1 /* $NetBSD: subr_pool.c,v 1.48 2000/12/11 05:22:56 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include "opt_pool.h" 41 #include "opt_poollog.h" 42 #include "opt_lockdebug.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/errno.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 54 #include <uvm/uvm.h> 55 56 /* 57 * Pool resource management utility. 58 * 59 * Memory is allocated in pages which are split into pieces according 60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist' 61 * in the pool structure and the individual pool items are on a linked list 62 * headed by `ph_itemlist' in each page header. The memory for building 63 * the page list is either taken from the allocated pages themselves (for 64 * small pool items) or taken from an internal pool of page headers (`phpool'). 65 */ 66 67 /* List of all pools */ 68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 69 70 /* Private pool for page header structures */ 71 static struct pool phpool; 72 73 /* # of seconds to retain page after last use */ 74 int pool_inactive_time = 10; 75 76 /* Next candidate for drainage (see pool_drain()) */ 77 static struct pool *drainpp; 78 79 /* This spin lock protects both pool_head and drainpp. */ 80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 81 82 struct pool_item_header { 83 /* Page headers */ 84 TAILQ_ENTRY(pool_item_header) 85 ph_pagelist; /* pool page list */ 86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 87 LIST_ENTRY(pool_item_header) 88 ph_hashlist; /* Off-page page headers */ 89 int ph_nmissing; /* # of chunks in use */ 90 caddr_t ph_page; /* this page's address */ 91 struct timeval ph_time; /* last referenced */ 92 }; 93 94 struct pool_item { 95 #ifdef DIAGNOSTIC 96 int pi_magic; 97 #endif 98 #define PI_MAGIC 0xdeadbeef 99 /* Other entries use only this list entry */ 100 TAILQ_ENTRY(pool_item) pi_list; 101 }; 102 103 #define PR_HASH_INDEX(pp,addr) \ 104 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1)) 105 106 /* 107 * Pool cache management. 108 * 109 * Pool caches provide a way for constructed objects to be cached by the 110 * pool subsystem. This can lead to performance improvements by avoiding 111 * needless object construction/destruction; it is deferred until absolutely 112 * necessary. 113 * 114 * Caches are grouped into cache groups. Each cache group references 115 * up to 16 constructed objects. When a cache allocates an object 116 * from the pool, it calls the object's constructor and places it into 117 * a cache group. When a cache group frees an object back to the pool, 118 * it first calls the object's destructor. This allows the object to 119 * persist in constructed form while freed to the cache. 120 * 121 * Multiple caches may exist for each pool. This allows a single 122 * object type to have multiple constructed forms. The pool references 123 * each cache, so that when a pool is drained by the pagedaemon, it can 124 * drain each individual cache as well. Each time a cache is drained, 125 * the most idle cache group is freed to the pool in its entirety. 126 * 127 * Pool caches are layed on top of pools. By layering them, we can avoid 128 * the complexity of cache management for pools which would not benefit 129 * from it. 130 */ 131 132 /* The cache group pool. */ 133 static struct pool pcgpool; 134 135 /* The pool cache group. */ 136 #define PCG_NOBJECTS 16 137 struct pool_cache_group { 138 TAILQ_ENTRY(pool_cache_group) 139 pcg_list; /* link in the pool cache's group list */ 140 u_int pcg_avail; /* # available objects */ 141 /* pointers to the objects */ 142 void *pcg_objects[PCG_NOBJECTS]; 143 }; 144 145 static void pool_cache_reclaim(struct pool_cache *); 146 147 static int pool_catchup(struct pool *); 148 static void pool_prime_page(struct pool *, caddr_t); 149 static void *pool_page_alloc(unsigned long, int, int); 150 static void pool_page_free(void *, unsigned long, int); 151 152 static void pool_print1(struct pool *, const char *, 153 void (*)(const char *, ...)); 154 155 /* 156 * Pool log entry. An array of these is allocated in pool_create(). 157 */ 158 struct pool_log { 159 const char *pl_file; 160 long pl_line; 161 int pl_action; 162 #define PRLOG_GET 1 163 #define PRLOG_PUT 2 164 void *pl_addr; 165 }; 166 167 /* Number of entries in pool log buffers */ 168 #ifndef POOL_LOGSIZE 169 #define POOL_LOGSIZE 10 170 #endif 171 172 int pool_logsize = POOL_LOGSIZE; 173 174 #ifdef DIAGNOSTIC 175 static __inline void 176 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 177 { 178 int n = pp->pr_curlogentry; 179 struct pool_log *pl; 180 181 if ((pp->pr_roflags & PR_LOGGING) == 0) 182 return; 183 184 /* 185 * Fill in the current entry. Wrap around and overwrite 186 * the oldest entry if necessary. 187 */ 188 pl = &pp->pr_log[n]; 189 pl->pl_file = file; 190 pl->pl_line = line; 191 pl->pl_action = action; 192 pl->pl_addr = v; 193 if (++n >= pp->pr_logsize) 194 n = 0; 195 pp->pr_curlogentry = n; 196 } 197 198 static void 199 pr_printlog(struct pool *pp, struct pool_item *pi, 200 void (*pr)(const char *, ...)) 201 { 202 int i = pp->pr_logsize; 203 int n = pp->pr_curlogentry; 204 205 if ((pp->pr_roflags & PR_LOGGING) == 0) 206 return; 207 208 /* 209 * Print all entries in this pool's log. 210 */ 211 while (i-- > 0) { 212 struct pool_log *pl = &pp->pr_log[n]; 213 if (pl->pl_action != 0) { 214 if (pi == NULL || pi == pl->pl_addr) { 215 (*pr)("\tlog entry %d:\n", i); 216 (*pr)("\t\taction = %s, addr = %p\n", 217 pl->pl_action == PRLOG_GET ? "get" : "put", 218 pl->pl_addr); 219 (*pr)("\t\tfile: %s at line %lu\n", 220 pl->pl_file, pl->pl_line); 221 } 222 } 223 if (++n >= pp->pr_logsize) 224 n = 0; 225 } 226 } 227 228 static __inline void 229 pr_enter(struct pool *pp, const char *file, long line) 230 { 231 232 if (__predict_false(pp->pr_entered_file != NULL)) { 233 printf("pool %s: reentrancy at file %s line %ld\n", 234 pp->pr_wchan, file, line); 235 printf(" previous entry at file %s line %ld\n", 236 pp->pr_entered_file, pp->pr_entered_line); 237 panic("pr_enter"); 238 } 239 240 pp->pr_entered_file = file; 241 pp->pr_entered_line = line; 242 } 243 244 static __inline void 245 pr_leave(struct pool *pp) 246 { 247 248 if (__predict_false(pp->pr_entered_file == NULL)) { 249 printf("pool %s not entered?\n", pp->pr_wchan); 250 panic("pr_leave"); 251 } 252 253 pp->pr_entered_file = NULL; 254 pp->pr_entered_line = 0; 255 } 256 257 static __inline void 258 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 259 { 260 261 if (pp->pr_entered_file != NULL) 262 (*pr)("\n\tcurrently entered from file %s line %ld\n", 263 pp->pr_entered_file, pp->pr_entered_line); 264 } 265 #else 266 #define pr_log(pp, v, action, file, line) 267 #define pr_printlog(pp, pi, pr) 268 #define pr_enter(pp, file, line) 269 #define pr_leave(pp) 270 #define pr_enter_check(pp, pr) 271 #endif /* DIAGNOSTIC */ 272 273 /* 274 * Return the pool page header based on page address. 275 */ 276 static __inline struct pool_item_header * 277 pr_find_pagehead(struct pool *pp, caddr_t page) 278 { 279 struct pool_item_header *ph; 280 281 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 282 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 283 284 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]); 285 ph != NULL; 286 ph = LIST_NEXT(ph, ph_hashlist)) { 287 if (ph->ph_page == page) 288 return (ph); 289 } 290 return (NULL); 291 } 292 293 /* 294 * Remove a page from the pool. 295 */ 296 static __inline void 297 pr_rmpage(struct pool *pp, struct pool_item_header *ph) 298 { 299 300 /* 301 * If the page was idle, decrement the idle page count. 302 */ 303 if (ph->ph_nmissing == 0) { 304 #ifdef DIAGNOSTIC 305 if (pp->pr_nidle == 0) 306 panic("pr_rmpage: nidle inconsistent"); 307 if (pp->pr_nitems < pp->pr_itemsperpage) 308 panic("pr_rmpage: nitems inconsistent"); 309 #endif 310 pp->pr_nidle--; 311 } 312 313 pp->pr_nitems -= pp->pr_itemsperpage; 314 315 /* 316 * Unlink a page from the pool and release it. 317 */ 318 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 319 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype); 320 pp->pr_npages--; 321 pp->pr_npagefree++; 322 323 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 324 int s; 325 LIST_REMOVE(ph, ph_hashlist); 326 s = splhigh(); 327 pool_put(&phpool, ph); 328 splx(s); 329 } 330 331 if (pp->pr_curpage == ph) { 332 /* 333 * Find a new non-empty page header, if any. 334 * Start search from the page head, to increase the 335 * chance for "high water" pages to be freed. 336 */ 337 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 338 ph = TAILQ_NEXT(ph, ph_pagelist)) 339 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 340 break; 341 342 pp->pr_curpage = ph; 343 } 344 } 345 346 /* 347 * Allocate and initialize a pool. 348 */ 349 struct pool * 350 pool_create(size_t size, u_int align, u_int ioff, int nitems, 351 const char *wchan, size_t pagesz, 352 void *(*alloc)(unsigned long, int, int), 353 void (*release)(void *, unsigned long, int), 354 int mtype) 355 { 356 struct pool *pp; 357 int flags; 358 359 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT); 360 if (pp == NULL) 361 return (NULL); 362 363 flags = PR_FREEHEADER; 364 pool_init(pp, size, align, ioff, flags, wchan, pagesz, 365 alloc, release, mtype); 366 367 if (nitems != 0) { 368 if (pool_prime(pp, nitems, NULL) != 0) { 369 pool_destroy(pp); 370 return (NULL); 371 } 372 } 373 374 return (pp); 375 } 376 377 /* 378 * Initialize the given pool resource structure. 379 * 380 * We export this routine to allow other kernel parts to declare 381 * static pools that must be initialized before malloc() is available. 382 */ 383 void 384 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 385 const char *wchan, size_t pagesz, 386 void *(*alloc)(unsigned long, int, int), 387 void (*release)(void *, unsigned long, int), 388 int mtype) 389 { 390 int off, slack, i; 391 392 #ifdef POOL_DIAGNOSTIC 393 /* 394 * Always log if POOL_DIAGNOSTIC is defined. 395 */ 396 if (pool_logsize != 0) 397 flags |= PR_LOGGING; 398 #endif 399 400 /* 401 * Check arguments and construct default values. 402 */ 403 if (!powerof2(pagesz)) 404 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz); 405 406 if (alloc == NULL && release == NULL) { 407 alloc = pool_page_alloc; 408 release = pool_page_free; 409 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */ 410 } else if ((alloc != NULL && release != NULL) == 0) { 411 /* If you specifiy one, must specify both. */ 412 panic("pool_init: must specify alloc and release together"); 413 } 414 415 if (pagesz == 0) 416 pagesz = PAGE_SIZE; 417 418 if (align == 0) 419 align = ALIGN(1); 420 421 if (size < sizeof(struct pool_item)) 422 size = sizeof(struct pool_item); 423 424 size = ALIGN(size); 425 if (size > pagesz) 426 panic("pool_init: pool item size (%lu) too large", 427 (u_long)size); 428 429 /* 430 * Initialize the pool structure. 431 */ 432 TAILQ_INIT(&pp->pr_pagelist); 433 TAILQ_INIT(&pp->pr_cachelist); 434 pp->pr_curpage = NULL; 435 pp->pr_npages = 0; 436 pp->pr_minitems = 0; 437 pp->pr_minpages = 0; 438 pp->pr_maxpages = UINT_MAX; 439 pp->pr_roflags = flags; 440 pp->pr_flags = 0; 441 pp->pr_size = size; 442 pp->pr_align = align; 443 pp->pr_wchan = wchan; 444 pp->pr_mtype = mtype; 445 pp->pr_alloc = alloc; 446 pp->pr_free = release; 447 pp->pr_pagesz = pagesz; 448 pp->pr_pagemask = ~(pagesz - 1); 449 pp->pr_pageshift = ffs(pagesz) - 1; 450 pp->pr_nitems = 0; 451 pp->pr_nout = 0; 452 pp->pr_hardlimit = UINT_MAX; 453 pp->pr_hardlimit_warning = NULL; 454 pp->pr_hardlimit_ratecap.tv_sec = 0; 455 pp->pr_hardlimit_ratecap.tv_usec = 0; 456 pp->pr_hardlimit_warning_last.tv_sec = 0; 457 pp->pr_hardlimit_warning_last.tv_usec = 0; 458 459 /* 460 * Decide whether to put the page header off page to avoid 461 * wasting too large a part of the page. Off-page page headers 462 * go on a hash table, so we can match a returned item 463 * with its header based on the page address. 464 * We use 1/16 of the page size as the threshold (XXX: tune) 465 */ 466 if (pp->pr_size < pagesz/16) { 467 /* Use the end of the page for the page header */ 468 pp->pr_roflags |= PR_PHINPAGE; 469 pp->pr_phoffset = off = 470 pagesz - ALIGN(sizeof(struct pool_item_header)); 471 } else { 472 /* The page header will be taken from our page header pool */ 473 pp->pr_phoffset = 0; 474 off = pagesz; 475 for (i = 0; i < PR_HASHTABSIZE; i++) { 476 LIST_INIT(&pp->pr_hashtab[i]); 477 } 478 } 479 480 /* 481 * Alignment is to take place at `ioff' within the item. This means 482 * we must reserve up to `align - 1' bytes on the page to allow 483 * appropriate positioning of each item. 484 * 485 * Silently enforce `0 <= ioff < align'. 486 */ 487 pp->pr_itemoffset = ioff = ioff % align; 488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 489 KASSERT(pp->pr_itemsperpage != 0); 490 491 /* 492 * Use the slack between the chunks and the page header 493 * for "cache coloring". 494 */ 495 slack = off - pp->pr_itemsperpage * pp->pr_size; 496 pp->pr_maxcolor = (slack / align) * align; 497 pp->pr_curcolor = 0; 498 499 pp->pr_nget = 0; 500 pp->pr_nfail = 0; 501 pp->pr_nput = 0; 502 pp->pr_npagealloc = 0; 503 pp->pr_npagefree = 0; 504 pp->pr_hiwat = 0; 505 pp->pr_nidle = 0; 506 507 if (flags & PR_LOGGING) { 508 if (kmem_map == NULL || 509 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 510 M_TEMP, M_NOWAIT)) == NULL) 511 pp->pr_roflags &= ~PR_LOGGING; 512 pp->pr_curlogentry = 0; 513 pp->pr_logsize = pool_logsize; 514 } 515 516 pp->pr_entered_file = NULL; 517 pp->pr_entered_line = 0; 518 519 simple_lock_init(&pp->pr_slock); 520 521 /* 522 * Initialize private page header pool and cache magazine pool if we 523 * haven't done so yet. 524 * XXX LOCKING. 525 */ 526 if (phpool.pr_size == 0) { 527 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 528 0, "phpool", 0, 0, 0, 0); 529 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0, 530 0, "pcgpool", 0, 0, 0, 0); 531 } 532 533 /* Insert into the list of all pools. */ 534 simple_lock(&pool_head_slock); 535 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 536 simple_unlock(&pool_head_slock); 537 } 538 539 /* 540 * De-commision a pool resource. 541 */ 542 void 543 pool_destroy(struct pool *pp) 544 { 545 struct pool_item_header *ph; 546 struct pool_cache *pc; 547 548 /* Destroy all caches for this pool. */ 549 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL) 550 pool_cache_destroy(pc); 551 552 #ifdef DIAGNOSTIC 553 if (pp->pr_nout != 0) { 554 pr_printlog(pp, NULL, printf); 555 panic("pool_destroy: pool busy: still out: %u\n", 556 pp->pr_nout); 557 } 558 #endif 559 560 /* Remove all pages */ 561 if ((pp->pr_roflags & PR_STATIC) == 0) 562 while ((ph = pp->pr_pagelist.tqh_first) != NULL) 563 pr_rmpage(pp, ph); 564 565 /* Remove from global pool list */ 566 simple_lock(&pool_head_slock); 567 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 568 /* XXX Only clear this if we were drainpp? */ 569 drainpp = NULL; 570 simple_unlock(&pool_head_slock); 571 572 if ((pp->pr_roflags & PR_LOGGING) != 0) 573 free(pp->pr_log, M_TEMP); 574 575 if (pp->pr_roflags & PR_FREEHEADER) 576 free(pp, M_POOL); 577 } 578 579 580 /* 581 * Grab an item from the pool; must be called at appropriate spl level 582 */ 583 void * 584 _pool_get(struct pool *pp, int flags, const char *file, long line) 585 { 586 void *v; 587 struct pool_item *pi; 588 struct pool_item_header *ph; 589 590 #ifdef DIAGNOSTIC 591 if (__predict_false((pp->pr_roflags & PR_STATIC) && 592 (flags & PR_MALLOCOK))) { 593 pr_printlog(pp, NULL, printf); 594 panic("pool_get: static"); 595 } 596 #endif 597 598 if (__predict_false(curproc == NULL && doing_shutdown == 0 && 599 (flags & PR_WAITOK) != 0)) 600 panic("pool_get: must have NOWAIT"); 601 602 simple_lock(&pp->pr_slock); 603 pr_enter(pp, file, line); 604 605 startover: 606 /* 607 * Check to see if we've reached the hard limit. If we have, 608 * and we can wait, then wait until an item has been returned to 609 * the pool. 610 */ 611 #ifdef DIAGNOSTIC 612 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 613 pr_leave(pp); 614 simple_unlock(&pp->pr_slock); 615 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 616 } 617 #endif 618 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 619 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 620 /* 621 * XXX: A warning isn't logged in this case. Should 622 * it be? 623 */ 624 pp->pr_flags |= PR_WANTED; 625 pr_leave(pp); 626 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 627 pr_enter(pp, file, line); 628 goto startover; 629 } 630 631 /* 632 * Log a message that the hard limit has been hit. 633 */ 634 if (pp->pr_hardlimit_warning != NULL && 635 ratecheck(&pp->pr_hardlimit_warning_last, 636 &pp->pr_hardlimit_ratecap)) 637 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 638 639 if (flags & PR_URGENT) 640 panic("pool_get: urgent"); 641 642 pp->pr_nfail++; 643 644 pr_leave(pp); 645 simple_unlock(&pp->pr_slock); 646 return (NULL); 647 } 648 649 /* 650 * The convention we use is that if `curpage' is not NULL, then 651 * it points at a non-empty bucket. In particular, `curpage' 652 * never points at a page header which has PR_PHINPAGE set and 653 * has no items in its bucket. 654 */ 655 if ((ph = pp->pr_curpage) == NULL) { 656 void *v; 657 658 #ifdef DIAGNOSTIC 659 if (pp->pr_nitems != 0) { 660 simple_unlock(&pp->pr_slock); 661 printf("pool_get: %s: curpage NULL, nitems %u\n", 662 pp->pr_wchan, pp->pr_nitems); 663 panic("pool_get: nitems inconsistent\n"); 664 } 665 #endif 666 667 /* 668 * Call the back-end page allocator for more memory. 669 * Release the pool lock, as the back-end page allocator 670 * may block. 671 */ 672 pr_leave(pp); 673 simple_unlock(&pp->pr_slock); 674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype); 675 simple_lock(&pp->pr_slock); 676 pr_enter(pp, file, line); 677 678 if (v == NULL) { 679 /* 680 * We were unable to allocate a page, but 681 * we released the lock during allocation, 682 * so perhaps items were freed back to the 683 * pool. Check for this case. 684 */ 685 if (pp->pr_curpage != NULL) 686 goto startover; 687 688 if (flags & PR_URGENT) 689 panic("pool_get: urgent"); 690 691 if ((flags & PR_WAITOK) == 0) { 692 pp->pr_nfail++; 693 pr_leave(pp); 694 simple_unlock(&pp->pr_slock); 695 return (NULL); 696 } 697 698 /* 699 * Wait for items to be returned to this pool. 700 * 701 * XXX: we actually want to wait just until 702 * the page allocator has memory again. Depending 703 * on this pool's usage, we might get stuck here 704 * for a long time. 705 * 706 * XXX: maybe we should wake up once a second and 707 * try again? 708 */ 709 pp->pr_flags |= PR_WANTED; 710 pr_leave(pp); 711 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 712 pr_enter(pp, file, line); 713 goto startover; 714 } 715 716 /* We have more memory; add it to the pool */ 717 pp->pr_npagealloc++; 718 pool_prime_page(pp, v); 719 720 /* Start the allocation process over. */ 721 goto startover; 722 } 723 724 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 725 pr_leave(pp); 726 simple_unlock(&pp->pr_slock); 727 panic("pool_get: %s: page empty", pp->pr_wchan); 728 } 729 #ifdef DIAGNOSTIC 730 if (__predict_false(pp->pr_nitems == 0)) { 731 pr_leave(pp); 732 simple_unlock(&pp->pr_slock); 733 printf("pool_get: %s: items on itemlist, nitems %u\n", 734 pp->pr_wchan, pp->pr_nitems); 735 panic("pool_get: nitems inconsistent\n"); 736 } 737 #endif 738 pr_log(pp, v, PRLOG_GET, file, line); 739 740 #ifdef DIAGNOSTIC 741 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 742 pr_printlog(pp, pi, printf); 743 panic("pool_get(%s): free list modified: magic=%x; page %p;" 744 " item addr %p\n", 745 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 746 } 747 #endif 748 749 /* 750 * Remove from item list. 751 */ 752 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 753 pp->pr_nitems--; 754 pp->pr_nout++; 755 if (ph->ph_nmissing == 0) { 756 #ifdef DIAGNOSTIC 757 if (__predict_false(pp->pr_nidle == 0)) 758 panic("pool_get: nidle inconsistent"); 759 #endif 760 pp->pr_nidle--; 761 } 762 ph->ph_nmissing++; 763 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) { 764 #ifdef DIAGNOSTIC 765 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 766 pr_leave(pp); 767 simple_unlock(&pp->pr_slock); 768 panic("pool_get: %s: nmissing inconsistent", 769 pp->pr_wchan); 770 } 771 #endif 772 /* 773 * Find a new non-empty page header, if any. 774 * Start search from the page head, to increase 775 * the chance for "high water" pages to be freed. 776 * 777 * Migrate empty pages to the end of the list. This 778 * will speed the update of curpage as pages become 779 * idle. Empty pages intermingled with idle pages 780 * is no big deal. As soon as a page becomes un-empty, 781 * it will move back to the head of the list. 782 */ 783 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 784 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 785 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 786 ph = TAILQ_NEXT(ph, ph_pagelist)) 787 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 788 break; 789 790 pp->pr_curpage = ph; 791 } 792 793 pp->pr_nget++; 794 795 /* 796 * If we have a low water mark and we are now below that low 797 * water mark, add more items to the pool. 798 */ 799 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) { 800 /* 801 * XXX: Should we log a warning? Should we set up a timeout 802 * to try again in a second or so? The latter could break 803 * a caller's assumptions about interrupt protection, etc. 804 */ 805 } 806 807 pr_leave(pp); 808 simple_unlock(&pp->pr_slock); 809 return (v); 810 } 811 812 /* 813 * Internal version of pool_put(). Pool is already locked/entered. 814 */ 815 static void 816 pool_do_put(struct pool *pp, void *v, const char *file, long line) 817 { 818 struct pool_item *pi = v; 819 struct pool_item_header *ph; 820 caddr_t page; 821 int s; 822 823 page = (caddr_t)((u_long)v & pp->pr_pagemask); 824 825 #ifdef DIAGNOSTIC 826 if (__predict_false(pp->pr_nout == 0)) { 827 printf("pool %s: putting with none out\n", 828 pp->pr_wchan); 829 panic("pool_put"); 830 } 831 #endif 832 833 pr_log(pp, v, PRLOG_PUT, file, line); 834 835 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 836 pr_printlog(pp, NULL, printf); 837 panic("pool_put: %s: page header missing", pp->pr_wchan); 838 } 839 840 #ifdef LOCKDEBUG 841 /* 842 * Check if we're freeing a locked simple lock. 843 */ 844 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 845 #endif 846 847 /* 848 * Return to item list. 849 */ 850 #ifdef DIAGNOSTIC 851 pi->pi_magic = PI_MAGIC; 852 #endif 853 #ifdef DEBUG 854 { 855 int i, *ip = v; 856 857 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 858 *ip++ = PI_MAGIC; 859 } 860 } 861 #endif 862 863 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 864 ph->ph_nmissing--; 865 pp->pr_nput++; 866 pp->pr_nitems++; 867 pp->pr_nout--; 868 869 /* Cancel "pool empty" condition if it exists */ 870 if (pp->pr_curpage == NULL) 871 pp->pr_curpage = ph; 872 873 if (pp->pr_flags & PR_WANTED) { 874 pp->pr_flags &= ~PR_WANTED; 875 if (ph->ph_nmissing == 0) 876 pp->pr_nidle++; 877 wakeup((caddr_t)pp); 878 return; 879 } 880 881 /* 882 * If this page is now complete, do one of two things: 883 * 884 * (1) If we have more pages than the page high water 885 * mark, free the page back to the system. 886 * 887 * (2) Move it to the end of the page list, so that 888 * we minimize our chances of fragmenting the 889 * pool. Idle pages migrate to the end (along with 890 * completely empty pages, so that we find un-empty 891 * pages more quickly when we update curpage) of the 892 * list so they can be more easily swept up by 893 * the pagedaemon when pages are scarce. 894 */ 895 if (ph->ph_nmissing == 0) { 896 pp->pr_nidle++; 897 if (pp->pr_npages > pp->pr_maxpages) { 898 pr_rmpage(pp, ph); 899 } else { 900 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 901 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 902 903 /* 904 * Update the timestamp on the page. A page must 905 * be idle for some period of time before it can 906 * be reclaimed by the pagedaemon. This minimizes 907 * ping-pong'ing for memory. 908 */ 909 s = splclock(); 910 ph->ph_time = mono_time; 911 splx(s); 912 913 /* 914 * Update the current page pointer. Just look for 915 * the first page with any free items. 916 * 917 * XXX: Maybe we want an option to look for the 918 * page with the fewest available items, to minimize 919 * fragmentation? 920 */ 921 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 922 ph = TAILQ_NEXT(ph, ph_pagelist)) 923 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 924 break; 925 926 pp->pr_curpage = ph; 927 } 928 } 929 /* 930 * If the page has just become un-empty, move it to the head of 931 * the list, and make it the current page. The next allocation 932 * will get the item from this page, instead of further fragmenting 933 * the pool. 934 */ 935 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 936 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 937 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 938 pp->pr_curpage = ph; 939 } 940 } 941 942 /* 943 * Return resource to the pool; must be called at appropriate spl level 944 */ 945 void 946 _pool_put(struct pool *pp, void *v, const char *file, long line) 947 { 948 949 simple_lock(&pp->pr_slock); 950 pr_enter(pp, file, line); 951 952 pool_do_put(pp, v, file, line); 953 954 pr_leave(pp); 955 simple_unlock(&pp->pr_slock); 956 } 957 958 /* 959 * Add N items to the pool. 960 */ 961 int 962 pool_prime(struct pool *pp, int n, caddr_t storage) 963 { 964 caddr_t cp; 965 int newnitems, newpages; 966 967 #ifdef DIAGNOSTIC 968 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC))) 969 panic("pool_prime: static"); 970 /* !storage && static caught below */ 971 #endif 972 973 simple_lock(&pp->pr_slock); 974 975 newnitems = pp->pr_minitems + n; 976 newpages = 977 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage 978 - pp->pr_minpages; 979 980 while (newpages-- > 0) { 981 if (pp->pr_roflags & PR_STATIC) { 982 cp = storage; 983 storage += pp->pr_pagesz; 984 } else { 985 simple_unlock(&pp->pr_slock); 986 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 987 simple_lock(&pp->pr_slock); 988 } 989 990 if (cp == NULL) { 991 simple_unlock(&pp->pr_slock); 992 return (ENOMEM); 993 } 994 995 pp->pr_npagealloc++; 996 pool_prime_page(pp, cp); 997 pp->pr_minpages++; 998 } 999 1000 pp->pr_minitems = newnitems; 1001 1002 if (pp->pr_minpages >= pp->pr_maxpages) 1003 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1004 1005 simple_unlock(&pp->pr_slock); 1006 return (0); 1007 } 1008 1009 /* 1010 * Add a page worth of items to the pool. 1011 * 1012 * Note, we must be called with the pool descriptor LOCKED. 1013 */ 1014 static void 1015 pool_prime_page(struct pool *pp, caddr_t storage) 1016 { 1017 struct pool_item *pi; 1018 struct pool_item_header *ph; 1019 caddr_t cp = storage; 1020 unsigned int align = pp->pr_align; 1021 unsigned int ioff = pp->pr_itemoffset; 1022 int s, n; 1023 1024 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0) 1025 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1026 1027 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 1028 ph = (struct pool_item_header *)(cp + pp->pr_phoffset); 1029 } else { 1030 s = splhigh(); 1031 ph = pool_get(&phpool, PR_URGENT); 1032 splx(s); 1033 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)], 1034 ph, ph_hashlist); 1035 } 1036 1037 /* 1038 * Insert page header. 1039 */ 1040 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1041 TAILQ_INIT(&ph->ph_itemlist); 1042 ph->ph_page = storage; 1043 ph->ph_nmissing = 0; 1044 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1045 1046 pp->pr_nidle++; 1047 1048 /* 1049 * Color this page. 1050 */ 1051 cp = (caddr_t)(cp + pp->pr_curcolor); 1052 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1053 pp->pr_curcolor = 0; 1054 1055 /* 1056 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1057 */ 1058 if (ioff != 0) 1059 cp = (caddr_t)(cp + (align - ioff)); 1060 1061 /* 1062 * Insert remaining chunks on the bucket list. 1063 */ 1064 n = pp->pr_itemsperpage; 1065 pp->pr_nitems += n; 1066 1067 while (n--) { 1068 pi = (struct pool_item *)cp; 1069 1070 /* Insert on page list */ 1071 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1072 #ifdef DIAGNOSTIC 1073 pi->pi_magic = PI_MAGIC; 1074 #endif 1075 cp = (caddr_t)(cp + pp->pr_size); 1076 } 1077 1078 /* 1079 * If the pool was depleted, point at the new page. 1080 */ 1081 if (pp->pr_curpage == NULL) 1082 pp->pr_curpage = ph; 1083 1084 if (++pp->pr_npages > pp->pr_hiwat) 1085 pp->pr_hiwat = pp->pr_npages; 1086 } 1087 1088 /* 1089 * Like pool_prime(), except this is used by pool_get() when nitems 1090 * drops below the low water mark. This is used to catch up nitmes 1091 * with the low water mark. 1092 * 1093 * Note 1, we never wait for memory here, we let the caller decide what to do. 1094 * 1095 * Note 2, this doesn't work with static pools. 1096 * 1097 * Note 3, we must be called with the pool already locked, and we return 1098 * with it locked. 1099 */ 1100 static int 1101 pool_catchup(struct pool *pp) 1102 { 1103 caddr_t cp; 1104 int error = 0; 1105 1106 if (pp->pr_roflags & PR_STATIC) { 1107 /* 1108 * We dropped below the low water mark, and this is not a 1109 * good thing. Log a warning. 1110 * 1111 * XXX: rate-limit this? 1112 */ 1113 printf("WARNING: static pool `%s' dropped below low water " 1114 "mark\n", pp->pr_wchan); 1115 return (0); 1116 } 1117 1118 while (pp->pr_nitems < pp->pr_minitems) { 1119 /* 1120 * Call the page back-end allocator for more memory. 1121 * 1122 * XXX: We never wait, so should we bother unlocking 1123 * the pool descriptor? 1124 */ 1125 simple_unlock(&pp->pr_slock); 1126 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 1127 simple_lock(&pp->pr_slock); 1128 if (__predict_false(cp == NULL)) { 1129 error = ENOMEM; 1130 break; 1131 } 1132 pp->pr_npagealloc++; 1133 pool_prime_page(pp, cp); 1134 } 1135 1136 return (error); 1137 } 1138 1139 void 1140 pool_setlowat(struct pool *pp, int n) 1141 { 1142 int error; 1143 1144 simple_lock(&pp->pr_slock); 1145 1146 pp->pr_minitems = n; 1147 pp->pr_minpages = (n == 0) 1148 ? 0 1149 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1150 1151 /* Make sure we're caught up with the newly-set low water mark. */ 1152 if ((pp->pr_nitems < pp->pr_minitems) && 1153 (error = pool_catchup(pp)) != 0) { 1154 /* 1155 * XXX: Should we log a warning? Should we set up a timeout 1156 * to try again in a second or so? The latter could break 1157 * a caller's assumptions about interrupt protection, etc. 1158 */ 1159 } 1160 1161 simple_unlock(&pp->pr_slock); 1162 } 1163 1164 void 1165 pool_sethiwat(struct pool *pp, int n) 1166 { 1167 1168 simple_lock(&pp->pr_slock); 1169 1170 pp->pr_maxpages = (n == 0) 1171 ? 0 1172 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1173 1174 simple_unlock(&pp->pr_slock); 1175 } 1176 1177 void 1178 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1179 { 1180 1181 simple_lock(&pp->pr_slock); 1182 1183 pp->pr_hardlimit = n; 1184 pp->pr_hardlimit_warning = warnmess; 1185 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1186 pp->pr_hardlimit_warning_last.tv_sec = 0; 1187 pp->pr_hardlimit_warning_last.tv_usec = 0; 1188 1189 /* 1190 * In-line version of pool_sethiwat(), because we don't want to 1191 * release the lock. 1192 */ 1193 pp->pr_maxpages = (n == 0) 1194 ? 0 1195 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1196 1197 simple_unlock(&pp->pr_slock); 1198 } 1199 1200 /* 1201 * Default page allocator. 1202 */ 1203 static void * 1204 pool_page_alloc(unsigned long sz, int flags, int mtype) 1205 { 1206 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1207 1208 return ((void *)uvm_km_alloc_poolpage(waitok)); 1209 } 1210 1211 static void 1212 pool_page_free(void *v, unsigned long sz, int mtype) 1213 { 1214 1215 uvm_km_free_poolpage((vaddr_t)v); 1216 } 1217 1218 /* 1219 * Alternate pool page allocator for pools that know they will 1220 * never be accessed in interrupt context. 1221 */ 1222 void * 1223 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype) 1224 { 1225 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1226 1227 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object, 1228 waitok)); 1229 } 1230 1231 void 1232 pool_page_free_nointr(void *v, unsigned long sz, int mtype) 1233 { 1234 1235 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v); 1236 } 1237 1238 1239 /* 1240 * Release all complete pages that have not been used recently. 1241 */ 1242 void 1243 _pool_reclaim(struct pool *pp, const char *file, long line) 1244 { 1245 struct pool_item_header *ph, *phnext; 1246 struct pool_cache *pc; 1247 struct timeval curtime; 1248 int s; 1249 1250 if (pp->pr_roflags & PR_STATIC) 1251 return; 1252 1253 if (simple_lock_try(&pp->pr_slock) == 0) 1254 return; 1255 pr_enter(pp, file, line); 1256 1257 /* 1258 * Reclaim items from the pool's caches. 1259 */ 1260 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL; 1261 pc = TAILQ_NEXT(pc, pc_poollist)) 1262 pool_cache_reclaim(pc); 1263 1264 s = splclock(); 1265 curtime = mono_time; 1266 splx(s); 1267 1268 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) { 1269 phnext = TAILQ_NEXT(ph, ph_pagelist); 1270 1271 /* Check our minimum page claim */ 1272 if (pp->pr_npages <= pp->pr_minpages) 1273 break; 1274 1275 if (ph->ph_nmissing == 0) { 1276 struct timeval diff; 1277 timersub(&curtime, &ph->ph_time, &diff); 1278 if (diff.tv_sec < pool_inactive_time) 1279 continue; 1280 1281 /* 1282 * If freeing this page would put us below 1283 * the low water mark, stop now. 1284 */ 1285 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1286 pp->pr_minitems) 1287 break; 1288 1289 pr_rmpage(pp, ph); 1290 } 1291 } 1292 1293 pr_leave(pp); 1294 simple_unlock(&pp->pr_slock); 1295 } 1296 1297 1298 /* 1299 * Drain pools, one at a time. 1300 * 1301 * Note, we must never be called from an interrupt context. 1302 */ 1303 void 1304 pool_drain(void *arg) 1305 { 1306 struct pool *pp; 1307 int s; 1308 1309 s = splimp(); 1310 simple_lock(&pool_head_slock); 1311 1312 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL) 1313 goto out; 1314 1315 pp = drainpp; 1316 drainpp = TAILQ_NEXT(pp, pr_poollist); 1317 1318 pool_reclaim(pp); 1319 1320 out: 1321 simple_unlock(&pool_head_slock); 1322 splx(s); 1323 } 1324 1325 1326 /* 1327 * Diagnostic helpers. 1328 */ 1329 void 1330 pool_print(struct pool *pp, const char *modif) 1331 { 1332 int s; 1333 1334 s = splimp(); 1335 if (simple_lock_try(&pp->pr_slock) == 0) { 1336 printf("pool %s is locked; try again later\n", 1337 pp->pr_wchan); 1338 splx(s); 1339 return; 1340 } 1341 pool_print1(pp, modif, printf); 1342 simple_unlock(&pp->pr_slock); 1343 splx(s); 1344 } 1345 1346 void 1347 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1348 { 1349 int didlock = 0; 1350 1351 if (pp == NULL) { 1352 (*pr)("Must specify a pool to print.\n"); 1353 return; 1354 } 1355 1356 /* 1357 * Called from DDB; interrupts should be blocked, and all 1358 * other processors should be paused. We can skip locking 1359 * the pool in this case. 1360 * 1361 * We do a simple_lock_try() just to print the lock 1362 * status, however. 1363 */ 1364 1365 if (simple_lock_try(&pp->pr_slock) == 0) 1366 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1367 else 1368 didlock = 1; 1369 1370 pool_print1(pp, modif, pr); 1371 1372 if (didlock) 1373 simple_unlock(&pp->pr_slock); 1374 } 1375 1376 static void 1377 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1378 { 1379 struct pool_item_header *ph; 1380 struct pool_cache *pc; 1381 struct pool_cache_group *pcg; 1382 #ifdef DIAGNOSTIC 1383 struct pool_item *pi; 1384 #endif 1385 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1386 char c; 1387 1388 while ((c = *modif++) != '\0') { 1389 if (c == 'l') 1390 print_log = 1; 1391 if (c == 'p') 1392 print_pagelist = 1; 1393 if (c == 'c') 1394 print_cache = 1; 1395 modif++; 1396 } 1397 1398 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1399 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1400 pp->pr_roflags); 1401 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype); 1402 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free); 1403 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1404 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1405 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1406 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1407 1408 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1409 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1410 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1411 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1412 1413 if (print_pagelist == 0) 1414 goto skip_pagelist; 1415 1416 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 1417 (*pr)("\n\tpage list:\n"); 1418 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) { 1419 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1420 ph->ph_page, ph->ph_nmissing, 1421 (u_long)ph->ph_time.tv_sec, 1422 (u_long)ph->ph_time.tv_usec); 1423 #ifdef DIAGNOSTIC 1424 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL; 1425 pi = TAILQ_NEXT(pi, pi_list)) { 1426 if (pi->pi_magic != PI_MAGIC) { 1427 (*pr)("\t\t\titem %p, magic 0x%x\n", 1428 pi, pi->pi_magic); 1429 } 1430 } 1431 #endif 1432 } 1433 if (pp->pr_curpage == NULL) 1434 (*pr)("\tno current page\n"); 1435 else 1436 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1437 1438 skip_pagelist: 1439 1440 if (print_log == 0) 1441 goto skip_log; 1442 1443 (*pr)("\n"); 1444 if ((pp->pr_roflags & PR_LOGGING) == 0) 1445 (*pr)("\tno log\n"); 1446 else 1447 pr_printlog(pp, NULL, pr); 1448 1449 skip_log: 1450 1451 if (print_cache == 0) 1452 goto skip_cache; 1453 1454 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL; 1455 pc = TAILQ_NEXT(pc, pc_poollist)) { 1456 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc, 1457 pc->pc_allocfrom, pc->pc_freeto); 1458 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n", 1459 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems); 1460 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1461 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1462 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); 1463 for (i = 0; i < PCG_NOBJECTS; i++) 1464 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]); 1465 } 1466 } 1467 1468 skip_cache: 1469 1470 pr_enter_check(pp, pr); 1471 } 1472 1473 int 1474 pool_chk(struct pool *pp, const char *label) 1475 { 1476 struct pool_item_header *ph; 1477 int r = 0; 1478 1479 simple_lock(&pp->pr_slock); 1480 1481 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 1482 ph = TAILQ_NEXT(ph, ph_pagelist)) { 1483 1484 struct pool_item *pi; 1485 int n; 1486 caddr_t page; 1487 1488 page = (caddr_t)((u_long)ph & pp->pr_pagemask); 1489 if (page != ph->ph_page && 1490 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1491 if (label != NULL) 1492 printf("%s: ", label); 1493 printf("pool(%p:%s): page inconsistency: page %p;" 1494 " at page head addr %p (p %p)\n", pp, 1495 pp->pr_wchan, ph->ph_page, 1496 ph, page); 1497 r++; 1498 goto out; 1499 } 1500 1501 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1502 pi != NULL; 1503 pi = TAILQ_NEXT(pi,pi_list), n++) { 1504 1505 #ifdef DIAGNOSTIC 1506 if (pi->pi_magic != PI_MAGIC) { 1507 if (label != NULL) 1508 printf("%s: ", label); 1509 printf("pool(%s): free list modified: magic=%x;" 1510 " page %p; item ordinal %d;" 1511 " addr %p (p %p)\n", 1512 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1513 n, pi, page); 1514 panic("pool"); 1515 } 1516 #endif 1517 page = (caddr_t)((u_long)pi & pp->pr_pagemask); 1518 if (page == ph->ph_page) 1519 continue; 1520 1521 if (label != NULL) 1522 printf("%s: ", label); 1523 printf("pool(%p:%s): page inconsistency: page %p;" 1524 " item ordinal %d; addr %p (p %p)\n", pp, 1525 pp->pr_wchan, ph->ph_page, 1526 n, pi, page); 1527 r++; 1528 goto out; 1529 } 1530 } 1531 out: 1532 simple_unlock(&pp->pr_slock); 1533 return (r); 1534 } 1535 1536 /* 1537 * pool_cache_init: 1538 * 1539 * Initialize a pool cache. 1540 * 1541 * NOTE: If the pool must be protected from interrupts, we expect 1542 * to be called at the appropriate interrupt priority level. 1543 */ 1544 void 1545 pool_cache_init(struct pool_cache *pc, struct pool *pp, 1546 int (*ctor)(void *, void *, int), 1547 void (*dtor)(void *, void *), 1548 void *arg) 1549 { 1550 1551 TAILQ_INIT(&pc->pc_grouplist); 1552 simple_lock_init(&pc->pc_slock); 1553 1554 pc->pc_allocfrom = NULL; 1555 pc->pc_freeto = NULL; 1556 pc->pc_pool = pp; 1557 1558 pc->pc_ctor = ctor; 1559 pc->pc_dtor = dtor; 1560 pc->pc_arg = arg; 1561 1562 pc->pc_hits = 0; 1563 pc->pc_misses = 0; 1564 1565 pc->pc_ngroups = 0; 1566 1567 pc->pc_nitems = 0; 1568 1569 simple_lock(&pp->pr_slock); 1570 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist); 1571 simple_unlock(&pp->pr_slock); 1572 } 1573 1574 /* 1575 * pool_cache_destroy: 1576 * 1577 * Destroy a pool cache. 1578 */ 1579 void 1580 pool_cache_destroy(struct pool_cache *pc) 1581 { 1582 struct pool *pp = pc->pc_pool; 1583 1584 /* First, invalidate the entire cache. */ 1585 pool_cache_invalidate(pc); 1586 1587 /* ...and remove it from the pool's cache list. */ 1588 simple_lock(&pp->pr_slock); 1589 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist); 1590 simple_unlock(&pp->pr_slock); 1591 } 1592 1593 static __inline void * 1594 pcg_get(struct pool_cache_group *pcg) 1595 { 1596 void *object; 1597 u_int idx; 1598 1599 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 1600 KASSERT(pcg->pcg_avail != 0); 1601 idx = --pcg->pcg_avail; 1602 1603 KASSERT(pcg->pcg_objects[idx] != NULL); 1604 object = pcg->pcg_objects[idx]; 1605 pcg->pcg_objects[idx] = NULL; 1606 1607 return (object); 1608 } 1609 1610 static __inline void 1611 pcg_put(struct pool_cache_group *pcg, void *object) 1612 { 1613 u_int idx; 1614 1615 KASSERT(pcg->pcg_avail < PCG_NOBJECTS); 1616 idx = pcg->pcg_avail++; 1617 1618 KASSERT(pcg->pcg_objects[idx] == NULL); 1619 pcg->pcg_objects[idx] = object; 1620 } 1621 1622 /* 1623 * pool_cache_get: 1624 * 1625 * Get an object from a pool cache. 1626 */ 1627 void * 1628 pool_cache_get(struct pool_cache *pc, int flags) 1629 { 1630 struct pool_cache_group *pcg; 1631 void *object; 1632 1633 simple_lock(&pc->pc_slock); 1634 1635 if ((pcg = pc->pc_allocfrom) == NULL) { 1636 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1637 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1638 if (pcg->pcg_avail != 0) { 1639 pc->pc_allocfrom = pcg; 1640 goto have_group; 1641 } 1642 } 1643 1644 /* 1645 * No groups with any available objects. Allocate 1646 * a new object, construct it, and return it to 1647 * the caller. We will allocate a group, if necessary, 1648 * when the object is freed back to the cache. 1649 */ 1650 pc->pc_misses++; 1651 simple_unlock(&pc->pc_slock); 1652 object = pool_get(pc->pc_pool, flags); 1653 if (object != NULL && pc->pc_ctor != NULL) { 1654 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 1655 pool_put(pc->pc_pool, object); 1656 return (NULL); 1657 } 1658 } 1659 return (object); 1660 } 1661 1662 have_group: 1663 pc->pc_hits++; 1664 pc->pc_nitems--; 1665 object = pcg_get(pcg); 1666 1667 if (pcg->pcg_avail == 0) 1668 pc->pc_allocfrom = NULL; 1669 1670 simple_unlock(&pc->pc_slock); 1671 1672 return (object); 1673 } 1674 1675 /* 1676 * pool_cache_put: 1677 * 1678 * Put an object back to the pool cache. 1679 */ 1680 void 1681 pool_cache_put(struct pool_cache *pc, void *object) 1682 { 1683 struct pool_cache_group *pcg; 1684 1685 simple_lock(&pc->pc_slock); 1686 1687 if ((pcg = pc->pc_freeto) == NULL) { 1688 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1689 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1690 if (pcg->pcg_avail != PCG_NOBJECTS) { 1691 pc->pc_freeto = pcg; 1692 goto have_group; 1693 } 1694 } 1695 1696 /* 1697 * No empty groups to free the object to. Attempt to 1698 * allocate one. 1699 */ 1700 simple_unlock(&pc->pc_slock); 1701 pcg = pool_get(&pcgpool, PR_NOWAIT); 1702 if (pcg != NULL) { 1703 memset(pcg, 0, sizeof(*pcg)); 1704 simple_lock(&pc->pc_slock); 1705 pc->pc_ngroups++; 1706 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list); 1707 if (pc->pc_freeto == NULL) 1708 pc->pc_freeto = pcg; 1709 goto have_group; 1710 } 1711 1712 /* 1713 * Unable to allocate a cache group; destruct the object 1714 * and free it back to the pool. 1715 */ 1716 if (pc->pc_dtor != NULL) 1717 (*pc->pc_dtor)(pc->pc_arg, object); 1718 pool_put(pc->pc_pool, object); 1719 return; 1720 } 1721 1722 have_group: 1723 pc->pc_nitems++; 1724 pcg_put(pcg, object); 1725 1726 if (pcg->pcg_avail == PCG_NOBJECTS) 1727 pc->pc_freeto = NULL; 1728 1729 simple_unlock(&pc->pc_slock); 1730 } 1731 1732 /* 1733 * pool_cache_do_invalidate: 1734 * 1735 * This internal function implements pool_cache_invalidate() and 1736 * pool_cache_reclaim(). 1737 */ 1738 static void 1739 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups, 1740 void (*putit)(struct pool *, void *, const char *, long)) 1741 { 1742 struct pool_cache_group *pcg, *npcg; 1743 void *object; 1744 1745 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1746 pcg = npcg) { 1747 npcg = TAILQ_NEXT(pcg, pcg_list); 1748 while (pcg->pcg_avail != 0) { 1749 pc->pc_nitems--; 1750 object = pcg_get(pcg); 1751 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg) 1752 pc->pc_allocfrom = NULL; 1753 if (pc->pc_dtor != NULL) 1754 (*pc->pc_dtor)(pc->pc_arg, object); 1755 (*putit)(pc->pc_pool, object, __FILE__, __LINE__); 1756 } 1757 if (free_groups) { 1758 pc->pc_ngroups--; 1759 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list); 1760 if (pc->pc_freeto == pcg) 1761 pc->pc_freeto = NULL; 1762 pool_put(&pcgpool, pcg); 1763 } 1764 } 1765 } 1766 1767 /* 1768 * pool_cache_invalidate: 1769 * 1770 * Invalidate a pool cache (destruct and release all of the 1771 * cached objects). 1772 */ 1773 void 1774 pool_cache_invalidate(struct pool_cache *pc) 1775 { 1776 1777 simple_lock(&pc->pc_slock); 1778 pool_cache_do_invalidate(pc, 0, _pool_put); 1779 simple_unlock(&pc->pc_slock); 1780 } 1781 1782 /* 1783 * pool_cache_reclaim: 1784 * 1785 * Reclaim a pool cache for pool_reclaim(). 1786 */ 1787 static void 1788 pool_cache_reclaim(struct pool_cache *pc) 1789 { 1790 1791 simple_lock(&pc->pc_slock); 1792 pool_cache_do_invalidate(pc, 1, pool_do_put); 1793 simple_unlock(&pc->pc_slock); 1794 } 1795