1 /* $NetBSD: subr_pool.c,v 1.276 2021/02/24 05:36:02 mrg Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018, 5 * 2020 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 11 * Maxime Villard. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.276 2021/02/24 05:36:02 mrg Exp $"); 37 38 #ifdef _KERNEL_OPT 39 #include "opt_ddb.h" 40 #include "opt_lockdebug.h" 41 #include "opt_pool.h" 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/bitops.h> 48 #include <sys/proc.h> 49 #include <sys/errno.h> 50 #include <sys/kernel.h> 51 #include <sys/vmem.h> 52 #include <sys/pool.h> 53 #include <sys/syslog.h> 54 #include <sys/debug.h> 55 #include <sys/lock.h> 56 #include <sys/lockdebug.h> 57 #include <sys/xcall.h> 58 #include <sys/cpu.h> 59 #include <sys/atomic.h> 60 #include <sys/asan.h> 61 #include <sys/msan.h> 62 #include <sys/fault.h> 63 64 #include <uvm/uvm_extern.h> 65 66 /* 67 * Pool resource management utility. 68 * 69 * Memory is allocated in pages which are split into pieces according to 70 * the pool item size. Each page is kept on one of three lists in the 71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 72 * for empty, full and partially-full pages respectively. The individual 73 * pool items are on a linked list headed by `ph_itemlist' in each page 74 * header. The memory for building the page list is either taken from 75 * the allocated pages themselves (for small pool items) or taken from 76 * an internal pool of page headers (`phpool'). 77 */ 78 79 /* List of all pools. Non static as needed by 'vmstat -m' */ 80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 81 82 /* Private pool for page header structures */ 83 #define PHPOOL_MAX 8 84 static struct pool phpool[PHPOOL_MAX]; 85 #define PHPOOL_FREELIST_NELEM(idx) \ 86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx))) 87 88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN)) 89 #define POOL_REDZONE 90 #endif 91 92 #if defined(POOL_QUARANTINE) 93 #define POOL_NOCACHE 94 #endif 95 96 #ifdef POOL_REDZONE 97 # ifdef KASAN 98 # define POOL_REDZONE_SIZE 8 99 # else 100 # define POOL_REDZONE_SIZE 2 101 # endif 102 static void pool_redzone_init(struct pool *, size_t); 103 static void pool_redzone_fill(struct pool *, void *); 104 static void pool_redzone_check(struct pool *, void *); 105 static void pool_cache_redzone_check(pool_cache_t, void *); 106 #else 107 # define pool_redzone_init(pp, sz) __nothing 108 # define pool_redzone_fill(pp, ptr) __nothing 109 # define pool_redzone_check(pp, ptr) __nothing 110 # define pool_cache_redzone_check(pc, ptr) __nothing 111 #endif 112 113 #ifdef KMSAN 114 static inline void pool_get_kmsan(struct pool *, void *); 115 static inline void pool_put_kmsan(struct pool *, void *); 116 static inline void pool_cache_get_kmsan(pool_cache_t, void *); 117 static inline void pool_cache_put_kmsan(pool_cache_t, void *); 118 #else 119 #define pool_get_kmsan(pp, ptr) __nothing 120 #define pool_put_kmsan(pp, ptr) __nothing 121 #define pool_cache_get_kmsan(pc, ptr) __nothing 122 #define pool_cache_put_kmsan(pc, ptr) __nothing 123 #endif 124 125 #ifdef POOL_QUARANTINE 126 static void pool_quarantine_init(struct pool *); 127 static void pool_quarantine_flush(struct pool *); 128 static bool pool_put_quarantine(struct pool *, void *, 129 struct pool_pagelist *); 130 #else 131 #define pool_quarantine_init(a) __nothing 132 #define pool_quarantine_flush(a) __nothing 133 #define pool_put_quarantine(a, b, c) false 134 #endif 135 136 #ifdef POOL_NOCACHE 137 static bool pool_cache_put_nocache(pool_cache_t, void *); 138 #else 139 #define pool_cache_put_nocache(a, b) false 140 #endif 141 142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop) 143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop) 144 145 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR) 146 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR) 147 148 /* 149 * Pool backend allocators. 150 * 151 * Each pool has a backend allocator that handles allocation, deallocation, 152 * and any additional draining that might be needed. 153 * 154 * We provide two standard allocators: 155 * 156 * pool_allocator_kmem - the default when no allocator is specified 157 * 158 * pool_allocator_nointr - used for pools that will not be accessed 159 * in interrupt context. 160 */ 161 void *pool_page_alloc(struct pool *, int); 162 void pool_page_free(struct pool *, void *); 163 164 static void *pool_page_alloc_meta(struct pool *, int); 165 static void pool_page_free_meta(struct pool *, void *); 166 167 struct pool_allocator pool_allocator_kmem = { 168 .pa_alloc = pool_page_alloc, 169 .pa_free = pool_page_free, 170 .pa_pagesz = 0 171 }; 172 173 struct pool_allocator pool_allocator_nointr = { 174 .pa_alloc = pool_page_alloc, 175 .pa_free = pool_page_free, 176 .pa_pagesz = 0 177 }; 178 179 struct pool_allocator pool_allocator_meta = { 180 .pa_alloc = pool_page_alloc_meta, 181 .pa_free = pool_page_free_meta, 182 .pa_pagesz = 0 183 }; 184 185 #define POOL_ALLOCATOR_BIG_BASE 13 186 static struct pool_allocator pool_allocator_big[] = { 187 { 188 .pa_alloc = pool_page_alloc, 189 .pa_free = pool_page_free, 190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0), 191 }, 192 { 193 .pa_alloc = pool_page_alloc, 194 .pa_free = pool_page_free, 195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1), 196 }, 197 { 198 .pa_alloc = pool_page_alloc, 199 .pa_free = pool_page_free, 200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2), 201 }, 202 { 203 .pa_alloc = pool_page_alloc, 204 .pa_free = pool_page_free, 205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3), 206 }, 207 { 208 .pa_alloc = pool_page_alloc, 209 .pa_free = pool_page_free, 210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4), 211 }, 212 { 213 .pa_alloc = pool_page_alloc, 214 .pa_free = pool_page_free, 215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5), 216 }, 217 { 218 .pa_alloc = pool_page_alloc, 219 .pa_free = pool_page_free, 220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6), 221 }, 222 { 223 .pa_alloc = pool_page_alloc, 224 .pa_free = pool_page_free, 225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7), 226 }, 227 { 228 .pa_alloc = pool_page_alloc, 229 .pa_free = pool_page_free, 230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8), 231 }, 232 { 233 .pa_alloc = pool_page_alloc, 234 .pa_free = pool_page_free, 235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9), 236 }, 237 { 238 .pa_alloc = pool_page_alloc, 239 .pa_free = pool_page_free, 240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10), 241 }, 242 { 243 .pa_alloc = pool_page_alloc, 244 .pa_free = pool_page_free, 245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11), 246 } 247 }; 248 249 static int pool_bigidx(size_t); 250 251 /* # of seconds to retain page after last use */ 252 int pool_inactive_time = 10; 253 254 /* Next candidate for drainage (see pool_drain()) */ 255 static struct pool *drainpp; 256 257 /* This lock protects both pool_head and drainpp. */ 258 static kmutex_t pool_head_lock; 259 static kcondvar_t pool_busy; 260 261 /* This lock protects initialization of a potentially shared pool allocator */ 262 static kmutex_t pool_allocator_lock; 263 264 static unsigned int poolid_counter = 0; 265 266 typedef uint32_t pool_item_bitmap_t; 267 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 268 #define BITMAP_MASK (BITMAP_SIZE - 1) 269 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2)) 270 271 struct pool_item_header { 272 /* Page headers */ 273 LIST_ENTRY(pool_item_header) 274 ph_pagelist; /* pool page list */ 275 union { 276 /* !PR_PHINPAGE */ 277 struct { 278 SPLAY_ENTRY(pool_item_header) 279 phu_node; /* off-page page headers */ 280 } phu_offpage; 281 /* PR_PHINPAGE */ 282 struct { 283 unsigned int phu_poolid; 284 } phu_onpage; 285 } ph_u1; 286 void * ph_page; /* this page's address */ 287 uint32_t ph_time; /* last referenced */ 288 uint16_t ph_nmissing; /* # of chunks in use */ 289 uint16_t ph_off; /* start offset in page */ 290 union { 291 /* !PR_USEBMAP */ 292 struct { 293 LIST_HEAD(, pool_item) 294 phu_itemlist; /* chunk list for this page */ 295 } phu_normal; 296 /* PR_USEBMAP */ 297 struct { 298 pool_item_bitmap_t phu_bitmap[1]; 299 } phu_notouch; 300 } ph_u2; 301 }; 302 #define ph_node ph_u1.phu_offpage.phu_node 303 #define ph_poolid ph_u1.phu_onpage.phu_poolid 304 #define ph_itemlist ph_u2.phu_normal.phu_itemlist 305 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap 306 307 #define PHSIZE ALIGN(sizeof(struct pool_item_header)) 308 309 CTASSERT(offsetof(struct pool_item_header, ph_u2) + 310 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header)); 311 312 #if defined(DIAGNOSTIC) && !defined(KASAN) 313 #define POOL_CHECK_MAGIC 314 #endif 315 316 struct pool_item { 317 #ifdef POOL_CHECK_MAGIC 318 u_int pi_magic; 319 #endif 320 #define PI_MAGIC 0xdeaddeadU 321 /* Other entries use only this list entry */ 322 LIST_ENTRY(pool_item) pi_list; 323 }; 324 325 #define POOL_NEEDS_CATCHUP(pp) \ 326 ((pp)->pr_nitems < (pp)->pr_minitems || \ 327 (pp)->pr_npages < (pp)->pr_minpages) 328 #define POOL_OBJ_TO_PAGE(pp, v) \ 329 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask) 330 331 /* 332 * Pool cache management. 333 * 334 * Pool caches provide a way for constructed objects to be cached by the 335 * pool subsystem. This can lead to performance improvements by avoiding 336 * needless object construction/destruction; it is deferred until absolutely 337 * necessary. 338 * 339 * Caches are grouped into cache groups. Each cache group references up 340 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 341 * object from the pool, it calls the object's constructor and places it 342 * into a cache group. When a cache group frees an object back to the 343 * pool, it first calls the object's destructor. This allows the object 344 * to persist in constructed form while freed to the cache. 345 * 346 * The pool references each cache, so that when a pool is drained by the 347 * pagedaemon, it can drain each individual cache as well. Each time a 348 * cache is drained, the most idle cache group is freed to the pool in 349 * its entirety. 350 * 351 * Pool caches are layed on top of pools. By layering them, we can avoid 352 * the complexity of cache management for pools which would not benefit 353 * from it. 354 */ 355 356 static struct pool pcg_normal_pool; 357 static struct pool pcg_large_pool; 358 static struct pool cache_pool; 359 static struct pool cache_cpu_pool; 360 361 static pcg_t *volatile pcg_large_cache __cacheline_aligned; 362 static pcg_t *volatile pcg_normal_cache __cacheline_aligned; 363 364 /* List of all caches. */ 365 TAILQ_HEAD(,pool_cache) pool_cache_head = 366 TAILQ_HEAD_INITIALIZER(pool_cache_head); 367 368 int pool_cache_disable; /* global disable for caching */ 369 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 370 371 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int, 372 void *); 373 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int, 374 void **, paddr_t *, int); 375 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 376 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 377 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 378 static void pool_cache_transfer(pool_cache_t); 379 static int pool_pcg_get(pcg_t *volatile *, pcg_t **); 380 static int pool_pcg_put(pcg_t *volatile *, pcg_t *); 381 static pcg_t * pool_pcg_trunc(pcg_t *volatile *); 382 383 static int pool_catchup(struct pool *); 384 static void pool_prime_page(struct pool *, void *, 385 struct pool_item_header *); 386 static void pool_update_curpage(struct pool *); 387 388 static int pool_grow(struct pool *, int); 389 static void *pool_allocator_alloc(struct pool *, int); 390 static void pool_allocator_free(struct pool *, void *); 391 392 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 393 void (*)(const char *, ...) __printflike(1, 2)); 394 static void pool_print1(struct pool *, const char *, 395 void (*)(const char *, ...) __printflike(1, 2)); 396 397 static int pool_chk_page(struct pool *, const char *, 398 struct pool_item_header *); 399 400 /* -------------------------------------------------------------------------- */ 401 402 static inline unsigned int 403 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph, 404 const void *v) 405 { 406 const char *cp = v; 407 unsigned int idx; 408 409 KASSERT(pp->pr_roflags & PR_USEBMAP); 410 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 411 412 if (__predict_false(idx >= pp->pr_itemsperpage)) { 413 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx, 414 pp->pr_itemsperpage); 415 } 416 417 return idx; 418 } 419 420 static inline void 421 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph, 422 void *obj) 423 { 424 unsigned int idx = pr_item_bitmap_index(pp, ph, obj); 425 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 426 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK); 427 428 if (__predict_false((*bitmap & mask) != 0)) { 429 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj); 430 } 431 432 *bitmap |= mask; 433 } 434 435 static inline void * 436 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph) 437 { 438 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 439 unsigned int idx; 440 int i; 441 442 for (i = 0; ; i++) { 443 int bit; 444 445 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 446 bit = ffs32(bitmap[i]); 447 if (bit) { 448 pool_item_bitmap_t mask; 449 450 bit--; 451 idx = (i * BITMAP_SIZE) + bit; 452 mask = 1U << bit; 453 KASSERT((bitmap[i] & mask) != 0); 454 bitmap[i] &= ~mask; 455 break; 456 } 457 } 458 KASSERT(idx < pp->pr_itemsperpage); 459 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 460 } 461 462 static inline void 463 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph) 464 { 465 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 466 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 467 int i; 468 469 for (i = 0; i < n; i++) { 470 bitmap[i] = (pool_item_bitmap_t)-1; 471 } 472 } 473 474 /* -------------------------------------------------------------------------- */ 475 476 static inline void 477 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph, 478 void *obj) 479 { 480 struct pool_item *pi = obj; 481 482 #ifdef POOL_CHECK_MAGIC 483 pi->pi_magic = PI_MAGIC; 484 #endif 485 486 if (pp->pr_redzone) { 487 /* 488 * Mark the pool_item as valid. The rest is already 489 * invalid. 490 */ 491 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0); 492 } 493 494 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 495 } 496 497 static inline void * 498 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph) 499 { 500 struct pool_item *pi; 501 void *v; 502 503 v = pi = LIST_FIRST(&ph->ph_itemlist); 504 if (__predict_false(v == NULL)) { 505 mutex_exit(&pp->pr_lock); 506 panic("%s: [%s] page empty", __func__, pp->pr_wchan); 507 } 508 KASSERTMSG((pp->pr_nitems > 0), 509 "%s: [%s] nitems %u inconsistent on itemlist", 510 __func__, pp->pr_wchan, pp->pr_nitems); 511 #ifdef POOL_CHECK_MAGIC 512 KASSERTMSG((pi->pi_magic == PI_MAGIC), 513 "%s: [%s] free list modified: " 514 "magic=%x; page %p; item addr %p", __func__, 515 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 516 #endif 517 518 /* 519 * Remove from item list. 520 */ 521 LIST_REMOVE(pi, pi_list); 522 523 return v; 524 } 525 526 /* -------------------------------------------------------------------------- */ 527 528 static inline void 529 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page, 530 void *object) 531 { 532 if (__predict_false((void *)ph->ph_page != page)) { 533 panic("%s: [%s] item %p not part of pool", __func__, 534 pp->pr_wchan, object); 535 } 536 if (__predict_false((char *)object < (char *)page + ph->ph_off)) { 537 panic("%s: [%s] item %p below item space", __func__, 538 pp->pr_wchan, object); 539 } 540 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 541 panic("%s: [%s] item %p poolid %u != %u", __func__, 542 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid); 543 } 544 } 545 546 static inline void 547 pc_phinpage_check(pool_cache_t pc, void *object) 548 { 549 struct pool_item_header *ph; 550 struct pool *pp; 551 void *page; 552 553 pp = &pc->pc_pool; 554 page = POOL_OBJ_TO_PAGE(pp, object); 555 ph = (struct pool_item_header *)page; 556 557 pr_phinpage_check(pp, ph, page, object); 558 } 559 560 /* -------------------------------------------------------------------------- */ 561 562 static inline int 563 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 564 { 565 566 /* 567 * We consider pool_item_header with smaller ph_page bigger. This 568 * unnatural ordering is for the benefit of pr_find_pagehead. 569 */ 570 if (a->ph_page < b->ph_page) 571 return 1; 572 else if (a->ph_page > b->ph_page) 573 return -1; 574 else 575 return 0; 576 } 577 578 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 579 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 580 581 static inline struct pool_item_header * 582 pr_find_pagehead_noalign(struct pool *pp, void *v) 583 { 584 struct pool_item_header *ph, tmp; 585 586 tmp.ph_page = (void *)(uintptr_t)v; 587 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 588 if (ph == NULL) { 589 ph = SPLAY_ROOT(&pp->pr_phtree); 590 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 591 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 592 } 593 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 594 } 595 596 return ph; 597 } 598 599 /* 600 * Return the pool page header based on item address. 601 */ 602 static inline struct pool_item_header * 603 pr_find_pagehead(struct pool *pp, void *v) 604 { 605 struct pool_item_header *ph, tmp; 606 607 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 608 ph = pr_find_pagehead_noalign(pp, v); 609 } else { 610 void *page = POOL_OBJ_TO_PAGE(pp, v); 611 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 612 ph = (struct pool_item_header *)page; 613 pr_phinpage_check(pp, ph, page, v); 614 } else { 615 tmp.ph_page = page; 616 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 617 } 618 } 619 620 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 621 ((char *)ph->ph_page <= (char *)v && 622 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 623 return ph; 624 } 625 626 static void 627 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 628 { 629 struct pool_item_header *ph; 630 631 while ((ph = LIST_FIRST(pq)) != NULL) { 632 LIST_REMOVE(ph, ph_pagelist); 633 pool_allocator_free(pp, ph->ph_page); 634 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 635 pool_put(pp->pr_phpool, ph); 636 } 637 } 638 639 /* 640 * Remove a page from the pool. 641 */ 642 static inline void 643 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 644 struct pool_pagelist *pq) 645 { 646 647 KASSERT(mutex_owned(&pp->pr_lock)); 648 649 /* 650 * If the page was idle, decrement the idle page count. 651 */ 652 if (ph->ph_nmissing == 0) { 653 KASSERT(pp->pr_nidle != 0); 654 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 655 "%s: [%s] nitems=%u < itemsperpage=%u", __func__, 656 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage); 657 pp->pr_nidle--; 658 } 659 660 pp->pr_nitems -= pp->pr_itemsperpage; 661 662 /* 663 * Unlink the page from the pool and queue it for release. 664 */ 665 LIST_REMOVE(ph, ph_pagelist); 666 if (pp->pr_roflags & PR_PHINPAGE) { 667 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 668 panic("%s: [%s] ph %p poolid %u != %u", 669 __func__, pp->pr_wchan, ph, ph->ph_poolid, 670 pp->pr_poolid); 671 } 672 } else { 673 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 674 } 675 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 676 677 pp->pr_npages--; 678 pp->pr_npagefree++; 679 680 pool_update_curpage(pp); 681 } 682 683 /* 684 * Initialize all the pools listed in the "pools" link set. 685 */ 686 void 687 pool_subsystem_init(void) 688 { 689 size_t size; 690 int idx; 691 692 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 693 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 694 cv_init(&pool_busy, "poolbusy"); 695 696 /* 697 * Initialize private page header pool and cache magazine pool if we 698 * haven't done so yet. 699 */ 700 for (idx = 0; idx < PHPOOL_MAX; idx++) { 701 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 702 int nelem; 703 size_t sz; 704 705 nelem = PHPOOL_FREELIST_NELEM(idx); 706 KASSERT(nelem != 0); 707 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 708 "phpool-%d", nelem); 709 sz = offsetof(struct pool_item_header, 710 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 711 pool_init(&phpool[idx], sz, 0, 0, 0, 712 phpool_names[idx], &pool_allocator_meta, IPL_VM); 713 } 714 715 size = sizeof(pcg_t) + 716 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 717 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 718 "pcgnormal", &pool_allocator_meta, IPL_VM); 719 720 size = sizeof(pcg_t) + 721 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 722 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 723 "pcglarge", &pool_allocator_meta, IPL_VM); 724 725 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 726 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 727 728 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 729 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 730 } 731 732 static inline bool 733 pool_init_is_phinpage(const struct pool *pp) 734 { 735 size_t pagesize; 736 737 if (pp->pr_roflags & PR_PHINPAGE) { 738 return true; 739 } 740 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) { 741 return false; 742 } 743 744 pagesize = pp->pr_alloc->pa_pagesz; 745 746 /* 747 * Threshold: the item size is below 1/16 of a page size, and below 748 * 8 times the page header size. The latter ensures we go off-page 749 * if the page header would make us waste a rather big item. 750 */ 751 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) { 752 return true; 753 } 754 755 /* Put the header into the page if it doesn't waste any items. */ 756 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) { 757 return true; 758 } 759 760 return false; 761 } 762 763 static inline bool 764 pool_init_is_usebmap(const struct pool *pp) 765 { 766 size_t bmapsize; 767 768 if (pp->pr_roflags & PR_NOTOUCH) { 769 return true; 770 } 771 772 /* 773 * If we're off-page, go with a bitmap. 774 */ 775 if (!(pp->pr_roflags & PR_PHINPAGE)) { 776 return true; 777 } 778 779 /* 780 * If we're on-page, and the page header can already contain a bitmap 781 * big enough to cover all the items of the page, go with a bitmap. 782 */ 783 bmapsize = roundup(PHSIZE, pp->pr_align) - 784 offsetof(struct pool_item_header, ph_bitmap[0]); 785 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0); 786 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) { 787 return true; 788 } 789 790 return false; 791 } 792 793 /* 794 * Initialize the given pool resource structure. 795 * 796 * We export this routine to allow other kernel parts to declare 797 * static pools that must be initialized before kmem(9) is available. 798 */ 799 void 800 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 801 const char *wchan, struct pool_allocator *palloc, int ipl) 802 { 803 struct pool *pp1; 804 size_t prsize; 805 int itemspace, slack; 806 807 /* XXX ioff will be removed. */ 808 KASSERT(ioff == 0); 809 810 #ifdef DEBUG 811 if (__predict_true(!cold)) 812 mutex_enter(&pool_head_lock); 813 /* 814 * Check that the pool hasn't already been initialised and 815 * added to the list of all pools. 816 */ 817 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 818 if (pp == pp1) 819 panic("%s: [%s] already initialised", __func__, 820 wchan); 821 } 822 if (__predict_true(!cold)) 823 mutex_exit(&pool_head_lock); 824 #endif 825 826 if (palloc == NULL) 827 palloc = &pool_allocator_kmem; 828 829 if (!cold) 830 mutex_enter(&pool_allocator_lock); 831 if (palloc->pa_refcnt++ == 0) { 832 if (palloc->pa_pagesz == 0) 833 palloc->pa_pagesz = PAGE_SIZE; 834 835 TAILQ_INIT(&palloc->pa_list); 836 837 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 838 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 839 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 840 } 841 if (!cold) 842 mutex_exit(&pool_allocator_lock); 843 844 if (align == 0) 845 align = ALIGN(1); 846 847 prsize = size; 848 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 849 prsize = sizeof(struct pool_item); 850 851 prsize = roundup(prsize, align); 852 KASSERTMSG((prsize <= palloc->pa_pagesz), 853 "%s: [%s] pool item size (%zu) larger than page size (%u)", 854 __func__, wchan, prsize, palloc->pa_pagesz); 855 856 /* 857 * Initialize the pool structure. 858 */ 859 LIST_INIT(&pp->pr_emptypages); 860 LIST_INIT(&pp->pr_fullpages); 861 LIST_INIT(&pp->pr_partpages); 862 pp->pr_cache = NULL; 863 pp->pr_curpage = NULL; 864 pp->pr_npages = 0; 865 pp->pr_minitems = 0; 866 pp->pr_minpages = 0; 867 pp->pr_maxpages = UINT_MAX; 868 pp->pr_roflags = flags; 869 pp->pr_flags = 0; 870 pp->pr_size = prsize; 871 pp->pr_reqsize = size; 872 pp->pr_align = align; 873 pp->pr_wchan = wchan; 874 pp->pr_alloc = palloc; 875 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter); 876 pp->pr_nitems = 0; 877 pp->pr_nout = 0; 878 pp->pr_hardlimit = UINT_MAX; 879 pp->pr_hardlimit_warning = NULL; 880 pp->pr_hardlimit_ratecap.tv_sec = 0; 881 pp->pr_hardlimit_ratecap.tv_usec = 0; 882 pp->pr_hardlimit_warning_last.tv_sec = 0; 883 pp->pr_hardlimit_warning_last.tv_usec = 0; 884 pp->pr_drain_hook = NULL; 885 pp->pr_drain_hook_arg = NULL; 886 pp->pr_freecheck = NULL; 887 pp->pr_redzone = false; 888 pool_redzone_init(pp, size); 889 pool_quarantine_init(pp); 890 891 /* 892 * Decide whether to put the page header off-page to avoid wasting too 893 * large a part of the page or too big an item. Off-page page headers 894 * go on a hash table, so we can match a returned item with its header 895 * based on the page address. 896 */ 897 if (pool_init_is_phinpage(pp)) { 898 /* Use the beginning of the page for the page header */ 899 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align); 900 pp->pr_itemoffset = roundup(PHSIZE, align); 901 pp->pr_roflags |= PR_PHINPAGE; 902 } else { 903 /* The page header will be taken from our page header pool */ 904 itemspace = palloc->pa_pagesz; 905 pp->pr_itemoffset = 0; 906 SPLAY_INIT(&pp->pr_phtree); 907 } 908 909 pp->pr_itemsperpage = itemspace / pp->pr_size; 910 KASSERT(pp->pr_itemsperpage != 0); 911 912 /* 913 * Decide whether to use a bitmap or a linked list to manage freed 914 * items. 915 */ 916 if (pool_init_is_usebmap(pp)) { 917 pp->pr_roflags |= PR_USEBMAP; 918 } 919 920 /* 921 * If we're off-page, then we're using a bitmap; choose the appropriate 922 * pool to allocate page headers, whose size varies depending on the 923 * bitmap. If we're on-page, nothing to do. 924 */ 925 if (!(pp->pr_roflags & PR_PHINPAGE)) { 926 int idx; 927 928 KASSERT(pp->pr_roflags & PR_USEBMAP); 929 930 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 931 idx++) { 932 /* nothing */ 933 } 934 if (idx >= PHPOOL_MAX) { 935 /* 936 * if you see this panic, consider to tweak 937 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 938 */ 939 panic("%s: [%s] too large itemsperpage(%d) for " 940 "PR_USEBMAP", __func__, 941 pp->pr_wchan, pp->pr_itemsperpage); 942 } 943 pp->pr_phpool = &phpool[idx]; 944 } else { 945 pp->pr_phpool = NULL; 946 } 947 948 /* 949 * Use the slack between the chunks and the page header 950 * for "cache coloring". 951 */ 952 slack = itemspace - pp->pr_itemsperpage * pp->pr_size; 953 pp->pr_maxcolor = rounddown(slack, align); 954 pp->pr_curcolor = 0; 955 956 pp->pr_nget = 0; 957 pp->pr_nfail = 0; 958 pp->pr_nput = 0; 959 pp->pr_npagealloc = 0; 960 pp->pr_npagefree = 0; 961 pp->pr_hiwat = 0; 962 pp->pr_nidle = 0; 963 pp->pr_refcnt = 0; 964 965 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 966 cv_init(&pp->pr_cv, wchan); 967 pp->pr_ipl = ipl; 968 969 /* Insert into the list of all pools. */ 970 if (!cold) 971 mutex_enter(&pool_head_lock); 972 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 973 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 974 break; 975 } 976 if (pp1 == NULL) 977 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 978 else 979 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 980 if (!cold) 981 mutex_exit(&pool_head_lock); 982 983 /* Insert this into the list of pools using this allocator. */ 984 if (!cold) 985 mutex_enter(&palloc->pa_lock); 986 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 987 if (!cold) 988 mutex_exit(&palloc->pa_lock); 989 } 990 991 /* 992 * De-commision a pool resource. 993 */ 994 void 995 pool_destroy(struct pool *pp) 996 { 997 struct pool_pagelist pq; 998 struct pool_item_header *ph; 999 1000 pool_quarantine_flush(pp); 1001 1002 /* Remove from global pool list */ 1003 mutex_enter(&pool_head_lock); 1004 while (pp->pr_refcnt != 0) 1005 cv_wait(&pool_busy, &pool_head_lock); 1006 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 1007 if (drainpp == pp) 1008 drainpp = NULL; 1009 mutex_exit(&pool_head_lock); 1010 1011 /* Remove this pool from its allocator's list of pools. */ 1012 mutex_enter(&pp->pr_alloc->pa_lock); 1013 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 1014 mutex_exit(&pp->pr_alloc->pa_lock); 1015 1016 mutex_enter(&pool_allocator_lock); 1017 if (--pp->pr_alloc->pa_refcnt == 0) 1018 mutex_destroy(&pp->pr_alloc->pa_lock); 1019 mutex_exit(&pool_allocator_lock); 1020 1021 mutex_enter(&pp->pr_lock); 1022 1023 KASSERT(pp->pr_cache == NULL); 1024 KASSERTMSG((pp->pr_nout == 0), 1025 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan, 1026 pp->pr_nout); 1027 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 1028 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 1029 1030 /* Remove all pages */ 1031 LIST_INIT(&pq); 1032 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1033 pr_rmpage(pp, ph, &pq); 1034 1035 mutex_exit(&pp->pr_lock); 1036 1037 pr_pagelist_free(pp, &pq); 1038 cv_destroy(&pp->pr_cv); 1039 mutex_destroy(&pp->pr_lock); 1040 } 1041 1042 void 1043 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 1044 { 1045 1046 /* XXX no locking -- must be used just after pool_init() */ 1047 KASSERTMSG((pp->pr_drain_hook == NULL), 1048 "%s: [%s] already set", __func__, pp->pr_wchan); 1049 pp->pr_drain_hook = fn; 1050 pp->pr_drain_hook_arg = arg; 1051 } 1052 1053 static struct pool_item_header * 1054 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 1055 { 1056 struct pool_item_header *ph; 1057 1058 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 1059 ph = storage; 1060 else 1061 ph = pool_get(pp->pr_phpool, flags); 1062 1063 return ph; 1064 } 1065 1066 /* 1067 * Grab an item from the pool. 1068 */ 1069 void * 1070 pool_get(struct pool *pp, int flags) 1071 { 1072 struct pool_item_header *ph; 1073 void *v; 1074 1075 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 1076 KASSERTMSG((pp->pr_itemsperpage != 0), 1077 "%s: [%s] pr_itemsperpage is zero, " 1078 "pool not initialized?", __func__, pp->pr_wchan); 1079 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 1080 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 1081 "%s: [%s] is IPL_NONE, but called from interrupt context", 1082 __func__, pp->pr_wchan); 1083 if (flags & PR_WAITOK) { 1084 ASSERT_SLEEPABLE(); 1085 } 1086 1087 if (flags & PR_NOWAIT) { 1088 if (fault_inject()) 1089 return NULL; 1090 } 1091 1092 mutex_enter(&pp->pr_lock); 1093 startover: 1094 /* 1095 * Check to see if we've reached the hard limit. If we have, 1096 * and we can wait, then wait until an item has been returned to 1097 * the pool. 1098 */ 1099 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 1100 "%s: %s: crossed hard limit", __func__, pp->pr_wchan); 1101 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1102 if (pp->pr_drain_hook != NULL) { 1103 /* 1104 * Since the drain hook is going to free things 1105 * back to the pool, unlock, call the hook, re-lock, 1106 * and check the hardlimit condition again. 1107 */ 1108 mutex_exit(&pp->pr_lock); 1109 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1110 mutex_enter(&pp->pr_lock); 1111 if (pp->pr_nout < pp->pr_hardlimit) 1112 goto startover; 1113 } 1114 1115 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1116 /* 1117 * XXX: A warning isn't logged in this case. Should 1118 * it be? 1119 */ 1120 pp->pr_flags |= PR_WANTED; 1121 do { 1122 cv_wait(&pp->pr_cv, &pp->pr_lock); 1123 } while (pp->pr_flags & PR_WANTED); 1124 goto startover; 1125 } 1126 1127 /* 1128 * Log a message that the hard limit has been hit. 1129 */ 1130 if (pp->pr_hardlimit_warning != NULL && 1131 ratecheck(&pp->pr_hardlimit_warning_last, 1132 &pp->pr_hardlimit_ratecap)) 1133 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1134 1135 pp->pr_nfail++; 1136 1137 mutex_exit(&pp->pr_lock); 1138 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1139 return NULL; 1140 } 1141 1142 /* 1143 * The convention we use is that if `curpage' is not NULL, then 1144 * it points at a non-empty bucket. In particular, `curpage' 1145 * never points at a page header which has PR_PHINPAGE set and 1146 * has no items in its bucket. 1147 */ 1148 if ((ph = pp->pr_curpage) == NULL) { 1149 int error; 1150 1151 KASSERTMSG((pp->pr_nitems == 0), 1152 "%s: [%s] curpage NULL, inconsistent nitems %u", 1153 __func__, pp->pr_wchan, pp->pr_nitems); 1154 1155 /* 1156 * Call the back-end page allocator for more memory. 1157 * Release the pool lock, as the back-end page allocator 1158 * may block. 1159 */ 1160 error = pool_grow(pp, flags); 1161 if (error != 0) { 1162 /* 1163 * pool_grow aborts when another thread 1164 * is allocating a new page. Retry if it 1165 * waited for it. 1166 */ 1167 if (error == ERESTART) 1168 goto startover; 1169 1170 /* 1171 * We were unable to allocate a page or item 1172 * header, but we released the lock during 1173 * allocation, so perhaps items were freed 1174 * back to the pool. Check for this case. 1175 */ 1176 if (pp->pr_curpage != NULL) 1177 goto startover; 1178 1179 pp->pr_nfail++; 1180 mutex_exit(&pp->pr_lock); 1181 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1182 return NULL; 1183 } 1184 1185 /* Start the allocation process over. */ 1186 goto startover; 1187 } 1188 if (pp->pr_roflags & PR_USEBMAP) { 1189 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 1190 "%s: [%s] pool page empty", __func__, pp->pr_wchan); 1191 v = pr_item_bitmap_get(pp, ph); 1192 } else { 1193 v = pr_item_linkedlist_get(pp, ph); 1194 } 1195 pp->pr_nitems--; 1196 pp->pr_nout++; 1197 if (ph->ph_nmissing == 0) { 1198 KASSERT(pp->pr_nidle > 0); 1199 pp->pr_nidle--; 1200 1201 /* 1202 * This page was previously empty. Move it to the list of 1203 * partially-full pages. This page is already curpage. 1204 */ 1205 LIST_REMOVE(ph, ph_pagelist); 1206 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1207 } 1208 ph->ph_nmissing++; 1209 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1210 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) || 1211 LIST_EMPTY(&ph->ph_itemlist)), 1212 "%s: [%s] nmissing (%u) inconsistent", __func__, 1213 pp->pr_wchan, ph->ph_nmissing); 1214 /* 1215 * This page is now full. Move it to the full list 1216 * and select a new current page. 1217 */ 1218 LIST_REMOVE(ph, ph_pagelist); 1219 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1220 pool_update_curpage(pp); 1221 } 1222 1223 pp->pr_nget++; 1224 1225 /* 1226 * If we have a low water mark and we are now below that low 1227 * water mark, add more items to the pool. 1228 */ 1229 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1230 /* 1231 * XXX: Should we log a warning? Should we set up a timeout 1232 * to try again in a second or so? The latter could break 1233 * a caller's assumptions about interrupt protection, etc. 1234 */ 1235 } 1236 1237 mutex_exit(&pp->pr_lock); 1238 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0); 1239 FREECHECK_OUT(&pp->pr_freecheck, v); 1240 pool_redzone_fill(pp, v); 1241 pool_get_kmsan(pp, v); 1242 if (flags & PR_ZERO) 1243 memset(v, 0, pp->pr_reqsize); 1244 return v; 1245 } 1246 1247 /* 1248 * Internal version of pool_put(). Pool is already locked/entered. 1249 */ 1250 static void 1251 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1252 { 1253 struct pool_item_header *ph; 1254 1255 KASSERT(mutex_owned(&pp->pr_lock)); 1256 pool_redzone_check(pp, v); 1257 pool_put_kmsan(pp, v); 1258 FREECHECK_IN(&pp->pr_freecheck, v); 1259 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1260 1261 KASSERTMSG((pp->pr_nout > 0), 1262 "%s: [%s] putting with none out", __func__, pp->pr_wchan); 1263 1264 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1265 panic("%s: [%s] page header missing", __func__, pp->pr_wchan); 1266 } 1267 1268 /* 1269 * Return to item list. 1270 */ 1271 if (pp->pr_roflags & PR_USEBMAP) { 1272 pr_item_bitmap_put(pp, ph, v); 1273 } else { 1274 pr_item_linkedlist_put(pp, ph, v); 1275 } 1276 KDASSERT(ph->ph_nmissing != 0); 1277 ph->ph_nmissing--; 1278 pp->pr_nput++; 1279 pp->pr_nitems++; 1280 pp->pr_nout--; 1281 1282 /* Cancel "pool empty" condition if it exists */ 1283 if (pp->pr_curpage == NULL) 1284 pp->pr_curpage = ph; 1285 1286 if (pp->pr_flags & PR_WANTED) { 1287 pp->pr_flags &= ~PR_WANTED; 1288 cv_broadcast(&pp->pr_cv); 1289 } 1290 1291 /* 1292 * If this page is now empty, do one of two things: 1293 * 1294 * (1) If we have more pages than the page high water mark, 1295 * free the page back to the system. ONLY CONSIDER 1296 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1297 * CLAIM. 1298 * 1299 * (2) Otherwise, move the page to the empty page list. 1300 * 1301 * Either way, select a new current page (so we use a partially-full 1302 * page if one is available). 1303 */ 1304 if (ph->ph_nmissing == 0) { 1305 pp->pr_nidle++; 1306 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems && 1307 pp->pr_npages > pp->pr_minpages && 1308 pp->pr_npages > pp->pr_maxpages) { 1309 pr_rmpage(pp, ph, pq); 1310 } else { 1311 LIST_REMOVE(ph, ph_pagelist); 1312 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1313 1314 /* 1315 * Update the timestamp on the page. A page must 1316 * be idle for some period of time before it can 1317 * be reclaimed by the pagedaemon. This minimizes 1318 * ping-pong'ing for memory. 1319 * 1320 * note for 64-bit time_t: truncating to 32-bit is not 1321 * a problem for our usage. 1322 */ 1323 ph->ph_time = time_uptime; 1324 } 1325 pool_update_curpage(pp); 1326 } 1327 1328 /* 1329 * If the page was previously completely full, move it to the 1330 * partially-full list and make it the current page. The next 1331 * allocation will get the item from this page, instead of 1332 * further fragmenting the pool. 1333 */ 1334 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1335 LIST_REMOVE(ph, ph_pagelist); 1336 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1337 pp->pr_curpage = ph; 1338 } 1339 } 1340 1341 void 1342 pool_put(struct pool *pp, void *v) 1343 { 1344 struct pool_pagelist pq; 1345 1346 LIST_INIT(&pq); 1347 1348 mutex_enter(&pp->pr_lock); 1349 if (!pool_put_quarantine(pp, v, &pq)) { 1350 pool_do_put(pp, v, &pq); 1351 } 1352 mutex_exit(&pp->pr_lock); 1353 1354 pr_pagelist_free(pp, &pq); 1355 } 1356 1357 /* 1358 * pool_grow: grow a pool by a page. 1359 * 1360 * => called with pool locked. 1361 * => unlock and relock the pool. 1362 * => return with pool locked. 1363 */ 1364 1365 static int 1366 pool_grow(struct pool *pp, int flags) 1367 { 1368 struct pool_item_header *ph; 1369 char *storage; 1370 1371 /* 1372 * If there's a pool_grow in progress, wait for it to complete 1373 * and try again from the top. 1374 */ 1375 if (pp->pr_flags & PR_GROWING) { 1376 if (flags & PR_WAITOK) { 1377 do { 1378 cv_wait(&pp->pr_cv, &pp->pr_lock); 1379 } while (pp->pr_flags & PR_GROWING); 1380 return ERESTART; 1381 } else { 1382 if (pp->pr_flags & PR_GROWINGNOWAIT) { 1383 /* 1384 * This needs an unlock/relock dance so 1385 * that the other caller has a chance to 1386 * run and actually do the thing. Note 1387 * that this is effectively a busy-wait. 1388 */ 1389 mutex_exit(&pp->pr_lock); 1390 mutex_enter(&pp->pr_lock); 1391 return ERESTART; 1392 } 1393 return EWOULDBLOCK; 1394 } 1395 } 1396 pp->pr_flags |= PR_GROWING; 1397 if (flags & PR_WAITOK) 1398 mutex_exit(&pp->pr_lock); 1399 else 1400 pp->pr_flags |= PR_GROWINGNOWAIT; 1401 1402 storage = pool_allocator_alloc(pp, flags); 1403 if (__predict_false(storage == NULL)) 1404 goto out; 1405 1406 ph = pool_alloc_item_header(pp, storage, flags); 1407 if (__predict_false(ph == NULL)) { 1408 pool_allocator_free(pp, storage); 1409 goto out; 1410 } 1411 1412 if (flags & PR_WAITOK) 1413 mutex_enter(&pp->pr_lock); 1414 pool_prime_page(pp, storage, ph); 1415 pp->pr_npagealloc++; 1416 KASSERT(pp->pr_flags & PR_GROWING); 1417 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1418 /* 1419 * If anyone was waiting for pool_grow, notify them that we 1420 * may have just done it. 1421 */ 1422 cv_broadcast(&pp->pr_cv); 1423 return 0; 1424 out: 1425 if (flags & PR_WAITOK) 1426 mutex_enter(&pp->pr_lock); 1427 KASSERT(pp->pr_flags & PR_GROWING); 1428 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1429 return ENOMEM; 1430 } 1431 1432 void 1433 pool_prime(struct pool *pp, int n) 1434 { 1435 1436 mutex_enter(&pp->pr_lock); 1437 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1438 if (pp->pr_maxpages <= pp->pr_minpages) 1439 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1440 while (pp->pr_npages < pp->pr_minpages) 1441 (void) pool_grow(pp, PR_WAITOK); 1442 mutex_exit(&pp->pr_lock); 1443 } 1444 1445 /* 1446 * Add a page worth of items to the pool. 1447 * 1448 * Note, we must be called with the pool descriptor LOCKED. 1449 */ 1450 static void 1451 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1452 { 1453 const unsigned int align = pp->pr_align; 1454 struct pool_item *pi; 1455 void *cp = storage; 1456 int n; 1457 1458 KASSERT(mutex_owned(&pp->pr_lock)); 1459 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1460 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1461 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp); 1462 1463 /* 1464 * Insert page header. 1465 */ 1466 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1467 LIST_INIT(&ph->ph_itemlist); 1468 ph->ph_page = storage; 1469 ph->ph_nmissing = 0; 1470 ph->ph_time = time_uptime; 1471 if (pp->pr_roflags & PR_PHINPAGE) 1472 ph->ph_poolid = pp->pr_poolid; 1473 else 1474 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1475 1476 pp->pr_nidle++; 1477 1478 /* 1479 * The item space starts after the on-page header, if any. 1480 */ 1481 ph->ph_off = pp->pr_itemoffset; 1482 1483 /* 1484 * Color this page. 1485 */ 1486 ph->ph_off += pp->pr_curcolor; 1487 cp = (char *)cp + ph->ph_off; 1488 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1489 pp->pr_curcolor = 0; 1490 1491 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1492 1493 /* 1494 * Insert remaining chunks on the bucket list. 1495 */ 1496 n = pp->pr_itemsperpage; 1497 pp->pr_nitems += n; 1498 1499 if (pp->pr_roflags & PR_USEBMAP) { 1500 pr_item_bitmap_init(pp, ph); 1501 } else { 1502 while (n--) { 1503 pi = (struct pool_item *)cp; 1504 1505 KASSERT((((vaddr_t)pi) & (align - 1)) == 0); 1506 1507 /* Insert on page list */ 1508 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1509 #ifdef POOL_CHECK_MAGIC 1510 pi->pi_magic = PI_MAGIC; 1511 #endif 1512 cp = (char *)cp + pp->pr_size; 1513 1514 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1515 } 1516 } 1517 1518 /* 1519 * If the pool was depleted, point at the new page. 1520 */ 1521 if (pp->pr_curpage == NULL) 1522 pp->pr_curpage = ph; 1523 1524 if (++pp->pr_npages > pp->pr_hiwat) 1525 pp->pr_hiwat = pp->pr_npages; 1526 } 1527 1528 /* 1529 * Used by pool_get() when nitems drops below the low water mark. This 1530 * is used to catch up pr_nitems with the low water mark. 1531 * 1532 * Note 1, we never wait for memory here, we let the caller decide what to do. 1533 * 1534 * Note 2, we must be called with the pool already locked, and we return 1535 * with it locked. 1536 */ 1537 static int 1538 pool_catchup(struct pool *pp) 1539 { 1540 int error = 0; 1541 1542 while (POOL_NEEDS_CATCHUP(pp)) { 1543 error = pool_grow(pp, PR_NOWAIT); 1544 if (error) { 1545 if (error == ERESTART) 1546 continue; 1547 break; 1548 } 1549 } 1550 return error; 1551 } 1552 1553 static void 1554 pool_update_curpage(struct pool *pp) 1555 { 1556 1557 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1558 if (pp->pr_curpage == NULL) { 1559 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1560 } 1561 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1562 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1563 } 1564 1565 void 1566 pool_setlowat(struct pool *pp, int n) 1567 { 1568 1569 mutex_enter(&pp->pr_lock); 1570 pp->pr_minitems = n; 1571 1572 /* Make sure we're caught up with the newly-set low water mark. */ 1573 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1574 /* 1575 * XXX: Should we log a warning? Should we set up a timeout 1576 * to try again in a second or so? The latter could break 1577 * a caller's assumptions about interrupt protection, etc. 1578 */ 1579 } 1580 1581 mutex_exit(&pp->pr_lock); 1582 } 1583 1584 void 1585 pool_sethiwat(struct pool *pp, int n) 1586 { 1587 1588 mutex_enter(&pp->pr_lock); 1589 1590 pp->pr_maxitems = n; 1591 1592 mutex_exit(&pp->pr_lock); 1593 } 1594 1595 void 1596 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1597 { 1598 1599 mutex_enter(&pp->pr_lock); 1600 1601 pp->pr_hardlimit = n; 1602 pp->pr_hardlimit_warning = warnmess; 1603 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1604 pp->pr_hardlimit_warning_last.tv_sec = 0; 1605 pp->pr_hardlimit_warning_last.tv_usec = 0; 1606 1607 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1608 1609 mutex_exit(&pp->pr_lock); 1610 } 1611 1612 /* 1613 * Release all complete pages that have not been used recently. 1614 * 1615 * Must not be called from interrupt context. 1616 */ 1617 int 1618 pool_reclaim(struct pool *pp) 1619 { 1620 struct pool_item_header *ph, *phnext; 1621 struct pool_pagelist pq; 1622 uint32_t curtime; 1623 bool klock; 1624 int rv; 1625 1626 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1627 1628 if (pp->pr_drain_hook != NULL) { 1629 /* 1630 * The drain hook must be called with the pool unlocked. 1631 */ 1632 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1633 } 1634 1635 /* 1636 * XXXSMP Because we do not want to cause non-MPSAFE code 1637 * to block. 1638 */ 1639 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1640 pp->pr_ipl == IPL_SOFTSERIAL) { 1641 KERNEL_LOCK(1, NULL); 1642 klock = true; 1643 } else 1644 klock = false; 1645 1646 /* Reclaim items from the pool's cache (if any). */ 1647 if (pp->pr_cache != NULL) 1648 pool_cache_invalidate(pp->pr_cache); 1649 1650 if (mutex_tryenter(&pp->pr_lock) == 0) { 1651 if (klock) { 1652 KERNEL_UNLOCK_ONE(NULL); 1653 } 1654 return 0; 1655 } 1656 1657 LIST_INIT(&pq); 1658 1659 curtime = time_uptime; 1660 1661 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1662 phnext = LIST_NEXT(ph, ph_pagelist); 1663 1664 /* Check our minimum page claim */ 1665 if (pp->pr_npages <= pp->pr_minpages) 1666 break; 1667 1668 KASSERT(ph->ph_nmissing == 0); 1669 if (curtime - ph->ph_time < pool_inactive_time) 1670 continue; 1671 1672 /* 1673 * If freeing this page would put us below the minimum free items 1674 * or the minimum pages, stop now. 1675 */ 1676 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems || 1677 pp->pr_npages - 1 < pp->pr_minpages) 1678 break; 1679 1680 pr_rmpage(pp, ph, &pq); 1681 } 1682 1683 mutex_exit(&pp->pr_lock); 1684 1685 if (LIST_EMPTY(&pq)) 1686 rv = 0; 1687 else { 1688 pr_pagelist_free(pp, &pq); 1689 rv = 1; 1690 } 1691 1692 if (klock) { 1693 KERNEL_UNLOCK_ONE(NULL); 1694 } 1695 1696 return rv; 1697 } 1698 1699 /* 1700 * Drain pools, one at a time. The drained pool is returned within ppp. 1701 * 1702 * Note, must never be called from interrupt context. 1703 */ 1704 bool 1705 pool_drain(struct pool **ppp) 1706 { 1707 bool reclaimed; 1708 struct pool *pp; 1709 1710 KASSERT(!TAILQ_EMPTY(&pool_head)); 1711 1712 pp = NULL; 1713 1714 /* Find next pool to drain, and add a reference. */ 1715 mutex_enter(&pool_head_lock); 1716 do { 1717 if (drainpp == NULL) { 1718 drainpp = TAILQ_FIRST(&pool_head); 1719 } 1720 if (drainpp != NULL) { 1721 pp = drainpp; 1722 drainpp = TAILQ_NEXT(pp, pr_poollist); 1723 } 1724 /* 1725 * Skip completely idle pools. We depend on at least 1726 * one pool in the system being active. 1727 */ 1728 } while (pp == NULL || pp->pr_npages == 0); 1729 pp->pr_refcnt++; 1730 mutex_exit(&pool_head_lock); 1731 1732 /* Drain the cache (if any) and pool.. */ 1733 reclaimed = pool_reclaim(pp); 1734 1735 /* Finally, unlock the pool. */ 1736 mutex_enter(&pool_head_lock); 1737 pp->pr_refcnt--; 1738 cv_broadcast(&pool_busy); 1739 mutex_exit(&pool_head_lock); 1740 1741 if (ppp != NULL) 1742 *ppp = pp; 1743 1744 return reclaimed; 1745 } 1746 1747 /* 1748 * Calculate the total number of pages consumed by pools. 1749 */ 1750 int 1751 pool_totalpages(void) 1752 { 1753 1754 mutex_enter(&pool_head_lock); 1755 int pages = pool_totalpages_locked(); 1756 mutex_exit(&pool_head_lock); 1757 1758 return pages; 1759 } 1760 1761 int 1762 pool_totalpages_locked(void) 1763 { 1764 struct pool *pp; 1765 uint64_t total = 0; 1766 1767 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1768 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz; 1769 1770 if ((pp->pr_roflags & PR_RECURSIVE) != 0) 1771 bytes -= (pp->pr_nout * pp->pr_size); 1772 total += bytes; 1773 } 1774 1775 return atop(total); 1776 } 1777 1778 /* 1779 * Diagnostic helpers. 1780 */ 1781 1782 void 1783 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1784 { 1785 struct pool *pp; 1786 1787 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1788 pool_printit(pp, modif, pr); 1789 } 1790 } 1791 1792 void 1793 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1794 { 1795 1796 if (pp == NULL) { 1797 (*pr)("Must specify a pool to print.\n"); 1798 return; 1799 } 1800 1801 pool_print1(pp, modif, pr); 1802 } 1803 1804 static void 1805 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1806 void (*pr)(const char *, ...)) 1807 { 1808 struct pool_item_header *ph; 1809 1810 LIST_FOREACH(ph, pl, ph_pagelist) { 1811 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1812 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1813 #ifdef POOL_CHECK_MAGIC 1814 struct pool_item *pi; 1815 if (!(pp->pr_roflags & PR_USEBMAP)) { 1816 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1817 if (pi->pi_magic != PI_MAGIC) { 1818 (*pr)("\t\t\titem %p, magic 0x%x\n", 1819 pi, pi->pi_magic); 1820 } 1821 } 1822 } 1823 #endif 1824 } 1825 } 1826 1827 static void 1828 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1829 { 1830 struct pool_item_header *ph; 1831 pool_cache_t pc; 1832 pcg_t *pcg; 1833 pool_cache_cpu_t *cc; 1834 uint64_t cpuhit, cpumiss, pchit, pcmiss; 1835 uint32_t nfull; 1836 int i; 1837 bool print_log = false, print_pagelist = false, print_cache = false; 1838 bool print_short = false, skip_empty = false; 1839 char c; 1840 1841 while ((c = *modif++) != '\0') { 1842 if (c == 'l') 1843 print_log = true; 1844 if (c == 'p') 1845 print_pagelist = true; 1846 if (c == 'c') 1847 print_cache = true; 1848 if (c == 's') 1849 print_short = true; 1850 if (c == 'S') 1851 skip_empty = true; 1852 } 1853 1854 if (skip_empty && pp->pr_nget == 0) 1855 return; 1856 1857 if ((pc = pp->pr_cache) != NULL) { 1858 (*pr)("POOLCACHE"); 1859 } else { 1860 (*pr)("POOL"); 1861 } 1862 1863 /* Single line output. */ 1864 if (print_short) { 1865 (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n", 1866 pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages, 1867 pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput, 1868 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle); 1869 1870 return; 1871 } 1872 1873 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1874 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1875 pp->pr_roflags); 1876 (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc); 1877 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1878 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1879 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1880 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1881 1882 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1883 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1884 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1885 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1886 1887 if (!print_pagelist) 1888 goto skip_pagelist; 1889 1890 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1891 (*pr)("\n\tempty page list:\n"); 1892 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1893 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1894 (*pr)("\n\tfull page list:\n"); 1895 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1896 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1897 (*pr)("\n\tpartial-page list:\n"); 1898 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1899 1900 if (pp->pr_curpage == NULL) 1901 (*pr)("\tno current page\n"); 1902 else 1903 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1904 1905 skip_pagelist: 1906 if (print_log) 1907 goto skip_log; 1908 1909 (*pr)("\n"); 1910 1911 skip_log: 1912 1913 #define PR_GROUPLIST(pcg) \ 1914 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1915 for (i = 0; i < pcg->pcg_size; i++) { \ 1916 if (pcg->pcg_objects[i].pcgo_pa != \ 1917 POOL_PADDR_INVALID) { \ 1918 (*pr)("\t\t\t%p, 0x%llx\n", \ 1919 pcg->pcg_objects[i].pcgo_va, \ 1920 (unsigned long long) \ 1921 pcg->pcg_objects[i].pcgo_pa); \ 1922 } else { \ 1923 (*pr)("\t\t\t%p\n", \ 1924 pcg->pcg_objects[i].pcgo_va); \ 1925 } \ 1926 } 1927 1928 if (pc != NULL) { 1929 cpuhit = 0; 1930 cpumiss = 0; 1931 pcmiss = 0; 1932 nfull = 0; 1933 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1934 if ((cc = pc->pc_cpus[i]) == NULL) 1935 continue; 1936 cpuhit += cc->cc_hits; 1937 cpumiss += cc->cc_misses; 1938 pcmiss += cc->cc_pcmisses; 1939 nfull += cc->cc_nfull; 1940 } 1941 pchit = cpumiss - pcmiss; 1942 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1943 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss); 1944 (*pr)("\tcache layer full groups %u\n", nfull); 1945 if (print_cache) { 1946 (*pr)("\tfull cache groups:\n"); 1947 for (pcg = pc->pc_fullgroups; pcg != NULL; 1948 pcg = pcg->pcg_next) { 1949 PR_GROUPLIST(pcg); 1950 } 1951 } 1952 } 1953 #undef PR_GROUPLIST 1954 } 1955 1956 static int 1957 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1958 { 1959 struct pool_item *pi; 1960 void *page; 1961 int n; 1962 1963 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1964 page = POOL_OBJ_TO_PAGE(pp, ph); 1965 if (page != ph->ph_page && 1966 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1967 if (label != NULL) 1968 printf("%s: ", label); 1969 printf("pool(%p:%s): page inconsistency: page %p;" 1970 " at page head addr %p (p %p)\n", pp, 1971 pp->pr_wchan, ph->ph_page, 1972 ph, page); 1973 return 1; 1974 } 1975 } 1976 1977 if ((pp->pr_roflags & PR_USEBMAP) != 0) 1978 return 0; 1979 1980 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1981 pi != NULL; 1982 pi = LIST_NEXT(pi,pi_list), n++) { 1983 1984 #ifdef POOL_CHECK_MAGIC 1985 if (pi->pi_magic != PI_MAGIC) { 1986 if (label != NULL) 1987 printf("%s: ", label); 1988 printf("pool(%s): free list modified: magic=%x;" 1989 " page %p; item ordinal %d; addr %p\n", 1990 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1991 n, pi); 1992 panic("pool"); 1993 } 1994 #endif 1995 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1996 continue; 1997 } 1998 page = POOL_OBJ_TO_PAGE(pp, pi); 1999 if (page == ph->ph_page) 2000 continue; 2001 2002 if (label != NULL) 2003 printf("%s: ", label); 2004 printf("pool(%p:%s): page inconsistency: page %p;" 2005 " item ordinal %d; addr %p (p %p)\n", pp, 2006 pp->pr_wchan, ph->ph_page, 2007 n, pi, page); 2008 return 1; 2009 } 2010 return 0; 2011 } 2012 2013 2014 int 2015 pool_chk(struct pool *pp, const char *label) 2016 { 2017 struct pool_item_header *ph; 2018 int r = 0; 2019 2020 mutex_enter(&pp->pr_lock); 2021 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2022 r = pool_chk_page(pp, label, ph); 2023 if (r) { 2024 goto out; 2025 } 2026 } 2027 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2028 r = pool_chk_page(pp, label, ph); 2029 if (r) { 2030 goto out; 2031 } 2032 } 2033 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2034 r = pool_chk_page(pp, label, ph); 2035 if (r) { 2036 goto out; 2037 } 2038 } 2039 2040 out: 2041 mutex_exit(&pp->pr_lock); 2042 return r; 2043 } 2044 2045 /* 2046 * pool_cache_init: 2047 * 2048 * Initialize a pool cache. 2049 */ 2050 pool_cache_t 2051 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2052 const char *wchan, struct pool_allocator *palloc, int ipl, 2053 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2054 { 2055 pool_cache_t pc; 2056 2057 pc = pool_get(&cache_pool, PR_WAITOK); 2058 if (pc == NULL) 2059 return NULL; 2060 2061 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2062 palloc, ipl, ctor, dtor, arg); 2063 2064 return pc; 2065 } 2066 2067 /* 2068 * pool_cache_bootstrap: 2069 * 2070 * Kernel-private version of pool_cache_init(). The caller 2071 * provides initial storage. 2072 */ 2073 void 2074 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2075 u_int align_offset, u_int flags, const char *wchan, 2076 struct pool_allocator *palloc, int ipl, 2077 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2078 void *arg) 2079 { 2080 CPU_INFO_ITERATOR cii; 2081 pool_cache_t pc1; 2082 struct cpu_info *ci; 2083 struct pool *pp; 2084 2085 pp = &pc->pc_pool; 2086 if (palloc == NULL && ipl == IPL_NONE) { 2087 if (size > PAGE_SIZE) { 2088 int bigidx = pool_bigidx(size); 2089 2090 palloc = &pool_allocator_big[bigidx]; 2091 flags |= PR_NOALIGN; 2092 } else 2093 palloc = &pool_allocator_nointr; 2094 } 2095 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2096 2097 if (ctor == NULL) { 2098 ctor = NO_CTOR; 2099 } 2100 if (dtor == NULL) { 2101 dtor = NO_DTOR; 2102 } 2103 2104 pc->pc_fullgroups = NULL; 2105 pc->pc_partgroups = NULL; 2106 pc->pc_ctor = ctor; 2107 pc->pc_dtor = dtor; 2108 pc->pc_arg = arg; 2109 pc->pc_refcnt = 0; 2110 pc->pc_freecheck = NULL; 2111 2112 if ((flags & PR_LARGECACHE) != 0) { 2113 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2114 pc->pc_pcgpool = &pcg_large_pool; 2115 pc->pc_pcgcache = &pcg_large_cache; 2116 } else { 2117 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2118 pc->pc_pcgpool = &pcg_normal_pool; 2119 pc->pc_pcgcache = &pcg_normal_cache; 2120 } 2121 2122 /* Allocate per-CPU caches. */ 2123 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2124 pc->pc_ncpu = 0; 2125 if (ncpu < 2) { 2126 /* XXX For sparc: boot CPU is not attached yet. */ 2127 pool_cache_cpu_init1(curcpu(), pc); 2128 } else { 2129 for (CPU_INFO_FOREACH(cii, ci)) { 2130 pool_cache_cpu_init1(ci, pc); 2131 } 2132 } 2133 2134 /* Add to list of all pools. */ 2135 if (__predict_true(!cold)) 2136 mutex_enter(&pool_head_lock); 2137 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2138 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2139 break; 2140 } 2141 if (pc1 == NULL) 2142 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2143 else 2144 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2145 if (__predict_true(!cold)) 2146 mutex_exit(&pool_head_lock); 2147 2148 membar_sync(); 2149 pp->pr_cache = pc; 2150 } 2151 2152 /* 2153 * pool_cache_destroy: 2154 * 2155 * Destroy a pool cache. 2156 */ 2157 void 2158 pool_cache_destroy(pool_cache_t pc) 2159 { 2160 2161 pool_cache_bootstrap_destroy(pc); 2162 pool_put(&cache_pool, pc); 2163 } 2164 2165 /* 2166 * pool_cache_bootstrap_destroy: 2167 * 2168 * Destroy a pool cache. 2169 */ 2170 void 2171 pool_cache_bootstrap_destroy(pool_cache_t pc) 2172 { 2173 struct pool *pp = &pc->pc_pool; 2174 u_int i; 2175 2176 /* Remove it from the global list. */ 2177 mutex_enter(&pool_head_lock); 2178 while (pc->pc_refcnt != 0) 2179 cv_wait(&pool_busy, &pool_head_lock); 2180 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2181 mutex_exit(&pool_head_lock); 2182 2183 /* First, invalidate the entire cache. */ 2184 pool_cache_invalidate(pc); 2185 2186 /* Disassociate it from the pool. */ 2187 mutex_enter(&pp->pr_lock); 2188 pp->pr_cache = NULL; 2189 mutex_exit(&pp->pr_lock); 2190 2191 /* Destroy per-CPU data */ 2192 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 2193 pool_cache_invalidate_cpu(pc, i); 2194 2195 /* Finally, destroy it. */ 2196 pool_destroy(pp); 2197 } 2198 2199 /* 2200 * pool_cache_cpu_init1: 2201 * 2202 * Called for each pool_cache whenever a new CPU is attached. 2203 */ 2204 static void 2205 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2206 { 2207 pool_cache_cpu_t *cc; 2208 int index; 2209 2210 index = ci->ci_index; 2211 2212 KASSERT(index < __arraycount(pc->pc_cpus)); 2213 2214 if ((cc = pc->pc_cpus[index]) != NULL) { 2215 return; 2216 } 2217 2218 /* 2219 * The first CPU is 'free'. This needs to be the case for 2220 * bootstrap - we may not be able to allocate yet. 2221 */ 2222 if (pc->pc_ncpu == 0) { 2223 cc = &pc->pc_cpu0; 2224 pc->pc_ncpu = 1; 2225 } else { 2226 pc->pc_ncpu++; 2227 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2228 } 2229 2230 cc->cc_current = __UNCONST(&pcg_dummy); 2231 cc->cc_previous = __UNCONST(&pcg_dummy); 2232 cc->cc_pcgcache = pc->pc_pcgcache; 2233 cc->cc_hits = 0; 2234 cc->cc_misses = 0; 2235 cc->cc_pcmisses = 0; 2236 cc->cc_contended = 0; 2237 cc->cc_nfull = 0; 2238 cc->cc_npart = 0; 2239 2240 pc->pc_cpus[index] = cc; 2241 } 2242 2243 /* 2244 * pool_cache_cpu_init: 2245 * 2246 * Called whenever a new CPU is attached. 2247 */ 2248 void 2249 pool_cache_cpu_init(struct cpu_info *ci) 2250 { 2251 pool_cache_t pc; 2252 2253 mutex_enter(&pool_head_lock); 2254 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2255 pc->pc_refcnt++; 2256 mutex_exit(&pool_head_lock); 2257 2258 pool_cache_cpu_init1(ci, pc); 2259 2260 mutex_enter(&pool_head_lock); 2261 pc->pc_refcnt--; 2262 cv_broadcast(&pool_busy); 2263 } 2264 mutex_exit(&pool_head_lock); 2265 } 2266 2267 /* 2268 * pool_cache_reclaim: 2269 * 2270 * Reclaim memory from a pool cache. 2271 */ 2272 bool 2273 pool_cache_reclaim(pool_cache_t pc) 2274 { 2275 2276 return pool_reclaim(&pc->pc_pool); 2277 } 2278 2279 static void 2280 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2281 { 2282 (*pc->pc_dtor)(pc->pc_arg, object); 2283 pool_put(&pc->pc_pool, object); 2284 } 2285 2286 /* 2287 * pool_cache_destruct_object: 2288 * 2289 * Force destruction of an object and its release back into 2290 * the pool. 2291 */ 2292 void 2293 pool_cache_destruct_object(pool_cache_t pc, void *object) 2294 { 2295 2296 FREECHECK_IN(&pc->pc_freecheck, object); 2297 2298 pool_cache_destruct_object1(pc, object); 2299 } 2300 2301 /* 2302 * pool_cache_invalidate_groups: 2303 * 2304 * Invalidate a chain of groups and destruct all objects. Return the 2305 * number of groups that were invalidated. 2306 */ 2307 static int 2308 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2309 { 2310 void *object; 2311 pcg_t *next; 2312 int i, n; 2313 2314 for (n = 0; pcg != NULL; pcg = next, n++) { 2315 next = pcg->pcg_next; 2316 2317 for (i = 0; i < pcg->pcg_avail; i++) { 2318 object = pcg->pcg_objects[i].pcgo_va; 2319 pool_cache_destruct_object1(pc, object); 2320 } 2321 2322 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2323 pool_put(&pcg_large_pool, pcg); 2324 } else { 2325 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2326 pool_put(&pcg_normal_pool, pcg); 2327 } 2328 } 2329 return n; 2330 } 2331 2332 /* 2333 * pool_cache_invalidate: 2334 * 2335 * Invalidate a pool cache (destruct and release all of the 2336 * cached objects). Does not reclaim objects from the pool. 2337 * 2338 * Note: For pool caches that provide constructed objects, there 2339 * is an assumption that another level of synchronization is occurring 2340 * between the input to the constructor and the cache invalidation. 2341 * 2342 * Invalidation is a costly process and should not be called from 2343 * interrupt context. 2344 */ 2345 void 2346 pool_cache_invalidate(pool_cache_t pc) 2347 { 2348 uint64_t where; 2349 pcg_t *pcg; 2350 int n, s; 2351 2352 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 2353 2354 if (ncpu < 2 || !mp_online) { 2355 /* 2356 * We might be called early enough in the boot process 2357 * for the CPU data structures to not be fully initialized. 2358 * In this case, transfer the content of the local CPU's 2359 * cache back into global cache as only this CPU is currently 2360 * running. 2361 */ 2362 pool_cache_transfer(pc); 2363 } else { 2364 /* 2365 * Signal all CPUs that they must transfer their local 2366 * cache back to the global pool then wait for the xcall to 2367 * complete. 2368 */ 2369 where = xc_broadcast(0, 2370 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL); 2371 xc_wait(where); 2372 } 2373 2374 /* Now dequeue and invalidate everything. */ 2375 pcg = pool_pcg_trunc(&pcg_normal_cache); 2376 (void)pool_cache_invalidate_groups(pc, pcg); 2377 2378 pcg = pool_pcg_trunc(&pcg_large_cache); 2379 (void)pool_cache_invalidate_groups(pc, pcg); 2380 2381 pcg = pool_pcg_trunc(&pc->pc_fullgroups); 2382 n = pool_cache_invalidate_groups(pc, pcg); 2383 s = splvm(); 2384 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n; 2385 splx(s); 2386 2387 pcg = pool_pcg_trunc(&pc->pc_partgroups); 2388 n = pool_cache_invalidate_groups(pc, pcg); 2389 s = splvm(); 2390 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n; 2391 splx(s); 2392 } 2393 2394 /* 2395 * pool_cache_invalidate_cpu: 2396 * 2397 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2398 * identified by its associated index. 2399 * It is caller's responsibility to ensure that no operation is 2400 * taking place on this pool cache while doing this invalidation. 2401 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2402 * pool cached objects from a CPU different from the one currently running 2403 * may result in an undefined behaviour. 2404 */ 2405 static void 2406 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2407 { 2408 pool_cache_cpu_t *cc; 2409 pcg_t *pcg; 2410 2411 if ((cc = pc->pc_cpus[index]) == NULL) 2412 return; 2413 2414 if ((pcg = cc->cc_current) != &pcg_dummy) { 2415 pcg->pcg_next = NULL; 2416 pool_cache_invalidate_groups(pc, pcg); 2417 } 2418 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2419 pcg->pcg_next = NULL; 2420 pool_cache_invalidate_groups(pc, pcg); 2421 } 2422 if (cc != &pc->pc_cpu0) 2423 pool_put(&cache_cpu_pool, cc); 2424 2425 } 2426 2427 void 2428 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2429 { 2430 2431 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2432 } 2433 2434 void 2435 pool_cache_setlowat(pool_cache_t pc, int n) 2436 { 2437 2438 pool_setlowat(&pc->pc_pool, n); 2439 } 2440 2441 void 2442 pool_cache_sethiwat(pool_cache_t pc, int n) 2443 { 2444 2445 pool_sethiwat(&pc->pc_pool, n); 2446 } 2447 2448 void 2449 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2450 { 2451 2452 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2453 } 2454 2455 void 2456 pool_cache_prime(pool_cache_t pc, int n) 2457 { 2458 2459 pool_prime(&pc->pc_pool, n); 2460 } 2461 2462 /* 2463 * pool_pcg_get: 2464 * 2465 * Get a cache group from the specified list. Return true if 2466 * contention was encountered. Must be called at IPL_VM because 2467 * of spin wait vs. kernel_lock. 2468 */ 2469 static int 2470 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp) 2471 { 2472 int count = SPINLOCK_BACKOFF_MIN; 2473 pcg_t *o, *n; 2474 2475 for (o = atomic_load_relaxed(head);; o = n) { 2476 if (__predict_false(o == &pcg_dummy)) { 2477 /* Wait for concurrent get to complete. */ 2478 SPINLOCK_BACKOFF(count); 2479 n = atomic_load_relaxed(head); 2480 continue; 2481 } 2482 if (__predict_false(o == NULL)) { 2483 break; 2484 } 2485 /* Lock out concurrent get/put. */ 2486 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy)); 2487 if (o == n) { 2488 /* Fetch pointer to next item and then unlock. */ 2489 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2490 membar_datadep_consumer(); /* alpha */ 2491 #endif 2492 n = atomic_load_relaxed(&o->pcg_next); 2493 atomic_store_release(head, n); 2494 break; 2495 } 2496 } 2497 *pcgp = o; 2498 return count != SPINLOCK_BACKOFF_MIN; 2499 } 2500 2501 /* 2502 * pool_pcg_trunc: 2503 * 2504 * Chop out entire list of pool cache groups. 2505 */ 2506 static pcg_t * 2507 pool_pcg_trunc(pcg_t *volatile *head) 2508 { 2509 int count = SPINLOCK_BACKOFF_MIN, s; 2510 pcg_t *o, *n; 2511 2512 s = splvm(); 2513 for (o = atomic_load_relaxed(head);; o = n) { 2514 if (__predict_false(o == &pcg_dummy)) { 2515 /* Wait for concurrent get to complete. */ 2516 SPINLOCK_BACKOFF(count); 2517 n = atomic_load_relaxed(head); 2518 continue; 2519 } 2520 n = atomic_cas_ptr(head, o, NULL); 2521 if (o == n) { 2522 splx(s); 2523 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2524 membar_datadep_consumer(); /* alpha */ 2525 #endif 2526 return o; 2527 } 2528 } 2529 } 2530 2531 /* 2532 * pool_pcg_put: 2533 * 2534 * Put a pool cache group to the specified list. Return true if 2535 * contention was encountered. Must be called at IPL_VM because of 2536 * spin wait vs. kernel_lock. 2537 */ 2538 static int 2539 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg) 2540 { 2541 int count = SPINLOCK_BACKOFF_MIN; 2542 pcg_t *o, *n; 2543 2544 for (o = atomic_load_relaxed(head);; o = n) { 2545 if (__predict_false(o == &pcg_dummy)) { 2546 /* Wait for concurrent get to complete. */ 2547 SPINLOCK_BACKOFF(count); 2548 n = atomic_load_relaxed(head); 2549 continue; 2550 } 2551 pcg->pcg_next = o; 2552 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2553 membar_exit(); 2554 #endif 2555 n = atomic_cas_ptr(head, o, pcg); 2556 if (o == n) { 2557 return count != SPINLOCK_BACKOFF_MIN; 2558 } 2559 } 2560 } 2561 2562 static bool __noinline 2563 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, 2564 void **objectp, paddr_t *pap, int flags) 2565 { 2566 pcg_t *pcg, *cur; 2567 void *object; 2568 2569 KASSERT(cc->cc_current->pcg_avail == 0); 2570 KASSERT(cc->cc_previous->pcg_avail == 0); 2571 2572 cc->cc_misses++; 2573 2574 /* 2575 * If there's a full group, release our empty group back to the 2576 * cache. Install the full group as cc_current and return. 2577 */ 2578 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg); 2579 if (__predict_true(pcg != NULL)) { 2580 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2581 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2582 KASSERT(cur->pcg_avail == 0); 2583 (void)pool_pcg_put(cc->cc_pcgcache, cur); 2584 } 2585 cc->cc_nfull--; 2586 cc->cc_current = pcg; 2587 return true; 2588 } 2589 2590 /* 2591 * Nothing available locally or in cache. Take the slow 2592 * path: fetch a new object from the pool and construct 2593 * it. 2594 */ 2595 cc->cc_pcmisses++; 2596 splx(s); 2597 2598 object = pool_get(&pc->pc_pool, flags); 2599 *objectp = object; 2600 if (__predict_false(object == NULL)) { 2601 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 2602 return false; 2603 } 2604 2605 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2606 pool_put(&pc->pc_pool, object); 2607 *objectp = NULL; 2608 return false; 2609 } 2610 2611 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0); 2612 2613 if (pap != NULL) { 2614 #ifdef POOL_VTOPHYS 2615 *pap = POOL_VTOPHYS(object); 2616 #else 2617 *pap = POOL_PADDR_INVALID; 2618 #endif 2619 } 2620 2621 FREECHECK_OUT(&pc->pc_freecheck, object); 2622 return false; 2623 } 2624 2625 /* 2626 * pool_cache_get{,_paddr}: 2627 * 2628 * Get an object from a pool cache (optionally returning 2629 * the physical address of the object). 2630 */ 2631 void * 2632 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2633 { 2634 pool_cache_cpu_t *cc; 2635 pcg_t *pcg; 2636 void *object; 2637 int s; 2638 2639 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 2640 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2641 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2642 "%s: [%s] is IPL_NONE, but called from interrupt context", 2643 __func__, pc->pc_pool.pr_wchan); 2644 2645 if (flags & PR_WAITOK) { 2646 ASSERT_SLEEPABLE(); 2647 } 2648 2649 if (flags & PR_NOWAIT) { 2650 if (fault_inject()) 2651 return NULL; 2652 } 2653 2654 /* Lock out interrupts and disable preemption. */ 2655 s = splvm(); 2656 while (/* CONSTCOND */ true) { 2657 /* Try and allocate an object from the current group. */ 2658 cc = pc->pc_cpus[curcpu()->ci_index]; 2659 pcg = cc->cc_current; 2660 if (__predict_true(pcg->pcg_avail > 0)) { 2661 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2662 if (__predict_false(pap != NULL)) 2663 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2664 #if defined(DIAGNOSTIC) 2665 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2666 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2667 KASSERT(object != NULL); 2668 #endif 2669 cc->cc_hits++; 2670 splx(s); 2671 FREECHECK_OUT(&pc->pc_freecheck, object); 2672 pool_redzone_fill(&pc->pc_pool, object); 2673 pool_cache_get_kmsan(pc, object); 2674 return object; 2675 } 2676 2677 /* 2678 * That failed. If the previous group isn't empty, swap 2679 * it with the current group and allocate from there. 2680 */ 2681 pcg = cc->cc_previous; 2682 if (__predict_true(pcg->pcg_avail > 0)) { 2683 cc->cc_previous = cc->cc_current; 2684 cc->cc_current = pcg; 2685 continue; 2686 } 2687 2688 /* 2689 * Can't allocate from either group: try the slow path. 2690 * If get_slow() allocated an object for us, or if 2691 * no more objects are available, it will return false. 2692 * Otherwise, we need to retry. 2693 */ 2694 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) { 2695 if (object != NULL) { 2696 kmsan_orig(object, pc->pc_pool.pr_size, 2697 KMSAN_TYPE_POOL, __RET_ADDR); 2698 } 2699 break; 2700 } 2701 } 2702 2703 /* 2704 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but 2705 * pool_cache_get can fail even in the PR_WAITOK case, if the 2706 * constructor fails. 2707 */ 2708 return object; 2709 } 2710 2711 static bool __noinline 2712 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object) 2713 { 2714 pcg_t *pcg, *cur; 2715 2716 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2717 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2718 2719 cc->cc_misses++; 2720 2721 /* 2722 * Try to get an empty group from the cache. If there are no empty 2723 * groups in the cache then allocate one. 2724 */ 2725 (void)pool_pcg_get(cc->cc_pcgcache, &pcg); 2726 if (__predict_false(pcg == NULL)) { 2727 if (__predict_true(!pool_cache_disable)) { 2728 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2729 } 2730 if (__predict_true(pcg != NULL)) { 2731 pcg->pcg_avail = 0; 2732 pcg->pcg_size = pc->pc_pcgsize; 2733 } 2734 } 2735 2736 /* 2737 * If there's a empty group, release our full group back to the 2738 * cache. Install the empty group to the local CPU and return. 2739 */ 2740 if (pcg != NULL) { 2741 KASSERT(pcg->pcg_avail == 0); 2742 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2743 cc->cc_previous = pcg; 2744 } else { 2745 cur = cc->cc_current; 2746 if (__predict_true(cur != &pcg_dummy)) { 2747 KASSERT(cur->pcg_avail == cur->pcg_size); 2748 cc->cc_contended += 2749 pool_pcg_put(&pc->pc_fullgroups, cur); 2750 cc->cc_nfull++; 2751 } 2752 cc->cc_current = pcg; 2753 } 2754 return true; 2755 } 2756 2757 /* 2758 * Nothing available locally or in cache, and we didn't 2759 * allocate an empty group. Take the slow path and destroy 2760 * the object here and now. 2761 */ 2762 cc->cc_pcmisses++; 2763 splx(s); 2764 pool_cache_destruct_object(pc, object); 2765 2766 return false; 2767 } 2768 2769 /* 2770 * pool_cache_put{,_paddr}: 2771 * 2772 * Put an object back to the pool cache (optionally caching the 2773 * physical address of the object). 2774 */ 2775 void 2776 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2777 { 2778 pool_cache_cpu_t *cc; 2779 pcg_t *pcg; 2780 int s; 2781 2782 KASSERT(object != NULL); 2783 pool_cache_put_kmsan(pc, object); 2784 pool_cache_redzone_check(pc, object); 2785 FREECHECK_IN(&pc->pc_freecheck, object); 2786 2787 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) { 2788 pc_phinpage_check(pc, object); 2789 } 2790 2791 if (pool_cache_put_nocache(pc, object)) { 2792 return; 2793 } 2794 2795 /* Lock out interrupts and disable preemption. */ 2796 s = splvm(); 2797 while (/* CONSTCOND */ true) { 2798 /* If the current group isn't full, release it there. */ 2799 cc = pc->pc_cpus[curcpu()->ci_index]; 2800 pcg = cc->cc_current; 2801 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2802 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2803 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2804 pcg->pcg_avail++; 2805 cc->cc_hits++; 2806 splx(s); 2807 return; 2808 } 2809 2810 /* 2811 * That failed. If the previous group isn't full, swap 2812 * it with the current group and try again. 2813 */ 2814 pcg = cc->cc_previous; 2815 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2816 cc->cc_previous = cc->cc_current; 2817 cc->cc_current = pcg; 2818 continue; 2819 } 2820 2821 /* 2822 * Can't free to either group: try the slow path. 2823 * If put_slow() releases the object for us, it 2824 * will return false. Otherwise we need to retry. 2825 */ 2826 if (!pool_cache_put_slow(pc, cc, s, object)) 2827 break; 2828 } 2829 } 2830 2831 /* 2832 * pool_cache_transfer: 2833 * 2834 * Transfer objects from the per-CPU cache to the global cache. 2835 * Run within a cross-call thread. 2836 */ 2837 static void 2838 pool_cache_transfer(pool_cache_t pc) 2839 { 2840 pool_cache_cpu_t *cc; 2841 pcg_t *prev, *cur; 2842 int s; 2843 2844 s = splvm(); 2845 cc = pc->pc_cpus[curcpu()->ci_index]; 2846 cur = cc->cc_current; 2847 cc->cc_current = __UNCONST(&pcg_dummy); 2848 prev = cc->cc_previous; 2849 cc->cc_previous = __UNCONST(&pcg_dummy); 2850 if (cur != &pcg_dummy) { 2851 if (cur->pcg_avail == cur->pcg_size) { 2852 (void)pool_pcg_put(&pc->pc_fullgroups, cur); 2853 cc->cc_nfull++; 2854 } else if (cur->pcg_avail == 0) { 2855 (void)pool_pcg_put(pc->pc_pcgcache, cur); 2856 } else { 2857 (void)pool_pcg_put(&pc->pc_partgroups, cur); 2858 cc->cc_npart++; 2859 } 2860 } 2861 if (prev != &pcg_dummy) { 2862 if (prev->pcg_avail == prev->pcg_size) { 2863 (void)pool_pcg_put(&pc->pc_fullgroups, prev); 2864 cc->cc_nfull++; 2865 } else if (prev->pcg_avail == 0) { 2866 (void)pool_pcg_put(pc->pc_pcgcache, prev); 2867 } else { 2868 (void)pool_pcg_put(&pc->pc_partgroups, prev); 2869 cc->cc_npart++; 2870 } 2871 } 2872 splx(s); 2873 } 2874 2875 static int 2876 pool_bigidx(size_t size) 2877 { 2878 int i; 2879 2880 for (i = 0; i < __arraycount(pool_allocator_big); i++) { 2881 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size) 2882 return i; 2883 } 2884 panic("pool item size %zu too large, use a custom allocator", size); 2885 } 2886 2887 static void * 2888 pool_allocator_alloc(struct pool *pp, int flags) 2889 { 2890 struct pool_allocator *pa = pp->pr_alloc; 2891 void *res; 2892 2893 res = (*pa->pa_alloc)(pp, flags); 2894 if (res == NULL && (flags & PR_WAITOK) == 0) { 2895 /* 2896 * We only run the drain hook here if PR_NOWAIT. 2897 * In other cases, the hook will be run in 2898 * pool_reclaim(). 2899 */ 2900 if (pp->pr_drain_hook != NULL) { 2901 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2902 res = (*pa->pa_alloc)(pp, flags); 2903 } 2904 } 2905 return res; 2906 } 2907 2908 static void 2909 pool_allocator_free(struct pool *pp, void *v) 2910 { 2911 struct pool_allocator *pa = pp->pr_alloc; 2912 2913 if (pp->pr_redzone) { 2914 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0); 2915 } 2916 (*pa->pa_free)(pp, v); 2917 } 2918 2919 void * 2920 pool_page_alloc(struct pool *pp, int flags) 2921 { 2922 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2923 vmem_addr_t va; 2924 int ret; 2925 2926 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2927 vflags | VM_INSTANTFIT, &va); 2928 2929 return ret ? NULL : (void *)va; 2930 } 2931 2932 void 2933 pool_page_free(struct pool *pp, void *v) 2934 { 2935 2936 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2937 } 2938 2939 static void * 2940 pool_page_alloc_meta(struct pool *pp, int flags) 2941 { 2942 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2943 vmem_addr_t va; 2944 int ret; 2945 2946 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2947 vflags | VM_INSTANTFIT, &va); 2948 2949 return ret ? NULL : (void *)va; 2950 } 2951 2952 static void 2953 pool_page_free_meta(struct pool *pp, void *v) 2954 { 2955 2956 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2957 } 2958 2959 #ifdef KMSAN 2960 static inline void 2961 pool_get_kmsan(struct pool *pp, void *p) 2962 { 2963 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR); 2964 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT); 2965 } 2966 2967 static inline void 2968 pool_put_kmsan(struct pool *pp, void *p) 2969 { 2970 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED); 2971 } 2972 2973 static inline void 2974 pool_cache_get_kmsan(pool_cache_t pc, void *p) 2975 { 2976 if (__predict_false(pc_has_ctor(pc))) { 2977 return; 2978 } 2979 pool_get_kmsan(&pc->pc_pool, p); 2980 } 2981 2982 static inline void 2983 pool_cache_put_kmsan(pool_cache_t pc, void *p) 2984 { 2985 pool_put_kmsan(&pc->pc_pool, p); 2986 } 2987 #endif 2988 2989 #ifdef POOL_QUARANTINE 2990 static void 2991 pool_quarantine_init(struct pool *pp) 2992 { 2993 pp->pr_quar.rotor = 0; 2994 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar)); 2995 } 2996 2997 static void 2998 pool_quarantine_flush(struct pool *pp) 2999 { 3000 pool_quar_t *quar = &pp->pr_quar; 3001 struct pool_pagelist pq; 3002 size_t i; 3003 3004 LIST_INIT(&pq); 3005 3006 mutex_enter(&pp->pr_lock); 3007 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) { 3008 if (quar->list[i] == 0) 3009 continue; 3010 pool_do_put(pp, (void *)quar->list[i], &pq); 3011 } 3012 mutex_exit(&pp->pr_lock); 3013 3014 pr_pagelist_free(pp, &pq); 3015 } 3016 3017 static bool 3018 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq) 3019 { 3020 pool_quar_t *quar = &pp->pr_quar; 3021 uintptr_t old; 3022 3023 if (pp->pr_roflags & PR_NOTOUCH) { 3024 return false; 3025 } 3026 3027 pool_redzone_check(pp, v); 3028 3029 old = quar->list[quar->rotor]; 3030 quar->list[quar->rotor] = (uintptr_t)v; 3031 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH; 3032 if (old != 0) { 3033 pool_do_put(pp, (void *)old, pq); 3034 } 3035 3036 return true; 3037 } 3038 #endif 3039 3040 #ifdef POOL_NOCACHE 3041 static bool 3042 pool_cache_put_nocache(pool_cache_t pc, void *p) 3043 { 3044 pool_cache_destruct_object(pc, p); 3045 return true; 3046 } 3047 #endif 3048 3049 #ifdef POOL_REDZONE 3050 #if defined(_LP64) 3051 # define PRIME 0x9e37fffffffc0000UL 3052 #else /* defined(_LP64) */ 3053 # define PRIME 0x9e3779b1 3054 #endif /* defined(_LP64) */ 3055 #define STATIC_BYTE 0xFE 3056 CTASSERT(POOL_REDZONE_SIZE > 1); 3057 3058 #ifndef KASAN 3059 static inline uint8_t 3060 pool_pattern_generate(const void *p) 3061 { 3062 return (uint8_t)(((uintptr_t)p) * PRIME 3063 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 3064 } 3065 #endif 3066 3067 static void 3068 pool_redzone_init(struct pool *pp, size_t requested_size) 3069 { 3070 size_t redzsz; 3071 size_t nsz; 3072 3073 #ifdef KASAN 3074 redzsz = requested_size; 3075 kasan_add_redzone(&redzsz); 3076 redzsz -= requested_size; 3077 #else 3078 redzsz = POOL_REDZONE_SIZE; 3079 #endif 3080 3081 if (pp->pr_roflags & PR_NOTOUCH) { 3082 pp->pr_redzone = false; 3083 return; 3084 } 3085 3086 /* 3087 * We may have extended the requested size earlier; check if 3088 * there's naturally space in the padding for a red zone. 3089 */ 3090 if (pp->pr_size - requested_size >= redzsz) { 3091 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3092 pp->pr_redzone = true; 3093 return; 3094 } 3095 3096 /* 3097 * No space in the natural padding; check if we can extend a 3098 * bit the size of the pool. 3099 * 3100 * Avoid using redzone for allocations half of a page or larger. 3101 * For pagesize items, we'd waste a whole new page (could be 3102 * unmapped?), and for half pagesize items, approximately half 3103 * the space is lost (eg, 4K pages, you get one 2K allocation.) 3104 */ 3105 nsz = roundup(pp->pr_size + redzsz, pp->pr_align); 3106 if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) { 3107 /* Ok, we can */ 3108 pp->pr_size = nsz; 3109 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3110 pp->pr_redzone = true; 3111 } else { 3112 /* No space for a red zone... snif :'( */ 3113 pp->pr_redzone = false; 3114 aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan); 3115 } 3116 } 3117 3118 static void 3119 pool_redzone_fill(struct pool *pp, void *p) 3120 { 3121 if (!pp->pr_redzone) 3122 return; 3123 #ifdef KASAN 3124 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone, 3125 KASAN_POOL_REDZONE); 3126 #else 3127 uint8_t *cp, pat; 3128 const uint8_t *ep; 3129 3130 cp = (uint8_t *)p + pp->pr_reqsize; 3131 ep = cp + POOL_REDZONE_SIZE; 3132 3133 /* 3134 * We really don't want the first byte of the red zone to be '\0'; 3135 * an off-by-one in a string may not be properly detected. 3136 */ 3137 pat = pool_pattern_generate(cp); 3138 *cp = (pat == '\0') ? STATIC_BYTE: pat; 3139 cp++; 3140 3141 while (cp < ep) { 3142 *cp = pool_pattern_generate(cp); 3143 cp++; 3144 } 3145 #endif 3146 } 3147 3148 static void 3149 pool_redzone_check(struct pool *pp, void *p) 3150 { 3151 if (!pp->pr_redzone) 3152 return; 3153 #ifdef KASAN 3154 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED); 3155 #else 3156 uint8_t *cp, pat, expected; 3157 const uint8_t *ep; 3158 3159 cp = (uint8_t *)p + pp->pr_reqsize; 3160 ep = cp + POOL_REDZONE_SIZE; 3161 3162 pat = pool_pattern_generate(cp); 3163 expected = (pat == '\0') ? STATIC_BYTE: pat; 3164 if (__predict_false(*cp != expected)) { 3165 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3166 pp->pr_wchan, *cp, expected); 3167 } 3168 cp++; 3169 3170 while (cp < ep) { 3171 expected = pool_pattern_generate(cp); 3172 if (__predict_false(*cp != expected)) { 3173 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3174 pp->pr_wchan, *cp, expected); 3175 } 3176 cp++; 3177 } 3178 #endif 3179 } 3180 3181 static void 3182 pool_cache_redzone_check(pool_cache_t pc, void *p) 3183 { 3184 #ifdef KASAN 3185 /* If there is a ctor/dtor, leave the data as valid. */ 3186 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) { 3187 return; 3188 } 3189 #endif 3190 pool_redzone_check(&pc->pc_pool, p); 3191 } 3192 3193 #endif /* POOL_REDZONE */ 3194 3195 #if defined(DDB) 3196 static bool 3197 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3198 { 3199 3200 return (uintptr_t)ph->ph_page <= addr && 3201 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 3202 } 3203 3204 static bool 3205 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 3206 { 3207 3208 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 3209 } 3210 3211 static bool 3212 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 3213 { 3214 int i; 3215 3216 if (pcg == NULL) { 3217 return false; 3218 } 3219 for (i = 0; i < pcg->pcg_avail; i++) { 3220 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 3221 return true; 3222 } 3223 } 3224 return false; 3225 } 3226 3227 static bool 3228 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3229 { 3230 3231 if ((pp->pr_roflags & PR_USEBMAP) != 0) { 3232 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr); 3233 pool_item_bitmap_t *bitmap = 3234 ph->ph_bitmap + (idx / BITMAP_SIZE); 3235 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 3236 3237 return (*bitmap & mask) == 0; 3238 } else { 3239 struct pool_item *pi; 3240 3241 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 3242 if (pool_in_item(pp, pi, addr)) { 3243 return false; 3244 } 3245 } 3246 return true; 3247 } 3248 } 3249 3250 void 3251 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 3252 { 3253 struct pool *pp; 3254 3255 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3256 struct pool_item_header *ph; 3257 uintptr_t item; 3258 bool allocated = true; 3259 bool incache = false; 3260 bool incpucache = false; 3261 char cpucachestr[32]; 3262 3263 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3264 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3265 if (pool_in_page(pp, ph, addr)) { 3266 goto found; 3267 } 3268 } 3269 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3270 if (pool_in_page(pp, ph, addr)) { 3271 allocated = 3272 pool_allocated(pp, ph, addr); 3273 goto found; 3274 } 3275 } 3276 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3277 if (pool_in_page(pp, ph, addr)) { 3278 allocated = false; 3279 goto found; 3280 } 3281 } 3282 continue; 3283 } else { 3284 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3285 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3286 continue; 3287 } 3288 allocated = pool_allocated(pp, ph, addr); 3289 } 3290 found: 3291 if (allocated && pp->pr_cache) { 3292 pool_cache_t pc = pp->pr_cache; 3293 struct pool_cache_group *pcg; 3294 int i; 3295 3296 for (pcg = pc->pc_fullgroups; pcg != NULL; 3297 pcg = pcg->pcg_next) { 3298 if (pool_in_cg(pp, pcg, addr)) { 3299 incache = true; 3300 goto print; 3301 } 3302 } 3303 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 3304 pool_cache_cpu_t *cc; 3305 3306 if ((cc = pc->pc_cpus[i]) == NULL) { 3307 continue; 3308 } 3309 if (pool_in_cg(pp, cc->cc_current, addr) || 3310 pool_in_cg(pp, cc->cc_previous, addr)) { 3311 struct cpu_info *ci = 3312 cpu_lookup(i); 3313 3314 incpucache = true; 3315 snprintf(cpucachestr, 3316 sizeof(cpucachestr), 3317 "cached by CPU %u", 3318 ci->ci_index); 3319 goto print; 3320 } 3321 } 3322 } 3323 print: 3324 item = (uintptr_t)ph->ph_page + ph->ph_off; 3325 item = item + rounddown(addr - item, pp->pr_size); 3326 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3327 (void *)addr, item, (size_t)(addr - item), 3328 pp->pr_wchan, 3329 incpucache ? cpucachestr : 3330 incache ? "cached" : allocated ? "allocated" : "free"); 3331 } 3332 } 3333 #endif /* defined(DDB) */ 3334 3335 static int 3336 pool_sysctl(SYSCTLFN_ARGS) 3337 { 3338 struct pool_sysctl data; 3339 struct pool *pp; 3340 struct pool_cache *pc; 3341 pool_cache_cpu_t *cc; 3342 int error; 3343 size_t i, written; 3344 3345 if (oldp == NULL) { 3346 *oldlenp = 0; 3347 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 3348 *oldlenp += sizeof(data); 3349 return 0; 3350 } 3351 3352 memset(&data, 0, sizeof(data)); 3353 error = 0; 3354 written = 0; 3355 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3356 if (written + sizeof(data) > *oldlenp) 3357 break; 3358 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 3359 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 3360 data.pr_flags = pp->pr_roflags | pp->pr_flags; 3361 #define COPY(field) data.field = pp->field 3362 COPY(pr_size); 3363 3364 COPY(pr_itemsperpage); 3365 COPY(pr_nitems); 3366 COPY(pr_nout); 3367 COPY(pr_hardlimit); 3368 COPY(pr_npages); 3369 COPY(pr_minpages); 3370 COPY(pr_maxpages); 3371 3372 COPY(pr_nget); 3373 COPY(pr_nfail); 3374 COPY(pr_nput); 3375 COPY(pr_npagealloc); 3376 COPY(pr_npagefree); 3377 COPY(pr_hiwat); 3378 COPY(pr_nidle); 3379 #undef COPY 3380 3381 data.pr_cache_nmiss_pcpu = 0; 3382 data.pr_cache_nhit_pcpu = 0; 3383 data.pr_cache_nmiss_global = 0; 3384 data.pr_cache_nempty = 0; 3385 data.pr_cache_ncontended = 0; 3386 data.pr_cache_npartial = 0; 3387 if (pp->pr_cache) { 3388 uint32_t nfull = 0; 3389 pc = pp->pr_cache; 3390 data.pr_cache_meta_size = pc->pc_pcgsize; 3391 for (i = 0; i < pc->pc_ncpu; ++i) { 3392 cc = pc->pc_cpus[i]; 3393 if (cc == NULL) 3394 continue; 3395 data.pr_cache_ncontended += cc->cc_contended; 3396 data.pr_cache_nmiss_pcpu += cc->cc_misses; 3397 data.pr_cache_nhit_pcpu += cc->cc_hits; 3398 data.pr_cache_nmiss_global += cc->cc_pcmisses; 3399 nfull += cc->cc_nfull; /* 32-bit rollover! */ 3400 data.pr_cache_npartial += cc->cc_npart; 3401 } 3402 data.pr_cache_nfull = nfull; 3403 } else { 3404 data.pr_cache_meta_size = 0; 3405 data.pr_cache_nfull = 0; 3406 } 3407 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu - 3408 data.pr_cache_nmiss_global; 3409 3410 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 3411 if (error) 3412 break; 3413 written += sizeof(data); 3414 oldp = (char *)oldp + sizeof(data); 3415 } 3416 3417 *oldlenp = written; 3418 return error; 3419 } 3420 3421 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 3422 { 3423 const struct sysctlnode *rnode = NULL; 3424 3425 sysctl_createv(clog, 0, NULL, &rnode, 3426 CTLFLAG_PERMANENT, 3427 CTLTYPE_STRUCT, "pool", 3428 SYSCTL_DESCR("Get pool statistics"), 3429 pool_sysctl, 0, NULL, 0, 3430 CTL_KERN, CTL_CREATE, CTL_EOL); 3431 } 3432