reclaim_register(pa); 616 } 617 618 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 619 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 620 621 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 622 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 623 } 624 625 /* 626 * Initialize the given pool resource structure. 627 * 628 * We export this routine to allow other kernel parts to declare 629 * static pools that must be initialized before malloc() is available. 630 */ 631 void 632 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 633 const char *wchan, struct pool_allocator *palloc, int ipl) 634 { 635 struct pool *pp1; 636 size_t trysize, phsize; 637 int off, slack; 638 639 #ifdef DEBUG 640 /* 641 * Check that the pool hasn't already been initialised and 642 * added to the list of all pools. 643 */ 644 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 645 if (pp == pp1) 646 panic("pool_init: pool %s already initialised", 647 wchan); 648 } 649 #endif 650 651 #ifdef POOL_DIAGNOSTIC 652 /* 653 * Always log if POOL_DIAGNOSTIC is defined. 654 */ 655 if (pool_logsize != 0) 656 flags |= PR_LOGGING; 657 #endif 658 659 if (palloc == NULL) 660 palloc = &pool_allocator_kmem; 661 #ifdef POOL_SUBPAGE 662 if (size > palloc->pa_pagesz) { 663 if (palloc == &pool_allocator_kmem) 664 palloc = &pool_allocator_kmem_fullpage; 665 else if (palloc == &pool_allocator_nointr) 666 palloc = &pool_allocator_nointr_fullpage; 667 } 668 #endif /* POOL_SUBPAGE */ 669 if (!cold) 670 mutex_enter(&pool_allocator_lock); 671 if (palloc->pa_refcnt++ == 0) { 672 if (palloc->pa_pagesz == 0) 673 palloc->pa_pagesz = PAGE_SIZE; 674 675 TAILQ_INIT(&palloc->pa_list); 676 677 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 678 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 679 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 680 681 if (palloc->pa_backingmapptr != NULL) { 682 pa_reclaim_register(palloc); 683 } 684 } 685 if (!cold) 686 mutex_exit(&pool_allocator_lock); 687 688 if (align == 0) 689 align = ALIGN(1); 690 691 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 692 size = sizeof(struct pool_item); 693 694 size = roundup(size, align); 695 #ifdef DIAGNOSTIC 696 if (size > palloc->pa_pagesz) 697 panic("pool_init: pool item size (%zu) too large", size); 698 #endif 699 700 /* 701 * Initialize the pool structure. 702 */ 703 LIST_INIT(&pp->pr_emptypages); 704 LIST_INIT(&pp->pr_fullpages); 705 LIST_INIT(&pp->pr_partpages); 706 pp->pr_cache = NULL; 707 pp->pr_curpage = NULL; 708 pp->pr_npages = 0; 709 pp->pr_minitems = 0; 710 pp->pr_minpages = 0; 711 pp->pr_maxpages = UINT_MAX; 712 pp->pr_roflags = flags; 713 pp->pr_flags = 0; 714 pp->pr_size = size; 715 pp->pr_align = align; 716 pp->pr_wchan = wchan; 717 pp->pr_alloc = palloc; 718 pp->pr_nitems = 0; 719 pp->pr_nout = 0; 720 pp->pr_hardlimit = UINT_MAX; 721 pp->pr_hardlimit_warning = NULL; 722 pp->pr_hardlimit_ratecap.tv_sec = 0; 723 pp->pr_hardlimit_ratecap.tv_usec = 0; 724 pp->pr_hardlimit_warning_last.tv_sec = 0; 725 pp->pr_hardlimit_warning_last.tv_usec = 0; 726 pp->pr_drain_hook = NULL; 727 pp->pr_drain_hook_arg = NULL; 728 pp->pr_freecheck = NULL; 729 730 /* 731 * Decide whether to put the page header off page to avoid 732 * wasting too large a part of the page or too big item. 733 * Off-page page headers go on a hash table, so we can match 734 * a returned item with its header based on the page address. 735 * We use 1/16 of the page size and about 8 times of the item 736 * size as the threshold (XXX: tune) 737 * 738 * However, we'll put the header into the page if we can put 739 * it without wasting any items. 740 * 741 * Silently enforce `0 <= ioff < align'. 742 */ 743 pp->pr_itemoffset = ioff %= align; 744 /* See the comment below about reserved bytes. */ 745 trysize = palloc->pa_pagesz - ((align - ioff) % align); 746 phsize = ALIGN(sizeof(struct pool_item_header)); 747 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 748 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 749 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 750 /* Use the end of the page for the page header */ 751 pp->pr_roflags |= PR_PHINPAGE; 752 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 753 } else { 754 /* The page header will be taken from our page header pool */ 755 pp->pr_phoffset = 0; 756 off = palloc->pa_pagesz; 757 SPLAY_INIT(&pp->pr_phtree); 758 } 759 760 /* 761 * Alignment is to take place at `ioff' within the item. This means 762 * we must reserve up to `align - 1' bytes on the page to allow 763 * appropriate positioning of each item. 764 */ 765 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 766 KASSERT(pp->pr_itemsperpage != 0); 767 if ((pp->pr_roflags & PR_NOTOUCH)) { 768 int idx; 769 770 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 771 idx++) { 772 /* nothing */ 773 } 774 if (idx >= PHPOOL_MAX) { 775 /* 776 * if you see this panic, consider to tweak 777 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 778 */ 779 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 780 pp->pr_wchan, pp->pr_itemsperpage); 781 } 782 pp->pr_phpool = &phpool[idx]; 783 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 784 pp->pr_phpool = &phpool[0]; 785 } 786 #if defined(DIAGNOSTIC) 787 else { 788 pp->pr_phpool = NULL; 789 } 790 #endif 791 792 /* 793 * Use the slack between the chunks and the page header 794 * for "cache coloring". 795 */ 796 slack = off - pp->pr_itemsperpage * pp->pr_size; 797 pp->pr_maxcolor = (slack / align) * align; 798 pp->pr_curcolor = 0; 799 800 pp->pr_nget = 0; 801 pp->pr_nfail = 0; 802 pp->pr_nput = 0; 803 pp->pr_npagealloc = 0; 804 pp->pr_npagefree = 0; 805 pp->pr_hiwat = 0; 806 pp->pr_nidle = 0; 807 pp->pr_refcnt = 0; 808 809 pp->pr_log = NULL; 810 811 pp->pr_entered_file = NULL; 812 pp->pr_entered_line = 0; 813 814 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 815 cv_init(&pp->pr_cv, wchan); 816 pp->pr_ipl = ipl; 817 818 /* 819 * Initialize private page header pool and cache magazine pool if we 820 * haven't done so yet. 821 * XXX LOCKING. 822 */ 823 if (phpool[0].pr_size == 0) { 824 int idx; 825 for (idx = 0; idx < PHPOOL_MAX; idx++) { 826 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 827 int nelem; 828 size_t sz; 829 830 nelem = PHPOOL_FREELIST_NELEM(idx); 831 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 832 "phpool-%d", nelem); 833 sz = sizeof(struct pool_item_header); 834 if (nelem) { 835 sz = offsetof(struct pool_item_header, 836 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 837 } 838 pool_init(&phpool[idx], sz, 0, 0, 0, 839 phpool_names[idx], &pool_allocator_meta, IPL_VM); 840 } 841 #ifdef POOL_SUBPAGE 842 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 843 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 844 #endif 845 846 size = sizeof(pcg_t) + 847 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 848 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 849 "pcgnormal", &pool_allocator_meta, IPL_VM); 850 851 size = sizeof(pcg_t) + 852 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 853 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 854 "pcglarge", &pool_allocator_meta, IPL_VM); 855 } 856 857 /* Insert into the list of all pools. */ 858 if (!cold) 859 mutex_enter(&pool_head_lock); 860 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 861 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 862 break; 863 } 864 if (pp1 == NULL) 865 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 866 else 867 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 868 if (!cold) 869 mutex_exit(&pool_head_lock); 870 871 /* Insert this into the list of pools using this allocator. */ 872 if (!cold) 873 mutex_enter(&palloc->pa_lock); 874 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 875 if (!cold) 876 mutex_exit(&palloc->pa_lock); 877 878 pool_reclaim_register(pp); 879 } 880 881 /* 882 * De-commision a pool resource. 883 */ 884 void 885 pool_destroy(struct pool *pp) 886 { 887 struct pool_pagelist pq; 888 struct pool_item_header *ph; 889 890 /* Remove from global pool list */ 891 mutex_enter(&pool_head_lock); 892 while (pp->pr_refcnt != 0) 893 cv_wait(&pool_busy, &pool_head_lock); 894 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 895 if (drainpp == pp) 896 drainpp = NULL; 897 mutex_exit(&pool_head_lock); 898 899 /* Remove this pool from its allocator's list of pools. */ 900 pool_reclaim_unregister(pp); 901 mutex_enter(&pp->pr_alloc->pa_lock); 902 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 903 mutex_exit(&pp->pr_alloc->pa_lock); 904 905 mutex_enter(&pool_allocator_lock); 906 if (--pp->pr_alloc->pa_refcnt == 0) 907 mutex_destroy(&pp->pr_alloc->pa_lock); 908 mutex_exit(&pool_allocator_lock); 909 910 mutex_enter(&pp->pr_lock); 911 912 KASSERT(pp->pr_cache == NULL); 913 914 #ifdef DIAGNOSTIC 915 if (pp->pr_nout != 0) { 916 pr_printlog(pp, NULL, printf); 917 panic("pool_destroy: pool busy: still out: %u", 918 pp->pr_nout); 919 } 920 #endif 921 922 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 923 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 924 925 /* Remove all pages */ 926 LIST_INIT(&pq); 927 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 928 pr_rmpage(pp, ph, &pq); 929 930 mutex_exit(&pp->pr_lock); 931 932 pr_pagelist_free(pp, &pq); 933 934 #ifdef POOL_DIAGNOSTIC 935 if (pp->pr_log != NULL) { 936 free(pp->pr_log, M_TEMP); 937 pp->pr_log = NULL; 938 } 939 #endif 940 941 cv_destroy(&pp->pr_cv); 942 mutex_destroy(&pp->pr_lock); 943 } 944 945 void 946 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 947 { 948 949 /* XXX no locking -- must be used just after pool_init() */ 950 #ifdef DIAGNOSTIC 951 if (pp->pr_drain_hook != NULL) 952 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 953 #endif 954 pp->pr_drain_hook = fn; 955 pp->pr_drain_hook_arg = arg; 956 } 957 958 static struct pool_item_header * 959 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 960 { 961 struct pool_item_header *ph; 962 963 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 964 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 965 else 966 ph = pool_get(pp->pr_phpool, flags); 967 968 return (ph); 969 } 970 971 /* 972 * Grab an item from the pool. 973 */ 974 void * 975 #ifdef POOL_DIAGNOSTIC 976 _pool_get(struct pool *pp, int flags, const char *file, long line) 977 #else 978 pool_get(struct pool *pp, int flags) 979 #endif 980 { 981 struct pool_item *pi; 982 struct pool_item_header *ph; 983 void *v; 984 985 #ifdef DIAGNOSTIC 986 if (__predict_false(pp->pr_itemsperpage == 0)) 987 panic("pool_get: pool %p: pr_itemsperpage is zero, " 988 "pool not initialized?", pp); 989 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 990 (flags & PR_WAITOK) != 0)) 991 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 992 993 #endif /* DIAGNOSTIC */ 994 #ifdef LOCKDEBUG 995 if (flags & PR_WAITOK) { 996 ASSERT_SLEEPABLE(); 997 } 998 #endif 999 1000 mutex_enter(&pp->pr_lock); 1001 pr_enter(pp, file, line); 1002 1003 startover: 1004 /* 1005 * Check to see if we've reached the hard limit. If we have, 1006 * and we can wait, then wait until an item has been returned to 1007 * the pool. 1008 */ 1009 #ifdef DIAGNOSTIC 1010 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 1011 pr_leave(pp); 1012 mutex_exit(&pp->pr_lock); 1013 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 1014 } 1015 #endif 1016 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1017 if (pp->pr_drain_hook != NULL) { 1018 /* 1019 * Since the drain hook is going to free things 1020 * back to the pool, unlock, call the hook, re-lock, 1021 * and check the hardlimit condition again. 1022 */ 1023 pr_leave(pp); 1024 mutex_exit(&pp->pr_lock); 1025 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1026 mutex_enter(&pp->pr_lock); 1027 pr_enter(pp, file, line); 1028 if (pp->pr_nout < pp->pr_hardlimit) 1029 goto startover; 1030 } 1031 1032 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1033 /* 1034 * XXX: A warning isn't logged in this case. Should 1035 * it be? 1036 */ 1037 pp->pr_flags |= PR_WANTED; 1038 pr_leave(pp); 1039 cv_wait(&pp->pr_cv, &pp->pr_lock); 1040 pr_enter(pp, file, line); 1041 goto startover; 1042 } 1043 1044 /* 1045 * Log a message that the hard limit has been hit. 1046 */ 1047 if (pp->pr_hardlimit_warning != NULL && 1048 ratecheck(&pp->pr_hardlimit_warning_last, 1049 &pp->pr_hardlimit_ratecap)) 1050 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1051 1052 pp->pr_nfail++; 1053 1054 pr_leave(pp); 1055 mutex_exit(&pp->pr_lock); 1056 return (NULL); 1057 } 1058 1059 /* 1060 * The convention we use is that if `curpage' is not NULL, then 1061 * it points at a non-empty bucket. In particular, `curpage' 1062 * never points at a page header which has PR_PHINPAGE set and 1063 * has no items in its bucket. 1064 */ 1065 if ((ph = pp->pr_curpage) == NULL) { 1066 int error; 1067 1068 #ifdef DIAGNOSTIC 1069 if (pp->pr_nitems != 0) { 1070 mutex_exit(&pp->pr_lock); 1071 printf("pool_get: %s: curpage NULL, nitems %u\n", 1072 pp->pr_wchan, pp->pr_nitems); 1073 panic("pool_get: nitems inconsistent"); 1074 } 1075 #endif 1076 1077 /* 1078 * Call the back-end page allocator for more memory. 1079 * Release the pool lock, as the back-end page allocator 1080 * may block. 1081 */ 1082 pr_leave(pp); 1083 error = pool_grow(pp, flags); 1084 pr_enter(pp, file, line); 1085 if (error != 0) { 1086 /* 1087 * We were unable to allocate a page or item 1088 * header, but we released the lock during 1089 * allocation, so perhaps items were freed 1090 * back to the pool. Check for this case. 1091 */ 1092 if (pp->pr_curpage != NULL) 1093 goto startover; 1094 1095 pp->pr_nfail++; 1096 pr_leave(pp); 1097 mutex_exit(&pp->pr_lock); 1098 return (NULL); 1099 } 1100 1101 /* Start the allocation process over. */ 1102 goto startover; 1103 } 1104 if (pp->pr_roflags & PR_NOTOUCH) { 1105 #ifdef DIAGNOSTIC 1106 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1107 pr_leave(pp); 1108 mutex_exit(&pp->pr_lock); 1109 panic("pool_get: %s: page empty", pp->pr_wchan); 1110 } 1111 #endif 1112 v = pr_item_notouch_get(pp, ph); 1113 #ifdef POOL_DIAGNOSTIC 1114 pr_log(pp, v, PRLOG_GET, file, line); 1115 #endif 1116 } else { 1117 v = pi = LIST_FIRST(&ph->ph_itemlist); 1118 if (__predict_false(v == NULL)) { 1119 pr_leave(pp); 1120 mutex_exit(&pp->pr_lock); 1121 panic("pool_get: %s: page empty", pp->pr_wchan); 1122 } 1123 #ifdef DIAGNOSTIC 1124 if (__predict_false(pp->pr_nitems == 0)) { 1125 pr_leave(pp); 1126 mutex_exit(&pp->pr_lock); 1127 printf("pool_get: %s: items on itemlist, nitems %u\n", 1128 pp->pr_wchan, pp->pr_nitems); 1129 panic("pool_get: nitems inconsistent"); 1130 } 1131 #endif 1132 1133 #ifdef POOL_DIAGNOSTIC 1134 pr_log(pp, v, PRLOG_GET, file, line); 1135 #endif 1136 1137 #ifdef DIAGNOSTIC 1138 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1139 pr_printlog(pp, pi, printf); 1140 panic("pool_get(%s): free list modified: " 1141 "magic=%x; page %p; item addr %p\n", 1142 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1143 } 1144 #endif 1145 1146 /* 1147 * Remove from item list. 1148 */ 1149 LIST_REMOVE(pi, pi_list); 1150 } 1151 pp->pr_nitems--; 1152 pp->pr_nout++; 1153 if (ph->ph_nmissing == 0) { 1154 #ifdef DIAGNOSTIC 1155 if (__predict_false(pp->pr_nidle == 0)) 1156 panic("pool_get: nidle inconsistent"); 1157 #endif 1158 pp->pr_nidle--; 1159 1160 /* 1161 * This page was previously empty. Move it to the list of 1162 * partially-full pages. This page is already curpage. 1163 */ 1164 LIST_REMOVE(ph, ph_pagelist); 1165 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1166 } 1167 ph->ph_nmissing++; 1168 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1169 #ifdef DIAGNOSTIC 1170 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1171 !LIST_EMPTY(&ph->ph_itemlist))) { 1172 pr_leave(pp); 1173 mutex_exit(&pp->pr_lock); 1174 panic("pool_get: %s: nmissing inconsistent", 1175 pp->pr_wchan); 1176 } 1177 #endif 1178 /* 1179 * This page is now full. Move it to the full list 1180 * and select a new current page. 1181 */ 1182 LIST_REMOVE(ph, ph_pagelist); 1183 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1184 pool_update_curpage(pp); 1185 } 1186 1187 pp->pr_nget++; 1188 pr_leave(pp); 1189 1190 /* 1191 * If we have a low water mark and we are now below that low 1192 * water mark, add more items to the pool. 1193 */ 1194 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1195 /* 1196 * XXX: Should we log a warning? Should we set up a timeout 1197 * to try again in a second or so? The latter could break 1198 * a caller's assumptions about interrupt protection, etc. 1199 */ 1200 } 1201 1202 mutex_exit(&pp->pr_lock); 1203 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1204 FREECHECK_OUT(&pp->pr_freecheck, v); 1205 return (v); 1206 } 1207 1208 /* 1209 * Internal version of pool_put(). Pool is already locked/entered. 1210 */ 1211 static void 1212 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1213 { 1214 struct pool_item *pi = v; 1215 struct pool_item_header *ph; 1216 1217 KASSERT(mutex_owned(&pp->pr_lock)); 1218 FREECHECK_IN(&pp->pr_freecheck, v); 1219 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1220 1221 #ifdef DIAGNOSTIC 1222 if (__predict_false(pp->pr_nout == 0)) { 1223 printf("pool %s: putting with none out\n", 1224 pp->pr_wchan); 1225 panic("pool_put"); 1226 } 1227 #endif 1228 1229 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1230 pr_printlog(pp, NULL, printf); 1231 panic("pool_put: %s: page header missing", pp->pr_wchan); 1232 } 1233 1234 /* 1235 * Return to item list. 1236 */ 1237 if (pp->pr_roflags & PR_NOTOUCH) { 1238 pr_item_notouch_put(pp, ph, v); 1239 } else { 1240 #ifdef DIAGNOSTIC 1241 pi->pi_magic = PI_MAGIC; 1242 #endif 1243 #ifdef DEBUG 1244 { 1245 int i, *ip = v; 1246 1247 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1248 *ip++ = PI_MAGIC; 1249 } 1250 } 1251 #endif 1252 1253 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1254 } 1255 KDASSERT(ph->ph_nmissing != 0); 1256 ph->ph_nmissing--; 1257 pp->pr_nput++; 1258 pp->pr_nitems++; 1259 pp->pr_nout--; 1260 1261 /* Cancel "pool empty" condition if it exists */ 1262 if (pp->pr_curpage == NULL) 1263 pp->pr_curpage = ph; 1264 1265 if (pp->pr_flags & PR_WANTED) { 1266 pp->pr_flags &= ~PR_WANTED; 1267 cv_broadcast(&pp->pr_cv); 1268 } 1269 1270 /* 1271 * If this page is now empty, do one of two things: 1272 * 1273 * (1) If we have more pages than the page high water mark, 1274 * free the page back to the system. ONLY CONSIDER 1275 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1276 * CLAIM. 1277 * 1278 * (2) Otherwise, move the page to the empty page list. 1279 * 1280 * Either way, select a new current page (so we use a partially-full 1281 * page if one is available). 1282 */ 1283 if (ph->ph_nmissing == 0) { 1284 pp->pr_nidle++; 1285 if (pp->pr_npages > pp->pr_minpages && 1286 pp->pr_npages > pp->pr_maxpages) { 1287 pr_rmpage(pp, ph, pq); 1288 } else { 1289 LIST_REMOVE(ph, ph_pagelist); 1290 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1291 1292 /* 1293 * Update the timestamp on the page. A page must 1294 * be idle for some period of time before it can 1295 * be reclaimed by the pagedaemon. This minimizes 1296 * ping-pong'ing for memory. 1297 * 1298 * note for 64-bit time_t: truncating to 32-bit is not 1299 * a problem for our usage. 1300 */ 1301 ph->ph_time = time_uptime; 1302 } 1303 pool_update_curpage(pp); 1304 } 1305 1306 /* 1307 * If the page was previously completely full, move it to the 1308 * partially-full list and make it the current page. The next 1309 * allocation will get the item from this page, instead of 1310 * further fragmenting the pool. 1311 */ 1312 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1313 LIST_REMOVE(ph, ph_pagelist); 1314 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1315 pp->pr_curpage = ph; 1316 } 1317 } 1318 1319 /* 1320 * Return resource to the pool. 1321 */ 1322 #ifdef POOL_DIAGNOSTIC 1323 void 1324 _pool_put(struct pool *pp, void *v, const char *file, long line) 1325 { 1326 struct pool_pagelist pq; 1327 1328 LIST_INIT(&pq); 1329 1330 mutex_enter(&pp->pr_lock); 1331 pr_enter(pp, file, line); 1332 1333 pr_log(pp, v, PRLOG_PUT, file, line); 1334 1335 pool_do_put(pp, v, &pq); 1336 1337 pr_leave(pp); 1338 mutex_exit(&pp->pr_lock); 1339 1340 pr_pagelist_free(pp, &pq); 1341 } 1342 #undef pool_put 1343 #endif /* POOL_DIAGNOSTIC */ 1344 1345 void 1346 pool_put(struct pool *pp, void *v) 1347 { 1348 struct pool_pagelist pq; 1349 1350 LIST_INIT(&pq); 1351 1352 mutex_enter(&pp->pr_lock); 1353 pool_do_put(pp, v, &pq); 1354 mutex_exit(&pp->pr_lock); 1355 1356 pr_pagelist_free(pp, &pq); 1357 } 1358 1359 #ifdef POOL_DIAGNOSTIC 1360 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1361 #endif 1362 1363 /* 1364 * pool_grow: grow a pool by a page. 1365 * 1366 * => called with pool locked. 1367 * => unlock and relock the pool. 1368 * => return with pool locked. 1369 */ 1370 1371 static int 1372 pool_grow(struct pool *pp, int flags) 1373 { 1374 struct pool_item_header *ph = NULL; 1375 char *cp; 1376 1377 mutex_exit(&pp->pr_lock); 1378 cp = pool_allocator_alloc(pp, flags); 1379 if (__predict_true(cp != NULL)) { 1380 ph = pool_alloc_item_header(pp, cp, flags); 1381 } 1382 if (__predict_false(cp == NULL || ph == NULL)) { 1383 if (cp != NULL) { 1384 pool_allocator_free(pp, cp); 1385 } 1386 mutex_enter(&pp->pr_lock); 1387 return ENOMEM; 1388 } 1389 1390 mutex_enter(&pp->pr_lock); 1391 pool_prime_page(pp, cp, ph); 1392 pp->pr_npagealloc++; 1393 return 0; 1394 } 1395 1396 /* 1397 * Add N items to the pool. 1398 */ 1399 int 1400 pool_prime(struct pool *pp, int n) 1401 { 1402 int newpages; 1403 int error = 0; 1404 1405 mutex_enter(&pp->pr_lock); 1406 1407 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1408 1409 while (newpages-- > 0) { 1410 error = pool_grow(pp, PR_NOWAIT); 1411 if (error) { 1412 break; 1413 } 1414 pp->pr_minpages++; 1415 } 1416 1417 if (pp->pr_minpages >= pp->pr_maxpages) 1418 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1419 1420 mutex_exit(&pp->pr_lock); 1421 return error; 1422 } 1423 1424 /* 1425 * Add a page worth of items to the pool. 1426 * 1427 * Note, we must be called with the pool descriptor LOCKED. 1428 */ 1429 static void 1430 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1431 { 1432 struct pool_item *pi; 1433 void *cp = storage; 1434 const unsigned int align = pp->pr_align; 1435 const unsigned int ioff = pp->pr_itemoffset; 1436 int n; 1437 1438 KASSERT(mutex_owned(&pp->pr_lock)); 1439 1440 #ifdef DIAGNOSTIC 1441 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1442 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1443 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1444 #endif 1445 1446 /* 1447 * Insert page header. 1448 */ 1449 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1450 LIST_INIT(&ph->ph_itemlist); 1451 ph->ph_page = storage; 1452 ph->ph_nmissing = 0; 1453 ph->ph_time = time_uptime; 1454 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1455 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1456 1457 pp->pr_nidle++; 1458 1459 /* 1460 * Color this page. 1461 */ 1462 ph->ph_off = pp->pr_curcolor; 1463 cp = (char *)cp + ph->ph_off; 1464 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1465 pp->pr_curcolor = 0; 1466 1467 /* 1468 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1469 */ 1470 if (ioff != 0) 1471 cp = (char *)cp + align - ioff; 1472 1473 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1474 1475 /* 1476 * Insert remaining chunks on the bucket list. 1477 */ 1478 n = pp->pr_itemsperpage; 1479 pp->pr_nitems += n; 1480 1481 if (pp->pr_roflags & PR_NOTOUCH) { 1482 pr_item_notouch_init(pp, ph); 1483 } else { 1484 while (n--) { 1485 pi = (struct pool_item *)cp; 1486 1487 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1488 1489 /* Insert on page list */ 1490 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1491 #ifdef DIAGNOSTIC 1492 pi->pi_magic = PI_MAGIC; 1493 #endif 1494 cp = (char *)cp + pp->pr_size; 1495 1496 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1497 } 1498 } 1499 1500 /* 1501 * If the pool was depleted, point at the new page. 1502 */ 1503 if (pp->pr_curpage == NULL) 1504 pp->pr_curpage = ph; 1505 1506 if (++pp->pr_npages > pp->pr_hiwat) 1507 pp->pr_hiwat = pp->pr_npages; 1508 } 1509 1510 /* 1511 * Used by pool_get() when nitems drops below the low water mark. This 1512 * is used to catch up pr_nitems with the low water mark. 1513 * 1514 * Note 1, we never wait for memory here, we let the caller decide what to do. 1515 * 1516 * Note 2, we must be called with the pool already locked, and we return 1517 * with it locked. 1518 */ 1519 static int 1520 pool_catchup(struct pool *pp) 1521 { 1522 int error = 0; 1523 1524 while (POOL_NEEDS_CATCHUP(pp)) { 1525 error = pool_grow(pp, PR_NOWAIT); 1526 if (error) { 1527 break; 1528 } 1529 } 1530 return error; 1531 } 1532 1533 static void 1534 pool_update_curpage(struct pool *pp) 1535 { 1536 1537 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1538 if (pp->pr_curpage == NULL) { 1539 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1540 } 1541 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1542 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1543 } 1544 1545 void 1546 pool_setlowat(struct pool *pp, int n) 1547 { 1548 1549 mutex_enter(&pp->pr_lock); 1550 1551 pp->pr_minitems = n; 1552 pp->pr_minpages = (n == 0) 1553 ? 0 1554 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1555 1556 /* Make sure we're caught up with the newly-set low water mark. */ 1557 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1558 /* 1559 * XXX: Should we log a warning? Should we set up a timeout 1560 * to try again in a second or so? The latter could break 1561 * a caller's assumptions about interrupt protection, etc. 1562 */ 1563 } 1564 1565 mutex_exit(&pp->pr_lock); 1566 } 1567 1568 void 1569 pool_sethiwat(struct pool *pp, int n) 1570 { 1571 1572 mutex_enter(&pp->pr_lock); 1573 1574 pp->pr_maxpages = (n == 0) 1575 ? 0 1576 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1577 1578 mutex_exit(&pp->pr_lock); 1579 } 1580 1581 void 1582 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1583 { 1584 1585 mutex_enter(&pp->pr_lock); 1586 1587 pp->pr_hardlimit = n; 1588 pp->pr_hardlimit_warning = warnmess; 1589 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1590 pp->pr_hardlimit_warning_last.tv_sec = 0; 1591 pp->pr_hardlimit_warning_last.tv_usec = 0; 1592 1593 /* 1594 * In-line version of pool_sethiwat(), because we don't want to 1595 * release the lock. 1596 */ 1597 pp->pr_maxpages = (n == 0) 1598 ? 0 1599 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1600 1601 mutex_exit(&pp->pr_lock); 1602 } 1603 1604 /* 1605 * Release all complete pages that have not been used recently. 1606 */ 1607 int 1608 #ifdef POOL_DIAGNOSTIC 1609 _pool_reclaim(struct pool *pp, const char *file, long line) 1610 #else 1611 pool_reclaim(struct pool *pp) 1612 #endif 1613 { 1614 struct pool_item_header *ph, *phnext; 1615 struct pool_pagelist pq; 1616 uint32_t curtime; 1617 bool klock; 1618 int rv; 1619 1620 if (pp->pr_drain_hook != NULL) { 1621 /* 1622 * The drain hook must be called with the pool unlocked. 1623 */ 1624 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1625 } 1626 1627 /* 1628 * XXXSMP Because we do not want to cause non-MPSAFE code 1629 * to block. 1630 */ 1631 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1632 pp->pr_ipl == IPL_SOFTSERIAL) { 1633 KERNEL_LOCK(1, NULL); 1634 klock = true; 1635 } else 1636 klock = false; 1637 1638 /* Reclaim items from the pool's cache (if any). */ 1639 if (pp->pr_cache != NULL) 1640 pool_cache_invalidate(pp->pr_cache); 1641 1642 if (mutex_tryenter(&pp->pr_lock) == 0) { 1643 if (klock) { 1644 KERNEL_UNLOCK_ONE(NULL); 1645 } 1646 return (0); 1647 } 1648 pr_enter(pp, file, line); 1649 1650 LIST_INIT(&pq); 1651 1652 curtime = time_uptime; 1653 1654 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1655 phnext = LIST_NEXT(ph, ph_pagelist); 1656 1657 /* Check our minimum page claim */ 1658 if (pp->pr_npages <= pp->pr_minpages) 1659 break; 1660 1661 KASSERT(ph->ph_nmissing == 0); 1662 if (curtime - ph->ph_time < pool_inactive_time 1663 && !pa_starved_p(pp->pr_alloc)) 1664 continue; 1665 1666 /* 1667 * If freeing this page would put us below 1668 * the low water mark, stop now. 1669 */ 1670 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1671 pp->pr_minitems) 1672 break; 1673 1674 pr_rmpage(pp, ph, &pq); 1675 } 1676 1677 pr_leave(pp); 1678 mutex_exit(&pp->pr_lock); 1679 1680 if (LIST_EMPTY(&pq)) 1681 rv = 0; 1682 else { 1683 pr_pagelist_free(pp, &pq); 1684 rv = 1; 1685 } 1686 1687 if (klock) { 1688 KERNEL_UNLOCK_ONE(NULL); 1689 } 1690 1691 return (rv); 1692 } 1693 1694 /* 1695 * Drain pools, one at a time. This is a two stage process; 1696 * drain_start kicks off a cross call to drain CPU-level caches 1697 * if the pool has an associated pool_cache. drain_end waits 1698 * for those cross calls to finish, and then drains the cache 1699 * (if any) and pool. 1700 * 1701 * Note, must never be called from interrupt context. 1702 */ 1703 void 1704 pool_drain_start(struct pool **ppp, uint64_t *wp) 1705 { 1706 struct pool *pp; 1707 1708 KASSERT(!TAILQ_EMPTY(&pool_head)); 1709 1710 pp = NULL; 1711 1712 /* Find next pool to drain, and add a reference. */ 1713 mutex_enter(&pool_head_lock); 1714 do { 1715 if (drainpp == NULL) { 1716 drainpp = TAILQ_FIRST(&pool_head); 1717 } 1718 if (drainpp != NULL) { 1719 pp = drainpp; 1720 drainpp = TAILQ_NEXT(pp, pr_poollist); 1721 } 1722 /* 1723 * Skip completely idle pools. We depend on at least 1724 * one pool in the system being active. 1725 */ 1726 } while (pp == NULL || pp->pr_npages == 0); 1727 pp->pr_refcnt++; 1728 mutex_exit(&pool_head_lock); 1729 1730 /* If there is a pool_cache, drain CPU level caches. */ 1731 *ppp = pp; 1732 if (pp->pr_cache != NULL) { 1733 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1734 pp->pr_cache, NULL); 1735 } 1736 } 1737 1738 void 1739 pool_drain_end(struct pool *pp, uint64_t where) 1740 { 1741 1742 if (pp == NULL) 1743 return; 1744 1745 KASSERT(pp->pr_refcnt > 0); 1746 1747 /* Wait for remote draining to complete. */ 1748 if (pp->pr_cache != NULL) 1749 xc_wait(where); 1750 1751 /* Drain the cache (if any) and pool.. */ 1752 pool_reclaim(pp); 1753 1754 /* Finally, unlock the pool. */ 1755 mutex_enter(&pool_head_lock); 1756 pp->pr_refcnt--; 1757 cv_broadcast(&pool_busy); 1758 mutex_exit(&pool_head_lock); 1759 } 1760 1761 /* 1762 * Diagnostic helpers. 1763 */ 1764 void 1765 pool_print(struct pool *pp, const char *modif) 1766 { 1767 1768 pool_print1(pp, modif, printf); 1769 } 1770 1771 void 1772 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1773 { 1774 struct pool *pp; 1775 1776 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1777 pool_printit(pp, modif, pr); 1778 } 1779 } 1780 1781 void 1782 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1783 { 1784 1785 if (pp == NULL) { 1786 (*pr)("Must specify a pool to print.\n"); 1787 return; 1788 } 1789 1790 pool_print1(pp, modif, pr); 1791 } 1792 1793 static void 1794 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1795 void (*pr)(const char *, ...)) 1796 { 1797 struct pool_item_header *ph; 1798 #ifdef DIAGNOSTIC 1799 struct pool_item *pi; 1800 #endif 1801 1802 LIST_FOREACH(ph, pl, ph_pagelist) { 1803 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1804 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1805 #ifdef DIAGNOSTIC 1806 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1807 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1808 if (pi->pi_magic != PI_MAGIC) { 1809 (*pr)("\t\t\titem %p, magic 0x%x\n", 1810 pi, pi->pi_magic); 1811 } 1812 } 1813 } 1814 #endif 1815 } 1816 } 1817 1818 static void 1819 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1820 { 1821 struct pool_item_header *ph; 1822 pool_cache_t pc; 1823 pcg_t *pcg; 1824 pool_cache_cpu_t *cc; 1825 uint64_t cpuhit, cpumiss; 1826 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1827 char c; 1828 1829 while ((c = *modif++) != '\0') { 1830 if (c == 'l') 1831 print_log = 1; 1832 if (c == 'p') 1833 print_pagelist = 1; 1834 if (c == 'c') 1835 print_cache = 1; 1836 } 1837 1838 if ((pc = pp->pr_cache) != NULL) { 1839 (*pr)("POOL CACHE"); 1840 } else { 1841 (*pr)("POOL"); 1842 } 1843 1844 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1845 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1846 pp->pr_roflags); 1847 (*pr)("\talloc %p\n", pp->pr_alloc); 1848 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1849 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1850 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1851 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1852 1853 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1854 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1855 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1856 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1857 1858 if (print_pagelist == 0) 1859 goto skip_pagelist; 1860 1861 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1862 (*pr)("\n\tempty page list:\n"); 1863 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1864 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1865 (*pr)("\n\tfull page list:\n"); 1866 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1867 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1868 (*pr)("\n\tpartial-page list:\n"); 1869 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1870 1871 if (pp->pr_curpage == NULL) 1872 (*pr)("\tno current page\n"); 1873 else 1874 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1875 1876 skip_pagelist: 1877 if (print_log == 0) 1878 goto skip_log; 1879 1880 (*pr)("\n"); 1881 if ((pp->pr_roflags & PR_LOGGING) == 0) 1882 (*pr)("\tno log\n"); 1883 else { 1884 pr_printlog(pp, NULL, pr); 1885 } 1886 1887 skip_log: 1888 1889 #define PR_GROUPLIST(pcg) \ 1890 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1891 for (i = 0; i < pcg->pcg_size; i++) { \ 1892 if (pcg->pcg_objects[i].pcgo_pa != \ 1893 POOL_PADDR_INVALID) { \ 1894 (*pr)("\t\t\t%p, 0x%llx\n", \ 1895 pcg->pcg_objects[i].pcgo_va, \ 1896 (unsigned long long) \ 1897 pcg->pcg_objects[i].pcgo_pa); \ 1898 } else { \ 1899 (*pr)("\t\t\t%p\n", \ 1900 pcg->pcg_objects[i].pcgo_va); \ 1901 } \ 1902 } 1903 1904 if (pc != NULL) { 1905 cpuhit = 0; 1906 cpumiss = 0; 1907 for (i = 0; i < MAXCPUS; i++) { 1908 if ((cc = pc->pc_cpus[i]) == NULL) 1909 continue; 1910 cpuhit += cc->cc_hits; 1911 cpumiss += cc->cc_misses; 1912 } 1913 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1914 (*pr)("\tcache layer hits %llu misses %llu\n", 1915 pc->pc_hits, pc->pc_misses); 1916 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1917 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1918 pc->pc_contended); 1919 (*pr)("\tcache layer empty groups %u full groups %u\n", 1920 pc->pc_nempty, pc->pc_nfull); 1921 if (print_cache) { 1922 (*pr)("\tfull cache groups:\n"); 1923 for (pcg = pc->pc_fullgroups; pcg != NULL; 1924 pcg = pcg->pcg_next) { 1925 PR_GROUPLIST(pcg); 1926 } 1927 (*pr)("\tempty cache groups:\n"); 1928 for (pcg = pc->pc_emptygroups; pcg != NULL; 1929 pcg = pcg->pcg_next) { 1930 PR_GROUPLIST(pcg); 1931 } 1932 } 1933 } 1934 #undef PR_GROUPLIST 1935 1936 pr_enter_check(pp, pr); 1937 } 1938 1939 static int 1940 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1941 { 1942 struct pool_item *pi; 1943 void *page; 1944 int n; 1945 1946 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1947 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1948 if (page != ph->ph_page && 1949 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1950 if (label != NULL) 1951 printf("%s: ", label); 1952 printf("pool(%p:%s): page inconsistency: page %p;" 1953 " at page head addr %p (p %p)\n", pp, 1954 pp->pr_wchan, ph->ph_page, 1955 ph, page); 1956 return 1; 1957 } 1958 } 1959 1960 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1961 return 0; 1962 1963 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1964 pi != NULL; 1965 pi = LIST_NEXT(pi,pi_list), n++) { 1966 1967 #ifdef DIAGNOSTIC 1968 if (pi->pi_magic != PI_MAGIC) { 1969 if (label != NULL) 1970 printf("%s: ", label); 1971 printf("pool(%s): free list modified: magic=%x;" 1972 " page %p; item ordinal %d; addr %p\n", 1973 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1974 n, pi); 1975 panic("pool"); 1976 } 1977 #endif 1978 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1979 continue; 1980 } 1981 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1982 if (page == ph->ph_page) 1983 continue; 1984 1985 if (label != NULL) 1986 printf("%s: ", label); 1987 printf("pool(%p:%s): page inconsistency: page %p;" 1988 " item ordinal %d; addr %p (p %p)\n", pp, 1989 pp->pr_wchan, ph->ph_page, 1990 n, pi, page); 1991 return 1; 1992 } 1993 return 0; 1994 } 1995 1996 1997 int 1998 pool_chk(struct pool *pp, const char *label) 1999 { 2000 struct pool_item_header *ph; 2001 int r = 0; 2002 2003 mutex_enter(&pp->pr_lock); 2004 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2005 r = pool_chk_page(pp, label, ph); 2006 if (r) { 2007 goto out; 2008 } 2009 } 2010 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2011 r = pool_chk_page(pp, label, ph); 2012 if (r) { 2013 goto out; 2014 } 2015 } 2016 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2017 r = pool_chk_page(pp, label, ph); 2018 if (r) { 2019 goto out; 2020 } 2021 } 2022 2023 out: 2024 mutex_exit(&pp->pr_lock); 2025 return (r); 2026 } 2027 2028 /* 2029 * pool_cache_init: 2030 * 2031 * Initialize a pool cache. 2032 */ 2033 pool_cache_t 2034 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2035 const char *wchan, struct pool_allocator *palloc, int ipl, 2036 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2037 { 2038 pool_cache_t pc; 2039 2040 pc = pool_get(&cache_pool, PR_WAITOK); 2041 if (pc == NULL) 2042 return NULL; 2043 2044 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2045 palloc, ipl, ctor, dtor, arg); 2046 2047 return pc; 2048 } 2049 2050 /* 2051 * pool_cache_bootstrap: 2052 * 2053 * Kernel-private version of pool_cache_init(). The caller 2054 * provides initial storage. 2055 */ 2056 void 2057 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2058 u_int align_offset, u_int flags, const char *wchan, 2059 struct pool_allocator *palloc, int ipl, 2060 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2061 void *arg) 2062 { 2063 CPU_INFO_ITERATOR cii; 2064 pool_cache_t pc1; 2065 struct cpu_info *ci; 2066 struct pool *pp; 2067 2068 pp = &pc->pc_pool; 2069 if (palloc == NULL && ipl == IPL_NONE) 2070 palloc = &pool_allocator_nointr; 2071 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2072 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2073 2074 if (ctor == NULL) { 2075 ctor = (int (*)(void *, void *, int))nullop; 2076 } 2077 if (dtor == NULL) { 2078 dtor = (void (*)(void *, void *))nullop; 2079 } 2080 2081 pc->pc_emptygroups = NULL; 2082 pc->pc_fullgroups = NULL; 2083 pc->pc_partgroups = NULL; 2084 pc->pc_ctor = ctor; 2085 pc->pc_dtor = dtor; 2086 pc->pc_arg = arg; 2087 pc->pc_hits = 0; 2088 pc->pc_misses = 0; 2089 pc->pc_nempty = 0; 2090 pc->pc_npart = 0; 2091 pc->pc_nfull = 0; 2092 pc->pc_contended = 0; 2093 pc->pc_refcnt = 0; 2094 pc->pc_freecheck = NULL; 2095 2096 if ((flags & PR_LARGECACHE) != 0) { 2097 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2098 pc->pc_pcgpool = &pcg_large_pool; 2099 } else { 2100 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2101 pc->pc_pcgpool = &pcg_normal_pool; 2102 } 2103 2104 /* Allocate per-CPU caches. */ 2105 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2106 pc->pc_ncpu = 0; 2107 if (ncpu < 2) { 2108 /* XXX For sparc: boot CPU is not attached yet. */ 2109 pool_cache_cpu_init1(curcpu(), pc); 2110 } else { 2111 for (CPU_INFO_FOREACH(cii, ci)) { 2112 pool_cache_cpu_init1(ci, pc); 2113 } 2114 } 2115 2116 /* Add to list of all pools. */ 2117 if (__predict_true(!cold)) 2118 mutex_enter(&pool_head_lock); 2119 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2120 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2121 break; 2122 } 2123 if (pc1 == NULL) 2124 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2125 else 2126 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2127 if (__predict_true(!cold)) 2128 mutex_exit(&pool_head_lock); 2129 2130 membar_sync(); 2131 pp->pr_cache = pc; 2132 } 2133 2134 /* 2135 * pool_cache_destroy: 2136 * 2137 * Destroy a pool cache. 2138 */ 2139 void 2140 pool_cache_destroy(pool_cache_t pc) 2141 { 2142 struct pool *pp = &pc->pc_pool; 2143 u_int i; 2144 2145 /* Remove it from the global list. */ 2146 mutex_enter(&pool_head_lock); 2147 while (pc->pc_refcnt != 0) 2148 cv_wait(&pool_busy, &pool_head_lock); 2149 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2150 mutex_exit(&pool_head_lock); 2151 2152 /* First, invalidate the entire cache. */ 2153 pool_cache_invalidate(pc); 2154 2155 /* Disassociate it from the pool. */ 2156 mutex_enter(&pp->pr_lock); 2157 pp->pr_cache = NULL; 2158 mutex_exit(&pp->pr_lock); 2159 2160 /* Destroy per-CPU data */ 2161 for (i = 0; i < MAXCPUS; i++) 2162 pool_cache_invalidate_cpu(pc, i); 2163 2164 /* Finally, destroy it. */ 2165 mutex_destroy(&pc->pc_lock); 2166 pool_destroy(pp); 2167 pool_put(&cache_pool, pc); 2168 } 2169 2170 /* 2171 * pool_cache_cpu_init1: 2172 * 2173 * Called for each pool_cache whenever a new CPU is attached. 2174 */ 2175 static void 2176 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2177 { 2178 pool_cache_cpu_t *cc; 2179 int index; 2180 2181 index = ci->ci_index; 2182 2183 KASSERT(index < MAXCPUS); 2184 2185 if ((cc = pc->pc_cpus[index]) != NULL) { 2186 KASSERT(cc->cc_cpuindex == index); 2187 return; 2188 } 2189 2190 /* 2191 * The first CPU is 'free'. This needs to be the case for 2192 * bootstrap - we may not be able to allocate yet. 2193 */ 2194 if (pc->pc_ncpu == 0) { 2195 cc = &pc->pc_cpu0; 2196 pc->pc_ncpu = 1; 2197 } else { 2198 mutex_enter(&pc->pc_lock); 2199 pc->pc_ncpu++; 2200 mutex_exit(&pc->pc_lock); 2201 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2202 } 2203 2204 cc->cc_ipl = pc->pc_pool.pr_ipl; 2205 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2206 cc->cc_cache = pc; 2207 cc->cc_cpuindex = index; 2208 cc->cc_hits = 0; 2209 cc->cc_misses = 0; 2210 cc->cc_current = __UNCONST(&pcg_dummy); 2211 cc->cc_previous = __UNCONST(&pcg_dummy); 2212 2213 pc->pc_cpus[index] = cc; 2214 } 2215 2216 /* 2217 * pool_cache_cpu_init: 2218 * 2219 * Called whenever a new CPU is attached. 2220 */ 2221 void 2222 pool_cache_cpu_init(struct cpu_info *ci) 2223 { 2224 pool_cache_t pc; 2225 2226 mutex_enter(&pool_head_lock); 2227 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2228 pc->pc_refcnt++; 2229 mutex_exit(&pool_head_lock); 2230 2231 pool_cache_cpu_init1(ci, pc); 2232 2233 mutex_enter(&pool_head_lock); 2234 pc->pc_refcnt--; 2235 cv_broadcast(&pool_busy); 2236 } 2237 mutex_exit(&pool_head_lock); 2238 } 2239 2240 /* 2241 * pool_cache_reclaim: 2242 * 2243 * Reclaim memory from a pool cache. 2244 */ 2245 bool 2246 pool_cache_reclaim(pool_cache_t pc) 2247 { 2248 2249 return pool_reclaim(&pc->pc_pool); 2250 } 2251 2252 static void 2253 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2254 { 2255 2256 (*pc->pc_dtor)(pc->pc_arg, object); 2257 pool_put(&pc->pc_pool, object); 2258 } 2259 2260 /* 2261 * pool_cache_destruct_object: 2262 * 2263 * Force destruction of an object and its release back into 2264 * the pool. 2265 */ 2266 void 2267 pool_cache_destruct_object(pool_cache_t pc, void *object) 2268 { 2269 2270 FREECHECK_IN(&pc->pc_freecheck, object); 2271 2272 pool_cache_destruct_object1(pc, object); 2273 } 2274 2275 /* 2276 * pool_cache_invalidate_groups: 2277 * 2278 * Invalidate a chain of groups and destruct all objects. 2279 */ 2280 static void 2281 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2282 { 2283 void *object; 2284 pcg_t *next; 2285 int i; 2286 2287 for (; pcg != NULL; pcg = next) { 2288 next = pcg->pcg_next; 2289 2290 for (i = 0; i < pcg->pcg_avail; i++) { 2291 object = pcg->pcg_objects[i].pcgo_va; 2292 pool_cache_destruct_object1(pc, object); 2293 } 2294 2295 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2296 pool_put(&pcg_large_pool, pcg); 2297 } else { 2298 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2299 pool_put(&pcg_normal_pool, pcg); 2300 } 2301 } 2302 } 2303 2304 /* 2305 * pool_cache_invalidate: 2306 * 2307 * Invalidate a pool cache (destruct and release all of the 2308 * cached objects). Does not reclaim objects from the pool. 2309 * 2310 * Note: For pool caches that provide constructed objects, there 2311 * is an assumption that another level of synchronization is occurring 2312 * between the input to the constructor and the cache invalidation. 2313 */ 2314 void 2315 pool_cache_invalidate(pool_cache_t pc) 2316 { 2317 pcg_t *full, *empty, *part; 2318 #if 0 2319 uint64_t where; 2320 2321 if (ncpu < 2 || !mp_online) { 2322 /* 2323 * We might be called early enough in the boot process 2324 * for the CPU data structures to not be fully initialized. 2325 * In this case, simply gather the local CPU's cache now 2326 * since it will be the only one running. 2327 */ 2328 pool_cache_xcall(pc); 2329 } else { 2330 /* 2331 * Gather all of the CPU-specific caches into the 2332 * global cache. 2333 */ 2334 where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL); 2335 xc_wait(where); 2336 } 2337 #endif 2338 mutex_enter(&pc->pc_lock); 2339 full = pc->pc_fullgroups; 2340 empty = pc->pc_emptygroups; 2341 part = pc->pc_partgroups; 2342 pc->pc_fullgroups = NULL; 2343 pc->pc_emptygroups = NULL; 2344 pc->pc_partgroups = NULL; 2345 pc->pc_nfull = 0; 2346 pc->pc_nempty = 0; 2347 pc->pc_npart = 0; 2348 mutex_exit(&pc->pc_lock); 2349 2350 pool_cache_invalidate_groups(pc, full); 2351 pool_cache_invalidate_groups(pc, empty); 2352 pool_cache_invalidate_groups(pc, part); 2353 } 2354 2355 /* 2356 * pool_cache_invalidate_cpu: 2357 * 2358 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2359 * identified by its associated index. 2360 * It is caller's responsibility to ensure that no operation is 2361 * taking place on this pool cache while doing this invalidation. 2362 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2363 * pool cached objects from a CPU different from the one currently running 2364 * may result in an undefined behaviour. 2365 */ 2366 static void 2367 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2368 { 2369 2370 pool_cache_cpu_t *cc; 2371 pcg_t *pcg; 2372 2373 if ((cc = pc->pc_cpus[index]) == NULL) 2374 return; 2375 2376 if ((pcg = cc->cc_current) != &pcg_dummy) { 2377 pcg->pcg_next = NULL; 2378 pool_cache_invalidate_groups(pc, pcg); 2379 } 2380 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2381 pcg->pcg_next = NULL; 2382 pool_cache_invalidate_groups(pc, pcg); 2383 } 2384 if (cc != &pc->pc_cpu0) 2385 pool_put(&cache_cpu_pool, cc); 2386 2387 } 2388 2389 void 2390 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2391 { 2392 2393 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2394 } 2395 2396 void 2397 pool_cache_setlowat(pool_cache_t pc, int n) 2398 { 2399 2400 pool_setlowat(&pc->pc_pool, n); 2401 } 2402 2403 void 2404 pool_cache_sethiwat(pool_cache_t pc, int n) 2405 { 2406 2407 pool_sethiwat(&pc->pc_pool, n); 2408 } 2409 2410 void 2411 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2412 { 2413 2414 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2415 } 2416 2417 static bool __noinline 2418 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2419 paddr_t *pap, int flags) 2420 { 2421 pcg_t *pcg, *cur; 2422 uint64_t ncsw; 2423 pool_cache_t pc; 2424 void *object; 2425 2426 KASSERT(cc->cc_current->pcg_avail == 0); 2427 KASSERT(cc->cc_previous->pcg_avail == 0); 2428 2429 pc = cc->cc_cache; 2430 cc->cc_misses++; 2431 2432 /* 2433 * Nothing was available locally. Try and grab a group 2434 * from the cache. 2435 */ 2436 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2437 ncsw = curlwp->l_ncsw; 2438 mutex_enter(&pc->pc_lock); 2439 pc->pc_contended++; 2440 2441 /* 2442 * If we context switched while locking, then 2443 * our view of the per-CPU data is invalid: 2444 * retry. 2445 */ 2446 if (curlwp->l_ncsw != ncsw) { 2447 mutex_exit(&pc->pc_lock); 2448 return true; 2449 } 2450 } 2451 2452 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2453 /* 2454 * If there's a full group, release our empty 2455 * group back to the cache. Install the full 2456 * group as cc_current and return. 2457 */ 2458 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2459 KASSERT(cur->pcg_avail == 0); 2460 cur->pcg_next = pc->pc_emptygroups; 2461 pc->pc_emptygroups = cur; 2462 pc->pc_nempty++; 2463 } 2464 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2465 cc->cc_current = pcg; 2466 pc->pc_fullgroups = pcg->pcg_next; 2467 pc->pc_hits++; 2468 pc->pc_nfull--; 2469 mutex_exit(&pc->pc_lock); 2470 return true; 2471 } 2472 2473 /* 2474 * Nothing available locally or in cache. Take the slow 2475 * path: fetch a new object from the pool and construct 2476 * it. 2477 */ 2478 pc->pc_misses++; 2479 mutex_exit(&pc->pc_lock); 2480 splx(s); 2481 2482 object = pool_get(&pc->pc_pool, flags); 2483 *objectp = object; 2484 if (__predict_false(object == NULL)) 2485 return false; 2486 2487 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2488 pool_put(&pc->pc_pool, object); 2489 *objectp = NULL; 2490 return false; 2491 } 2492 2493 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2494 (pc->pc_pool.pr_align - 1)) == 0); 2495 2496 if (pap != NULL) { 2497 #ifdef POOL_VTOPHYS 2498 *pap = POOL_VTOPHYS(object); 2499 #else 2500 *pap = POOL_PADDR_INVALID; 2501 #endif 2502 } 2503 2504 FREECHECK_OUT(&pc->pc_freecheck, object); 2505 return false; 2506 } 2507 2508 /* 2509 * pool_cache_get{,_paddr}: 2510 * 2511 * Get an object from a pool cache (optionally returning 2512 * the physical address of the object). 2513 */ 2514 void * 2515 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2516 { 2517 pool_cache_cpu_t *cc; 2518 pcg_t *pcg; 2519 void *object; 2520 int s; 2521 2522 #ifdef LOCKDEBUG 2523 if (flags & PR_WAITOK) { 2524 ASSERT_SLEEPABLE(); 2525 } 2526 #endif 2527 2528 /* Lock out interrupts and disable preemption. */ 2529 s = splvm(); 2530 while (/* CONSTCOND */ true) { 2531 /* Try and allocate an object from the current group. */ 2532 cc = pc->pc_cpus[curcpu()->ci_index]; 2533 KASSERT(cc->cc_cache == pc); 2534 pcg = cc->cc_current; 2535 if (__predict_true(pcg->pcg_avail > 0)) { 2536 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2537 if (__predict_false(pap != NULL)) 2538 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2539 #if defined(DIAGNOSTIC) 2540 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2541 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2542 KASSERT(object != NULL); 2543 #endif 2544 cc->cc_hits++; 2545 splx(s); 2546 FREECHECK_OUT(&pc->pc_freecheck, object); 2547 return object; 2548 } 2549 2550 /* 2551 * That failed. If the previous group isn't empty, swap 2552 * it with the current group and allocate from there. 2553 */ 2554 pcg = cc->cc_previous; 2555 if (__predict_true(pcg->pcg_avail > 0)) { 2556 cc->cc_previous = cc->cc_current; 2557 cc->cc_current = pcg; 2558 continue; 2559 } 2560 2561 /* 2562 * Can't allocate from either group: try the slow path. 2563 * If get_slow() allocated an object for us, or if 2564 * no more objects are available, it will return false. 2565 * Otherwise, we need to retry. 2566 */ 2567 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2568 break; 2569 } 2570 2571 return object; 2572 } 2573 2574 static bool __noinline 2575 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2576 { 2577 pcg_t *pcg, *cur; 2578 uint64_t ncsw; 2579 pool_cache_t pc; 2580 2581 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2582 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2583 2584 pc = cc->cc_cache; 2585 pcg = NULL; 2586 cc->cc_misses++; 2587 2588 /* 2589 * If there are no empty groups in the cache then allocate one 2590 * while still unlocked. 2591 */ 2592 if (__predict_false(pc->pc_emptygroups == NULL)) { 2593 if (__predict_true(!pool_cache_disable)) { 2594 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2595 } 2596 if (__predict_true(pcg != NULL)) { 2597 pcg->pcg_avail = 0; 2598 pcg->pcg_size = pc->pc_pcgsize; 2599 } 2600 } 2601 2602 /* Lock the cache. */ 2603 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2604 ncsw = curlwp->l_ncsw; 2605 mutex_enter(&pc->pc_lock); 2606 pc->pc_contended++; 2607 2608 /* 2609 * If we context switched while locking, then our view of 2610 * the per-CPU data is invalid: retry. 2611 */ 2612 if (__predict_false(curlwp->l_ncsw != ncsw)) { 2613 mutex_exit(&pc->pc_lock); 2614 if (pcg != NULL) { 2615 pool_put(pc->pc_pcgpool, pcg); 2616 } 2617 return true; 2618 } 2619 } 2620 2621 /* If there are no empty groups in the cache then allocate one. */ 2622 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2623 pcg = pc->pc_emptygroups; 2624 pc->pc_emptygroups = pcg->pcg_next; 2625 pc->pc_nempty--; 2626 } 2627 2628 /* 2629 * If there's a empty group, release our full group back 2630 * to the cache. Install the empty group to the local CPU 2631 * and return. 2632 */ 2633 if (pcg != NULL) { 2634 KASSERT(pcg->pcg_avail == 0); 2635 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2636 cc->cc_previous = pcg; 2637 } else { 2638 cur = cc->cc_current; 2639 if (__predict_true(cur != &pcg_dummy)) { 2640 KASSERT(cur->pcg_avail == cur->pcg_size); 2641 cur->pcg_next = pc->pc_fullgroups; 2642 pc->pc_fullgroups = cur; 2643 pc->pc_nfull++; 2644 } 2645 cc->cc_current = pcg; 2646 } 2647 pc->pc_hits++; 2648 mutex_exit(&pc->pc_lock); 2649 return true; 2650 } 2651 2652 /* 2653 * Nothing available locally or in cache, and we didn't 2654 * allocate an empty group. Take the slow path and destroy 2655 * the object here and now. 2656 */ 2657 pc->pc_misses++; 2658 mutex_exit(&pc->pc_lock); 2659 splx(s); 2660 pool_cache_destruct_object(pc, object); 2661 2662 return false; 2663 } 2664 2665 /* 2666 * pool_cache_put{,_paddr}: 2667 * 2668 * Put an object back to the pool cache (optionally caching the 2669 * physical address of the object). 2670 */ 2671 void 2672 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2673 { 2674 pool_cache_cpu_t *cc; 2675 pcg_t *pcg; 2676 int s; 2677 2678 KASSERT(object != NULL); 2679 FREECHECK_IN(&pc->pc_freecheck, object); 2680 2681 /* Lock out interrupts and disable preemption. */ 2682 s = splvm(); 2683 while (/* CONSTCOND */ true) { 2684 /* If the current group isn't full, release it there. */ 2685 cc = pc->pc_cpus[curcpu()->ci_index]; 2686 KASSERT(cc->cc_cache == pc); 2687 pcg = cc->cc_current; 2688 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2689 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2690 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2691 pcg->pcg_avail++; 2692 cc->cc_hits++; 2693 splx(s); 2694 return; 2695 } 2696 2697 /* 2698 * That failed. If the previous group isn't full, swap 2699 * it with the current group and try again. 2700 */ 2701 pcg = cc->cc_previous; 2702 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2703 cc->cc_previous = cc->cc_current; 2704 cc->cc_current = pcg; 2705 continue; 2706 } 2707 2708 /* 2709 * Can't free to either group: try the slow path. 2710 * If put_slow() releases the object for us, it 2711 * will return false. Otherwise we need to retry. 2712 */ 2713 if (!pool_cache_put_slow(cc, s, object)) 2714 break; 2715 } 2716 } 2717 2718 /* 2719 * pool_cache_xcall: 2720 * 2721 * Transfer objects from the per-CPU cache to the global cache. 2722 * Run within a cross-call thread. 2723 */ 2724 static void 2725 pool_cache_xcall(pool_cache_t pc) 2726 { 2727 pool_cache_cpu_t *cc; 2728 pcg_t *prev, *cur, **list; 2729 int s; 2730 2731 s = splvm(); 2732 mutex_enter(&pc->pc_lock); 2733 cc = pc->pc_cpus[curcpu()->ci_index]; 2734 cur = cc->cc_current; 2735 cc->cc_current = __UNCONST(&pcg_dummy); 2736 prev = cc->cc_previous; 2737 cc->cc_previous = __UNCONST(&pcg_dummy); 2738 if (cur != &pcg_dummy) { 2739 if (cur->pcg_avail == cur->pcg_size) { 2740 list = &pc->pc_fullgroups; 2741 pc->pc_nfull++; 2742 } else if (cur->pcg_avail == 0) { 2743 list = &pc->pc_emptygroups; 2744 pc->pc_nempty++; 2745 } else { 2746 list = &pc->pc_partgroups; 2747 pc->pc_npart++; 2748 } 2749 cur->pcg_next = *list; 2750 *list = cur; 2751 } 2752 if (prev != &pcg_dummy) { 2753 if (prev->pcg_avail == prev->pcg_size) { 2754 list = &pc->pc_fullgroups; 2755 pc->pc_nfull++; 2756 } else if (prev->pcg_avail == 0) { 2757 list = &pc->pc_emptygroups; 2758 pc->pc_nempty++; 2759 } else { 2760 list = &pc->pc_partgroups; 2761 pc->pc_npart++; 2762 } 2763 prev->pcg_next = *list; 2764 *list = prev; 2765 } 2766 mutex_exit(&pc->pc_lock); 2767 splx(s); 2768 } 2769 2770 /* 2771 * Pool backend allocators. 2772 * 2773 * Each pool has a backend allocator that handles allocation, deallocation, 2774 * and any additional draining that might be needed. 2775 * 2776 * We provide two standard allocators: 2777 * 2778 * pool_allocator_kmem - the default when no allocator is specified 2779 * 2780 * pool_allocator_nointr - used for pools that will not be accessed 2781 * in interrupt context. 2782 */ 2783 void *pool_page_alloc(struct pool *, int); 2784 void pool_page_free(struct pool *, void *); 2785 2786 #ifdef POOL_SUBPAGE 2787 struct pool_allocator pool_allocator_kmem_fullpage = { 2788 pool_page_alloc, pool_page_free, 0, 2789 .pa_backingmapptr = &kmem_map, 2790 }; 2791 #else 2792 struct pool_allocator pool_allocator_kmem = { 2793 pool_page_alloc, pool_page_free, 0, 2794 .pa_backingmapptr = &kmem_map, 2795 }; 2796 #endif 2797 2798 void *pool_page_alloc_nointr(struct pool *, int); 2799 void pool_page_free_nointr(struct pool *, void *); 2800 2801 #ifdef POOL_SUBPAGE 2802 struct pool_allocator pool_allocator_nointr_fullpage = { 2803 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2804 .pa_backingmapptr = &kernel_map, 2805 }; 2806 #else 2807 struct pool_allocator pool_allocator_nointr = { 2808 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2809 .pa_backingmapptr = &kernel_map, 2810 }; 2811 #endif 2812 2813 #ifdef POOL_SUBPAGE 2814 void *pool_subpage_alloc(struct pool *, int); 2815 void pool_subpage_free(struct pool *, void *); 2816 2817 struct pool_allocator pool_allocator_kmem = { 2818 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2819 .pa_backingmapptr = &kmem_map, 2820 }; 2821 2822 void *pool_subpage_alloc_nointr(struct pool *, int); 2823 void pool_subpage_free_nointr(struct pool *, void *); 2824 2825 struct pool_allocator pool_allocator_nointr = { 2826 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2827 .pa_backingmapptr = &kmem_map, 2828 }; 2829 #endif /* POOL_SUBPAGE */ 2830 2831 static void * 2832 pool_allocator_alloc(struct pool *pp, int flags) 2833 { 2834 struct pool_allocator *pa = pp->pr_alloc; 2835 void *res; 2836 2837 res = (*pa->pa_alloc)(pp, flags); 2838 if (res == NULL && (flags & PR_WAITOK) == 0) { 2839 /* 2840 * We only run the drain hook here if PR_NOWAIT. 2841 * In other cases, the hook will be run in 2842 * pool_reclaim(). 2843 */ 2844 if (pp->pr_drain_hook != NULL) { 2845 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2846 res = (*pa->pa_alloc)(pp, flags); 2847 } 2848 } 2849 return res; 2850 } 2851 2852 static void 2853 pool_allocator_free(struct pool *pp, void *v) 2854 { 2855 struct pool_allocator *pa = pp->pr_alloc; 2856 2857 (*pa->pa_free)(pp, v); 2858 } 2859 2860 void * 2861 pool_page_alloc(struct pool *pp, int flags) 2862 { 2863 bool waitok = (flags & PR_WAITOK) ? true : false; 2864 2865 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2866 } 2867 2868 void 2869 pool_page_free(struct pool *pp, void *v) 2870 { 2871 2872 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2873 } 2874 2875 static void * 2876 pool_page_alloc_meta(struct pool *pp, int flags) 2877 { 2878 bool waitok = (flags & PR_WAITOK) ? true : false; 2879 2880 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2881 } 2882 2883 static void 2884 pool_page_free_meta(struct pool *pp, void *v) 2885 { 2886 2887 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2888 } 2889 2890 #ifdef POOL_SUBPAGE 2891 /* Sub-page allocator, for machines with large hardware pages. */ 2892 void * 2893 pool_subpage_alloc(struct pool *pp, int flags) 2894 { 2895 return pool_get(&psppool, flags); 2896 } 2897 2898 void 2899 pool_subpage_free(struct pool *pp, void *v) 2900 { 2901 pool_put(&psppool, v); 2902 } 2903 2904 /* We don't provide a real nointr allocator. Maybe later. */ 2905 void * 2906 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2907 { 2908 2909 return (pool_subpage_alloc(pp, flags)); 2910 } 2911 2912 void 2913 pool_subpage_free_nointr(struct pool *pp, void *v) 2914 { 2915 2916 pool_subpage_free(pp, v); 2917 } 2918 #endif /* POOL_SUBPAGE */ 2919 void * 2920 pool_page_alloc_nointr(struct pool *pp, int flags) 2921 { 2922 bool waitok = (flags & PR_WAITOK) ? true : false; 2923 2924 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2925 } 2926 2927 void 2928 pool_page_free_nointr(struct pool *pp, void *v) 2929 { 2930 2931 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2932 } 2933 2934 #if defined(DDB) 2935 static bool 2936 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2937 { 2938 2939 return (uintptr_t)ph->ph_page <= addr && 2940 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2941 } 2942 2943 static bool 2944 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2945 { 2946 2947 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2948 } 2949 2950 static bool 2951 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2952 { 2953 int i; 2954 2955 if (pcg == NULL) { 2956 return false; 2957 } 2958 for (i = 0; i < pcg->pcg_avail; i++) { 2959 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2960 return true; 2961 } 2962 } 2963 return false; 2964 } 2965 2966 static bool 2967 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2968 { 2969 2970 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2971 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2972 pool_item_bitmap_t *bitmap = 2973 ph->ph_bitmap + (idx / BITMAP_SIZE); 2974 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2975 2976 return (*bitmap & mask) == 0; 2977 } else { 2978 struct pool_item *pi; 2979 2980 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2981 if (pool_in_item(pp, pi, addr)) { 2982 return false; 2983 } 2984 } 2985 return true; 2986 } 2987 } 2988 2989 void 2990 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2991 { 2992 struct pool *pp; 2993 2994 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2995 struct pool_item_header *ph; 2996 uintptr_t item; 2997 bool allocated = true; 2998 bool incache = false; 2999 bool incpucache = false; 3000 char cpucachestr[32]; 3001 3002 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3003 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3004 if (pool_in_page(pp, ph, addr)) { 3005 goto found; 3006 } 3007 } 3008 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3009 if (pool_in_page(pp, ph, addr)) { 3010 allocated = 3011 pool_allocated(pp, ph, addr); 3012 goto found; 3013 } 3014 } 3015 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3016 if (pool_in_page(pp, ph, addr)) { 3017 allocated = false; 3018 goto found; 3019 } 3020 } 3021 continue; 3022 } else { 3023 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3024 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3025 continue; 3026 } 3027 allocated = pool_allocated(pp, ph, addr); 3028 } 3029 found: 3030 if (allocated && pp->pr_cache) { 3031 pool_cache_t pc = pp->pr_cache; 3032 struct pool_cache_group *pcg; 3033 int i; 3034 3035 for (pcg = pc->pc_fullgroups; pcg != NULL; 3036 pcg = pcg->pcg_next) { 3037 if (pool_in_cg(pp, pcg, addr)) { 3038 incache = true; 3039 goto print; 3040 } 3041 } 3042 for (i = 0; i < MAXCPUS; i++) { 3043 pool_cache_cpu_t *cc; 3044 3045 if ((cc = pc->pc_cpus[i]) == NULL) { 3046 continue; 3047 } 3048 if (pool_in_cg(pp, cc->cc_current, addr) || 3049 pool_in_cg(pp, cc->cc_previous, addr)) { 3050 struct cpu_info *ci = 3051 cpu_lookup(i); 3052 3053 incpucache = true; 3054 snprintf(cpucachestr, 3055 sizeof(cpucachestr), 3056 "cached by CPU %u", 3057 ci->ci_index); 3058 goto print; 3059 } 3060 } 3061 } 3062 print: 3063 item = (uintptr_t)ph->ph_page + ph->ph_off; 3064 item = item + rounddown(addr - item, pp->pr_size); 3065 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3066 (void *)addr, item, (size_t)(addr - item), 3067 pp->pr_wchan, 3068 incpucache ? cpucachestr : 3069 incache ? "cached" : allocated ? "allocated" : "free"); 3070 } 3071 } 3072 #endif /* defined(DDB) */ 3073