1 /* $NetBSD: subr_pool.c,v 1.280 2021/12/24 00:13:53 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018, 5 * 2020, 2021 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 11 * Maxime Villard. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.280 2021/12/24 00:13:53 riastradh Exp $"); 37 38 #ifdef _KERNEL_OPT 39 #include "opt_ddb.h" 40 #include "opt_lockdebug.h" 41 #include "opt_pool.h" 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/bitops.h> 48 #include <sys/proc.h> 49 #include <sys/errno.h> 50 #include <sys/kernel.h> 51 #include <sys/vmem.h> 52 #include <sys/pool.h> 53 #include <sys/syslog.h> 54 #include <sys/debug.h> 55 #include <sys/lock.h> 56 #include <sys/lockdebug.h> 57 #include <sys/xcall.h> 58 #include <sys/cpu.h> 59 #include <sys/atomic.h> 60 #include <sys/asan.h> 61 #include <sys/msan.h> 62 #include <sys/fault.h> 63 64 #include <uvm/uvm_extern.h> 65 66 /* 67 * Pool resource management utility. 68 * 69 * Memory is allocated in pages which are split into pieces according to 70 * the pool item size. Each page is kept on one of three lists in the 71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 72 * for empty, full and partially-full pages respectively. The individual 73 * pool items are on a linked list headed by `ph_itemlist' in each page 74 * header. The memory for building the page list is either taken from 75 * the allocated pages themselves (for small pool items) or taken from 76 * an internal pool of page headers (`phpool'). 77 */ 78 79 /* List of all pools. Non static as needed by 'vmstat -m' */ 80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 81 82 /* Private pool for page header structures */ 83 #define PHPOOL_MAX 8 84 static struct pool phpool[PHPOOL_MAX]; 85 #define PHPOOL_FREELIST_NELEM(idx) \ 86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx))) 87 88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN)) 89 #define POOL_REDZONE 90 #endif 91 92 #if defined(POOL_QUARANTINE) 93 #define POOL_NOCACHE 94 #endif 95 96 #ifdef POOL_REDZONE 97 # ifdef KASAN 98 # define POOL_REDZONE_SIZE 8 99 # else 100 # define POOL_REDZONE_SIZE 2 101 # endif 102 static void pool_redzone_init(struct pool *, size_t); 103 static void pool_redzone_fill(struct pool *, void *); 104 static void pool_redzone_check(struct pool *, void *); 105 static void pool_cache_redzone_check(pool_cache_t, void *); 106 #else 107 # define pool_redzone_init(pp, sz) __nothing 108 # define pool_redzone_fill(pp, ptr) __nothing 109 # define pool_redzone_check(pp, ptr) __nothing 110 # define pool_cache_redzone_check(pc, ptr) __nothing 111 #endif 112 113 #ifdef KMSAN 114 static inline void pool_get_kmsan(struct pool *, void *); 115 static inline void pool_put_kmsan(struct pool *, void *); 116 static inline void pool_cache_get_kmsan(pool_cache_t, void *); 117 static inline void pool_cache_put_kmsan(pool_cache_t, void *); 118 #else 119 #define pool_get_kmsan(pp, ptr) __nothing 120 #define pool_put_kmsan(pp, ptr) __nothing 121 #define pool_cache_get_kmsan(pc, ptr) __nothing 122 #define pool_cache_put_kmsan(pc, ptr) __nothing 123 #endif 124 125 #ifdef POOL_QUARANTINE 126 static void pool_quarantine_init(struct pool *); 127 static void pool_quarantine_flush(struct pool *); 128 static bool pool_put_quarantine(struct pool *, void *, 129 struct pool_pagelist *); 130 #else 131 #define pool_quarantine_init(a) __nothing 132 #define pool_quarantine_flush(a) __nothing 133 #define pool_put_quarantine(a, b, c) false 134 #endif 135 136 #ifdef POOL_NOCACHE 137 static bool pool_cache_put_nocache(pool_cache_t, void *); 138 #else 139 #define pool_cache_put_nocache(a, b) false 140 #endif 141 142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop) 143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop) 144 145 #define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0) 146 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR) 147 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR) 148 149 #define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0) 150 151 #define pool_barrier() xc_barrier(0) 152 153 /* 154 * Pool backend allocators. 155 * 156 * Each pool has a backend allocator that handles allocation, deallocation, 157 * and any additional draining that might be needed. 158 * 159 * We provide two standard allocators: 160 * 161 * pool_allocator_kmem - the default when no allocator is specified 162 * 163 * pool_allocator_nointr - used for pools that will not be accessed 164 * in interrupt context. 165 */ 166 void *pool_page_alloc(struct pool *, int); 167 void pool_page_free(struct pool *, void *); 168 169 static void *pool_page_alloc_meta(struct pool *, int); 170 static void pool_page_free_meta(struct pool *, void *); 171 172 struct pool_allocator pool_allocator_kmem = { 173 .pa_alloc = pool_page_alloc, 174 .pa_free = pool_page_free, 175 .pa_pagesz = 0 176 }; 177 178 struct pool_allocator pool_allocator_nointr = { 179 .pa_alloc = pool_page_alloc, 180 .pa_free = pool_page_free, 181 .pa_pagesz = 0 182 }; 183 184 struct pool_allocator pool_allocator_meta = { 185 .pa_alloc = pool_page_alloc_meta, 186 .pa_free = pool_page_free_meta, 187 .pa_pagesz = 0 188 }; 189 190 #define POOL_ALLOCATOR_BIG_BASE 13 191 static struct pool_allocator pool_allocator_big[] = { 192 { 193 .pa_alloc = pool_page_alloc, 194 .pa_free = pool_page_free, 195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0), 196 }, 197 { 198 .pa_alloc = pool_page_alloc, 199 .pa_free = pool_page_free, 200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1), 201 }, 202 { 203 .pa_alloc = pool_page_alloc, 204 .pa_free = pool_page_free, 205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2), 206 }, 207 { 208 .pa_alloc = pool_page_alloc, 209 .pa_free = pool_page_free, 210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3), 211 }, 212 { 213 .pa_alloc = pool_page_alloc, 214 .pa_free = pool_page_free, 215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4), 216 }, 217 { 218 .pa_alloc = pool_page_alloc, 219 .pa_free = pool_page_free, 220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5), 221 }, 222 { 223 .pa_alloc = pool_page_alloc, 224 .pa_free = pool_page_free, 225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6), 226 }, 227 { 228 .pa_alloc = pool_page_alloc, 229 .pa_free = pool_page_free, 230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7), 231 }, 232 { 233 .pa_alloc = pool_page_alloc, 234 .pa_free = pool_page_free, 235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8), 236 }, 237 { 238 .pa_alloc = pool_page_alloc, 239 .pa_free = pool_page_free, 240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9), 241 }, 242 { 243 .pa_alloc = pool_page_alloc, 244 .pa_free = pool_page_free, 245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10), 246 }, 247 { 248 .pa_alloc = pool_page_alloc, 249 .pa_free = pool_page_free, 250 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11), 251 } 252 }; 253 254 static int pool_bigidx(size_t); 255 256 /* # of seconds to retain page after last use */ 257 int pool_inactive_time = 10; 258 259 /* Next candidate for drainage (see pool_drain()) */ 260 static struct pool *drainpp; 261 262 /* This lock protects both pool_head and drainpp. */ 263 static kmutex_t pool_head_lock; 264 static kcondvar_t pool_busy; 265 266 /* This lock protects initialization of a potentially shared pool allocator */ 267 static kmutex_t pool_allocator_lock; 268 269 static unsigned int poolid_counter = 0; 270 271 typedef uint32_t pool_item_bitmap_t; 272 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 273 #define BITMAP_MASK (BITMAP_SIZE - 1) 274 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2)) 275 276 struct pool_item_header { 277 /* Page headers */ 278 LIST_ENTRY(pool_item_header) 279 ph_pagelist; /* pool page list */ 280 union { 281 /* !PR_PHINPAGE */ 282 struct { 283 SPLAY_ENTRY(pool_item_header) 284 phu_node; /* off-page page headers */ 285 } phu_offpage; 286 /* PR_PHINPAGE */ 287 struct { 288 unsigned int phu_poolid; 289 } phu_onpage; 290 } ph_u1; 291 void * ph_page; /* this page's address */ 292 uint32_t ph_time; /* last referenced */ 293 uint16_t ph_nmissing; /* # of chunks in use */ 294 uint16_t ph_off; /* start offset in page */ 295 union { 296 /* !PR_USEBMAP */ 297 struct { 298 LIST_HEAD(, pool_item) 299 phu_itemlist; /* chunk list for this page */ 300 } phu_normal; 301 /* PR_USEBMAP */ 302 struct { 303 pool_item_bitmap_t phu_bitmap[1]; 304 } phu_notouch; 305 } ph_u2; 306 }; 307 #define ph_node ph_u1.phu_offpage.phu_node 308 #define ph_poolid ph_u1.phu_onpage.phu_poolid 309 #define ph_itemlist ph_u2.phu_normal.phu_itemlist 310 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap 311 312 #define PHSIZE ALIGN(sizeof(struct pool_item_header)) 313 314 CTASSERT(offsetof(struct pool_item_header, ph_u2) + 315 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header)); 316 317 #if defined(DIAGNOSTIC) && !defined(KASAN) 318 #define POOL_CHECK_MAGIC 319 #endif 320 321 struct pool_item { 322 #ifdef POOL_CHECK_MAGIC 323 u_int pi_magic; 324 #endif 325 #define PI_MAGIC 0xdeaddeadU 326 /* Other entries use only this list entry */ 327 LIST_ENTRY(pool_item) pi_list; 328 }; 329 330 #define POOL_NEEDS_CATCHUP(pp) \ 331 ((pp)->pr_nitems < (pp)->pr_minitems || \ 332 (pp)->pr_npages < (pp)->pr_minpages) 333 #define POOL_OBJ_TO_PAGE(pp, v) \ 334 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask) 335 336 /* 337 * Pool cache management. 338 * 339 * Pool caches provide a way for constructed objects to be cached by the 340 * pool subsystem. This can lead to performance improvements by avoiding 341 * needless object construction/destruction; it is deferred until absolutely 342 * necessary. 343 * 344 * Caches are grouped into cache groups. Each cache group references up 345 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 346 * object from the pool, it calls the object's constructor and places it 347 * into a cache group. When a cache group frees an object back to the 348 * pool, it first calls the object's destructor. This allows the object 349 * to persist in constructed form while freed to the cache. 350 * 351 * The pool references each cache, so that when a pool is drained by the 352 * pagedaemon, it can drain each individual cache as well. Each time a 353 * cache is drained, the most idle cache group is freed to the pool in 354 * its entirety. 355 * 356 * Pool caches are layed on top of pools. By layering them, we can avoid 357 * the complexity of cache management for pools which would not benefit 358 * from it. 359 */ 360 361 static struct pool pcg_normal_pool; 362 static struct pool pcg_large_pool; 363 static struct pool cache_pool; 364 static struct pool cache_cpu_pool; 365 366 static pcg_t *volatile pcg_large_cache __cacheline_aligned; 367 static pcg_t *volatile pcg_normal_cache __cacheline_aligned; 368 369 /* List of all caches. */ 370 TAILQ_HEAD(,pool_cache) pool_cache_head = 371 TAILQ_HEAD_INITIALIZER(pool_cache_head); 372 373 int pool_cache_disable; /* global disable for caching */ 374 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 375 376 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int, 377 void *); 378 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int, 379 void **, paddr_t *, int); 380 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 381 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 382 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 383 static void pool_cache_transfer(pool_cache_t); 384 static int pool_pcg_get(pcg_t *volatile *, pcg_t **); 385 static int pool_pcg_put(pcg_t *volatile *, pcg_t *); 386 static pcg_t * pool_pcg_trunc(pcg_t *volatile *); 387 388 static int pool_catchup(struct pool *); 389 static void pool_prime_page(struct pool *, void *, 390 struct pool_item_header *); 391 static void pool_update_curpage(struct pool *); 392 393 static int pool_grow(struct pool *, int); 394 static void *pool_allocator_alloc(struct pool *, int); 395 static void pool_allocator_free(struct pool *, void *); 396 397 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 398 void (*)(const char *, ...) __printflike(1, 2)); 399 static void pool_print1(struct pool *, const char *, 400 void (*)(const char *, ...) __printflike(1, 2)); 401 402 static int pool_chk_page(struct pool *, const char *, 403 struct pool_item_header *); 404 405 /* -------------------------------------------------------------------------- */ 406 407 static inline unsigned int 408 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph, 409 const void *v) 410 { 411 const char *cp = v; 412 unsigned int idx; 413 414 KASSERT(pp->pr_roflags & PR_USEBMAP); 415 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 416 417 if (__predict_false(idx >= pp->pr_itemsperpage)) { 418 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx, 419 pp->pr_itemsperpage); 420 } 421 422 return idx; 423 } 424 425 static inline void 426 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph, 427 void *obj) 428 { 429 unsigned int idx = pr_item_bitmap_index(pp, ph, obj); 430 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 431 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK); 432 433 if (__predict_false((*bitmap & mask) != 0)) { 434 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj); 435 } 436 437 *bitmap |= mask; 438 } 439 440 static inline void * 441 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph) 442 { 443 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 444 unsigned int idx; 445 int i; 446 447 for (i = 0; ; i++) { 448 int bit; 449 450 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 451 bit = ffs32(bitmap[i]); 452 if (bit) { 453 pool_item_bitmap_t mask; 454 455 bit--; 456 idx = (i * BITMAP_SIZE) + bit; 457 mask = 1U << bit; 458 KASSERT((bitmap[i] & mask) != 0); 459 bitmap[i] &= ~mask; 460 break; 461 } 462 } 463 KASSERT(idx < pp->pr_itemsperpage); 464 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 465 } 466 467 static inline void 468 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph) 469 { 470 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 471 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 472 int i; 473 474 for (i = 0; i < n; i++) { 475 bitmap[i] = (pool_item_bitmap_t)-1; 476 } 477 } 478 479 /* -------------------------------------------------------------------------- */ 480 481 static inline void 482 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph, 483 void *obj) 484 { 485 struct pool_item *pi = obj; 486 487 KASSERT(!pp_has_pser(pp)); 488 489 #ifdef POOL_CHECK_MAGIC 490 pi->pi_magic = PI_MAGIC; 491 #endif 492 493 if (pp->pr_redzone) { 494 /* 495 * Mark the pool_item as valid. The rest is already 496 * invalid. 497 */ 498 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0); 499 } 500 501 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 502 } 503 504 static inline void * 505 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph) 506 { 507 struct pool_item *pi; 508 void *v; 509 510 v = pi = LIST_FIRST(&ph->ph_itemlist); 511 if (__predict_false(v == NULL)) { 512 mutex_exit(&pp->pr_lock); 513 panic("%s: [%s] page empty", __func__, pp->pr_wchan); 514 } 515 KASSERTMSG((pp->pr_nitems > 0), 516 "%s: [%s] nitems %u inconsistent on itemlist", 517 __func__, pp->pr_wchan, pp->pr_nitems); 518 #ifdef POOL_CHECK_MAGIC 519 KASSERTMSG((pi->pi_magic == PI_MAGIC), 520 "%s: [%s] free list modified: " 521 "magic=%x; page %p; item addr %p", __func__, 522 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 523 #endif 524 525 /* 526 * Remove from item list. 527 */ 528 LIST_REMOVE(pi, pi_list); 529 530 return v; 531 } 532 533 /* -------------------------------------------------------------------------- */ 534 535 static inline void 536 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page, 537 void *object) 538 { 539 if (__predict_false((void *)ph->ph_page != page)) { 540 panic("%s: [%s] item %p not part of pool", __func__, 541 pp->pr_wchan, object); 542 } 543 if (__predict_false((char *)object < (char *)page + ph->ph_off)) { 544 panic("%s: [%s] item %p below item space", __func__, 545 pp->pr_wchan, object); 546 } 547 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 548 panic("%s: [%s] item %p poolid %u != %u", __func__, 549 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid); 550 } 551 } 552 553 static inline void 554 pc_phinpage_check(pool_cache_t pc, void *object) 555 { 556 struct pool_item_header *ph; 557 struct pool *pp; 558 void *page; 559 560 pp = &pc->pc_pool; 561 page = POOL_OBJ_TO_PAGE(pp, object); 562 ph = (struct pool_item_header *)page; 563 564 pr_phinpage_check(pp, ph, page, object); 565 } 566 567 /* -------------------------------------------------------------------------- */ 568 569 static inline int 570 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 571 { 572 573 /* 574 * We consider pool_item_header with smaller ph_page bigger. This 575 * unnatural ordering is for the benefit of pr_find_pagehead. 576 */ 577 if (a->ph_page < b->ph_page) 578 return 1; 579 else if (a->ph_page > b->ph_page) 580 return -1; 581 else 582 return 0; 583 } 584 585 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 586 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 587 588 static inline struct pool_item_header * 589 pr_find_pagehead_noalign(struct pool *pp, void *v) 590 { 591 struct pool_item_header *ph, tmp; 592 593 tmp.ph_page = (void *)(uintptr_t)v; 594 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 595 if (ph == NULL) { 596 ph = SPLAY_ROOT(&pp->pr_phtree); 597 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 598 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 599 } 600 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 601 } 602 603 return ph; 604 } 605 606 /* 607 * Return the pool page header based on item address. 608 */ 609 static inline struct pool_item_header * 610 pr_find_pagehead(struct pool *pp, void *v) 611 { 612 struct pool_item_header *ph, tmp; 613 614 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 615 ph = pr_find_pagehead_noalign(pp, v); 616 } else { 617 void *page = POOL_OBJ_TO_PAGE(pp, v); 618 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 619 ph = (struct pool_item_header *)page; 620 pr_phinpage_check(pp, ph, page, v); 621 } else { 622 tmp.ph_page = page; 623 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 624 } 625 } 626 627 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 628 ((char *)ph->ph_page <= (char *)v && 629 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 630 return ph; 631 } 632 633 static void 634 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 635 { 636 struct pool_item_header *ph; 637 638 while ((ph = LIST_FIRST(pq)) != NULL) { 639 LIST_REMOVE(ph, ph_pagelist); 640 pool_allocator_free(pp, ph->ph_page); 641 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 642 pool_put(pp->pr_phpool, ph); 643 } 644 } 645 646 /* 647 * Remove a page from the pool. 648 */ 649 static inline void 650 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 651 struct pool_pagelist *pq) 652 { 653 654 KASSERT(mutex_owned(&pp->pr_lock)); 655 656 /* 657 * If the page was idle, decrement the idle page count. 658 */ 659 if (ph->ph_nmissing == 0) { 660 KASSERT(pp->pr_nidle != 0); 661 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 662 "%s: [%s] nitems=%u < itemsperpage=%u", __func__, 663 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage); 664 pp->pr_nidle--; 665 } 666 667 pp->pr_nitems -= pp->pr_itemsperpage; 668 669 /* 670 * Unlink the page from the pool and queue it for release. 671 */ 672 LIST_REMOVE(ph, ph_pagelist); 673 if (pp->pr_roflags & PR_PHINPAGE) { 674 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 675 panic("%s: [%s] ph %p poolid %u != %u", 676 __func__, pp->pr_wchan, ph, ph->ph_poolid, 677 pp->pr_poolid); 678 } 679 } else { 680 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 681 } 682 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 683 684 pp->pr_npages--; 685 pp->pr_npagefree++; 686 687 pool_update_curpage(pp); 688 } 689 690 /* 691 * Initialize all the pools listed in the "pools" link set. 692 */ 693 void 694 pool_subsystem_init(void) 695 { 696 size_t size; 697 int idx; 698 699 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 700 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 701 cv_init(&pool_busy, "poolbusy"); 702 703 /* 704 * Initialize private page header pool and cache magazine pool if we 705 * haven't done so yet. 706 */ 707 for (idx = 0; idx < PHPOOL_MAX; idx++) { 708 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 709 int nelem; 710 size_t sz; 711 712 nelem = PHPOOL_FREELIST_NELEM(idx); 713 KASSERT(nelem != 0); 714 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 715 "phpool-%d", nelem); 716 sz = offsetof(struct pool_item_header, 717 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 718 pool_init(&phpool[idx], sz, 0, 0, 0, 719 phpool_names[idx], &pool_allocator_meta, IPL_VM); 720 } 721 722 size = sizeof(pcg_t) + 723 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 724 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 725 "pcgnormal", &pool_allocator_meta, IPL_VM); 726 727 size = sizeof(pcg_t) + 728 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 729 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 730 "pcglarge", &pool_allocator_meta, IPL_VM); 731 732 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 733 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 734 735 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 736 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 737 } 738 739 static inline bool 740 pool_init_is_phinpage(const struct pool *pp) 741 { 742 size_t pagesize; 743 744 if (pp->pr_roflags & PR_PHINPAGE) { 745 return true; 746 } 747 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) { 748 return false; 749 } 750 751 pagesize = pp->pr_alloc->pa_pagesz; 752 753 /* 754 * Threshold: the item size is below 1/16 of a page size, and below 755 * 8 times the page header size. The latter ensures we go off-page 756 * if the page header would make us waste a rather big item. 757 */ 758 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) { 759 return true; 760 } 761 762 /* Put the header into the page if it doesn't waste any items. */ 763 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) { 764 return true; 765 } 766 767 return false; 768 } 769 770 static inline bool 771 pool_init_is_usebmap(const struct pool *pp) 772 { 773 size_t bmapsize; 774 775 if (pp->pr_roflags & PR_NOTOUCH) { 776 return true; 777 } 778 779 /* 780 * If we're off-page, go with a bitmap. 781 */ 782 if (!(pp->pr_roflags & PR_PHINPAGE)) { 783 return true; 784 } 785 786 /* 787 * If we're on-page, and the page header can already contain a bitmap 788 * big enough to cover all the items of the page, go with a bitmap. 789 */ 790 bmapsize = roundup(PHSIZE, pp->pr_align) - 791 offsetof(struct pool_item_header, ph_bitmap[0]); 792 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0); 793 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) { 794 return true; 795 } 796 797 return false; 798 } 799 800 /* 801 * Initialize the given pool resource structure. 802 * 803 * We export this routine to allow other kernel parts to declare 804 * static pools that must be initialized before kmem(9) is available. 805 */ 806 void 807 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 808 const char *wchan, struct pool_allocator *palloc, int ipl) 809 { 810 struct pool *pp1; 811 size_t prsize; 812 int itemspace, slack; 813 814 /* XXX ioff will be removed. */ 815 KASSERT(ioff == 0); 816 817 #ifdef DEBUG 818 if (__predict_true(!cold)) 819 mutex_enter(&pool_head_lock); 820 /* 821 * Check that the pool hasn't already been initialised and 822 * added to the list of all pools. 823 */ 824 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 825 if (pp == pp1) 826 panic("%s: [%s] already initialised", __func__, 827 wchan); 828 } 829 if (__predict_true(!cold)) 830 mutex_exit(&pool_head_lock); 831 #endif 832 833 if (palloc == NULL) 834 palloc = &pool_allocator_kmem; 835 836 if (!cold) 837 mutex_enter(&pool_allocator_lock); 838 if (palloc->pa_refcnt++ == 0) { 839 if (palloc->pa_pagesz == 0) 840 palloc->pa_pagesz = PAGE_SIZE; 841 842 TAILQ_INIT(&palloc->pa_list); 843 844 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 845 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 846 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 847 } 848 if (!cold) 849 mutex_exit(&pool_allocator_lock); 850 851 /* 852 * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain 853 * valid until the the backing page is returned to the system. 854 */ 855 if (flags & PR_PSERIALIZE) { 856 flags |= PR_NOTOUCH; 857 } 858 859 if (align == 0) 860 align = ALIGN(1); 861 862 prsize = size; 863 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 864 prsize = sizeof(struct pool_item); 865 866 prsize = roundup(prsize, align); 867 KASSERTMSG((prsize <= palloc->pa_pagesz), 868 "%s: [%s] pool item size (%zu) larger than page size (%u)", 869 __func__, wchan, prsize, palloc->pa_pagesz); 870 871 /* 872 * Initialize the pool structure. 873 */ 874 LIST_INIT(&pp->pr_emptypages); 875 LIST_INIT(&pp->pr_fullpages); 876 LIST_INIT(&pp->pr_partpages); 877 pp->pr_cache = NULL; 878 pp->pr_curpage = NULL; 879 pp->pr_npages = 0; 880 pp->pr_minitems = 0; 881 pp->pr_minpages = 0; 882 pp->pr_maxpages = UINT_MAX; 883 pp->pr_roflags = flags; 884 pp->pr_flags = 0; 885 pp->pr_size = prsize; 886 pp->pr_reqsize = size; 887 pp->pr_align = align; 888 pp->pr_wchan = wchan; 889 pp->pr_alloc = palloc; 890 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter); 891 pp->pr_nitems = 0; 892 pp->pr_nout = 0; 893 pp->pr_hardlimit = UINT_MAX; 894 pp->pr_hardlimit_warning = NULL; 895 pp->pr_hardlimit_ratecap.tv_sec = 0; 896 pp->pr_hardlimit_ratecap.tv_usec = 0; 897 pp->pr_hardlimit_warning_last.tv_sec = 0; 898 pp->pr_hardlimit_warning_last.tv_usec = 0; 899 pp->pr_drain_hook = NULL; 900 pp->pr_drain_hook_arg = NULL; 901 pp->pr_freecheck = NULL; 902 pp->pr_redzone = false; 903 pool_redzone_init(pp, size); 904 pool_quarantine_init(pp); 905 906 /* 907 * Decide whether to put the page header off-page to avoid wasting too 908 * large a part of the page or too big an item. Off-page page headers 909 * go on a hash table, so we can match a returned item with its header 910 * based on the page address. 911 */ 912 if (pool_init_is_phinpage(pp)) { 913 /* Use the beginning of the page for the page header */ 914 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align); 915 pp->pr_itemoffset = roundup(PHSIZE, align); 916 pp->pr_roflags |= PR_PHINPAGE; 917 } else { 918 /* The page header will be taken from our page header pool */ 919 itemspace = palloc->pa_pagesz; 920 pp->pr_itemoffset = 0; 921 SPLAY_INIT(&pp->pr_phtree); 922 } 923 924 pp->pr_itemsperpage = itemspace / pp->pr_size; 925 KASSERT(pp->pr_itemsperpage != 0); 926 927 /* 928 * Decide whether to use a bitmap or a linked list to manage freed 929 * items. 930 */ 931 if (pool_init_is_usebmap(pp)) { 932 pp->pr_roflags |= PR_USEBMAP; 933 } 934 935 /* 936 * If we're off-page, then we're using a bitmap; choose the appropriate 937 * pool to allocate page headers, whose size varies depending on the 938 * bitmap. If we're on-page, nothing to do. 939 */ 940 if (!(pp->pr_roflags & PR_PHINPAGE)) { 941 int idx; 942 943 KASSERT(pp->pr_roflags & PR_USEBMAP); 944 945 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 946 idx++) { 947 /* nothing */ 948 } 949 if (idx >= PHPOOL_MAX) { 950 /* 951 * if you see this panic, consider to tweak 952 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 953 */ 954 panic("%s: [%s] too large itemsperpage(%d) for " 955 "PR_USEBMAP", __func__, 956 pp->pr_wchan, pp->pr_itemsperpage); 957 } 958 pp->pr_phpool = &phpool[idx]; 959 } else { 960 pp->pr_phpool = NULL; 961 } 962 963 /* 964 * Use the slack between the chunks and the page header 965 * for "cache coloring". 966 */ 967 slack = itemspace - pp->pr_itemsperpage * pp->pr_size; 968 pp->pr_maxcolor = rounddown(slack, align); 969 pp->pr_curcolor = 0; 970 971 pp->pr_nget = 0; 972 pp->pr_nfail = 0; 973 pp->pr_nput = 0; 974 pp->pr_npagealloc = 0; 975 pp->pr_npagefree = 0; 976 pp->pr_hiwat = 0; 977 pp->pr_nidle = 0; 978 pp->pr_refcnt = 0; 979 980 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 981 cv_init(&pp->pr_cv, wchan); 982 pp->pr_ipl = ipl; 983 984 /* Insert into the list of all pools. */ 985 if (!cold) 986 mutex_enter(&pool_head_lock); 987 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 988 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 989 break; 990 } 991 if (pp1 == NULL) 992 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 993 else 994 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 995 if (!cold) 996 mutex_exit(&pool_head_lock); 997 998 /* Insert this into the list of pools using this allocator. */ 999 if (!cold) 1000 mutex_enter(&palloc->pa_lock); 1001 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 1002 if (!cold) 1003 mutex_exit(&palloc->pa_lock); 1004 } 1005 1006 /* 1007 * De-commision a pool resource. 1008 */ 1009 void 1010 pool_destroy(struct pool *pp) 1011 { 1012 struct pool_pagelist pq; 1013 struct pool_item_header *ph; 1014 1015 pool_quarantine_flush(pp); 1016 1017 /* Remove from global pool list */ 1018 mutex_enter(&pool_head_lock); 1019 while (pp->pr_refcnt != 0) 1020 cv_wait(&pool_busy, &pool_head_lock); 1021 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 1022 if (drainpp == pp) 1023 drainpp = NULL; 1024 mutex_exit(&pool_head_lock); 1025 1026 /* Remove this pool from its allocator's list of pools. */ 1027 mutex_enter(&pp->pr_alloc->pa_lock); 1028 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 1029 mutex_exit(&pp->pr_alloc->pa_lock); 1030 1031 mutex_enter(&pool_allocator_lock); 1032 if (--pp->pr_alloc->pa_refcnt == 0) 1033 mutex_destroy(&pp->pr_alloc->pa_lock); 1034 mutex_exit(&pool_allocator_lock); 1035 1036 mutex_enter(&pp->pr_lock); 1037 1038 KASSERT(pp->pr_cache == NULL); 1039 KASSERTMSG((pp->pr_nout == 0), 1040 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan, 1041 pp->pr_nout); 1042 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 1043 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 1044 1045 /* Remove all pages */ 1046 LIST_INIT(&pq); 1047 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1048 pr_rmpage(pp, ph, &pq); 1049 1050 mutex_exit(&pp->pr_lock); 1051 1052 pr_pagelist_free(pp, &pq); 1053 cv_destroy(&pp->pr_cv); 1054 mutex_destroy(&pp->pr_lock); 1055 } 1056 1057 void 1058 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 1059 { 1060 1061 /* XXX no locking -- must be used just after pool_init() */ 1062 KASSERTMSG((pp->pr_drain_hook == NULL), 1063 "%s: [%s] already set", __func__, pp->pr_wchan); 1064 pp->pr_drain_hook = fn; 1065 pp->pr_drain_hook_arg = arg; 1066 } 1067 1068 static struct pool_item_header * 1069 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 1070 { 1071 struct pool_item_header *ph; 1072 1073 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 1074 ph = storage; 1075 else 1076 ph = pool_get(pp->pr_phpool, flags); 1077 1078 return ph; 1079 } 1080 1081 /* 1082 * Grab an item from the pool. 1083 */ 1084 void * 1085 pool_get(struct pool *pp, int flags) 1086 { 1087 struct pool_item_header *ph; 1088 void *v; 1089 1090 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 1091 KASSERTMSG((pp->pr_itemsperpage != 0), 1092 "%s: [%s] pr_itemsperpage is zero, " 1093 "pool not initialized?", __func__, pp->pr_wchan); 1094 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 1095 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 1096 "%s: [%s] is IPL_NONE, but called from interrupt context", 1097 __func__, pp->pr_wchan); 1098 if (flags & PR_WAITOK) { 1099 ASSERT_SLEEPABLE(); 1100 } 1101 1102 if (flags & PR_NOWAIT) { 1103 if (fault_inject()) 1104 return NULL; 1105 } 1106 1107 mutex_enter(&pp->pr_lock); 1108 startover: 1109 /* 1110 * Check to see if we've reached the hard limit. If we have, 1111 * and we can wait, then wait until an item has been returned to 1112 * the pool. 1113 */ 1114 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 1115 "%s: %s: crossed hard limit", __func__, pp->pr_wchan); 1116 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1117 if (pp->pr_drain_hook != NULL) { 1118 /* 1119 * Since the drain hook is going to free things 1120 * back to the pool, unlock, call the hook, re-lock, 1121 * and check the hardlimit condition again. 1122 */ 1123 mutex_exit(&pp->pr_lock); 1124 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1125 mutex_enter(&pp->pr_lock); 1126 if (pp->pr_nout < pp->pr_hardlimit) 1127 goto startover; 1128 } 1129 1130 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1131 /* 1132 * XXX: A warning isn't logged in this case. Should 1133 * it be? 1134 */ 1135 pp->pr_flags |= PR_WANTED; 1136 do { 1137 cv_wait(&pp->pr_cv, &pp->pr_lock); 1138 } while (pp->pr_flags & PR_WANTED); 1139 goto startover; 1140 } 1141 1142 /* 1143 * Log a message that the hard limit has been hit. 1144 */ 1145 if (pp->pr_hardlimit_warning != NULL && 1146 ratecheck(&pp->pr_hardlimit_warning_last, 1147 &pp->pr_hardlimit_ratecap)) 1148 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1149 1150 pp->pr_nfail++; 1151 1152 mutex_exit(&pp->pr_lock); 1153 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1154 return NULL; 1155 } 1156 1157 /* 1158 * The convention we use is that if `curpage' is not NULL, then 1159 * it points at a non-empty bucket. In particular, `curpage' 1160 * never points at a page header which has PR_PHINPAGE set and 1161 * has no items in its bucket. 1162 */ 1163 if ((ph = pp->pr_curpage) == NULL) { 1164 int error; 1165 1166 KASSERTMSG((pp->pr_nitems == 0), 1167 "%s: [%s] curpage NULL, inconsistent nitems %u", 1168 __func__, pp->pr_wchan, pp->pr_nitems); 1169 1170 /* 1171 * Call the back-end page allocator for more memory. 1172 * Release the pool lock, as the back-end page allocator 1173 * may block. 1174 */ 1175 error = pool_grow(pp, flags); 1176 if (error != 0) { 1177 /* 1178 * pool_grow aborts when another thread 1179 * is allocating a new page. Retry if it 1180 * waited for it. 1181 */ 1182 if (error == ERESTART) 1183 goto startover; 1184 1185 /* 1186 * We were unable to allocate a page or item 1187 * header, but we released the lock during 1188 * allocation, so perhaps items were freed 1189 * back to the pool. Check for this case. 1190 */ 1191 if (pp->pr_curpage != NULL) 1192 goto startover; 1193 1194 pp->pr_nfail++; 1195 mutex_exit(&pp->pr_lock); 1196 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1197 return NULL; 1198 } 1199 1200 /* Start the allocation process over. */ 1201 goto startover; 1202 } 1203 if (pp->pr_roflags & PR_USEBMAP) { 1204 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 1205 "%s: [%s] pool page empty", __func__, pp->pr_wchan); 1206 v = pr_item_bitmap_get(pp, ph); 1207 } else { 1208 v = pr_item_linkedlist_get(pp, ph); 1209 } 1210 pp->pr_nitems--; 1211 pp->pr_nout++; 1212 if (ph->ph_nmissing == 0) { 1213 KASSERT(pp->pr_nidle > 0); 1214 pp->pr_nidle--; 1215 1216 /* 1217 * This page was previously empty. Move it to the list of 1218 * partially-full pages. This page is already curpage. 1219 */ 1220 LIST_REMOVE(ph, ph_pagelist); 1221 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1222 } 1223 ph->ph_nmissing++; 1224 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1225 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) || 1226 LIST_EMPTY(&ph->ph_itemlist)), 1227 "%s: [%s] nmissing (%u) inconsistent", __func__, 1228 pp->pr_wchan, ph->ph_nmissing); 1229 /* 1230 * This page is now full. Move it to the full list 1231 * and select a new current page. 1232 */ 1233 LIST_REMOVE(ph, ph_pagelist); 1234 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1235 pool_update_curpage(pp); 1236 } 1237 1238 pp->pr_nget++; 1239 1240 /* 1241 * If we have a low water mark and we are now below that low 1242 * water mark, add more items to the pool. 1243 */ 1244 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1245 /* 1246 * XXX: Should we log a warning? Should we set up a timeout 1247 * to try again in a second or so? The latter could break 1248 * a caller's assumptions about interrupt protection, etc. 1249 */ 1250 } 1251 1252 mutex_exit(&pp->pr_lock); 1253 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0); 1254 FREECHECK_OUT(&pp->pr_freecheck, v); 1255 pool_redzone_fill(pp, v); 1256 pool_get_kmsan(pp, v); 1257 if (flags & PR_ZERO) 1258 memset(v, 0, pp->pr_reqsize); 1259 return v; 1260 } 1261 1262 /* 1263 * Internal version of pool_put(). Pool is already locked/entered. 1264 */ 1265 static void 1266 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1267 { 1268 struct pool_item_header *ph; 1269 1270 KASSERT(mutex_owned(&pp->pr_lock)); 1271 pool_redzone_check(pp, v); 1272 pool_put_kmsan(pp, v); 1273 FREECHECK_IN(&pp->pr_freecheck, v); 1274 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1275 1276 KASSERTMSG((pp->pr_nout > 0), 1277 "%s: [%s] putting with none out", __func__, pp->pr_wchan); 1278 1279 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1280 panic("%s: [%s] page header missing", __func__, pp->pr_wchan); 1281 } 1282 1283 /* 1284 * Return to item list. 1285 */ 1286 if (pp->pr_roflags & PR_USEBMAP) { 1287 pr_item_bitmap_put(pp, ph, v); 1288 } else { 1289 pr_item_linkedlist_put(pp, ph, v); 1290 } 1291 KDASSERT(ph->ph_nmissing != 0); 1292 ph->ph_nmissing--; 1293 pp->pr_nput++; 1294 pp->pr_nitems++; 1295 pp->pr_nout--; 1296 1297 /* Cancel "pool empty" condition if it exists */ 1298 if (pp->pr_curpage == NULL) 1299 pp->pr_curpage = ph; 1300 1301 if (pp->pr_flags & PR_WANTED) { 1302 pp->pr_flags &= ~PR_WANTED; 1303 cv_broadcast(&pp->pr_cv); 1304 } 1305 1306 /* 1307 * If this page is now empty, do one of two things: 1308 * 1309 * (1) If we have more pages than the page high water mark, 1310 * free the page back to the system. ONLY CONSIDER 1311 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1312 * CLAIM. 1313 * 1314 * (2) Otherwise, move the page to the empty page list. 1315 * 1316 * Either way, select a new current page (so we use a partially-full 1317 * page if one is available). 1318 */ 1319 if (ph->ph_nmissing == 0) { 1320 pp->pr_nidle++; 1321 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems && 1322 pp->pr_npages > pp->pr_minpages && 1323 pp->pr_npages > pp->pr_maxpages) { 1324 pr_rmpage(pp, ph, pq); 1325 } else { 1326 LIST_REMOVE(ph, ph_pagelist); 1327 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1328 1329 /* 1330 * Update the timestamp on the page. A page must 1331 * be idle for some period of time before it can 1332 * be reclaimed by the pagedaemon. This minimizes 1333 * ping-pong'ing for memory. 1334 * 1335 * note for 64-bit time_t: truncating to 32-bit is not 1336 * a problem for our usage. 1337 */ 1338 ph->ph_time = time_uptime; 1339 } 1340 pool_update_curpage(pp); 1341 } 1342 1343 /* 1344 * If the page was previously completely full, move it to the 1345 * partially-full list and make it the current page. The next 1346 * allocation will get the item from this page, instead of 1347 * further fragmenting the pool. 1348 */ 1349 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1350 LIST_REMOVE(ph, ph_pagelist); 1351 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1352 pp->pr_curpage = ph; 1353 } 1354 } 1355 1356 void 1357 pool_put(struct pool *pp, void *v) 1358 { 1359 struct pool_pagelist pq; 1360 1361 LIST_INIT(&pq); 1362 1363 mutex_enter(&pp->pr_lock); 1364 if (!pool_put_quarantine(pp, v, &pq)) { 1365 pool_do_put(pp, v, &pq); 1366 } 1367 mutex_exit(&pp->pr_lock); 1368 1369 pr_pagelist_free(pp, &pq); 1370 } 1371 1372 /* 1373 * pool_grow: grow a pool by a page. 1374 * 1375 * => called with pool locked. 1376 * => unlock and relock the pool. 1377 * => return with pool locked. 1378 */ 1379 1380 static int 1381 pool_grow(struct pool *pp, int flags) 1382 { 1383 struct pool_item_header *ph; 1384 char *storage; 1385 1386 /* 1387 * If there's a pool_grow in progress, wait for it to complete 1388 * and try again from the top. 1389 */ 1390 if (pp->pr_flags & PR_GROWING) { 1391 if (flags & PR_WAITOK) { 1392 do { 1393 cv_wait(&pp->pr_cv, &pp->pr_lock); 1394 } while (pp->pr_flags & PR_GROWING); 1395 return ERESTART; 1396 } else { 1397 if (pp->pr_flags & PR_GROWINGNOWAIT) { 1398 /* 1399 * This needs an unlock/relock dance so 1400 * that the other caller has a chance to 1401 * run and actually do the thing. Note 1402 * that this is effectively a busy-wait. 1403 */ 1404 mutex_exit(&pp->pr_lock); 1405 mutex_enter(&pp->pr_lock); 1406 return ERESTART; 1407 } 1408 return EWOULDBLOCK; 1409 } 1410 } 1411 pp->pr_flags |= PR_GROWING; 1412 if (flags & PR_WAITOK) 1413 mutex_exit(&pp->pr_lock); 1414 else 1415 pp->pr_flags |= PR_GROWINGNOWAIT; 1416 1417 storage = pool_allocator_alloc(pp, flags); 1418 if (__predict_false(storage == NULL)) 1419 goto out; 1420 1421 ph = pool_alloc_item_header(pp, storage, flags); 1422 if (__predict_false(ph == NULL)) { 1423 pool_allocator_free(pp, storage); 1424 goto out; 1425 } 1426 1427 if (flags & PR_WAITOK) 1428 mutex_enter(&pp->pr_lock); 1429 pool_prime_page(pp, storage, ph); 1430 pp->pr_npagealloc++; 1431 KASSERT(pp->pr_flags & PR_GROWING); 1432 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1433 /* 1434 * If anyone was waiting for pool_grow, notify them that we 1435 * may have just done it. 1436 */ 1437 cv_broadcast(&pp->pr_cv); 1438 return 0; 1439 out: 1440 if (flags & PR_WAITOK) 1441 mutex_enter(&pp->pr_lock); 1442 KASSERT(pp->pr_flags & PR_GROWING); 1443 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1444 return ENOMEM; 1445 } 1446 1447 void 1448 pool_prime(struct pool *pp, int n) 1449 { 1450 1451 mutex_enter(&pp->pr_lock); 1452 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1453 if (pp->pr_maxpages <= pp->pr_minpages) 1454 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1455 while (pp->pr_npages < pp->pr_minpages) 1456 (void) pool_grow(pp, PR_WAITOK); 1457 mutex_exit(&pp->pr_lock); 1458 } 1459 1460 /* 1461 * Add a page worth of items to the pool. 1462 * 1463 * Note, we must be called with the pool descriptor LOCKED. 1464 */ 1465 static void 1466 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1467 { 1468 const unsigned int align = pp->pr_align; 1469 struct pool_item *pi; 1470 void *cp = storage; 1471 int n; 1472 1473 KASSERT(mutex_owned(&pp->pr_lock)); 1474 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1475 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1476 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp); 1477 1478 /* 1479 * Insert page header. 1480 */ 1481 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1482 LIST_INIT(&ph->ph_itemlist); 1483 ph->ph_page = storage; 1484 ph->ph_nmissing = 0; 1485 ph->ph_time = time_uptime; 1486 if (pp->pr_roflags & PR_PHINPAGE) 1487 ph->ph_poolid = pp->pr_poolid; 1488 else 1489 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1490 1491 pp->pr_nidle++; 1492 1493 /* 1494 * The item space starts after the on-page header, if any. 1495 */ 1496 ph->ph_off = pp->pr_itemoffset; 1497 1498 /* 1499 * Color this page. 1500 */ 1501 ph->ph_off += pp->pr_curcolor; 1502 cp = (char *)cp + ph->ph_off; 1503 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1504 pp->pr_curcolor = 0; 1505 1506 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1507 1508 /* 1509 * Insert remaining chunks on the bucket list. 1510 */ 1511 n = pp->pr_itemsperpage; 1512 pp->pr_nitems += n; 1513 1514 if (pp->pr_roflags & PR_USEBMAP) { 1515 pr_item_bitmap_init(pp, ph); 1516 } else { 1517 while (n--) { 1518 pi = (struct pool_item *)cp; 1519 1520 KASSERT((((vaddr_t)pi) & (align - 1)) == 0); 1521 1522 /* Insert on page list */ 1523 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1524 #ifdef POOL_CHECK_MAGIC 1525 pi->pi_magic = PI_MAGIC; 1526 #endif 1527 cp = (char *)cp + pp->pr_size; 1528 1529 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1530 } 1531 } 1532 1533 /* 1534 * If the pool was depleted, point at the new page. 1535 */ 1536 if (pp->pr_curpage == NULL) 1537 pp->pr_curpage = ph; 1538 1539 if (++pp->pr_npages > pp->pr_hiwat) 1540 pp->pr_hiwat = pp->pr_npages; 1541 } 1542 1543 /* 1544 * Used by pool_get() when nitems drops below the low water mark. This 1545 * is used to catch up pr_nitems with the low water mark. 1546 * 1547 * Note 1, we never wait for memory here, we let the caller decide what to do. 1548 * 1549 * Note 2, we must be called with the pool already locked, and we return 1550 * with it locked. 1551 */ 1552 static int 1553 pool_catchup(struct pool *pp) 1554 { 1555 int error = 0; 1556 1557 while (POOL_NEEDS_CATCHUP(pp)) { 1558 error = pool_grow(pp, PR_NOWAIT); 1559 if (error) { 1560 if (error == ERESTART) 1561 continue; 1562 break; 1563 } 1564 } 1565 return error; 1566 } 1567 1568 static void 1569 pool_update_curpage(struct pool *pp) 1570 { 1571 1572 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1573 if (pp->pr_curpage == NULL) { 1574 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1575 } 1576 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1577 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1578 } 1579 1580 void 1581 pool_setlowat(struct pool *pp, int n) 1582 { 1583 1584 mutex_enter(&pp->pr_lock); 1585 pp->pr_minitems = n; 1586 1587 /* Make sure we're caught up with the newly-set low water mark. */ 1588 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1589 /* 1590 * XXX: Should we log a warning? Should we set up a timeout 1591 * to try again in a second or so? The latter could break 1592 * a caller's assumptions about interrupt protection, etc. 1593 */ 1594 } 1595 1596 mutex_exit(&pp->pr_lock); 1597 } 1598 1599 void 1600 pool_sethiwat(struct pool *pp, int n) 1601 { 1602 1603 mutex_enter(&pp->pr_lock); 1604 1605 pp->pr_maxitems = n; 1606 1607 mutex_exit(&pp->pr_lock); 1608 } 1609 1610 void 1611 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1612 { 1613 1614 mutex_enter(&pp->pr_lock); 1615 1616 pp->pr_hardlimit = n; 1617 pp->pr_hardlimit_warning = warnmess; 1618 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1619 pp->pr_hardlimit_warning_last.tv_sec = 0; 1620 pp->pr_hardlimit_warning_last.tv_usec = 0; 1621 1622 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1623 1624 mutex_exit(&pp->pr_lock); 1625 } 1626 1627 unsigned int 1628 pool_nget(struct pool *pp) 1629 { 1630 1631 return pp->pr_nget; 1632 } 1633 1634 unsigned int 1635 pool_nput(struct pool *pp) 1636 { 1637 1638 return pp->pr_nput; 1639 } 1640 1641 /* 1642 * Release all complete pages that have not been used recently. 1643 * 1644 * Must not be called from interrupt context. 1645 */ 1646 int 1647 pool_reclaim(struct pool *pp) 1648 { 1649 struct pool_item_header *ph, *phnext; 1650 struct pool_pagelist pq; 1651 uint32_t curtime; 1652 bool klock; 1653 int rv; 1654 1655 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1656 1657 if (pp->pr_drain_hook != NULL) { 1658 /* 1659 * The drain hook must be called with the pool unlocked. 1660 */ 1661 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1662 } 1663 1664 /* 1665 * XXXSMP Because we do not want to cause non-MPSAFE code 1666 * to block. 1667 */ 1668 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1669 pp->pr_ipl == IPL_SOFTSERIAL) { 1670 KERNEL_LOCK(1, NULL); 1671 klock = true; 1672 } else 1673 klock = false; 1674 1675 /* Reclaim items from the pool's cache (if any). */ 1676 if (pp->pr_cache != NULL) 1677 pool_cache_invalidate(pp->pr_cache); 1678 1679 if (mutex_tryenter(&pp->pr_lock) == 0) { 1680 if (klock) { 1681 KERNEL_UNLOCK_ONE(NULL); 1682 } 1683 return 0; 1684 } 1685 1686 LIST_INIT(&pq); 1687 1688 curtime = time_uptime; 1689 1690 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1691 phnext = LIST_NEXT(ph, ph_pagelist); 1692 1693 /* Check our minimum page claim */ 1694 if (pp->pr_npages <= pp->pr_minpages) 1695 break; 1696 1697 KASSERT(ph->ph_nmissing == 0); 1698 if (curtime - ph->ph_time < pool_inactive_time) 1699 continue; 1700 1701 /* 1702 * If freeing this page would put us below the minimum free items 1703 * or the minimum pages, stop now. 1704 */ 1705 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems || 1706 pp->pr_npages - 1 < pp->pr_minpages) 1707 break; 1708 1709 pr_rmpage(pp, ph, &pq); 1710 } 1711 1712 mutex_exit(&pp->pr_lock); 1713 1714 if (LIST_EMPTY(&pq)) 1715 rv = 0; 1716 else { 1717 pr_pagelist_free(pp, &pq); 1718 rv = 1; 1719 } 1720 1721 if (klock) { 1722 KERNEL_UNLOCK_ONE(NULL); 1723 } 1724 1725 return rv; 1726 } 1727 1728 /* 1729 * Drain pools, one at a time. The drained pool is returned within ppp. 1730 * 1731 * Note, must never be called from interrupt context. 1732 */ 1733 bool 1734 pool_drain(struct pool **ppp) 1735 { 1736 bool reclaimed; 1737 struct pool *pp; 1738 1739 KASSERT(!TAILQ_EMPTY(&pool_head)); 1740 1741 pp = NULL; 1742 1743 /* Find next pool to drain, and add a reference. */ 1744 mutex_enter(&pool_head_lock); 1745 do { 1746 if (drainpp == NULL) { 1747 drainpp = TAILQ_FIRST(&pool_head); 1748 } 1749 if (drainpp != NULL) { 1750 pp = drainpp; 1751 drainpp = TAILQ_NEXT(pp, pr_poollist); 1752 } 1753 /* 1754 * Skip completely idle pools. We depend on at least 1755 * one pool in the system being active. 1756 */ 1757 } while (pp == NULL || pp->pr_npages == 0); 1758 pp->pr_refcnt++; 1759 mutex_exit(&pool_head_lock); 1760 1761 /* Drain the cache (if any) and pool.. */ 1762 reclaimed = pool_reclaim(pp); 1763 1764 /* Finally, unlock the pool. */ 1765 mutex_enter(&pool_head_lock); 1766 pp->pr_refcnt--; 1767 cv_broadcast(&pool_busy); 1768 mutex_exit(&pool_head_lock); 1769 1770 if (ppp != NULL) 1771 *ppp = pp; 1772 1773 return reclaimed; 1774 } 1775 1776 /* 1777 * Calculate the total number of pages consumed by pools. 1778 */ 1779 int 1780 pool_totalpages(void) 1781 { 1782 1783 mutex_enter(&pool_head_lock); 1784 int pages = pool_totalpages_locked(); 1785 mutex_exit(&pool_head_lock); 1786 1787 return pages; 1788 } 1789 1790 int 1791 pool_totalpages_locked(void) 1792 { 1793 struct pool *pp; 1794 uint64_t total = 0; 1795 1796 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1797 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz; 1798 1799 if ((pp->pr_roflags & PR_RECURSIVE) != 0) 1800 bytes -= (pp->pr_nout * pp->pr_size); 1801 total += bytes; 1802 } 1803 1804 return atop(total); 1805 } 1806 1807 /* 1808 * Diagnostic helpers. 1809 */ 1810 1811 void 1812 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1813 { 1814 struct pool *pp; 1815 1816 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1817 pool_printit(pp, modif, pr); 1818 } 1819 } 1820 1821 void 1822 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1823 { 1824 1825 if (pp == NULL) { 1826 (*pr)("Must specify a pool to print.\n"); 1827 return; 1828 } 1829 1830 pool_print1(pp, modif, pr); 1831 } 1832 1833 static void 1834 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1835 void (*pr)(const char *, ...)) 1836 { 1837 struct pool_item_header *ph; 1838 1839 LIST_FOREACH(ph, pl, ph_pagelist) { 1840 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1841 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1842 #ifdef POOL_CHECK_MAGIC 1843 struct pool_item *pi; 1844 if (!(pp->pr_roflags & PR_USEBMAP)) { 1845 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1846 if (pi->pi_magic != PI_MAGIC) { 1847 (*pr)("\t\t\titem %p, magic 0x%x\n", 1848 pi, pi->pi_magic); 1849 } 1850 } 1851 } 1852 #endif 1853 } 1854 } 1855 1856 static void 1857 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1858 { 1859 struct pool_item_header *ph; 1860 pool_cache_t pc; 1861 pcg_t *pcg; 1862 pool_cache_cpu_t *cc; 1863 uint64_t cpuhit, cpumiss, pchit, pcmiss; 1864 uint32_t nfull; 1865 int i; 1866 bool print_log = false, print_pagelist = false, print_cache = false; 1867 bool print_short = false, skip_empty = false; 1868 char c; 1869 1870 while ((c = *modif++) != '\0') { 1871 if (c == 'l') 1872 print_log = true; 1873 if (c == 'p') 1874 print_pagelist = true; 1875 if (c == 'c') 1876 print_cache = true; 1877 if (c == 's') 1878 print_short = true; 1879 if (c == 'S') 1880 skip_empty = true; 1881 } 1882 1883 if (skip_empty && pp->pr_nget == 0) 1884 return; 1885 1886 if ((pc = pp->pr_cache) != NULL) { 1887 (*pr)("POOLCACHE"); 1888 } else { 1889 (*pr)("POOL"); 1890 } 1891 1892 /* Single line output. */ 1893 if (print_short) { 1894 (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n", 1895 pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages, 1896 pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput, 1897 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle); 1898 1899 return; 1900 } 1901 1902 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1903 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1904 pp->pr_roflags); 1905 (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc); 1906 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1907 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1908 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1909 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1910 1911 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1912 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1913 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1914 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1915 1916 if (!print_pagelist) 1917 goto skip_pagelist; 1918 1919 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1920 (*pr)("\n\tempty page list:\n"); 1921 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1922 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1923 (*pr)("\n\tfull page list:\n"); 1924 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1925 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1926 (*pr)("\n\tpartial-page list:\n"); 1927 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1928 1929 if (pp->pr_curpage == NULL) 1930 (*pr)("\tno current page\n"); 1931 else 1932 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1933 1934 skip_pagelist: 1935 if (print_log) 1936 goto skip_log; 1937 1938 (*pr)("\n"); 1939 1940 skip_log: 1941 1942 #define PR_GROUPLIST(pcg) \ 1943 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1944 for (i = 0; i < pcg->pcg_size; i++) { \ 1945 if (pcg->pcg_objects[i].pcgo_pa != \ 1946 POOL_PADDR_INVALID) { \ 1947 (*pr)("\t\t\t%p, 0x%llx\n", \ 1948 pcg->pcg_objects[i].pcgo_va, \ 1949 (unsigned long long) \ 1950 pcg->pcg_objects[i].pcgo_pa); \ 1951 } else { \ 1952 (*pr)("\t\t\t%p\n", \ 1953 pcg->pcg_objects[i].pcgo_va); \ 1954 } \ 1955 } 1956 1957 if (pc != NULL) { 1958 cpuhit = 0; 1959 cpumiss = 0; 1960 pcmiss = 0; 1961 nfull = 0; 1962 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1963 if ((cc = pc->pc_cpus[i]) == NULL) 1964 continue; 1965 cpuhit += cc->cc_hits; 1966 cpumiss += cc->cc_misses; 1967 pcmiss += cc->cc_pcmisses; 1968 nfull += cc->cc_nfull; 1969 } 1970 pchit = cpumiss - pcmiss; 1971 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1972 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss); 1973 (*pr)("\tcache layer full groups %u\n", nfull); 1974 if (print_cache) { 1975 (*pr)("\tfull cache groups:\n"); 1976 for (pcg = pc->pc_fullgroups; pcg != NULL; 1977 pcg = pcg->pcg_next) { 1978 PR_GROUPLIST(pcg); 1979 } 1980 } 1981 } 1982 #undef PR_GROUPLIST 1983 } 1984 1985 static int 1986 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1987 { 1988 struct pool_item *pi; 1989 void *page; 1990 int n; 1991 1992 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1993 page = POOL_OBJ_TO_PAGE(pp, ph); 1994 if (page != ph->ph_page && 1995 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1996 if (label != NULL) 1997 printf("%s: ", label); 1998 printf("pool(%p:%s): page inconsistency: page %p;" 1999 " at page head addr %p (p %p)\n", pp, 2000 pp->pr_wchan, ph->ph_page, 2001 ph, page); 2002 return 1; 2003 } 2004 } 2005 2006 if ((pp->pr_roflags & PR_USEBMAP) != 0) 2007 return 0; 2008 2009 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 2010 pi != NULL; 2011 pi = LIST_NEXT(pi,pi_list), n++) { 2012 2013 #ifdef POOL_CHECK_MAGIC 2014 if (pi->pi_magic != PI_MAGIC) { 2015 if (label != NULL) 2016 printf("%s: ", label); 2017 printf("pool(%s): free list modified: magic=%x;" 2018 " page %p; item ordinal %d; addr %p\n", 2019 pp->pr_wchan, pi->pi_magic, ph->ph_page, 2020 n, pi); 2021 panic("pool"); 2022 } 2023 #endif 2024 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 2025 continue; 2026 } 2027 page = POOL_OBJ_TO_PAGE(pp, pi); 2028 if (page == ph->ph_page) 2029 continue; 2030 2031 if (label != NULL) 2032 printf("%s: ", label); 2033 printf("pool(%p:%s): page inconsistency: page %p;" 2034 " item ordinal %d; addr %p (p %p)\n", pp, 2035 pp->pr_wchan, ph->ph_page, 2036 n, pi, page); 2037 return 1; 2038 } 2039 return 0; 2040 } 2041 2042 2043 int 2044 pool_chk(struct pool *pp, const char *label) 2045 { 2046 struct pool_item_header *ph; 2047 int r = 0; 2048 2049 mutex_enter(&pp->pr_lock); 2050 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2051 r = pool_chk_page(pp, label, ph); 2052 if (r) { 2053 goto out; 2054 } 2055 } 2056 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2057 r = pool_chk_page(pp, label, ph); 2058 if (r) { 2059 goto out; 2060 } 2061 } 2062 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2063 r = pool_chk_page(pp, label, ph); 2064 if (r) { 2065 goto out; 2066 } 2067 } 2068 2069 out: 2070 mutex_exit(&pp->pr_lock); 2071 return r; 2072 } 2073 2074 /* 2075 * pool_cache_init: 2076 * 2077 * Initialize a pool cache. 2078 */ 2079 pool_cache_t 2080 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2081 const char *wchan, struct pool_allocator *palloc, int ipl, 2082 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2083 { 2084 pool_cache_t pc; 2085 2086 pc = pool_get(&cache_pool, PR_WAITOK); 2087 if (pc == NULL) 2088 return NULL; 2089 2090 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2091 palloc, ipl, ctor, dtor, arg); 2092 2093 return pc; 2094 } 2095 2096 /* 2097 * pool_cache_bootstrap: 2098 * 2099 * Kernel-private version of pool_cache_init(). The caller 2100 * provides initial storage. 2101 */ 2102 void 2103 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2104 u_int align_offset, u_int flags, const char *wchan, 2105 struct pool_allocator *palloc, int ipl, 2106 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2107 void *arg) 2108 { 2109 CPU_INFO_ITERATOR cii; 2110 pool_cache_t pc1; 2111 struct cpu_info *ci; 2112 struct pool *pp; 2113 unsigned int ppflags; 2114 2115 pp = &pc->pc_pool; 2116 if (palloc == NULL && ipl == IPL_NONE) { 2117 if (size > PAGE_SIZE) { 2118 int bigidx = pool_bigidx(size); 2119 2120 palloc = &pool_allocator_big[bigidx]; 2121 flags |= PR_NOALIGN; 2122 } else 2123 palloc = &pool_allocator_nointr; 2124 } 2125 2126 ppflags = flags; 2127 if (ctor == NULL) { 2128 ctor = NO_CTOR; 2129 } 2130 if (dtor == NULL) { 2131 dtor = NO_DTOR; 2132 } else { 2133 /* 2134 * If we have a destructor, then the pool layer does not 2135 * need to worry about PR_PSERIALIZE. 2136 */ 2137 ppflags &= ~PR_PSERIALIZE; 2138 } 2139 2140 pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl); 2141 2142 pc->pc_fullgroups = NULL; 2143 pc->pc_partgroups = NULL; 2144 pc->pc_ctor = ctor; 2145 pc->pc_dtor = dtor; 2146 pc->pc_arg = arg; 2147 pc->pc_refcnt = 0; 2148 pc->pc_roflags = flags; 2149 pc->pc_freecheck = NULL; 2150 2151 if ((flags & PR_LARGECACHE) != 0) { 2152 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2153 pc->pc_pcgpool = &pcg_large_pool; 2154 pc->pc_pcgcache = &pcg_large_cache; 2155 } else { 2156 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2157 pc->pc_pcgpool = &pcg_normal_pool; 2158 pc->pc_pcgcache = &pcg_normal_cache; 2159 } 2160 2161 /* Allocate per-CPU caches. */ 2162 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2163 pc->pc_ncpu = 0; 2164 if (ncpu < 2) { 2165 /* XXX For sparc: boot CPU is not attached yet. */ 2166 pool_cache_cpu_init1(curcpu(), pc); 2167 } else { 2168 for (CPU_INFO_FOREACH(cii, ci)) { 2169 pool_cache_cpu_init1(ci, pc); 2170 } 2171 } 2172 2173 /* Add to list of all pools. */ 2174 if (__predict_true(!cold)) 2175 mutex_enter(&pool_head_lock); 2176 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2177 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2178 break; 2179 } 2180 if (pc1 == NULL) 2181 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2182 else 2183 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2184 if (__predict_true(!cold)) 2185 mutex_exit(&pool_head_lock); 2186 2187 membar_sync(); 2188 pp->pr_cache = pc; 2189 } 2190 2191 /* 2192 * pool_cache_destroy: 2193 * 2194 * Destroy a pool cache. 2195 */ 2196 void 2197 pool_cache_destroy(pool_cache_t pc) 2198 { 2199 2200 pool_cache_bootstrap_destroy(pc); 2201 pool_put(&cache_pool, pc); 2202 } 2203 2204 /* 2205 * pool_cache_bootstrap_destroy: 2206 * 2207 * Destroy a pool cache. 2208 */ 2209 void 2210 pool_cache_bootstrap_destroy(pool_cache_t pc) 2211 { 2212 struct pool *pp = &pc->pc_pool; 2213 u_int i; 2214 2215 /* Remove it from the global list. */ 2216 mutex_enter(&pool_head_lock); 2217 while (pc->pc_refcnt != 0) 2218 cv_wait(&pool_busy, &pool_head_lock); 2219 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2220 mutex_exit(&pool_head_lock); 2221 2222 /* First, invalidate the entire cache. */ 2223 pool_cache_invalidate(pc); 2224 2225 /* Disassociate it from the pool. */ 2226 mutex_enter(&pp->pr_lock); 2227 pp->pr_cache = NULL; 2228 mutex_exit(&pp->pr_lock); 2229 2230 /* Destroy per-CPU data */ 2231 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 2232 pool_cache_invalidate_cpu(pc, i); 2233 2234 /* Finally, destroy it. */ 2235 pool_destroy(pp); 2236 } 2237 2238 /* 2239 * pool_cache_cpu_init1: 2240 * 2241 * Called for each pool_cache whenever a new CPU is attached. 2242 */ 2243 static void 2244 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2245 { 2246 pool_cache_cpu_t *cc; 2247 int index; 2248 2249 index = ci->ci_index; 2250 2251 KASSERT(index < __arraycount(pc->pc_cpus)); 2252 2253 if ((cc = pc->pc_cpus[index]) != NULL) { 2254 return; 2255 } 2256 2257 /* 2258 * The first CPU is 'free'. This needs to be the case for 2259 * bootstrap - we may not be able to allocate yet. 2260 */ 2261 if (pc->pc_ncpu == 0) { 2262 cc = &pc->pc_cpu0; 2263 pc->pc_ncpu = 1; 2264 } else { 2265 pc->pc_ncpu++; 2266 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2267 } 2268 2269 cc->cc_current = __UNCONST(&pcg_dummy); 2270 cc->cc_previous = __UNCONST(&pcg_dummy); 2271 cc->cc_pcgcache = pc->pc_pcgcache; 2272 cc->cc_hits = 0; 2273 cc->cc_misses = 0; 2274 cc->cc_pcmisses = 0; 2275 cc->cc_contended = 0; 2276 cc->cc_nfull = 0; 2277 cc->cc_npart = 0; 2278 2279 pc->pc_cpus[index] = cc; 2280 } 2281 2282 /* 2283 * pool_cache_cpu_init: 2284 * 2285 * Called whenever a new CPU is attached. 2286 */ 2287 void 2288 pool_cache_cpu_init(struct cpu_info *ci) 2289 { 2290 pool_cache_t pc; 2291 2292 mutex_enter(&pool_head_lock); 2293 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2294 pc->pc_refcnt++; 2295 mutex_exit(&pool_head_lock); 2296 2297 pool_cache_cpu_init1(ci, pc); 2298 2299 mutex_enter(&pool_head_lock); 2300 pc->pc_refcnt--; 2301 cv_broadcast(&pool_busy); 2302 } 2303 mutex_exit(&pool_head_lock); 2304 } 2305 2306 /* 2307 * pool_cache_reclaim: 2308 * 2309 * Reclaim memory from a pool cache. 2310 */ 2311 bool 2312 pool_cache_reclaim(pool_cache_t pc) 2313 { 2314 2315 return pool_reclaim(&pc->pc_pool); 2316 } 2317 2318 static inline void 2319 pool_cache_pre_destruct(pool_cache_t pc) 2320 { 2321 /* 2322 * Perform a passive serialization barrier before destructing 2323 * a batch of one or more objects. 2324 */ 2325 if (__predict_false(pc_has_pser(pc))) { 2326 pool_barrier(); 2327 } 2328 } 2329 2330 static void 2331 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2332 { 2333 (*pc->pc_dtor)(pc->pc_arg, object); 2334 pool_put(&pc->pc_pool, object); 2335 } 2336 2337 /* 2338 * pool_cache_destruct_object: 2339 * 2340 * Force destruction of an object and its release back into 2341 * the pool. 2342 */ 2343 void 2344 pool_cache_destruct_object(pool_cache_t pc, void *object) 2345 { 2346 2347 FREECHECK_IN(&pc->pc_freecheck, object); 2348 2349 pool_cache_pre_destruct(pc); 2350 pool_cache_destruct_object1(pc, object); 2351 } 2352 2353 /* 2354 * pool_cache_invalidate_groups: 2355 * 2356 * Invalidate a chain of groups and destruct all objects. Return the 2357 * number of groups that were invalidated. 2358 */ 2359 static int 2360 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2361 { 2362 void *object; 2363 pcg_t *next; 2364 int i, n; 2365 2366 if (pcg == NULL) { 2367 return 0; 2368 } 2369 2370 pool_cache_pre_destruct(pc); 2371 2372 for (n = 0; pcg != NULL; pcg = next, n++) { 2373 next = pcg->pcg_next; 2374 2375 for (i = 0; i < pcg->pcg_avail; i++) { 2376 object = pcg->pcg_objects[i].pcgo_va; 2377 pool_cache_destruct_object1(pc, object); 2378 } 2379 2380 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2381 pool_put(&pcg_large_pool, pcg); 2382 } else { 2383 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2384 pool_put(&pcg_normal_pool, pcg); 2385 } 2386 } 2387 return n; 2388 } 2389 2390 /* 2391 * pool_cache_invalidate: 2392 * 2393 * Invalidate a pool cache (destruct and release all of the 2394 * cached objects). Does not reclaim objects from the pool. 2395 * 2396 * Note: For pool caches that provide constructed objects, there 2397 * is an assumption that another level of synchronization is occurring 2398 * between the input to the constructor and the cache invalidation. 2399 * 2400 * Invalidation is a costly process and should not be called from 2401 * interrupt context. 2402 */ 2403 void 2404 pool_cache_invalidate(pool_cache_t pc) 2405 { 2406 uint64_t where; 2407 pcg_t *pcg; 2408 int n, s; 2409 2410 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 2411 2412 if (ncpu < 2 || !mp_online) { 2413 /* 2414 * We might be called early enough in the boot process 2415 * for the CPU data structures to not be fully initialized. 2416 * In this case, transfer the content of the local CPU's 2417 * cache back into global cache as only this CPU is currently 2418 * running. 2419 */ 2420 pool_cache_transfer(pc); 2421 } else { 2422 /* 2423 * Signal all CPUs that they must transfer their local 2424 * cache back to the global pool then wait for the xcall to 2425 * complete. 2426 */ 2427 where = xc_broadcast(0, 2428 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL); 2429 xc_wait(where); 2430 } 2431 2432 /* Now dequeue and invalidate everything. */ 2433 pcg = pool_pcg_trunc(&pcg_normal_cache); 2434 (void)pool_cache_invalidate_groups(pc, pcg); 2435 2436 pcg = pool_pcg_trunc(&pcg_large_cache); 2437 (void)pool_cache_invalidate_groups(pc, pcg); 2438 2439 pcg = pool_pcg_trunc(&pc->pc_fullgroups); 2440 n = pool_cache_invalidate_groups(pc, pcg); 2441 s = splvm(); 2442 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n; 2443 splx(s); 2444 2445 pcg = pool_pcg_trunc(&pc->pc_partgroups); 2446 n = pool_cache_invalidate_groups(pc, pcg); 2447 s = splvm(); 2448 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n; 2449 splx(s); 2450 } 2451 2452 /* 2453 * pool_cache_invalidate_cpu: 2454 * 2455 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2456 * identified by its associated index. 2457 * It is caller's responsibility to ensure that no operation is 2458 * taking place on this pool cache while doing this invalidation. 2459 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2460 * pool cached objects from a CPU different from the one currently running 2461 * may result in an undefined behaviour. 2462 */ 2463 static void 2464 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2465 { 2466 pool_cache_cpu_t *cc; 2467 pcg_t *pcg; 2468 2469 if ((cc = pc->pc_cpus[index]) == NULL) 2470 return; 2471 2472 if ((pcg = cc->cc_current) != &pcg_dummy) { 2473 pcg->pcg_next = NULL; 2474 pool_cache_invalidate_groups(pc, pcg); 2475 } 2476 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2477 pcg->pcg_next = NULL; 2478 pool_cache_invalidate_groups(pc, pcg); 2479 } 2480 if (cc != &pc->pc_cpu0) 2481 pool_put(&cache_cpu_pool, cc); 2482 2483 } 2484 2485 void 2486 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2487 { 2488 2489 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2490 } 2491 2492 void 2493 pool_cache_setlowat(pool_cache_t pc, int n) 2494 { 2495 2496 pool_setlowat(&pc->pc_pool, n); 2497 } 2498 2499 void 2500 pool_cache_sethiwat(pool_cache_t pc, int n) 2501 { 2502 2503 pool_sethiwat(&pc->pc_pool, n); 2504 } 2505 2506 void 2507 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2508 { 2509 2510 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2511 } 2512 2513 void 2514 pool_cache_prime(pool_cache_t pc, int n) 2515 { 2516 2517 pool_prime(&pc->pc_pool, n); 2518 } 2519 2520 unsigned int 2521 pool_cache_nget(pool_cache_t pc) 2522 { 2523 2524 return pool_nget(&pc->pc_pool); 2525 } 2526 2527 unsigned int 2528 pool_cache_nput(pool_cache_t pc) 2529 { 2530 2531 return pool_nput(&pc->pc_pool); 2532 } 2533 2534 /* 2535 * pool_pcg_get: 2536 * 2537 * Get a cache group from the specified list. Return true if 2538 * contention was encountered. Must be called at IPL_VM because 2539 * of spin wait vs. kernel_lock. 2540 */ 2541 static int 2542 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp) 2543 { 2544 int count = SPINLOCK_BACKOFF_MIN; 2545 pcg_t *o, *n; 2546 2547 for (o = atomic_load_relaxed(head);; o = n) { 2548 if (__predict_false(o == &pcg_dummy)) { 2549 /* Wait for concurrent get to complete. */ 2550 SPINLOCK_BACKOFF(count); 2551 n = atomic_load_relaxed(head); 2552 continue; 2553 } 2554 if (__predict_false(o == NULL)) { 2555 break; 2556 } 2557 /* Lock out concurrent get/put. */ 2558 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy)); 2559 if (o == n) { 2560 /* Fetch pointer to next item and then unlock. */ 2561 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2562 membar_datadep_consumer(); /* alpha */ 2563 #endif 2564 n = atomic_load_relaxed(&o->pcg_next); 2565 atomic_store_release(head, n); 2566 break; 2567 } 2568 } 2569 *pcgp = o; 2570 return count != SPINLOCK_BACKOFF_MIN; 2571 } 2572 2573 /* 2574 * pool_pcg_trunc: 2575 * 2576 * Chop out entire list of pool cache groups. 2577 */ 2578 static pcg_t * 2579 pool_pcg_trunc(pcg_t *volatile *head) 2580 { 2581 int count = SPINLOCK_BACKOFF_MIN, s; 2582 pcg_t *o, *n; 2583 2584 s = splvm(); 2585 for (o = atomic_load_relaxed(head);; o = n) { 2586 if (__predict_false(o == &pcg_dummy)) { 2587 /* Wait for concurrent get to complete. */ 2588 SPINLOCK_BACKOFF(count); 2589 n = atomic_load_relaxed(head); 2590 continue; 2591 } 2592 n = atomic_cas_ptr(head, o, NULL); 2593 if (o == n) { 2594 splx(s); 2595 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2596 membar_datadep_consumer(); /* alpha */ 2597 #endif 2598 return o; 2599 } 2600 } 2601 } 2602 2603 /* 2604 * pool_pcg_put: 2605 * 2606 * Put a pool cache group to the specified list. Return true if 2607 * contention was encountered. Must be called at IPL_VM because of 2608 * spin wait vs. kernel_lock. 2609 */ 2610 static int 2611 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg) 2612 { 2613 int count = SPINLOCK_BACKOFF_MIN; 2614 pcg_t *o, *n; 2615 2616 for (o = atomic_load_relaxed(head);; o = n) { 2617 if (__predict_false(o == &pcg_dummy)) { 2618 /* Wait for concurrent get to complete. */ 2619 SPINLOCK_BACKOFF(count); 2620 n = atomic_load_relaxed(head); 2621 continue; 2622 } 2623 pcg->pcg_next = o; 2624 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2625 membar_exit(); 2626 #endif 2627 n = atomic_cas_ptr(head, o, pcg); 2628 if (o == n) { 2629 return count != SPINLOCK_BACKOFF_MIN; 2630 } 2631 } 2632 } 2633 2634 static bool __noinline 2635 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, 2636 void **objectp, paddr_t *pap, int flags) 2637 { 2638 pcg_t *pcg, *cur; 2639 void *object; 2640 2641 KASSERT(cc->cc_current->pcg_avail == 0); 2642 KASSERT(cc->cc_previous->pcg_avail == 0); 2643 2644 cc->cc_misses++; 2645 2646 /* 2647 * If there's a full group, release our empty group back to the 2648 * cache. Install the full group as cc_current and return. 2649 */ 2650 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg); 2651 if (__predict_true(pcg != NULL)) { 2652 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2653 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2654 KASSERT(cur->pcg_avail == 0); 2655 (void)pool_pcg_put(cc->cc_pcgcache, cur); 2656 } 2657 cc->cc_nfull--; 2658 cc->cc_current = pcg; 2659 return true; 2660 } 2661 2662 /* 2663 * Nothing available locally or in cache. Take the slow 2664 * path: fetch a new object from the pool and construct 2665 * it. 2666 */ 2667 cc->cc_pcmisses++; 2668 splx(s); 2669 2670 object = pool_get(&pc->pc_pool, flags); 2671 *objectp = object; 2672 if (__predict_false(object == NULL)) { 2673 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 2674 return false; 2675 } 2676 2677 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2678 pool_put(&pc->pc_pool, object); 2679 *objectp = NULL; 2680 return false; 2681 } 2682 2683 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0); 2684 2685 if (pap != NULL) { 2686 #ifdef POOL_VTOPHYS 2687 *pap = POOL_VTOPHYS(object); 2688 #else 2689 *pap = POOL_PADDR_INVALID; 2690 #endif 2691 } 2692 2693 FREECHECK_OUT(&pc->pc_freecheck, object); 2694 return false; 2695 } 2696 2697 /* 2698 * pool_cache_get{,_paddr}: 2699 * 2700 * Get an object from a pool cache (optionally returning 2701 * the physical address of the object). 2702 */ 2703 void * 2704 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2705 { 2706 pool_cache_cpu_t *cc; 2707 pcg_t *pcg; 2708 void *object; 2709 int s; 2710 2711 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 2712 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2713 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2714 "%s: [%s] is IPL_NONE, but called from interrupt context", 2715 __func__, pc->pc_pool.pr_wchan); 2716 2717 if (flags & PR_WAITOK) { 2718 ASSERT_SLEEPABLE(); 2719 } 2720 2721 if (flags & PR_NOWAIT) { 2722 if (fault_inject()) 2723 return NULL; 2724 } 2725 2726 /* Lock out interrupts and disable preemption. */ 2727 s = splvm(); 2728 while (/* CONSTCOND */ true) { 2729 /* Try and allocate an object from the current group. */ 2730 cc = pc->pc_cpus[curcpu()->ci_index]; 2731 pcg = cc->cc_current; 2732 if (__predict_true(pcg->pcg_avail > 0)) { 2733 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2734 if (__predict_false(pap != NULL)) 2735 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2736 #if defined(DIAGNOSTIC) 2737 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2738 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2739 KASSERT(object != NULL); 2740 #endif 2741 cc->cc_hits++; 2742 splx(s); 2743 FREECHECK_OUT(&pc->pc_freecheck, object); 2744 pool_redzone_fill(&pc->pc_pool, object); 2745 pool_cache_get_kmsan(pc, object); 2746 return object; 2747 } 2748 2749 /* 2750 * That failed. If the previous group isn't empty, swap 2751 * it with the current group and allocate from there. 2752 */ 2753 pcg = cc->cc_previous; 2754 if (__predict_true(pcg->pcg_avail > 0)) { 2755 cc->cc_previous = cc->cc_current; 2756 cc->cc_current = pcg; 2757 continue; 2758 } 2759 2760 /* 2761 * Can't allocate from either group: try the slow path. 2762 * If get_slow() allocated an object for us, or if 2763 * no more objects are available, it will return false. 2764 * Otherwise, we need to retry. 2765 */ 2766 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) { 2767 if (object != NULL) { 2768 kmsan_orig(object, pc->pc_pool.pr_size, 2769 KMSAN_TYPE_POOL, __RET_ADDR); 2770 } 2771 break; 2772 } 2773 } 2774 2775 /* 2776 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but 2777 * pool_cache_get can fail even in the PR_WAITOK case, if the 2778 * constructor fails. 2779 */ 2780 return object; 2781 } 2782 2783 static bool __noinline 2784 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object) 2785 { 2786 pcg_t *pcg, *cur; 2787 2788 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2789 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2790 2791 cc->cc_misses++; 2792 2793 /* 2794 * Try to get an empty group from the cache. If there are no empty 2795 * groups in the cache then allocate one. 2796 */ 2797 (void)pool_pcg_get(cc->cc_pcgcache, &pcg); 2798 if (__predict_false(pcg == NULL)) { 2799 if (__predict_true(!pool_cache_disable)) { 2800 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2801 } 2802 if (__predict_true(pcg != NULL)) { 2803 pcg->pcg_avail = 0; 2804 pcg->pcg_size = pc->pc_pcgsize; 2805 } 2806 } 2807 2808 /* 2809 * If there's a empty group, release our full group back to the 2810 * cache. Install the empty group to the local CPU and return. 2811 */ 2812 if (pcg != NULL) { 2813 KASSERT(pcg->pcg_avail == 0); 2814 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2815 cc->cc_previous = pcg; 2816 } else { 2817 cur = cc->cc_current; 2818 if (__predict_true(cur != &pcg_dummy)) { 2819 KASSERT(cur->pcg_avail == cur->pcg_size); 2820 cc->cc_contended += 2821 pool_pcg_put(&pc->pc_fullgroups, cur); 2822 cc->cc_nfull++; 2823 } 2824 cc->cc_current = pcg; 2825 } 2826 return true; 2827 } 2828 2829 /* 2830 * Nothing available locally or in cache, and we didn't 2831 * allocate an empty group. Take the slow path and destroy 2832 * the object here and now. 2833 */ 2834 cc->cc_pcmisses++; 2835 splx(s); 2836 pool_cache_destruct_object(pc, object); 2837 2838 return false; 2839 } 2840 2841 /* 2842 * pool_cache_put{,_paddr}: 2843 * 2844 * Put an object back to the pool cache (optionally caching the 2845 * physical address of the object). 2846 */ 2847 void 2848 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2849 { 2850 pool_cache_cpu_t *cc; 2851 pcg_t *pcg; 2852 int s; 2853 2854 KASSERT(object != NULL); 2855 pool_cache_put_kmsan(pc, object); 2856 pool_cache_redzone_check(pc, object); 2857 FREECHECK_IN(&pc->pc_freecheck, object); 2858 2859 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) { 2860 pc_phinpage_check(pc, object); 2861 } 2862 2863 if (pool_cache_put_nocache(pc, object)) { 2864 return; 2865 } 2866 2867 /* Lock out interrupts and disable preemption. */ 2868 s = splvm(); 2869 while (/* CONSTCOND */ true) { 2870 /* If the current group isn't full, release it there. */ 2871 cc = pc->pc_cpus[curcpu()->ci_index]; 2872 pcg = cc->cc_current; 2873 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2874 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2875 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2876 pcg->pcg_avail++; 2877 cc->cc_hits++; 2878 splx(s); 2879 return; 2880 } 2881 2882 /* 2883 * That failed. If the previous group isn't full, swap 2884 * it with the current group and try again. 2885 */ 2886 pcg = cc->cc_previous; 2887 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2888 cc->cc_previous = cc->cc_current; 2889 cc->cc_current = pcg; 2890 continue; 2891 } 2892 2893 /* 2894 * Can't free to either group: try the slow path. 2895 * If put_slow() releases the object for us, it 2896 * will return false. Otherwise we need to retry. 2897 */ 2898 if (!pool_cache_put_slow(pc, cc, s, object)) 2899 break; 2900 } 2901 } 2902 2903 /* 2904 * pool_cache_transfer: 2905 * 2906 * Transfer objects from the per-CPU cache to the global cache. 2907 * Run within a cross-call thread. 2908 */ 2909 static void 2910 pool_cache_transfer(pool_cache_t pc) 2911 { 2912 pool_cache_cpu_t *cc; 2913 pcg_t *prev, *cur; 2914 int s; 2915 2916 s = splvm(); 2917 cc = pc->pc_cpus[curcpu()->ci_index]; 2918 cur = cc->cc_current; 2919 cc->cc_current = __UNCONST(&pcg_dummy); 2920 prev = cc->cc_previous; 2921 cc->cc_previous = __UNCONST(&pcg_dummy); 2922 if (cur != &pcg_dummy) { 2923 if (cur->pcg_avail == cur->pcg_size) { 2924 (void)pool_pcg_put(&pc->pc_fullgroups, cur); 2925 cc->cc_nfull++; 2926 } else if (cur->pcg_avail == 0) { 2927 (void)pool_pcg_put(pc->pc_pcgcache, cur); 2928 } else { 2929 (void)pool_pcg_put(&pc->pc_partgroups, cur); 2930 cc->cc_npart++; 2931 } 2932 } 2933 if (prev != &pcg_dummy) { 2934 if (prev->pcg_avail == prev->pcg_size) { 2935 (void)pool_pcg_put(&pc->pc_fullgroups, prev); 2936 cc->cc_nfull++; 2937 } else if (prev->pcg_avail == 0) { 2938 (void)pool_pcg_put(pc->pc_pcgcache, prev); 2939 } else { 2940 (void)pool_pcg_put(&pc->pc_partgroups, prev); 2941 cc->cc_npart++; 2942 } 2943 } 2944 splx(s); 2945 } 2946 2947 static int 2948 pool_bigidx(size_t size) 2949 { 2950 int i; 2951 2952 for (i = 0; i < __arraycount(pool_allocator_big); i++) { 2953 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size) 2954 return i; 2955 } 2956 panic("pool item size %zu too large, use a custom allocator", size); 2957 } 2958 2959 static void * 2960 pool_allocator_alloc(struct pool *pp, int flags) 2961 { 2962 struct pool_allocator *pa = pp->pr_alloc; 2963 void *res; 2964 2965 res = (*pa->pa_alloc)(pp, flags); 2966 if (res == NULL && (flags & PR_WAITOK) == 0) { 2967 /* 2968 * We only run the drain hook here if PR_NOWAIT. 2969 * In other cases, the hook will be run in 2970 * pool_reclaim(). 2971 */ 2972 if (pp->pr_drain_hook != NULL) { 2973 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2974 res = (*pa->pa_alloc)(pp, flags); 2975 } 2976 } 2977 return res; 2978 } 2979 2980 static void 2981 pool_allocator_free(struct pool *pp, void *v) 2982 { 2983 struct pool_allocator *pa = pp->pr_alloc; 2984 2985 if (pp->pr_redzone) { 2986 KASSERT(!pp_has_pser(pp)); 2987 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0); 2988 } else if (__predict_false(pp_has_pser(pp))) { 2989 /* 2990 * Perform a passive serialization barrier before freeing 2991 * the pool page back to the system. 2992 */ 2993 pool_barrier(); 2994 } 2995 (*pa->pa_free)(pp, v); 2996 } 2997 2998 void * 2999 pool_page_alloc(struct pool *pp, int flags) 3000 { 3001 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 3002 vmem_addr_t va; 3003 int ret; 3004 3005 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 3006 vflags | VM_INSTANTFIT, &va); 3007 3008 return ret ? NULL : (void *)va; 3009 } 3010 3011 void 3012 pool_page_free(struct pool *pp, void *v) 3013 { 3014 3015 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 3016 } 3017 3018 static void * 3019 pool_page_alloc_meta(struct pool *pp, int flags) 3020 { 3021 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 3022 vmem_addr_t va; 3023 int ret; 3024 3025 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 3026 vflags | VM_INSTANTFIT, &va); 3027 3028 return ret ? NULL : (void *)va; 3029 } 3030 3031 static void 3032 pool_page_free_meta(struct pool *pp, void *v) 3033 { 3034 3035 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 3036 } 3037 3038 #ifdef KMSAN 3039 static inline void 3040 pool_get_kmsan(struct pool *pp, void *p) 3041 { 3042 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR); 3043 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT); 3044 } 3045 3046 static inline void 3047 pool_put_kmsan(struct pool *pp, void *p) 3048 { 3049 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED); 3050 } 3051 3052 static inline void 3053 pool_cache_get_kmsan(pool_cache_t pc, void *p) 3054 { 3055 if (__predict_false(pc_has_ctor(pc))) { 3056 return; 3057 } 3058 pool_get_kmsan(&pc->pc_pool, p); 3059 } 3060 3061 static inline void 3062 pool_cache_put_kmsan(pool_cache_t pc, void *p) 3063 { 3064 pool_put_kmsan(&pc->pc_pool, p); 3065 } 3066 #endif 3067 3068 #ifdef POOL_QUARANTINE 3069 static void 3070 pool_quarantine_init(struct pool *pp) 3071 { 3072 pp->pr_quar.rotor = 0; 3073 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar)); 3074 } 3075 3076 static void 3077 pool_quarantine_flush(struct pool *pp) 3078 { 3079 pool_quar_t *quar = &pp->pr_quar; 3080 struct pool_pagelist pq; 3081 size_t i; 3082 3083 LIST_INIT(&pq); 3084 3085 mutex_enter(&pp->pr_lock); 3086 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) { 3087 if (quar->list[i] == 0) 3088 continue; 3089 pool_do_put(pp, (void *)quar->list[i], &pq); 3090 } 3091 mutex_exit(&pp->pr_lock); 3092 3093 pr_pagelist_free(pp, &pq); 3094 } 3095 3096 static bool 3097 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq) 3098 { 3099 pool_quar_t *quar = &pp->pr_quar; 3100 uintptr_t old; 3101 3102 if (pp->pr_roflags & PR_NOTOUCH) { 3103 return false; 3104 } 3105 3106 pool_redzone_check(pp, v); 3107 3108 old = quar->list[quar->rotor]; 3109 quar->list[quar->rotor] = (uintptr_t)v; 3110 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH; 3111 if (old != 0) { 3112 pool_do_put(pp, (void *)old, pq); 3113 } 3114 3115 return true; 3116 } 3117 #endif 3118 3119 #ifdef POOL_NOCACHE 3120 static bool 3121 pool_cache_put_nocache(pool_cache_t pc, void *p) 3122 { 3123 pool_cache_destruct_object(pc, p); 3124 return true; 3125 } 3126 #endif 3127 3128 #ifdef POOL_REDZONE 3129 #if defined(_LP64) 3130 # define PRIME 0x9e37fffffffc0000UL 3131 #else /* defined(_LP64) */ 3132 # define PRIME 0x9e3779b1 3133 #endif /* defined(_LP64) */ 3134 #define STATIC_BYTE 0xFE 3135 CTASSERT(POOL_REDZONE_SIZE > 1); 3136 3137 #ifndef KASAN 3138 static inline uint8_t 3139 pool_pattern_generate(const void *p) 3140 { 3141 return (uint8_t)(((uintptr_t)p) * PRIME 3142 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 3143 } 3144 #endif 3145 3146 static void 3147 pool_redzone_init(struct pool *pp, size_t requested_size) 3148 { 3149 size_t redzsz; 3150 size_t nsz; 3151 3152 #ifdef KASAN 3153 redzsz = requested_size; 3154 kasan_add_redzone(&redzsz); 3155 redzsz -= requested_size; 3156 #else 3157 redzsz = POOL_REDZONE_SIZE; 3158 #endif 3159 3160 if (pp->pr_roflags & PR_NOTOUCH) { 3161 pp->pr_redzone = false; 3162 return; 3163 } 3164 3165 /* 3166 * We may have extended the requested size earlier; check if 3167 * there's naturally space in the padding for a red zone. 3168 */ 3169 if (pp->pr_size - requested_size >= redzsz) { 3170 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3171 pp->pr_redzone = true; 3172 return; 3173 } 3174 3175 /* 3176 * No space in the natural padding; check if we can extend a 3177 * bit the size of the pool. 3178 * 3179 * Avoid using redzone for allocations half of a page or larger. 3180 * For pagesize items, we'd waste a whole new page (could be 3181 * unmapped?), and for half pagesize items, approximately half 3182 * the space is lost (eg, 4K pages, you get one 2K allocation.) 3183 */ 3184 nsz = roundup(pp->pr_size + redzsz, pp->pr_align); 3185 if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) { 3186 /* Ok, we can */ 3187 pp->pr_size = nsz; 3188 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3189 pp->pr_redzone = true; 3190 } else { 3191 /* No space for a red zone... snif :'( */ 3192 pp->pr_redzone = false; 3193 aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan); 3194 } 3195 } 3196 3197 static void 3198 pool_redzone_fill(struct pool *pp, void *p) 3199 { 3200 if (!pp->pr_redzone) 3201 return; 3202 KASSERT(!pp_has_pser(pp)); 3203 #ifdef KASAN 3204 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone, 3205 KASAN_POOL_REDZONE); 3206 #else 3207 uint8_t *cp, pat; 3208 const uint8_t *ep; 3209 3210 cp = (uint8_t *)p + pp->pr_reqsize; 3211 ep = cp + POOL_REDZONE_SIZE; 3212 3213 /* 3214 * We really don't want the first byte of the red zone to be '\0'; 3215 * an off-by-one in a string may not be properly detected. 3216 */ 3217 pat = pool_pattern_generate(cp); 3218 *cp = (pat == '\0') ? STATIC_BYTE: pat; 3219 cp++; 3220 3221 while (cp < ep) { 3222 *cp = pool_pattern_generate(cp); 3223 cp++; 3224 } 3225 #endif 3226 } 3227 3228 static void 3229 pool_redzone_check(struct pool *pp, void *p) 3230 { 3231 if (!pp->pr_redzone) 3232 return; 3233 KASSERT(!pp_has_pser(pp)); 3234 #ifdef KASAN 3235 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED); 3236 #else 3237 uint8_t *cp, pat, expected; 3238 const uint8_t *ep; 3239 3240 cp = (uint8_t *)p + pp->pr_reqsize; 3241 ep = cp + POOL_REDZONE_SIZE; 3242 3243 pat = pool_pattern_generate(cp); 3244 expected = (pat == '\0') ? STATIC_BYTE: pat; 3245 if (__predict_false(*cp != expected)) { 3246 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3247 pp->pr_wchan, *cp, expected); 3248 } 3249 cp++; 3250 3251 while (cp < ep) { 3252 expected = pool_pattern_generate(cp); 3253 if (__predict_false(*cp != expected)) { 3254 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3255 pp->pr_wchan, *cp, expected); 3256 } 3257 cp++; 3258 } 3259 #endif 3260 } 3261 3262 static void 3263 pool_cache_redzone_check(pool_cache_t pc, void *p) 3264 { 3265 #ifdef KASAN 3266 /* 3267 * If there is a ctor/dtor, or if the cache objects use 3268 * passive serialization, leave the data as valid. 3269 */ 3270 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) || 3271 pc_has_pser(pc))) { 3272 return; 3273 } 3274 #endif 3275 pool_redzone_check(&pc->pc_pool, p); 3276 } 3277 3278 #endif /* POOL_REDZONE */ 3279 3280 #if defined(DDB) 3281 static bool 3282 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3283 { 3284 3285 return (uintptr_t)ph->ph_page <= addr && 3286 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 3287 } 3288 3289 static bool 3290 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 3291 { 3292 3293 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 3294 } 3295 3296 static bool 3297 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 3298 { 3299 int i; 3300 3301 if (pcg == NULL) { 3302 return false; 3303 } 3304 for (i = 0; i < pcg->pcg_avail; i++) { 3305 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 3306 return true; 3307 } 3308 } 3309 return false; 3310 } 3311 3312 static bool 3313 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3314 { 3315 3316 if ((pp->pr_roflags & PR_USEBMAP) != 0) { 3317 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr); 3318 pool_item_bitmap_t *bitmap = 3319 ph->ph_bitmap + (idx / BITMAP_SIZE); 3320 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 3321 3322 return (*bitmap & mask) == 0; 3323 } else { 3324 struct pool_item *pi; 3325 3326 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 3327 if (pool_in_item(pp, pi, addr)) { 3328 return false; 3329 } 3330 } 3331 return true; 3332 } 3333 } 3334 3335 void 3336 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 3337 { 3338 struct pool *pp; 3339 3340 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3341 struct pool_item_header *ph; 3342 uintptr_t item; 3343 bool allocated = true; 3344 bool incache = false; 3345 bool incpucache = false; 3346 char cpucachestr[32]; 3347 3348 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3349 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3350 if (pool_in_page(pp, ph, addr)) { 3351 goto found; 3352 } 3353 } 3354 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3355 if (pool_in_page(pp, ph, addr)) { 3356 allocated = 3357 pool_allocated(pp, ph, addr); 3358 goto found; 3359 } 3360 } 3361 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3362 if (pool_in_page(pp, ph, addr)) { 3363 allocated = false; 3364 goto found; 3365 } 3366 } 3367 continue; 3368 } else { 3369 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3370 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3371 continue; 3372 } 3373 allocated = pool_allocated(pp, ph, addr); 3374 } 3375 found: 3376 if (allocated && pp->pr_cache) { 3377 pool_cache_t pc = pp->pr_cache; 3378 struct pool_cache_group *pcg; 3379 int i; 3380 3381 for (pcg = pc->pc_fullgroups; pcg != NULL; 3382 pcg = pcg->pcg_next) { 3383 if (pool_in_cg(pp, pcg, addr)) { 3384 incache = true; 3385 goto print; 3386 } 3387 } 3388 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 3389 pool_cache_cpu_t *cc; 3390 3391 if ((cc = pc->pc_cpus[i]) == NULL) { 3392 continue; 3393 } 3394 if (pool_in_cg(pp, cc->cc_current, addr) || 3395 pool_in_cg(pp, cc->cc_previous, addr)) { 3396 struct cpu_info *ci = 3397 cpu_lookup(i); 3398 3399 incpucache = true; 3400 snprintf(cpucachestr, 3401 sizeof(cpucachestr), 3402 "cached by CPU %u", 3403 ci->ci_index); 3404 goto print; 3405 } 3406 } 3407 } 3408 print: 3409 item = (uintptr_t)ph->ph_page + ph->ph_off; 3410 item = item + rounddown(addr - item, pp->pr_size); 3411 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3412 (void *)addr, item, (size_t)(addr - item), 3413 pp->pr_wchan, 3414 incpucache ? cpucachestr : 3415 incache ? "cached" : allocated ? "allocated" : "free"); 3416 } 3417 } 3418 #endif /* defined(DDB) */ 3419 3420 static int 3421 pool_sysctl(SYSCTLFN_ARGS) 3422 { 3423 struct pool_sysctl data; 3424 struct pool *pp; 3425 struct pool_cache *pc; 3426 pool_cache_cpu_t *cc; 3427 int error; 3428 size_t i, written; 3429 3430 if (oldp == NULL) { 3431 *oldlenp = 0; 3432 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 3433 *oldlenp += sizeof(data); 3434 return 0; 3435 } 3436 3437 memset(&data, 0, sizeof(data)); 3438 error = 0; 3439 written = 0; 3440 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3441 if (written + sizeof(data) > *oldlenp) 3442 break; 3443 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 3444 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 3445 data.pr_flags = pp->pr_roflags | pp->pr_flags; 3446 #define COPY(field) data.field = pp->field 3447 COPY(pr_size); 3448 3449 COPY(pr_itemsperpage); 3450 COPY(pr_nitems); 3451 COPY(pr_nout); 3452 COPY(pr_hardlimit); 3453 COPY(pr_npages); 3454 COPY(pr_minpages); 3455 COPY(pr_maxpages); 3456 3457 COPY(pr_nget); 3458 COPY(pr_nfail); 3459 COPY(pr_nput); 3460 COPY(pr_npagealloc); 3461 COPY(pr_npagefree); 3462 COPY(pr_hiwat); 3463 COPY(pr_nidle); 3464 #undef COPY 3465 3466 data.pr_cache_nmiss_pcpu = 0; 3467 data.pr_cache_nhit_pcpu = 0; 3468 data.pr_cache_nmiss_global = 0; 3469 data.pr_cache_nempty = 0; 3470 data.pr_cache_ncontended = 0; 3471 data.pr_cache_npartial = 0; 3472 if (pp->pr_cache) { 3473 uint32_t nfull = 0; 3474 pc = pp->pr_cache; 3475 data.pr_cache_meta_size = pc->pc_pcgsize; 3476 for (i = 0; i < pc->pc_ncpu; ++i) { 3477 cc = pc->pc_cpus[i]; 3478 if (cc == NULL) 3479 continue; 3480 data.pr_cache_ncontended += cc->cc_contended; 3481 data.pr_cache_nmiss_pcpu += cc->cc_misses; 3482 data.pr_cache_nhit_pcpu += cc->cc_hits; 3483 data.pr_cache_nmiss_global += cc->cc_pcmisses; 3484 nfull += cc->cc_nfull; /* 32-bit rollover! */ 3485 data.pr_cache_npartial += cc->cc_npart; 3486 } 3487 data.pr_cache_nfull = nfull; 3488 } else { 3489 data.pr_cache_meta_size = 0; 3490 data.pr_cache_nfull = 0; 3491 } 3492 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu - 3493 data.pr_cache_nmiss_global; 3494 3495 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 3496 if (error) 3497 break; 3498 written += sizeof(data); 3499 oldp = (char *)oldp + sizeof(data); 3500 } 3501 3502 *oldlenp = written; 3503 return error; 3504 } 3505 3506 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 3507 { 3508 const struct sysctlnode *rnode = NULL; 3509 3510 sysctl_createv(clog, 0, NULL, &rnode, 3511 CTLFLAG_PERMANENT, 3512 CTLTYPE_STRUCT, "pool", 3513 SYSCTL_DESCR("Get pool statistics"), 3514 pool_sysctl, 0, NULL, 0, 3515 CTL_KERN, CTL_CREATE, CTL_EOL); 3516 } 3517