xref: /netbsd-src/sys/kern/subr_pool.c (revision 5aefcfdc06931dd97e76246d2fe0302f7b3fe094)
1 /*	$NetBSD: subr_pool.c,v 1.48 2000/12/11 05:22:56 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 
54 #include <uvm/uvm.h>
55 
56 /*
57  * Pool resource management utility.
58  *
59  * Memory is allocated in pages which are split into pieces according
60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61  * in the pool structure and the individual pool items are on a linked list
62  * headed by `ph_itemlist' in each page header. The memory for building
63  * the page list is either taken from the allocated pages themselves (for
64  * small pool items) or taken from an internal pool of page headers (`phpool').
65  */
66 
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69 
70 /* Private pool for page header structures */
71 static struct pool phpool;
72 
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75 
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool	*drainpp;
78 
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81 
82 struct pool_item_header {
83 	/* Page headers */
84 	TAILQ_ENTRY(pool_item_header)
85 				ph_pagelist;	/* pool page list */
86 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
87 	LIST_ENTRY(pool_item_header)
88 				ph_hashlist;	/* Off-page page headers */
89 	int			ph_nmissing;	/* # of chunks in use */
90 	caddr_t			ph_page;	/* this page's address */
91 	struct timeval		ph_time;	/* last referenced */
92 };
93 
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 	int pi_magic;
97 #endif
98 #define	PI_MAGIC 0xdeadbeef
99 	/* Other entries use only this list entry */
100 	TAILQ_ENTRY(pool_item)	pi_list;
101 };
102 
103 #define	PR_HASH_INDEX(pp,addr) \
104 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
105 
106 /*
107  * Pool cache management.
108  *
109  * Pool caches provide a way for constructed objects to be cached by the
110  * pool subsystem.  This can lead to performance improvements by avoiding
111  * needless object construction/destruction; it is deferred until absolutely
112  * necessary.
113  *
114  * Caches are grouped into cache groups.  Each cache group references
115  * up to 16 constructed objects.  When a cache allocates an object
116  * from the pool, it calls the object's constructor and places it into
117  * a cache group.  When a cache group frees an object back to the pool,
118  * it first calls the object's destructor.  This allows the object to
119  * persist in constructed form while freed to the cache.
120  *
121  * Multiple caches may exist for each pool.  This allows a single
122  * object type to have multiple constructed forms.  The pool references
123  * each cache, so that when a pool is drained by the pagedaemon, it can
124  * drain each individual cache as well.  Each time a cache is drained,
125  * the most idle cache group is freed to the pool in its entirety.
126  *
127  * Pool caches are layed on top of pools.  By layering them, we can avoid
128  * the complexity of cache management for pools which would not benefit
129  * from it.
130  */
131 
132 /* The cache group pool. */
133 static struct pool pcgpool;
134 
135 /* The pool cache group. */
136 #define	PCG_NOBJECTS		16
137 struct pool_cache_group {
138 	TAILQ_ENTRY(pool_cache_group)
139 		pcg_list;	/* link in the pool cache's group list */
140 	u_int	pcg_avail;	/* # available objects */
141 				/* pointers to the objects */
142 	void	*pcg_objects[PCG_NOBJECTS];
143 };
144 
145 static void	pool_cache_reclaim(struct pool_cache *);
146 
147 static int	pool_catchup(struct pool *);
148 static void	pool_prime_page(struct pool *, caddr_t);
149 static void	*pool_page_alloc(unsigned long, int, int);
150 static void	pool_page_free(void *, unsigned long, int);
151 
152 static void pool_print1(struct pool *, const char *,
153 	void (*)(const char *, ...));
154 
155 /*
156  * Pool log entry. An array of these is allocated in pool_create().
157  */
158 struct pool_log {
159 	const char	*pl_file;
160 	long		pl_line;
161 	int		pl_action;
162 #define	PRLOG_GET	1
163 #define	PRLOG_PUT	2
164 	void		*pl_addr;
165 };
166 
167 /* Number of entries in pool log buffers */
168 #ifndef POOL_LOGSIZE
169 #define	POOL_LOGSIZE	10
170 #endif
171 
172 int pool_logsize = POOL_LOGSIZE;
173 
174 #ifdef DIAGNOSTIC
175 static __inline void
176 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
177 {
178 	int n = pp->pr_curlogentry;
179 	struct pool_log *pl;
180 
181 	if ((pp->pr_roflags & PR_LOGGING) == 0)
182 		return;
183 
184 	/*
185 	 * Fill in the current entry. Wrap around and overwrite
186 	 * the oldest entry if necessary.
187 	 */
188 	pl = &pp->pr_log[n];
189 	pl->pl_file = file;
190 	pl->pl_line = line;
191 	pl->pl_action = action;
192 	pl->pl_addr = v;
193 	if (++n >= pp->pr_logsize)
194 		n = 0;
195 	pp->pr_curlogentry = n;
196 }
197 
198 static void
199 pr_printlog(struct pool *pp, struct pool_item *pi,
200     void (*pr)(const char *, ...))
201 {
202 	int i = pp->pr_logsize;
203 	int n = pp->pr_curlogentry;
204 
205 	if ((pp->pr_roflags & PR_LOGGING) == 0)
206 		return;
207 
208 	/*
209 	 * Print all entries in this pool's log.
210 	 */
211 	while (i-- > 0) {
212 		struct pool_log *pl = &pp->pr_log[n];
213 		if (pl->pl_action != 0) {
214 			if (pi == NULL || pi == pl->pl_addr) {
215 				(*pr)("\tlog entry %d:\n", i);
216 				(*pr)("\t\taction = %s, addr = %p\n",
217 				    pl->pl_action == PRLOG_GET ? "get" : "put",
218 				    pl->pl_addr);
219 				(*pr)("\t\tfile: %s at line %lu\n",
220 				    pl->pl_file, pl->pl_line);
221 			}
222 		}
223 		if (++n >= pp->pr_logsize)
224 			n = 0;
225 	}
226 }
227 
228 static __inline void
229 pr_enter(struct pool *pp, const char *file, long line)
230 {
231 
232 	if (__predict_false(pp->pr_entered_file != NULL)) {
233 		printf("pool %s: reentrancy at file %s line %ld\n",
234 		    pp->pr_wchan, file, line);
235 		printf("         previous entry at file %s line %ld\n",
236 		    pp->pr_entered_file, pp->pr_entered_line);
237 		panic("pr_enter");
238 	}
239 
240 	pp->pr_entered_file = file;
241 	pp->pr_entered_line = line;
242 }
243 
244 static __inline void
245 pr_leave(struct pool *pp)
246 {
247 
248 	if (__predict_false(pp->pr_entered_file == NULL)) {
249 		printf("pool %s not entered?\n", pp->pr_wchan);
250 		panic("pr_leave");
251 	}
252 
253 	pp->pr_entered_file = NULL;
254 	pp->pr_entered_line = 0;
255 }
256 
257 static __inline void
258 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
259 {
260 
261 	if (pp->pr_entered_file != NULL)
262 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
263 		    pp->pr_entered_file, pp->pr_entered_line);
264 }
265 #else
266 #define	pr_log(pp, v, action, file, line)
267 #define	pr_printlog(pp, pi, pr)
268 #define	pr_enter(pp, file, line)
269 #define	pr_leave(pp)
270 #define	pr_enter_check(pp, pr)
271 #endif /* DIAGNOSTIC */
272 
273 /*
274  * Return the pool page header based on page address.
275  */
276 static __inline struct pool_item_header *
277 pr_find_pagehead(struct pool *pp, caddr_t page)
278 {
279 	struct pool_item_header *ph;
280 
281 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
282 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
283 
284 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
285 	     ph != NULL;
286 	     ph = LIST_NEXT(ph, ph_hashlist)) {
287 		if (ph->ph_page == page)
288 			return (ph);
289 	}
290 	return (NULL);
291 }
292 
293 /*
294  * Remove a page from the pool.
295  */
296 static __inline void
297 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
298 {
299 
300 	/*
301 	 * If the page was idle, decrement the idle page count.
302 	 */
303 	if (ph->ph_nmissing == 0) {
304 #ifdef DIAGNOSTIC
305 		if (pp->pr_nidle == 0)
306 			panic("pr_rmpage: nidle inconsistent");
307 		if (pp->pr_nitems < pp->pr_itemsperpage)
308 			panic("pr_rmpage: nitems inconsistent");
309 #endif
310 		pp->pr_nidle--;
311 	}
312 
313 	pp->pr_nitems -= pp->pr_itemsperpage;
314 
315 	/*
316 	 * Unlink a page from the pool and release it.
317 	 */
318 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
319 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
320 	pp->pr_npages--;
321 	pp->pr_npagefree++;
322 
323 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
324 		int s;
325 		LIST_REMOVE(ph, ph_hashlist);
326 		s = splhigh();
327 		pool_put(&phpool, ph);
328 		splx(s);
329 	}
330 
331 	if (pp->pr_curpage == ph) {
332 		/*
333 		 * Find a new non-empty page header, if any.
334 		 * Start search from the page head, to increase the
335 		 * chance for "high water" pages to be freed.
336 		 */
337 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
338 		     ph = TAILQ_NEXT(ph, ph_pagelist))
339 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
340 				break;
341 
342 		pp->pr_curpage = ph;
343 	}
344 }
345 
346 /*
347  * Allocate and initialize a pool.
348  */
349 struct pool *
350 pool_create(size_t size, u_int align, u_int ioff, int nitems,
351     const char *wchan, size_t pagesz,
352     void *(*alloc)(unsigned long, int, int),
353     void (*release)(void *, unsigned long, int),
354     int mtype)
355 {
356 	struct pool *pp;
357 	int flags;
358 
359 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
360 	if (pp == NULL)
361 		return (NULL);
362 
363 	flags = PR_FREEHEADER;
364 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
365 		  alloc, release, mtype);
366 
367 	if (nitems != 0) {
368 		if (pool_prime(pp, nitems, NULL) != 0) {
369 			pool_destroy(pp);
370 			return (NULL);
371 		}
372 	}
373 
374 	return (pp);
375 }
376 
377 /*
378  * Initialize the given pool resource structure.
379  *
380  * We export this routine to allow other kernel parts to declare
381  * static pools that must be initialized before malloc() is available.
382  */
383 void
384 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
385     const char *wchan, size_t pagesz,
386     void *(*alloc)(unsigned long, int, int),
387     void (*release)(void *, unsigned long, int),
388     int mtype)
389 {
390 	int off, slack, i;
391 
392 #ifdef POOL_DIAGNOSTIC
393 	/*
394 	 * Always log if POOL_DIAGNOSTIC is defined.
395 	 */
396 	if (pool_logsize != 0)
397 		flags |= PR_LOGGING;
398 #endif
399 
400 	/*
401 	 * Check arguments and construct default values.
402 	 */
403 	if (!powerof2(pagesz))
404 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
405 
406 	if (alloc == NULL && release == NULL) {
407 		alloc = pool_page_alloc;
408 		release = pool_page_free;
409 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
410 	} else if ((alloc != NULL && release != NULL) == 0) {
411 		/* If you specifiy one, must specify both. */
412 		panic("pool_init: must specify alloc and release together");
413 	}
414 
415 	if (pagesz == 0)
416 		pagesz = PAGE_SIZE;
417 
418 	if (align == 0)
419 		align = ALIGN(1);
420 
421 	if (size < sizeof(struct pool_item))
422 		size = sizeof(struct pool_item);
423 
424 	size = ALIGN(size);
425 	if (size > pagesz)
426 		panic("pool_init: pool item size (%lu) too large",
427 		      (u_long)size);
428 
429 	/*
430 	 * Initialize the pool structure.
431 	 */
432 	TAILQ_INIT(&pp->pr_pagelist);
433 	TAILQ_INIT(&pp->pr_cachelist);
434 	pp->pr_curpage = NULL;
435 	pp->pr_npages = 0;
436 	pp->pr_minitems = 0;
437 	pp->pr_minpages = 0;
438 	pp->pr_maxpages = UINT_MAX;
439 	pp->pr_roflags = flags;
440 	pp->pr_flags = 0;
441 	pp->pr_size = size;
442 	pp->pr_align = align;
443 	pp->pr_wchan = wchan;
444 	pp->pr_mtype = mtype;
445 	pp->pr_alloc = alloc;
446 	pp->pr_free = release;
447 	pp->pr_pagesz = pagesz;
448 	pp->pr_pagemask = ~(pagesz - 1);
449 	pp->pr_pageshift = ffs(pagesz) - 1;
450 	pp->pr_nitems = 0;
451 	pp->pr_nout = 0;
452 	pp->pr_hardlimit = UINT_MAX;
453 	pp->pr_hardlimit_warning = NULL;
454 	pp->pr_hardlimit_ratecap.tv_sec = 0;
455 	pp->pr_hardlimit_ratecap.tv_usec = 0;
456 	pp->pr_hardlimit_warning_last.tv_sec = 0;
457 	pp->pr_hardlimit_warning_last.tv_usec = 0;
458 
459 	/*
460 	 * Decide whether to put the page header off page to avoid
461 	 * wasting too large a part of the page. Off-page page headers
462 	 * go on a hash table, so we can match a returned item
463 	 * with its header based on the page address.
464 	 * We use 1/16 of the page size as the threshold (XXX: tune)
465 	 */
466 	if (pp->pr_size < pagesz/16) {
467 		/* Use the end of the page for the page header */
468 		pp->pr_roflags |= PR_PHINPAGE;
469 		pp->pr_phoffset = off =
470 			pagesz - ALIGN(sizeof(struct pool_item_header));
471 	} else {
472 		/* The page header will be taken from our page header pool */
473 		pp->pr_phoffset = 0;
474 		off = pagesz;
475 		for (i = 0; i < PR_HASHTABSIZE; i++) {
476 			LIST_INIT(&pp->pr_hashtab[i]);
477 		}
478 	}
479 
480 	/*
481 	 * Alignment is to take place at `ioff' within the item. This means
482 	 * we must reserve up to `align - 1' bytes on the page to allow
483 	 * appropriate positioning of each item.
484 	 *
485 	 * Silently enforce `0 <= ioff < align'.
486 	 */
487 	pp->pr_itemoffset = ioff = ioff % align;
488 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
489 	KASSERT(pp->pr_itemsperpage != 0);
490 
491 	/*
492 	 * Use the slack between the chunks and the page header
493 	 * for "cache coloring".
494 	 */
495 	slack = off - pp->pr_itemsperpage * pp->pr_size;
496 	pp->pr_maxcolor = (slack / align) * align;
497 	pp->pr_curcolor = 0;
498 
499 	pp->pr_nget = 0;
500 	pp->pr_nfail = 0;
501 	pp->pr_nput = 0;
502 	pp->pr_npagealloc = 0;
503 	pp->pr_npagefree = 0;
504 	pp->pr_hiwat = 0;
505 	pp->pr_nidle = 0;
506 
507 	if (flags & PR_LOGGING) {
508 		if (kmem_map == NULL ||
509 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
510 		     M_TEMP, M_NOWAIT)) == NULL)
511 			pp->pr_roflags &= ~PR_LOGGING;
512 		pp->pr_curlogentry = 0;
513 		pp->pr_logsize = pool_logsize;
514 	}
515 
516 	pp->pr_entered_file = NULL;
517 	pp->pr_entered_line = 0;
518 
519 	simple_lock_init(&pp->pr_slock);
520 
521 	/*
522 	 * Initialize private page header pool and cache magazine pool if we
523 	 * haven't done so yet.
524 	 * XXX LOCKING.
525 	 */
526 	if (phpool.pr_size == 0) {
527 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
528 		    0, "phpool", 0, 0, 0, 0);
529 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
530 		    0, "pcgpool", 0, 0, 0, 0);
531 	}
532 
533 	/* Insert into the list of all pools. */
534 	simple_lock(&pool_head_slock);
535 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
536 	simple_unlock(&pool_head_slock);
537 }
538 
539 /*
540  * De-commision a pool resource.
541  */
542 void
543 pool_destroy(struct pool *pp)
544 {
545 	struct pool_item_header *ph;
546 	struct pool_cache *pc;
547 
548 	/* Destroy all caches for this pool. */
549 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
550 		pool_cache_destroy(pc);
551 
552 #ifdef DIAGNOSTIC
553 	if (pp->pr_nout != 0) {
554 		pr_printlog(pp, NULL, printf);
555 		panic("pool_destroy: pool busy: still out: %u\n",
556 		    pp->pr_nout);
557 	}
558 #endif
559 
560 	/* Remove all pages */
561 	if ((pp->pr_roflags & PR_STATIC) == 0)
562 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
563 			pr_rmpage(pp, ph);
564 
565 	/* Remove from global pool list */
566 	simple_lock(&pool_head_slock);
567 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
568 	/* XXX Only clear this if we were drainpp? */
569 	drainpp = NULL;
570 	simple_unlock(&pool_head_slock);
571 
572 	if ((pp->pr_roflags & PR_LOGGING) != 0)
573 		free(pp->pr_log, M_TEMP);
574 
575 	if (pp->pr_roflags & PR_FREEHEADER)
576 		free(pp, M_POOL);
577 }
578 
579 
580 /*
581  * Grab an item from the pool; must be called at appropriate spl level
582  */
583 void *
584 _pool_get(struct pool *pp, int flags, const char *file, long line)
585 {
586 	void *v;
587 	struct pool_item *pi;
588 	struct pool_item_header *ph;
589 
590 #ifdef DIAGNOSTIC
591 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
592 			    (flags & PR_MALLOCOK))) {
593 		pr_printlog(pp, NULL, printf);
594 		panic("pool_get: static");
595 	}
596 #endif
597 
598 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
599 			    (flags & PR_WAITOK) != 0))
600 		panic("pool_get: must have NOWAIT");
601 
602 	simple_lock(&pp->pr_slock);
603 	pr_enter(pp, file, line);
604 
605  startover:
606 	/*
607 	 * Check to see if we've reached the hard limit.  If we have,
608 	 * and we can wait, then wait until an item has been returned to
609 	 * the pool.
610 	 */
611 #ifdef DIAGNOSTIC
612 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
613 		pr_leave(pp);
614 		simple_unlock(&pp->pr_slock);
615 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
616 	}
617 #endif
618 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
619 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
620 			/*
621 			 * XXX: A warning isn't logged in this case.  Should
622 			 * it be?
623 			 */
624 			pp->pr_flags |= PR_WANTED;
625 			pr_leave(pp);
626 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
627 			pr_enter(pp, file, line);
628 			goto startover;
629 		}
630 
631 		/*
632 		 * Log a message that the hard limit has been hit.
633 		 */
634 		if (pp->pr_hardlimit_warning != NULL &&
635 		    ratecheck(&pp->pr_hardlimit_warning_last,
636 			      &pp->pr_hardlimit_ratecap))
637 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
638 
639 		if (flags & PR_URGENT)
640 			panic("pool_get: urgent");
641 
642 		pp->pr_nfail++;
643 
644 		pr_leave(pp);
645 		simple_unlock(&pp->pr_slock);
646 		return (NULL);
647 	}
648 
649 	/*
650 	 * The convention we use is that if `curpage' is not NULL, then
651 	 * it points at a non-empty bucket. In particular, `curpage'
652 	 * never points at a page header which has PR_PHINPAGE set and
653 	 * has no items in its bucket.
654 	 */
655 	if ((ph = pp->pr_curpage) == NULL) {
656 		void *v;
657 
658 #ifdef DIAGNOSTIC
659 		if (pp->pr_nitems != 0) {
660 			simple_unlock(&pp->pr_slock);
661 			printf("pool_get: %s: curpage NULL, nitems %u\n",
662 			    pp->pr_wchan, pp->pr_nitems);
663 			panic("pool_get: nitems inconsistent\n");
664 		}
665 #endif
666 
667 		/*
668 		 * Call the back-end page allocator for more memory.
669 		 * Release the pool lock, as the back-end page allocator
670 		 * may block.
671 		 */
672 		pr_leave(pp);
673 		simple_unlock(&pp->pr_slock);
674 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
675 		simple_lock(&pp->pr_slock);
676 		pr_enter(pp, file, line);
677 
678 		if (v == NULL) {
679 			/*
680 			 * We were unable to allocate a page, but
681 			 * we released the lock during allocation,
682 			 * so perhaps items were freed back to the
683 			 * pool.  Check for this case.
684 			 */
685 			if (pp->pr_curpage != NULL)
686 				goto startover;
687 
688 			if (flags & PR_URGENT)
689 				panic("pool_get: urgent");
690 
691 			if ((flags & PR_WAITOK) == 0) {
692 				pp->pr_nfail++;
693 				pr_leave(pp);
694 				simple_unlock(&pp->pr_slock);
695 				return (NULL);
696 			}
697 
698 			/*
699 			 * Wait for items to be returned to this pool.
700 			 *
701 			 * XXX: we actually want to wait just until
702 			 * the page allocator has memory again. Depending
703 			 * on this pool's usage, we might get stuck here
704 			 * for a long time.
705 			 *
706 			 * XXX: maybe we should wake up once a second and
707 			 * try again?
708 			 */
709 			pp->pr_flags |= PR_WANTED;
710 			pr_leave(pp);
711 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
712 			pr_enter(pp, file, line);
713 			goto startover;
714 		}
715 
716 		/* We have more memory; add it to the pool */
717 		pp->pr_npagealloc++;
718 		pool_prime_page(pp, v);
719 
720 		/* Start the allocation process over. */
721 		goto startover;
722 	}
723 
724 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
725 		pr_leave(pp);
726 		simple_unlock(&pp->pr_slock);
727 		panic("pool_get: %s: page empty", pp->pr_wchan);
728 	}
729 #ifdef DIAGNOSTIC
730 	if (__predict_false(pp->pr_nitems == 0)) {
731 		pr_leave(pp);
732 		simple_unlock(&pp->pr_slock);
733 		printf("pool_get: %s: items on itemlist, nitems %u\n",
734 		    pp->pr_wchan, pp->pr_nitems);
735 		panic("pool_get: nitems inconsistent\n");
736 	}
737 #endif
738 	pr_log(pp, v, PRLOG_GET, file, line);
739 
740 #ifdef DIAGNOSTIC
741 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
742 		pr_printlog(pp, pi, printf);
743 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
744 		       " item addr %p\n",
745 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
746 	}
747 #endif
748 
749 	/*
750 	 * Remove from item list.
751 	 */
752 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
753 	pp->pr_nitems--;
754 	pp->pr_nout++;
755 	if (ph->ph_nmissing == 0) {
756 #ifdef DIAGNOSTIC
757 		if (__predict_false(pp->pr_nidle == 0))
758 			panic("pool_get: nidle inconsistent");
759 #endif
760 		pp->pr_nidle--;
761 	}
762 	ph->ph_nmissing++;
763 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
764 #ifdef DIAGNOSTIC
765 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
766 			pr_leave(pp);
767 			simple_unlock(&pp->pr_slock);
768 			panic("pool_get: %s: nmissing inconsistent",
769 			    pp->pr_wchan);
770 		}
771 #endif
772 		/*
773 		 * Find a new non-empty page header, if any.
774 		 * Start search from the page head, to increase
775 		 * the chance for "high water" pages to be freed.
776 		 *
777 		 * Migrate empty pages to the end of the list.  This
778 		 * will speed the update of curpage as pages become
779 		 * idle.  Empty pages intermingled with idle pages
780 		 * is no big deal.  As soon as a page becomes un-empty,
781 		 * it will move back to the head of the list.
782 		 */
783 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
784 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
785 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
786 		     ph = TAILQ_NEXT(ph, ph_pagelist))
787 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
788 				break;
789 
790 		pp->pr_curpage = ph;
791 	}
792 
793 	pp->pr_nget++;
794 
795 	/*
796 	 * If we have a low water mark and we are now below that low
797 	 * water mark, add more items to the pool.
798 	 */
799 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
800 		/*
801 		 * XXX: Should we log a warning?  Should we set up a timeout
802 		 * to try again in a second or so?  The latter could break
803 		 * a caller's assumptions about interrupt protection, etc.
804 		 */
805 	}
806 
807 	pr_leave(pp);
808 	simple_unlock(&pp->pr_slock);
809 	return (v);
810 }
811 
812 /*
813  * Internal version of pool_put().  Pool is already locked/entered.
814  */
815 static void
816 pool_do_put(struct pool *pp, void *v, const char *file, long line)
817 {
818 	struct pool_item *pi = v;
819 	struct pool_item_header *ph;
820 	caddr_t page;
821 	int s;
822 
823 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
824 
825 #ifdef DIAGNOSTIC
826 	if (__predict_false(pp->pr_nout == 0)) {
827 		printf("pool %s: putting with none out\n",
828 		    pp->pr_wchan);
829 		panic("pool_put");
830 	}
831 #endif
832 
833 	pr_log(pp, v, PRLOG_PUT, file, line);
834 
835 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
836 		pr_printlog(pp, NULL, printf);
837 		panic("pool_put: %s: page header missing", pp->pr_wchan);
838 	}
839 
840 #ifdef LOCKDEBUG
841 	/*
842 	 * Check if we're freeing a locked simple lock.
843 	 */
844 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
845 #endif
846 
847 	/*
848 	 * Return to item list.
849 	 */
850 #ifdef DIAGNOSTIC
851 	pi->pi_magic = PI_MAGIC;
852 #endif
853 #ifdef DEBUG
854 	{
855 		int i, *ip = v;
856 
857 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
858 			*ip++ = PI_MAGIC;
859 		}
860 	}
861 #endif
862 
863 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
864 	ph->ph_nmissing--;
865 	pp->pr_nput++;
866 	pp->pr_nitems++;
867 	pp->pr_nout--;
868 
869 	/* Cancel "pool empty" condition if it exists */
870 	if (pp->pr_curpage == NULL)
871 		pp->pr_curpage = ph;
872 
873 	if (pp->pr_flags & PR_WANTED) {
874 		pp->pr_flags &= ~PR_WANTED;
875 		if (ph->ph_nmissing == 0)
876 			pp->pr_nidle++;
877 		wakeup((caddr_t)pp);
878 		return;
879 	}
880 
881 	/*
882 	 * If this page is now complete, do one of two things:
883 	 *
884 	 *	(1) If we have more pages than the page high water
885 	 *	    mark, free the page back to the system.
886 	 *
887 	 *	(2) Move it to the end of the page list, so that
888 	 *	    we minimize our chances of fragmenting the
889 	 *	    pool.  Idle pages migrate to the end (along with
890 	 *	    completely empty pages, so that we find un-empty
891 	 *	    pages more quickly when we update curpage) of the
892 	 *	    list so they can be more easily swept up by
893 	 *	    the pagedaemon when pages are scarce.
894 	 */
895 	if (ph->ph_nmissing == 0) {
896 		pp->pr_nidle++;
897 		if (pp->pr_npages > pp->pr_maxpages) {
898 			pr_rmpage(pp, ph);
899 		} else {
900 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
901 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
902 
903 			/*
904 			 * Update the timestamp on the page.  A page must
905 			 * be idle for some period of time before it can
906 			 * be reclaimed by the pagedaemon.  This minimizes
907 			 * ping-pong'ing for memory.
908 			 */
909 			s = splclock();
910 			ph->ph_time = mono_time;
911 			splx(s);
912 
913 			/*
914 			 * Update the current page pointer.  Just look for
915 			 * the first page with any free items.
916 			 *
917 			 * XXX: Maybe we want an option to look for the
918 			 * page with the fewest available items, to minimize
919 			 * fragmentation?
920 			 */
921 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
922 			     ph = TAILQ_NEXT(ph, ph_pagelist))
923 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
924 					break;
925 
926 			pp->pr_curpage = ph;
927 		}
928 	}
929 	/*
930 	 * If the page has just become un-empty, move it to the head of
931 	 * the list, and make it the current page.  The next allocation
932 	 * will get the item from this page, instead of further fragmenting
933 	 * the pool.
934 	 */
935 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
936 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
937 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
938 		pp->pr_curpage = ph;
939 	}
940 }
941 
942 /*
943  * Return resource to the pool; must be called at appropriate spl level
944  */
945 void
946 _pool_put(struct pool *pp, void *v, const char *file, long line)
947 {
948 
949 	simple_lock(&pp->pr_slock);
950 	pr_enter(pp, file, line);
951 
952 	pool_do_put(pp, v, file, line);
953 
954 	pr_leave(pp);
955 	simple_unlock(&pp->pr_slock);
956 }
957 
958 /*
959  * Add N items to the pool.
960  */
961 int
962 pool_prime(struct pool *pp, int n, caddr_t storage)
963 {
964 	caddr_t cp;
965 	int newnitems, newpages;
966 
967 #ifdef DIAGNOSTIC
968 	if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
969 		panic("pool_prime: static");
970 	/* !storage && static caught below */
971 #endif
972 
973 	simple_lock(&pp->pr_slock);
974 
975 	newnitems = pp->pr_minitems + n;
976 	newpages =
977 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
978 		- pp->pr_minpages;
979 
980 	while (newpages-- > 0) {
981 		if (pp->pr_roflags & PR_STATIC) {
982 			cp = storage;
983 			storage += pp->pr_pagesz;
984 		} else {
985 			simple_unlock(&pp->pr_slock);
986 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
987 			simple_lock(&pp->pr_slock);
988 		}
989 
990 		if (cp == NULL) {
991 			simple_unlock(&pp->pr_slock);
992 			return (ENOMEM);
993 		}
994 
995 		pp->pr_npagealloc++;
996 		pool_prime_page(pp, cp);
997 		pp->pr_minpages++;
998 	}
999 
1000 	pp->pr_minitems = newnitems;
1001 
1002 	if (pp->pr_minpages >= pp->pr_maxpages)
1003 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1004 
1005 	simple_unlock(&pp->pr_slock);
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Add a page worth of items to the pool.
1011  *
1012  * Note, we must be called with the pool descriptor LOCKED.
1013  */
1014 static void
1015 pool_prime_page(struct pool *pp, caddr_t storage)
1016 {
1017 	struct pool_item *pi;
1018 	struct pool_item_header *ph;
1019 	caddr_t cp = storage;
1020 	unsigned int align = pp->pr_align;
1021 	unsigned int ioff = pp->pr_itemoffset;
1022 	int s, n;
1023 
1024 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1025 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1026 
1027 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1028 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1029 	} else {
1030 		s = splhigh();
1031 		ph = pool_get(&phpool, PR_URGENT);
1032 		splx(s);
1033 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1034 				 ph, ph_hashlist);
1035 	}
1036 
1037 	/*
1038 	 * Insert page header.
1039 	 */
1040 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1041 	TAILQ_INIT(&ph->ph_itemlist);
1042 	ph->ph_page = storage;
1043 	ph->ph_nmissing = 0;
1044 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1045 
1046 	pp->pr_nidle++;
1047 
1048 	/*
1049 	 * Color this page.
1050 	 */
1051 	cp = (caddr_t)(cp + pp->pr_curcolor);
1052 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1053 		pp->pr_curcolor = 0;
1054 
1055 	/*
1056 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1057 	 */
1058 	if (ioff != 0)
1059 		cp = (caddr_t)(cp + (align - ioff));
1060 
1061 	/*
1062 	 * Insert remaining chunks on the bucket list.
1063 	 */
1064 	n = pp->pr_itemsperpage;
1065 	pp->pr_nitems += n;
1066 
1067 	while (n--) {
1068 		pi = (struct pool_item *)cp;
1069 
1070 		/* Insert on page list */
1071 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1072 #ifdef DIAGNOSTIC
1073 		pi->pi_magic = PI_MAGIC;
1074 #endif
1075 		cp = (caddr_t)(cp + pp->pr_size);
1076 	}
1077 
1078 	/*
1079 	 * If the pool was depleted, point at the new page.
1080 	 */
1081 	if (pp->pr_curpage == NULL)
1082 		pp->pr_curpage = ph;
1083 
1084 	if (++pp->pr_npages > pp->pr_hiwat)
1085 		pp->pr_hiwat = pp->pr_npages;
1086 }
1087 
1088 /*
1089  * Like pool_prime(), except this is used by pool_get() when nitems
1090  * drops below the low water mark.  This is used to catch up nitmes
1091  * with the low water mark.
1092  *
1093  * Note 1, we never wait for memory here, we let the caller decide what to do.
1094  *
1095  * Note 2, this doesn't work with static pools.
1096  *
1097  * Note 3, we must be called with the pool already locked, and we return
1098  * with it locked.
1099  */
1100 static int
1101 pool_catchup(struct pool *pp)
1102 {
1103 	caddr_t cp;
1104 	int error = 0;
1105 
1106 	if (pp->pr_roflags & PR_STATIC) {
1107 		/*
1108 		 * We dropped below the low water mark, and this is not a
1109 		 * good thing.  Log a warning.
1110 		 *
1111 		 * XXX: rate-limit this?
1112 		 */
1113 		printf("WARNING: static pool `%s' dropped below low water "
1114 		    "mark\n", pp->pr_wchan);
1115 		return (0);
1116 	}
1117 
1118 	while (pp->pr_nitems < pp->pr_minitems) {
1119 		/*
1120 		 * Call the page back-end allocator for more memory.
1121 		 *
1122 		 * XXX: We never wait, so should we bother unlocking
1123 		 * the pool descriptor?
1124 		 */
1125 		simple_unlock(&pp->pr_slock);
1126 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1127 		simple_lock(&pp->pr_slock);
1128 		if (__predict_false(cp == NULL)) {
1129 			error = ENOMEM;
1130 			break;
1131 		}
1132 		pp->pr_npagealloc++;
1133 		pool_prime_page(pp, cp);
1134 	}
1135 
1136 	return (error);
1137 }
1138 
1139 void
1140 pool_setlowat(struct pool *pp, int n)
1141 {
1142 	int error;
1143 
1144 	simple_lock(&pp->pr_slock);
1145 
1146 	pp->pr_minitems = n;
1147 	pp->pr_minpages = (n == 0)
1148 		? 0
1149 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1150 
1151 	/* Make sure we're caught up with the newly-set low water mark. */
1152 	if ((pp->pr_nitems < pp->pr_minitems) &&
1153 	    (error = pool_catchup(pp)) != 0) {
1154 		/*
1155 		 * XXX: Should we log a warning?  Should we set up a timeout
1156 		 * to try again in a second or so?  The latter could break
1157 		 * a caller's assumptions about interrupt protection, etc.
1158 		 */
1159 	}
1160 
1161 	simple_unlock(&pp->pr_slock);
1162 }
1163 
1164 void
1165 pool_sethiwat(struct pool *pp, int n)
1166 {
1167 
1168 	simple_lock(&pp->pr_slock);
1169 
1170 	pp->pr_maxpages = (n == 0)
1171 		? 0
1172 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1173 
1174 	simple_unlock(&pp->pr_slock);
1175 }
1176 
1177 void
1178 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1179 {
1180 
1181 	simple_lock(&pp->pr_slock);
1182 
1183 	pp->pr_hardlimit = n;
1184 	pp->pr_hardlimit_warning = warnmess;
1185 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1186 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1187 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1188 
1189 	/*
1190 	 * In-line version of pool_sethiwat(), because we don't want to
1191 	 * release the lock.
1192 	 */
1193 	pp->pr_maxpages = (n == 0)
1194 		? 0
1195 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1196 
1197 	simple_unlock(&pp->pr_slock);
1198 }
1199 
1200 /*
1201  * Default page allocator.
1202  */
1203 static void *
1204 pool_page_alloc(unsigned long sz, int flags, int mtype)
1205 {
1206 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1207 
1208 	return ((void *)uvm_km_alloc_poolpage(waitok));
1209 }
1210 
1211 static void
1212 pool_page_free(void *v, unsigned long sz, int mtype)
1213 {
1214 
1215 	uvm_km_free_poolpage((vaddr_t)v);
1216 }
1217 
1218 /*
1219  * Alternate pool page allocator for pools that know they will
1220  * never be accessed in interrupt context.
1221  */
1222 void *
1223 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1224 {
1225 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1226 
1227 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1228 	    waitok));
1229 }
1230 
1231 void
1232 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1233 {
1234 
1235 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1236 }
1237 
1238 
1239 /*
1240  * Release all complete pages that have not been used recently.
1241  */
1242 void
1243 _pool_reclaim(struct pool *pp, const char *file, long line)
1244 {
1245 	struct pool_item_header *ph, *phnext;
1246 	struct pool_cache *pc;
1247 	struct timeval curtime;
1248 	int s;
1249 
1250 	if (pp->pr_roflags & PR_STATIC)
1251 		return;
1252 
1253 	if (simple_lock_try(&pp->pr_slock) == 0)
1254 		return;
1255 	pr_enter(pp, file, line);
1256 
1257 	/*
1258 	 * Reclaim items from the pool's caches.
1259 	 */
1260 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1261 	     pc = TAILQ_NEXT(pc, pc_poollist))
1262 		pool_cache_reclaim(pc);
1263 
1264 	s = splclock();
1265 	curtime = mono_time;
1266 	splx(s);
1267 
1268 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1269 		phnext = TAILQ_NEXT(ph, ph_pagelist);
1270 
1271 		/* Check our minimum page claim */
1272 		if (pp->pr_npages <= pp->pr_minpages)
1273 			break;
1274 
1275 		if (ph->ph_nmissing == 0) {
1276 			struct timeval diff;
1277 			timersub(&curtime, &ph->ph_time, &diff);
1278 			if (diff.tv_sec < pool_inactive_time)
1279 				continue;
1280 
1281 			/*
1282 			 * If freeing this page would put us below
1283 			 * the low water mark, stop now.
1284 			 */
1285 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
1286 			    pp->pr_minitems)
1287 				break;
1288 
1289 			pr_rmpage(pp, ph);
1290 		}
1291 	}
1292 
1293 	pr_leave(pp);
1294 	simple_unlock(&pp->pr_slock);
1295 }
1296 
1297 
1298 /*
1299  * Drain pools, one at a time.
1300  *
1301  * Note, we must never be called from an interrupt context.
1302  */
1303 void
1304 pool_drain(void *arg)
1305 {
1306 	struct pool *pp;
1307 	int s;
1308 
1309 	s = splimp();
1310 	simple_lock(&pool_head_slock);
1311 
1312 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1313 		goto out;
1314 
1315 	pp = drainpp;
1316 	drainpp = TAILQ_NEXT(pp, pr_poollist);
1317 
1318 	pool_reclaim(pp);
1319 
1320  out:
1321 	simple_unlock(&pool_head_slock);
1322 	splx(s);
1323 }
1324 
1325 
1326 /*
1327  * Diagnostic helpers.
1328  */
1329 void
1330 pool_print(struct pool *pp, const char *modif)
1331 {
1332 	int s;
1333 
1334 	s = splimp();
1335 	if (simple_lock_try(&pp->pr_slock) == 0) {
1336 		printf("pool %s is locked; try again later\n",
1337 		    pp->pr_wchan);
1338 		splx(s);
1339 		return;
1340 	}
1341 	pool_print1(pp, modif, printf);
1342 	simple_unlock(&pp->pr_slock);
1343 	splx(s);
1344 }
1345 
1346 void
1347 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1348 {
1349 	int didlock = 0;
1350 
1351 	if (pp == NULL) {
1352 		(*pr)("Must specify a pool to print.\n");
1353 		return;
1354 	}
1355 
1356 	/*
1357 	 * Called from DDB; interrupts should be blocked, and all
1358 	 * other processors should be paused.  We can skip locking
1359 	 * the pool in this case.
1360 	 *
1361 	 * We do a simple_lock_try() just to print the lock
1362 	 * status, however.
1363 	 */
1364 
1365 	if (simple_lock_try(&pp->pr_slock) == 0)
1366 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1367 	else
1368 		didlock = 1;
1369 
1370 	pool_print1(pp, modif, pr);
1371 
1372 	if (didlock)
1373 		simple_unlock(&pp->pr_slock);
1374 }
1375 
1376 static void
1377 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1378 {
1379 	struct pool_item_header *ph;
1380 	struct pool_cache *pc;
1381 	struct pool_cache_group *pcg;
1382 #ifdef DIAGNOSTIC
1383 	struct pool_item *pi;
1384 #endif
1385 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1386 	char c;
1387 
1388 	while ((c = *modif++) != '\0') {
1389 		if (c == 'l')
1390 			print_log = 1;
1391 		if (c == 'p')
1392 			print_pagelist = 1;
1393 		if (c == 'c')
1394 			print_cache = 1;
1395 		modif++;
1396 	}
1397 
1398 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1399 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1400 	    pp->pr_roflags);
1401 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1402 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1403 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1404 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1405 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1406 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1407 
1408 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1409 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1410 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1411 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1412 
1413 	if (print_pagelist == 0)
1414 		goto skip_pagelist;
1415 
1416 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1417 		(*pr)("\n\tpage list:\n");
1418 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1419 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1420 		    ph->ph_page, ph->ph_nmissing,
1421 		    (u_long)ph->ph_time.tv_sec,
1422 		    (u_long)ph->ph_time.tv_usec);
1423 #ifdef DIAGNOSTIC
1424 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1425 		     pi = TAILQ_NEXT(pi, pi_list)) {
1426 			if (pi->pi_magic != PI_MAGIC) {
1427 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1428 				    pi, pi->pi_magic);
1429 			}
1430 		}
1431 #endif
1432 	}
1433 	if (pp->pr_curpage == NULL)
1434 		(*pr)("\tno current page\n");
1435 	else
1436 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1437 
1438  skip_pagelist:
1439 
1440 	if (print_log == 0)
1441 		goto skip_log;
1442 
1443 	(*pr)("\n");
1444 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1445 		(*pr)("\tno log\n");
1446 	else
1447 		pr_printlog(pp, NULL, pr);
1448 
1449  skip_log:
1450 
1451 	if (print_cache == 0)
1452 		goto skip_cache;
1453 
1454 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1455 	     pc = TAILQ_NEXT(pc, pc_poollist)) {
1456 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1457 		    pc->pc_allocfrom, pc->pc_freeto);
1458 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1459 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1460 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1461 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
1462 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1463 			for (i = 0; i < PCG_NOBJECTS; i++)
1464 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1465 		}
1466 	}
1467 
1468  skip_cache:
1469 
1470 	pr_enter_check(pp, pr);
1471 }
1472 
1473 int
1474 pool_chk(struct pool *pp, const char *label)
1475 {
1476 	struct pool_item_header *ph;
1477 	int r = 0;
1478 
1479 	simple_lock(&pp->pr_slock);
1480 
1481 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1482 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
1483 
1484 		struct pool_item *pi;
1485 		int n;
1486 		caddr_t page;
1487 
1488 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1489 		if (page != ph->ph_page &&
1490 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1491 			if (label != NULL)
1492 				printf("%s: ", label);
1493 			printf("pool(%p:%s): page inconsistency: page %p;"
1494 			       " at page head addr %p (p %p)\n", pp,
1495 				pp->pr_wchan, ph->ph_page,
1496 				ph, page);
1497 			r++;
1498 			goto out;
1499 		}
1500 
1501 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1502 		     pi != NULL;
1503 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
1504 
1505 #ifdef DIAGNOSTIC
1506 			if (pi->pi_magic != PI_MAGIC) {
1507 				if (label != NULL)
1508 					printf("%s: ", label);
1509 				printf("pool(%s): free list modified: magic=%x;"
1510 				       " page %p; item ordinal %d;"
1511 				       " addr %p (p %p)\n",
1512 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
1513 					n, pi, page);
1514 				panic("pool");
1515 			}
1516 #endif
1517 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1518 			if (page == ph->ph_page)
1519 				continue;
1520 
1521 			if (label != NULL)
1522 				printf("%s: ", label);
1523 			printf("pool(%p:%s): page inconsistency: page %p;"
1524 			       " item ordinal %d; addr %p (p %p)\n", pp,
1525 				pp->pr_wchan, ph->ph_page,
1526 				n, pi, page);
1527 			r++;
1528 			goto out;
1529 		}
1530 	}
1531 out:
1532 	simple_unlock(&pp->pr_slock);
1533 	return (r);
1534 }
1535 
1536 /*
1537  * pool_cache_init:
1538  *
1539  *	Initialize a pool cache.
1540  *
1541  *	NOTE: If the pool must be protected from interrupts, we expect
1542  *	to be called at the appropriate interrupt priority level.
1543  */
1544 void
1545 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1546     int (*ctor)(void *, void *, int),
1547     void (*dtor)(void *, void *),
1548     void *arg)
1549 {
1550 
1551 	TAILQ_INIT(&pc->pc_grouplist);
1552 	simple_lock_init(&pc->pc_slock);
1553 
1554 	pc->pc_allocfrom = NULL;
1555 	pc->pc_freeto = NULL;
1556 	pc->pc_pool = pp;
1557 
1558 	pc->pc_ctor = ctor;
1559 	pc->pc_dtor = dtor;
1560 	pc->pc_arg  = arg;
1561 
1562 	pc->pc_hits   = 0;
1563 	pc->pc_misses = 0;
1564 
1565 	pc->pc_ngroups = 0;
1566 
1567 	pc->pc_nitems = 0;
1568 
1569 	simple_lock(&pp->pr_slock);
1570 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1571 	simple_unlock(&pp->pr_slock);
1572 }
1573 
1574 /*
1575  * pool_cache_destroy:
1576  *
1577  *	Destroy a pool cache.
1578  */
1579 void
1580 pool_cache_destroy(struct pool_cache *pc)
1581 {
1582 	struct pool *pp = pc->pc_pool;
1583 
1584 	/* First, invalidate the entire cache. */
1585 	pool_cache_invalidate(pc);
1586 
1587 	/* ...and remove it from the pool's cache list. */
1588 	simple_lock(&pp->pr_slock);
1589 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1590 	simple_unlock(&pp->pr_slock);
1591 }
1592 
1593 static __inline void *
1594 pcg_get(struct pool_cache_group *pcg)
1595 {
1596 	void *object;
1597 	u_int idx;
1598 
1599 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1600 	KASSERT(pcg->pcg_avail != 0);
1601 	idx = --pcg->pcg_avail;
1602 
1603 	KASSERT(pcg->pcg_objects[idx] != NULL);
1604 	object = pcg->pcg_objects[idx];
1605 	pcg->pcg_objects[idx] = NULL;
1606 
1607 	return (object);
1608 }
1609 
1610 static __inline void
1611 pcg_put(struct pool_cache_group *pcg, void *object)
1612 {
1613 	u_int idx;
1614 
1615 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1616 	idx = pcg->pcg_avail++;
1617 
1618 	KASSERT(pcg->pcg_objects[idx] == NULL);
1619 	pcg->pcg_objects[idx] = object;
1620 }
1621 
1622 /*
1623  * pool_cache_get:
1624  *
1625  *	Get an object from a pool cache.
1626  */
1627 void *
1628 pool_cache_get(struct pool_cache *pc, int flags)
1629 {
1630 	struct pool_cache_group *pcg;
1631 	void *object;
1632 
1633 	simple_lock(&pc->pc_slock);
1634 
1635 	if ((pcg = pc->pc_allocfrom) == NULL) {
1636 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1637 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
1638 			if (pcg->pcg_avail != 0) {
1639 				pc->pc_allocfrom = pcg;
1640 				goto have_group;
1641 			}
1642 		}
1643 
1644 		/*
1645 		 * No groups with any available objects.  Allocate
1646 		 * a new object, construct it, and return it to
1647 		 * the caller.  We will allocate a group, if necessary,
1648 		 * when the object is freed back to the cache.
1649 		 */
1650 		pc->pc_misses++;
1651 		simple_unlock(&pc->pc_slock);
1652 		object = pool_get(pc->pc_pool, flags);
1653 		if (object != NULL && pc->pc_ctor != NULL) {
1654 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1655 				pool_put(pc->pc_pool, object);
1656 				return (NULL);
1657 			}
1658 		}
1659 		return (object);
1660 	}
1661 
1662  have_group:
1663 	pc->pc_hits++;
1664 	pc->pc_nitems--;
1665 	object = pcg_get(pcg);
1666 
1667 	if (pcg->pcg_avail == 0)
1668 		pc->pc_allocfrom = NULL;
1669 
1670 	simple_unlock(&pc->pc_slock);
1671 
1672 	return (object);
1673 }
1674 
1675 /*
1676  * pool_cache_put:
1677  *
1678  *	Put an object back to the pool cache.
1679  */
1680 void
1681 pool_cache_put(struct pool_cache *pc, void *object)
1682 {
1683 	struct pool_cache_group *pcg;
1684 
1685 	simple_lock(&pc->pc_slock);
1686 
1687 	if ((pcg = pc->pc_freeto) == NULL) {
1688 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1689 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
1690 			if (pcg->pcg_avail != PCG_NOBJECTS) {
1691 				pc->pc_freeto = pcg;
1692 				goto have_group;
1693 			}
1694 		}
1695 
1696 		/*
1697 		 * No empty groups to free the object to.  Attempt to
1698 		 * allocate one.
1699 		 */
1700 		simple_unlock(&pc->pc_slock);
1701 		pcg = pool_get(&pcgpool, PR_NOWAIT);
1702 		if (pcg != NULL) {
1703 			memset(pcg, 0, sizeof(*pcg));
1704 			simple_lock(&pc->pc_slock);
1705 			pc->pc_ngroups++;
1706 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1707 			if (pc->pc_freeto == NULL)
1708 				pc->pc_freeto = pcg;
1709 			goto have_group;
1710 		}
1711 
1712 		/*
1713 		 * Unable to allocate a cache group; destruct the object
1714 		 * and free it back to the pool.
1715 		 */
1716 		if (pc->pc_dtor != NULL)
1717 			(*pc->pc_dtor)(pc->pc_arg, object);
1718 		pool_put(pc->pc_pool, object);
1719 		return;
1720 	}
1721 
1722  have_group:
1723 	pc->pc_nitems++;
1724 	pcg_put(pcg, object);
1725 
1726 	if (pcg->pcg_avail == PCG_NOBJECTS)
1727 		pc->pc_freeto = NULL;
1728 
1729 	simple_unlock(&pc->pc_slock);
1730 }
1731 
1732 /*
1733  * pool_cache_do_invalidate:
1734  *
1735  *	This internal function implements pool_cache_invalidate() and
1736  *	pool_cache_reclaim().
1737  */
1738 static void
1739 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1740     void (*putit)(struct pool *, void *, const char *, long))
1741 {
1742 	struct pool_cache_group *pcg, *npcg;
1743 	void *object;
1744 
1745 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1746 	     pcg = npcg) {
1747 		npcg = TAILQ_NEXT(pcg, pcg_list);
1748 		while (pcg->pcg_avail != 0) {
1749 			pc->pc_nitems--;
1750 			object = pcg_get(pcg);
1751 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1752 				pc->pc_allocfrom = NULL;
1753 			if (pc->pc_dtor != NULL)
1754 				(*pc->pc_dtor)(pc->pc_arg, object);
1755 			(*putit)(pc->pc_pool, object, __FILE__, __LINE__);
1756 		}
1757 		if (free_groups) {
1758 			pc->pc_ngroups--;
1759 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1760 			if (pc->pc_freeto == pcg)
1761 				pc->pc_freeto = NULL;
1762 			pool_put(&pcgpool, pcg);
1763 		}
1764 	}
1765 }
1766 
1767 /*
1768  * pool_cache_invalidate:
1769  *
1770  *	Invalidate a pool cache (destruct and release all of the
1771  *	cached objects).
1772  */
1773 void
1774 pool_cache_invalidate(struct pool_cache *pc)
1775 {
1776 
1777 	simple_lock(&pc->pc_slock);
1778 	pool_cache_do_invalidate(pc, 0, _pool_put);
1779 	simple_unlock(&pc->pc_slock);
1780 }
1781 
1782 /*
1783  * pool_cache_reclaim:
1784  *
1785  *	Reclaim a pool cache for pool_reclaim().
1786  */
1787 static void
1788 pool_cache_reclaim(struct pool_cache *pc)
1789 {
1790 
1791 	simple_lock(&pc->pc_slock);
1792 	pool_cache_do_invalidate(pc, 1, pool_do_put);
1793 	simple_unlock(&pc->pc_slock);
1794 }
1795