xref: /netbsd-src/sys/kern/subr_pool.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: subr_pool.c,v 1.280 2021/12/24 00:13:53 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5  *     2020, 2021 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.280 2021/12/24 00:13:53 riastradh Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63 
64 #include <uvm/uvm_extern.h>
65 
66 /*
67  * Pool resource management utility.
68  *
69  * Memory is allocated in pages which are split into pieces according to
70  * the pool item size. Each page is kept on one of three lists in the
71  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72  * for empty, full and partially-full pages respectively. The individual
73  * pool items are on a linked list headed by `ph_itemlist' in each page
74  * header. The memory for building the page list is either taken from
75  * the allocated pages themselves (for small pool items) or taken from
76  * an internal pool of page headers (`phpool').
77  */
78 
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81 
82 /* Private pool for page header structures */
83 #define	PHPOOL_MAX	8
84 static struct pool phpool[PHPOOL_MAX];
85 #define	PHPOOL_FREELIST_NELEM(idx) \
86 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87 
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91 
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95 
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 #  define POOL_REDZONE_SIZE 8
99 # else
100 #  define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz)		__nothing
108 # define pool_redzone_fill(pp, ptr)		__nothing
109 # define pool_redzone_check(pp, ptr)		__nothing
110 # define pool_cache_redzone_check(pc, ptr)	__nothing
111 #endif
112 
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr)		__nothing
120 #define pool_put_kmsan(pp, ptr)		__nothing
121 #define pool_cache_get_kmsan(pc, ptr)	__nothing
122 #define pool_cache_put_kmsan(pc, ptr)	__nothing
123 #endif
124 
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129     struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a)			__nothing
132 #define pool_quarantine_flush(a)		__nothing
133 #define pool_put_quarantine(a, b, c)		false
134 #endif
135 
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b)		false
140 #endif
141 
142 #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
144 
145 #define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0)
146 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
147 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
148 
149 #define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0)
150 
151 #define pool_barrier()	xc_barrier(0)
152 
153 /*
154  * Pool backend allocators.
155  *
156  * Each pool has a backend allocator that handles allocation, deallocation,
157  * and any additional draining that might be needed.
158  *
159  * We provide two standard allocators:
160  *
161  *	pool_allocator_kmem - the default when no allocator is specified
162  *
163  *	pool_allocator_nointr - used for pools that will not be accessed
164  *	in interrupt context.
165  */
166 void *pool_page_alloc(struct pool *, int);
167 void pool_page_free(struct pool *, void *);
168 
169 static void *pool_page_alloc_meta(struct pool *, int);
170 static void pool_page_free_meta(struct pool *, void *);
171 
172 struct pool_allocator pool_allocator_kmem = {
173 	.pa_alloc = pool_page_alloc,
174 	.pa_free = pool_page_free,
175 	.pa_pagesz = 0
176 };
177 
178 struct pool_allocator pool_allocator_nointr = {
179 	.pa_alloc = pool_page_alloc,
180 	.pa_free = pool_page_free,
181 	.pa_pagesz = 0
182 };
183 
184 struct pool_allocator pool_allocator_meta = {
185 	.pa_alloc = pool_page_alloc_meta,
186 	.pa_free = pool_page_free_meta,
187 	.pa_pagesz = 0
188 };
189 
190 #define POOL_ALLOCATOR_BIG_BASE 13
191 static struct pool_allocator pool_allocator_big[] = {
192 	{
193 		.pa_alloc = pool_page_alloc,
194 		.pa_free = pool_page_free,
195 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
196 	},
197 	{
198 		.pa_alloc = pool_page_alloc,
199 		.pa_free = pool_page_free,
200 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
201 	},
202 	{
203 		.pa_alloc = pool_page_alloc,
204 		.pa_free = pool_page_free,
205 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
206 	},
207 	{
208 		.pa_alloc = pool_page_alloc,
209 		.pa_free = pool_page_free,
210 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
211 	},
212 	{
213 		.pa_alloc = pool_page_alloc,
214 		.pa_free = pool_page_free,
215 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
216 	},
217 	{
218 		.pa_alloc = pool_page_alloc,
219 		.pa_free = pool_page_free,
220 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
221 	},
222 	{
223 		.pa_alloc = pool_page_alloc,
224 		.pa_free = pool_page_free,
225 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
226 	},
227 	{
228 		.pa_alloc = pool_page_alloc,
229 		.pa_free = pool_page_free,
230 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
231 	},
232 	{
233 		.pa_alloc = pool_page_alloc,
234 		.pa_free = pool_page_free,
235 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
236 	},
237 	{
238 		.pa_alloc = pool_page_alloc,
239 		.pa_free = pool_page_free,
240 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
241 	},
242 	{
243 		.pa_alloc = pool_page_alloc,
244 		.pa_free = pool_page_free,
245 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
246 	},
247 	{
248 		.pa_alloc = pool_page_alloc,
249 		.pa_free = pool_page_free,
250 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
251 	}
252 };
253 
254 static int pool_bigidx(size_t);
255 
256 /* # of seconds to retain page after last use */
257 int pool_inactive_time = 10;
258 
259 /* Next candidate for drainage (see pool_drain()) */
260 static struct pool *drainpp;
261 
262 /* This lock protects both pool_head and drainpp. */
263 static kmutex_t pool_head_lock;
264 static kcondvar_t pool_busy;
265 
266 /* This lock protects initialization of a potentially shared pool allocator */
267 static kmutex_t pool_allocator_lock;
268 
269 static unsigned int poolid_counter = 0;
270 
271 typedef uint32_t pool_item_bitmap_t;
272 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
273 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
274 #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
275 
276 struct pool_item_header {
277 	/* Page headers */
278 	LIST_ENTRY(pool_item_header)
279 				ph_pagelist;	/* pool page list */
280 	union {
281 		/* !PR_PHINPAGE */
282 		struct {
283 			SPLAY_ENTRY(pool_item_header)
284 				phu_node;	/* off-page page headers */
285 		} phu_offpage;
286 		/* PR_PHINPAGE */
287 		struct {
288 			unsigned int phu_poolid;
289 		} phu_onpage;
290 	} ph_u1;
291 	void *			ph_page;	/* this page's address */
292 	uint32_t		ph_time;	/* last referenced */
293 	uint16_t		ph_nmissing;	/* # of chunks in use */
294 	uint16_t		ph_off;		/* start offset in page */
295 	union {
296 		/* !PR_USEBMAP */
297 		struct {
298 			LIST_HEAD(, pool_item)
299 				phu_itemlist;	/* chunk list for this page */
300 		} phu_normal;
301 		/* PR_USEBMAP */
302 		struct {
303 			pool_item_bitmap_t phu_bitmap[1];
304 		} phu_notouch;
305 	} ph_u2;
306 };
307 #define ph_node		ph_u1.phu_offpage.phu_node
308 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
309 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
310 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
311 
312 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
313 
314 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
315     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
316 
317 #if defined(DIAGNOSTIC) && !defined(KASAN)
318 #define POOL_CHECK_MAGIC
319 #endif
320 
321 struct pool_item {
322 #ifdef POOL_CHECK_MAGIC
323 	u_int pi_magic;
324 #endif
325 #define	PI_MAGIC 0xdeaddeadU
326 	/* Other entries use only this list entry */
327 	LIST_ENTRY(pool_item)	pi_list;
328 };
329 
330 #define	POOL_NEEDS_CATCHUP(pp)						\
331 	((pp)->pr_nitems < (pp)->pr_minitems ||				\
332 	 (pp)->pr_npages < (pp)->pr_minpages)
333 #define	POOL_OBJ_TO_PAGE(pp, v)						\
334 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
335 
336 /*
337  * Pool cache management.
338  *
339  * Pool caches provide a way for constructed objects to be cached by the
340  * pool subsystem.  This can lead to performance improvements by avoiding
341  * needless object construction/destruction; it is deferred until absolutely
342  * necessary.
343  *
344  * Caches are grouped into cache groups.  Each cache group references up
345  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
346  * object from the pool, it calls the object's constructor and places it
347  * into a cache group.  When a cache group frees an object back to the
348  * pool, it first calls the object's destructor.  This allows the object
349  * to persist in constructed form while freed to the cache.
350  *
351  * The pool references each cache, so that when a pool is drained by the
352  * pagedaemon, it can drain each individual cache as well.  Each time a
353  * cache is drained, the most idle cache group is freed to the pool in
354  * its entirety.
355  *
356  * Pool caches are layed on top of pools.  By layering them, we can avoid
357  * the complexity of cache management for pools which would not benefit
358  * from it.
359  */
360 
361 static struct pool pcg_normal_pool;
362 static struct pool pcg_large_pool;
363 static struct pool cache_pool;
364 static struct pool cache_cpu_pool;
365 
366 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
367 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
368 
369 /* List of all caches. */
370 TAILQ_HEAD(,pool_cache) pool_cache_head =
371     TAILQ_HEAD_INITIALIZER(pool_cache_head);
372 
373 int pool_cache_disable;		/* global disable for caching */
374 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
375 
376 static bool	pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
377 				    void *);
378 static bool	pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
379 				    void **, paddr_t *, int);
380 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
381 static int	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
382 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
383 static void	pool_cache_transfer(pool_cache_t);
384 static int	pool_pcg_get(pcg_t *volatile *, pcg_t **);
385 static int	pool_pcg_put(pcg_t *volatile *, pcg_t *);
386 static pcg_t *	pool_pcg_trunc(pcg_t *volatile *);
387 
388 static int	pool_catchup(struct pool *);
389 static void	pool_prime_page(struct pool *, void *,
390 		    struct pool_item_header *);
391 static void	pool_update_curpage(struct pool *);
392 
393 static int	pool_grow(struct pool *, int);
394 static void	*pool_allocator_alloc(struct pool *, int);
395 static void	pool_allocator_free(struct pool *, void *);
396 
397 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
398 	void (*)(const char *, ...) __printflike(1, 2));
399 static void pool_print1(struct pool *, const char *,
400 	void (*)(const char *, ...) __printflike(1, 2));
401 
402 static int pool_chk_page(struct pool *, const char *,
403 			 struct pool_item_header *);
404 
405 /* -------------------------------------------------------------------------- */
406 
407 static inline unsigned int
408 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
409     const void *v)
410 {
411 	const char *cp = v;
412 	unsigned int idx;
413 
414 	KASSERT(pp->pr_roflags & PR_USEBMAP);
415 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
416 
417 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
418 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
419 		    pp->pr_itemsperpage);
420 	}
421 
422 	return idx;
423 }
424 
425 static inline void
426 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
427     void *obj)
428 {
429 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
430 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
431 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
432 
433 	if (__predict_false((*bitmap & mask) != 0)) {
434 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
435 	}
436 
437 	*bitmap |= mask;
438 }
439 
440 static inline void *
441 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
442 {
443 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
444 	unsigned int idx;
445 	int i;
446 
447 	for (i = 0; ; i++) {
448 		int bit;
449 
450 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
451 		bit = ffs32(bitmap[i]);
452 		if (bit) {
453 			pool_item_bitmap_t mask;
454 
455 			bit--;
456 			idx = (i * BITMAP_SIZE) + bit;
457 			mask = 1U << bit;
458 			KASSERT((bitmap[i] & mask) != 0);
459 			bitmap[i] &= ~mask;
460 			break;
461 		}
462 	}
463 	KASSERT(idx < pp->pr_itemsperpage);
464 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
465 }
466 
467 static inline void
468 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
469 {
470 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
471 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
472 	int i;
473 
474 	for (i = 0; i < n; i++) {
475 		bitmap[i] = (pool_item_bitmap_t)-1;
476 	}
477 }
478 
479 /* -------------------------------------------------------------------------- */
480 
481 static inline void
482 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
483     void *obj)
484 {
485 	struct pool_item *pi = obj;
486 
487 	KASSERT(!pp_has_pser(pp));
488 
489 #ifdef POOL_CHECK_MAGIC
490 	pi->pi_magic = PI_MAGIC;
491 #endif
492 
493 	if (pp->pr_redzone) {
494 		/*
495 		 * Mark the pool_item as valid. The rest is already
496 		 * invalid.
497 		 */
498 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
499 	}
500 
501 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
502 }
503 
504 static inline void *
505 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
506 {
507 	struct pool_item *pi;
508 	void *v;
509 
510 	v = pi = LIST_FIRST(&ph->ph_itemlist);
511 	if (__predict_false(v == NULL)) {
512 		mutex_exit(&pp->pr_lock);
513 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
514 	}
515 	KASSERTMSG((pp->pr_nitems > 0),
516 	    "%s: [%s] nitems %u inconsistent on itemlist",
517 	    __func__, pp->pr_wchan, pp->pr_nitems);
518 #ifdef POOL_CHECK_MAGIC
519 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
520 	    "%s: [%s] free list modified: "
521 	    "magic=%x; page %p; item addr %p", __func__,
522 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
523 #endif
524 
525 	/*
526 	 * Remove from item list.
527 	 */
528 	LIST_REMOVE(pi, pi_list);
529 
530 	return v;
531 }
532 
533 /* -------------------------------------------------------------------------- */
534 
535 static inline void
536 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
537     void *object)
538 {
539 	if (__predict_false((void *)ph->ph_page != page)) {
540 		panic("%s: [%s] item %p not part of pool", __func__,
541 		    pp->pr_wchan, object);
542 	}
543 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
544 		panic("%s: [%s] item %p below item space", __func__,
545 		    pp->pr_wchan, object);
546 	}
547 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
548 		panic("%s: [%s] item %p poolid %u != %u", __func__,
549 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
550 	}
551 }
552 
553 static inline void
554 pc_phinpage_check(pool_cache_t pc, void *object)
555 {
556 	struct pool_item_header *ph;
557 	struct pool *pp;
558 	void *page;
559 
560 	pp = &pc->pc_pool;
561 	page = POOL_OBJ_TO_PAGE(pp, object);
562 	ph = (struct pool_item_header *)page;
563 
564 	pr_phinpage_check(pp, ph, page, object);
565 }
566 
567 /* -------------------------------------------------------------------------- */
568 
569 static inline int
570 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
571 {
572 
573 	/*
574 	 * We consider pool_item_header with smaller ph_page bigger. This
575 	 * unnatural ordering is for the benefit of pr_find_pagehead.
576 	 */
577 	if (a->ph_page < b->ph_page)
578 		return 1;
579 	else if (a->ph_page > b->ph_page)
580 		return -1;
581 	else
582 		return 0;
583 }
584 
585 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
586 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
587 
588 static inline struct pool_item_header *
589 pr_find_pagehead_noalign(struct pool *pp, void *v)
590 {
591 	struct pool_item_header *ph, tmp;
592 
593 	tmp.ph_page = (void *)(uintptr_t)v;
594 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
595 	if (ph == NULL) {
596 		ph = SPLAY_ROOT(&pp->pr_phtree);
597 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
598 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
599 		}
600 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
601 	}
602 
603 	return ph;
604 }
605 
606 /*
607  * Return the pool page header based on item address.
608  */
609 static inline struct pool_item_header *
610 pr_find_pagehead(struct pool *pp, void *v)
611 {
612 	struct pool_item_header *ph, tmp;
613 
614 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
615 		ph = pr_find_pagehead_noalign(pp, v);
616 	} else {
617 		void *page = POOL_OBJ_TO_PAGE(pp, v);
618 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
619 			ph = (struct pool_item_header *)page;
620 			pr_phinpage_check(pp, ph, page, v);
621 		} else {
622 			tmp.ph_page = page;
623 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
624 		}
625 	}
626 
627 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
628 	    ((char *)ph->ph_page <= (char *)v &&
629 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
630 	return ph;
631 }
632 
633 static void
634 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
635 {
636 	struct pool_item_header *ph;
637 
638 	while ((ph = LIST_FIRST(pq)) != NULL) {
639 		LIST_REMOVE(ph, ph_pagelist);
640 		pool_allocator_free(pp, ph->ph_page);
641 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
642 			pool_put(pp->pr_phpool, ph);
643 	}
644 }
645 
646 /*
647  * Remove a page from the pool.
648  */
649 static inline void
650 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
651      struct pool_pagelist *pq)
652 {
653 
654 	KASSERT(mutex_owned(&pp->pr_lock));
655 
656 	/*
657 	 * If the page was idle, decrement the idle page count.
658 	 */
659 	if (ph->ph_nmissing == 0) {
660 		KASSERT(pp->pr_nidle != 0);
661 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
662 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
663 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
664 		pp->pr_nidle--;
665 	}
666 
667 	pp->pr_nitems -= pp->pr_itemsperpage;
668 
669 	/*
670 	 * Unlink the page from the pool and queue it for release.
671 	 */
672 	LIST_REMOVE(ph, ph_pagelist);
673 	if (pp->pr_roflags & PR_PHINPAGE) {
674 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
675 			panic("%s: [%s] ph %p poolid %u != %u",
676 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
677 			    pp->pr_poolid);
678 		}
679 	} else {
680 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
681 	}
682 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
683 
684 	pp->pr_npages--;
685 	pp->pr_npagefree++;
686 
687 	pool_update_curpage(pp);
688 }
689 
690 /*
691  * Initialize all the pools listed in the "pools" link set.
692  */
693 void
694 pool_subsystem_init(void)
695 {
696 	size_t size;
697 	int idx;
698 
699 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
700 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
701 	cv_init(&pool_busy, "poolbusy");
702 
703 	/*
704 	 * Initialize private page header pool and cache magazine pool if we
705 	 * haven't done so yet.
706 	 */
707 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
708 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
709 		int nelem;
710 		size_t sz;
711 
712 		nelem = PHPOOL_FREELIST_NELEM(idx);
713 		KASSERT(nelem != 0);
714 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
715 		    "phpool-%d", nelem);
716 		sz = offsetof(struct pool_item_header,
717 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
718 		pool_init(&phpool[idx], sz, 0, 0, 0,
719 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
720 	}
721 
722 	size = sizeof(pcg_t) +
723 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
724 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
725 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
726 
727 	size = sizeof(pcg_t) +
728 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
729 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
730 	    "pcglarge", &pool_allocator_meta, IPL_VM);
731 
732 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
733 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
734 
735 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
736 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
737 }
738 
739 static inline bool
740 pool_init_is_phinpage(const struct pool *pp)
741 {
742 	size_t pagesize;
743 
744 	if (pp->pr_roflags & PR_PHINPAGE) {
745 		return true;
746 	}
747 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
748 		return false;
749 	}
750 
751 	pagesize = pp->pr_alloc->pa_pagesz;
752 
753 	/*
754 	 * Threshold: the item size is below 1/16 of a page size, and below
755 	 * 8 times the page header size. The latter ensures we go off-page
756 	 * if the page header would make us waste a rather big item.
757 	 */
758 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
759 		return true;
760 	}
761 
762 	/* Put the header into the page if it doesn't waste any items. */
763 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
764 		return true;
765 	}
766 
767 	return false;
768 }
769 
770 static inline bool
771 pool_init_is_usebmap(const struct pool *pp)
772 {
773 	size_t bmapsize;
774 
775 	if (pp->pr_roflags & PR_NOTOUCH) {
776 		return true;
777 	}
778 
779 	/*
780 	 * If we're off-page, go with a bitmap.
781 	 */
782 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
783 		return true;
784 	}
785 
786 	/*
787 	 * If we're on-page, and the page header can already contain a bitmap
788 	 * big enough to cover all the items of the page, go with a bitmap.
789 	 */
790 	bmapsize = roundup(PHSIZE, pp->pr_align) -
791 	    offsetof(struct pool_item_header, ph_bitmap[0]);
792 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
793 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
794 		return true;
795 	}
796 
797 	return false;
798 }
799 
800 /*
801  * Initialize the given pool resource structure.
802  *
803  * We export this routine to allow other kernel parts to declare
804  * static pools that must be initialized before kmem(9) is available.
805  */
806 void
807 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
808     const char *wchan, struct pool_allocator *palloc, int ipl)
809 {
810 	struct pool *pp1;
811 	size_t prsize;
812 	int itemspace, slack;
813 
814 	/* XXX ioff will be removed. */
815 	KASSERT(ioff == 0);
816 
817 #ifdef DEBUG
818 	if (__predict_true(!cold))
819 		mutex_enter(&pool_head_lock);
820 	/*
821 	 * Check that the pool hasn't already been initialised and
822 	 * added to the list of all pools.
823 	 */
824 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
825 		if (pp == pp1)
826 			panic("%s: [%s] already initialised", __func__,
827 			    wchan);
828 	}
829 	if (__predict_true(!cold))
830 		mutex_exit(&pool_head_lock);
831 #endif
832 
833 	if (palloc == NULL)
834 		palloc = &pool_allocator_kmem;
835 
836 	if (!cold)
837 		mutex_enter(&pool_allocator_lock);
838 	if (palloc->pa_refcnt++ == 0) {
839 		if (palloc->pa_pagesz == 0)
840 			palloc->pa_pagesz = PAGE_SIZE;
841 
842 		TAILQ_INIT(&palloc->pa_list);
843 
844 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
845 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
846 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
847 	}
848 	if (!cold)
849 		mutex_exit(&pool_allocator_lock);
850 
851 	/*
852 	 * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain
853 	 * valid until the the backing page is returned to the system.
854 	 */
855 	if (flags & PR_PSERIALIZE) {
856 		flags |= PR_NOTOUCH;
857 	}
858 
859 	if (align == 0)
860 		align = ALIGN(1);
861 
862 	prsize = size;
863 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
864 		prsize = sizeof(struct pool_item);
865 
866 	prsize = roundup(prsize, align);
867 	KASSERTMSG((prsize <= palloc->pa_pagesz),
868 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
869 	    __func__, wchan, prsize, palloc->pa_pagesz);
870 
871 	/*
872 	 * Initialize the pool structure.
873 	 */
874 	LIST_INIT(&pp->pr_emptypages);
875 	LIST_INIT(&pp->pr_fullpages);
876 	LIST_INIT(&pp->pr_partpages);
877 	pp->pr_cache = NULL;
878 	pp->pr_curpage = NULL;
879 	pp->pr_npages = 0;
880 	pp->pr_minitems = 0;
881 	pp->pr_minpages = 0;
882 	pp->pr_maxpages = UINT_MAX;
883 	pp->pr_roflags = flags;
884 	pp->pr_flags = 0;
885 	pp->pr_size = prsize;
886 	pp->pr_reqsize = size;
887 	pp->pr_align = align;
888 	pp->pr_wchan = wchan;
889 	pp->pr_alloc = palloc;
890 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
891 	pp->pr_nitems = 0;
892 	pp->pr_nout = 0;
893 	pp->pr_hardlimit = UINT_MAX;
894 	pp->pr_hardlimit_warning = NULL;
895 	pp->pr_hardlimit_ratecap.tv_sec = 0;
896 	pp->pr_hardlimit_ratecap.tv_usec = 0;
897 	pp->pr_hardlimit_warning_last.tv_sec = 0;
898 	pp->pr_hardlimit_warning_last.tv_usec = 0;
899 	pp->pr_drain_hook = NULL;
900 	pp->pr_drain_hook_arg = NULL;
901 	pp->pr_freecheck = NULL;
902 	pp->pr_redzone = false;
903 	pool_redzone_init(pp, size);
904 	pool_quarantine_init(pp);
905 
906 	/*
907 	 * Decide whether to put the page header off-page to avoid wasting too
908 	 * large a part of the page or too big an item. Off-page page headers
909 	 * go on a hash table, so we can match a returned item with its header
910 	 * based on the page address.
911 	 */
912 	if (pool_init_is_phinpage(pp)) {
913 		/* Use the beginning of the page for the page header */
914 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
915 		pp->pr_itemoffset = roundup(PHSIZE, align);
916 		pp->pr_roflags |= PR_PHINPAGE;
917 	} else {
918 		/* The page header will be taken from our page header pool */
919 		itemspace = palloc->pa_pagesz;
920 		pp->pr_itemoffset = 0;
921 		SPLAY_INIT(&pp->pr_phtree);
922 	}
923 
924 	pp->pr_itemsperpage = itemspace / pp->pr_size;
925 	KASSERT(pp->pr_itemsperpage != 0);
926 
927 	/*
928 	 * Decide whether to use a bitmap or a linked list to manage freed
929 	 * items.
930 	 */
931 	if (pool_init_is_usebmap(pp)) {
932 		pp->pr_roflags |= PR_USEBMAP;
933 	}
934 
935 	/*
936 	 * If we're off-page, then we're using a bitmap; choose the appropriate
937 	 * pool to allocate page headers, whose size varies depending on the
938 	 * bitmap. If we're on-page, nothing to do.
939 	 */
940 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
941 		int idx;
942 
943 		KASSERT(pp->pr_roflags & PR_USEBMAP);
944 
945 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
946 		    idx++) {
947 			/* nothing */
948 		}
949 		if (idx >= PHPOOL_MAX) {
950 			/*
951 			 * if you see this panic, consider to tweak
952 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
953 			 */
954 			panic("%s: [%s] too large itemsperpage(%d) for "
955 			    "PR_USEBMAP", __func__,
956 			    pp->pr_wchan, pp->pr_itemsperpage);
957 		}
958 		pp->pr_phpool = &phpool[idx];
959 	} else {
960 		pp->pr_phpool = NULL;
961 	}
962 
963 	/*
964 	 * Use the slack between the chunks and the page header
965 	 * for "cache coloring".
966 	 */
967 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
968 	pp->pr_maxcolor = rounddown(slack, align);
969 	pp->pr_curcolor = 0;
970 
971 	pp->pr_nget = 0;
972 	pp->pr_nfail = 0;
973 	pp->pr_nput = 0;
974 	pp->pr_npagealloc = 0;
975 	pp->pr_npagefree = 0;
976 	pp->pr_hiwat = 0;
977 	pp->pr_nidle = 0;
978 	pp->pr_refcnt = 0;
979 
980 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
981 	cv_init(&pp->pr_cv, wchan);
982 	pp->pr_ipl = ipl;
983 
984 	/* Insert into the list of all pools. */
985 	if (!cold)
986 		mutex_enter(&pool_head_lock);
987 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
988 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
989 			break;
990 	}
991 	if (pp1 == NULL)
992 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
993 	else
994 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
995 	if (!cold)
996 		mutex_exit(&pool_head_lock);
997 
998 	/* Insert this into the list of pools using this allocator. */
999 	if (!cold)
1000 		mutex_enter(&palloc->pa_lock);
1001 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
1002 	if (!cold)
1003 		mutex_exit(&palloc->pa_lock);
1004 }
1005 
1006 /*
1007  * De-commision a pool resource.
1008  */
1009 void
1010 pool_destroy(struct pool *pp)
1011 {
1012 	struct pool_pagelist pq;
1013 	struct pool_item_header *ph;
1014 
1015 	pool_quarantine_flush(pp);
1016 
1017 	/* Remove from global pool list */
1018 	mutex_enter(&pool_head_lock);
1019 	while (pp->pr_refcnt != 0)
1020 		cv_wait(&pool_busy, &pool_head_lock);
1021 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1022 	if (drainpp == pp)
1023 		drainpp = NULL;
1024 	mutex_exit(&pool_head_lock);
1025 
1026 	/* Remove this pool from its allocator's list of pools. */
1027 	mutex_enter(&pp->pr_alloc->pa_lock);
1028 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1029 	mutex_exit(&pp->pr_alloc->pa_lock);
1030 
1031 	mutex_enter(&pool_allocator_lock);
1032 	if (--pp->pr_alloc->pa_refcnt == 0)
1033 		mutex_destroy(&pp->pr_alloc->pa_lock);
1034 	mutex_exit(&pool_allocator_lock);
1035 
1036 	mutex_enter(&pp->pr_lock);
1037 
1038 	KASSERT(pp->pr_cache == NULL);
1039 	KASSERTMSG((pp->pr_nout == 0),
1040 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1041 	    pp->pr_nout);
1042 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1043 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
1044 
1045 	/* Remove all pages */
1046 	LIST_INIT(&pq);
1047 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1048 		pr_rmpage(pp, ph, &pq);
1049 
1050 	mutex_exit(&pp->pr_lock);
1051 
1052 	pr_pagelist_free(pp, &pq);
1053 	cv_destroy(&pp->pr_cv);
1054 	mutex_destroy(&pp->pr_lock);
1055 }
1056 
1057 void
1058 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1059 {
1060 
1061 	/* XXX no locking -- must be used just after pool_init() */
1062 	KASSERTMSG((pp->pr_drain_hook == NULL),
1063 	    "%s: [%s] already set", __func__, pp->pr_wchan);
1064 	pp->pr_drain_hook = fn;
1065 	pp->pr_drain_hook_arg = arg;
1066 }
1067 
1068 static struct pool_item_header *
1069 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1070 {
1071 	struct pool_item_header *ph;
1072 
1073 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1074 		ph = storage;
1075 	else
1076 		ph = pool_get(pp->pr_phpool, flags);
1077 
1078 	return ph;
1079 }
1080 
1081 /*
1082  * Grab an item from the pool.
1083  */
1084 void *
1085 pool_get(struct pool *pp, int flags)
1086 {
1087 	struct pool_item_header *ph;
1088 	void *v;
1089 
1090 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1091 	KASSERTMSG((pp->pr_itemsperpage != 0),
1092 	    "%s: [%s] pr_itemsperpage is zero, "
1093 	    "pool not initialized?", __func__, pp->pr_wchan);
1094 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1095 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1096 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
1097 	    __func__, pp->pr_wchan);
1098 	if (flags & PR_WAITOK) {
1099 		ASSERT_SLEEPABLE();
1100 	}
1101 
1102 	if (flags & PR_NOWAIT) {
1103 		if (fault_inject())
1104 			return NULL;
1105 	}
1106 
1107 	mutex_enter(&pp->pr_lock);
1108  startover:
1109 	/*
1110 	 * Check to see if we've reached the hard limit.  If we have,
1111 	 * and we can wait, then wait until an item has been returned to
1112 	 * the pool.
1113 	 */
1114 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1115 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1116 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1117 		if (pp->pr_drain_hook != NULL) {
1118 			/*
1119 			 * Since the drain hook is going to free things
1120 			 * back to the pool, unlock, call the hook, re-lock,
1121 			 * and check the hardlimit condition again.
1122 			 */
1123 			mutex_exit(&pp->pr_lock);
1124 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1125 			mutex_enter(&pp->pr_lock);
1126 			if (pp->pr_nout < pp->pr_hardlimit)
1127 				goto startover;
1128 		}
1129 
1130 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1131 			/*
1132 			 * XXX: A warning isn't logged in this case.  Should
1133 			 * it be?
1134 			 */
1135 			pp->pr_flags |= PR_WANTED;
1136 			do {
1137 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1138 			} while (pp->pr_flags & PR_WANTED);
1139 			goto startover;
1140 		}
1141 
1142 		/*
1143 		 * Log a message that the hard limit has been hit.
1144 		 */
1145 		if (pp->pr_hardlimit_warning != NULL &&
1146 		    ratecheck(&pp->pr_hardlimit_warning_last,
1147 			      &pp->pr_hardlimit_ratecap))
1148 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1149 
1150 		pp->pr_nfail++;
1151 
1152 		mutex_exit(&pp->pr_lock);
1153 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1154 		return NULL;
1155 	}
1156 
1157 	/*
1158 	 * The convention we use is that if `curpage' is not NULL, then
1159 	 * it points at a non-empty bucket. In particular, `curpage'
1160 	 * never points at a page header which has PR_PHINPAGE set and
1161 	 * has no items in its bucket.
1162 	 */
1163 	if ((ph = pp->pr_curpage) == NULL) {
1164 		int error;
1165 
1166 		KASSERTMSG((pp->pr_nitems == 0),
1167 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
1168 		    __func__, pp->pr_wchan, pp->pr_nitems);
1169 
1170 		/*
1171 		 * Call the back-end page allocator for more memory.
1172 		 * Release the pool lock, as the back-end page allocator
1173 		 * may block.
1174 		 */
1175 		error = pool_grow(pp, flags);
1176 		if (error != 0) {
1177 			/*
1178 			 * pool_grow aborts when another thread
1179 			 * is allocating a new page. Retry if it
1180 			 * waited for it.
1181 			 */
1182 			if (error == ERESTART)
1183 				goto startover;
1184 
1185 			/*
1186 			 * We were unable to allocate a page or item
1187 			 * header, but we released the lock during
1188 			 * allocation, so perhaps items were freed
1189 			 * back to the pool.  Check for this case.
1190 			 */
1191 			if (pp->pr_curpage != NULL)
1192 				goto startover;
1193 
1194 			pp->pr_nfail++;
1195 			mutex_exit(&pp->pr_lock);
1196 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1197 			return NULL;
1198 		}
1199 
1200 		/* Start the allocation process over. */
1201 		goto startover;
1202 	}
1203 	if (pp->pr_roflags & PR_USEBMAP) {
1204 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1205 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1206 		v = pr_item_bitmap_get(pp, ph);
1207 	} else {
1208 		v = pr_item_linkedlist_get(pp, ph);
1209 	}
1210 	pp->pr_nitems--;
1211 	pp->pr_nout++;
1212 	if (ph->ph_nmissing == 0) {
1213 		KASSERT(pp->pr_nidle > 0);
1214 		pp->pr_nidle--;
1215 
1216 		/*
1217 		 * This page was previously empty.  Move it to the list of
1218 		 * partially-full pages.  This page is already curpage.
1219 		 */
1220 		LIST_REMOVE(ph, ph_pagelist);
1221 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1222 	}
1223 	ph->ph_nmissing++;
1224 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1225 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1226 			LIST_EMPTY(&ph->ph_itemlist)),
1227 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
1228 			pp->pr_wchan, ph->ph_nmissing);
1229 		/*
1230 		 * This page is now full.  Move it to the full list
1231 		 * and select a new current page.
1232 		 */
1233 		LIST_REMOVE(ph, ph_pagelist);
1234 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1235 		pool_update_curpage(pp);
1236 	}
1237 
1238 	pp->pr_nget++;
1239 
1240 	/*
1241 	 * If we have a low water mark and we are now below that low
1242 	 * water mark, add more items to the pool.
1243 	 */
1244 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1245 		/*
1246 		 * XXX: Should we log a warning?  Should we set up a timeout
1247 		 * to try again in a second or so?  The latter could break
1248 		 * a caller's assumptions about interrupt protection, etc.
1249 		 */
1250 	}
1251 
1252 	mutex_exit(&pp->pr_lock);
1253 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1254 	FREECHECK_OUT(&pp->pr_freecheck, v);
1255 	pool_redzone_fill(pp, v);
1256 	pool_get_kmsan(pp, v);
1257 	if (flags & PR_ZERO)
1258 		memset(v, 0, pp->pr_reqsize);
1259 	return v;
1260 }
1261 
1262 /*
1263  * Internal version of pool_put().  Pool is already locked/entered.
1264  */
1265 static void
1266 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1267 {
1268 	struct pool_item_header *ph;
1269 
1270 	KASSERT(mutex_owned(&pp->pr_lock));
1271 	pool_redzone_check(pp, v);
1272 	pool_put_kmsan(pp, v);
1273 	FREECHECK_IN(&pp->pr_freecheck, v);
1274 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1275 
1276 	KASSERTMSG((pp->pr_nout > 0),
1277 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1278 
1279 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1280 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
1281 	}
1282 
1283 	/*
1284 	 * Return to item list.
1285 	 */
1286 	if (pp->pr_roflags & PR_USEBMAP) {
1287 		pr_item_bitmap_put(pp, ph, v);
1288 	} else {
1289 		pr_item_linkedlist_put(pp, ph, v);
1290 	}
1291 	KDASSERT(ph->ph_nmissing != 0);
1292 	ph->ph_nmissing--;
1293 	pp->pr_nput++;
1294 	pp->pr_nitems++;
1295 	pp->pr_nout--;
1296 
1297 	/* Cancel "pool empty" condition if it exists */
1298 	if (pp->pr_curpage == NULL)
1299 		pp->pr_curpage = ph;
1300 
1301 	if (pp->pr_flags & PR_WANTED) {
1302 		pp->pr_flags &= ~PR_WANTED;
1303 		cv_broadcast(&pp->pr_cv);
1304 	}
1305 
1306 	/*
1307 	 * If this page is now empty, do one of two things:
1308 	 *
1309 	 *	(1) If we have more pages than the page high water mark,
1310 	 *	    free the page back to the system.  ONLY CONSIDER
1311 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1312 	 *	    CLAIM.
1313 	 *
1314 	 *	(2) Otherwise, move the page to the empty page list.
1315 	 *
1316 	 * Either way, select a new current page (so we use a partially-full
1317 	 * page if one is available).
1318 	 */
1319 	if (ph->ph_nmissing == 0) {
1320 		pp->pr_nidle++;
1321 		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1322 		    pp->pr_npages > pp->pr_minpages &&
1323 		    pp->pr_npages > pp->pr_maxpages) {
1324 			pr_rmpage(pp, ph, pq);
1325 		} else {
1326 			LIST_REMOVE(ph, ph_pagelist);
1327 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1328 
1329 			/*
1330 			 * Update the timestamp on the page.  A page must
1331 			 * be idle for some period of time before it can
1332 			 * be reclaimed by the pagedaemon.  This minimizes
1333 			 * ping-pong'ing for memory.
1334 			 *
1335 			 * note for 64-bit time_t: truncating to 32-bit is not
1336 			 * a problem for our usage.
1337 			 */
1338 			ph->ph_time = time_uptime;
1339 		}
1340 		pool_update_curpage(pp);
1341 	}
1342 
1343 	/*
1344 	 * If the page was previously completely full, move it to the
1345 	 * partially-full list and make it the current page.  The next
1346 	 * allocation will get the item from this page, instead of
1347 	 * further fragmenting the pool.
1348 	 */
1349 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1350 		LIST_REMOVE(ph, ph_pagelist);
1351 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1352 		pp->pr_curpage = ph;
1353 	}
1354 }
1355 
1356 void
1357 pool_put(struct pool *pp, void *v)
1358 {
1359 	struct pool_pagelist pq;
1360 
1361 	LIST_INIT(&pq);
1362 
1363 	mutex_enter(&pp->pr_lock);
1364 	if (!pool_put_quarantine(pp, v, &pq)) {
1365 		pool_do_put(pp, v, &pq);
1366 	}
1367 	mutex_exit(&pp->pr_lock);
1368 
1369 	pr_pagelist_free(pp, &pq);
1370 }
1371 
1372 /*
1373  * pool_grow: grow a pool by a page.
1374  *
1375  * => called with pool locked.
1376  * => unlock and relock the pool.
1377  * => return with pool locked.
1378  */
1379 
1380 static int
1381 pool_grow(struct pool *pp, int flags)
1382 {
1383 	struct pool_item_header *ph;
1384 	char *storage;
1385 
1386 	/*
1387 	 * If there's a pool_grow in progress, wait for it to complete
1388 	 * and try again from the top.
1389 	 */
1390 	if (pp->pr_flags & PR_GROWING) {
1391 		if (flags & PR_WAITOK) {
1392 			do {
1393 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1394 			} while (pp->pr_flags & PR_GROWING);
1395 			return ERESTART;
1396 		} else {
1397 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1398 				/*
1399 				 * This needs an unlock/relock dance so
1400 				 * that the other caller has a chance to
1401 				 * run and actually do the thing.  Note
1402 				 * that this is effectively a busy-wait.
1403 				 */
1404 				mutex_exit(&pp->pr_lock);
1405 				mutex_enter(&pp->pr_lock);
1406 				return ERESTART;
1407 			}
1408 			return EWOULDBLOCK;
1409 		}
1410 	}
1411 	pp->pr_flags |= PR_GROWING;
1412 	if (flags & PR_WAITOK)
1413 		mutex_exit(&pp->pr_lock);
1414 	else
1415 		pp->pr_flags |= PR_GROWINGNOWAIT;
1416 
1417 	storage = pool_allocator_alloc(pp, flags);
1418 	if (__predict_false(storage == NULL))
1419 		goto out;
1420 
1421 	ph = pool_alloc_item_header(pp, storage, flags);
1422 	if (__predict_false(ph == NULL)) {
1423 		pool_allocator_free(pp, storage);
1424 		goto out;
1425 	}
1426 
1427 	if (flags & PR_WAITOK)
1428 		mutex_enter(&pp->pr_lock);
1429 	pool_prime_page(pp, storage, ph);
1430 	pp->pr_npagealloc++;
1431 	KASSERT(pp->pr_flags & PR_GROWING);
1432 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1433 	/*
1434 	 * If anyone was waiting for pool_grow, notify them that we
1435 	 * may have just done it.
1436 	 */
1437 	cv_broadcast(&pp->pr_cv);
1438 	return 0;
1439 out:
1440 	if (flags & PR_WAITOK)
1441 		mutex_enter(&pp->pr_lock);
1442 	KASSERT(pp->pr_flags & PR_GROWING);
1443 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1444 	return ENOMEM;
1445 }
1446 
1447 void
1448 pool_prime(struct pool *pp, int n)
1449 {
1450 
1451 	mutex_enter(&pp->pr_lock);
1452 	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1453 	if (pp->pr_maxpages <= pp->pr_minpages)
1454 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1455 	while (pp->pr_npages < pp->pr_minpages)
1456 		(void) pool_grow(pp, PR_WAITOK);
1457 	mutex_exit(&pp->pr_lock);
1458 }
1459 
1460 /*
1461  * Add a page worth of items to the pool.
1462  *
1463  * Note, we must be called with the pool descriptor LOCKED.
1464  */
1465 static void
1466 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1467 {
1468 	const unsigned int align = pp->pr_align;
1469 	struct pool_item *pi;
1470 	void *cp = storage;
1471 	int n;
1472 
1473 	KASSERT(mutex_owned(&pp->pr_lock));
1474 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1475 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1476 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1477 
1478 	/*
1479 	 * Insert page header.
1480 	 */
1481 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1482 	LIST_INIT(&ph->ph_itemlist);
1483 	ph->ph_page = storage;
1484 	ph->ph_nmissing = 0;
1485 	ph->ph_time = time_uptime;
1486 	if (pp->pr_roflags & PR_PHINPAGE)
1487 		ph->ph_poolid = pp->pr_poolid;
1488 	else
1489 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1490 
1491 	pp->pr_nidle++;
1492 
1493 	/*
1494 	 * The item space starts after the on-page header, if any.
1495 	 */
1496 	ph->ph_off = pp->pr_itemoffset;
1497 
1498 	/*
1499 	 * Color this page.
1500 	 */
1501 	ph->ph_off += pp->pr_curcolor;
1502 	cp = (char *)cp + ph->ph_off;
1503 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1504 		pp->pr_curcolor = 0;
1505 
1506 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1507 
1508 	/*
1509 	 * Insert remaining chunks on the bucket list.
1510 	 */
1511 	n = pp->pr_itemsperpage;
1512 	pp->pr_nitems += n;
1513 
1514 	if (pp->pr_roflags & PR_USEBMAP) {
1515 		pr_item_bitmap_init(pp, ph);
1516 	} else {
1517 		while (n--) {
1518 			pi = (struct pool_item *)cp;
1519 
1520 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1521 
1522 			/* Insert on page list */
1523 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1524 #ifdef POOL_CHECK_MAGIC
1525 			pi->pi_magic = PI_MAGIC;
1526 #endif
1527 			cp = (char *)cp + pp->pr_size;
1528 
1529 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1530 		}
1531 	}
1532 
1533 	/*
1534 	 * If the pool was depleted, point at the new page.
1535 	 */
1536 	if (pp->pr_curpage == NULL)
1537 		pp->pr_curpage = ph;
1538 
1539 	if (++pp->pr_npages > pp->pr_hiwat)
1540 		pp->pr_hiwat = pp->pr_npages;
1541 }
1542 
1543 /*
1544  * Used by pool_get() when nitems drops below the low water mark.  This
1545  * is used to catch up pr_nitems with the low water mark.
1546  *
1547  * Note 1, we never wait for memory here, we let the caller decide what to do.
1548  *
1549  * Note 2, we must be called with the pool already locked, and we return
1550  * with it locked.
1551  */
1552 static int
1553 pool_catchup(struct pool *pp)
1554 {
1555 	int error = 0;
1556 
1557 	while (POOL_NEEDS_CATCHUP(pp)) {
1558 		error = pool_grow(pp, PR_NOWAIT);
1559 		if (error) {
1560 			if (error == ERESTART)
1561 				continue;
1562 			break;
1563 		}
1564 	}
1565 	return error;
1566 }
1567 
1568 static void
1569 pool_update_curpage(struct pool *pp)
1570 {
1571 
1572 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1573 	if (pp->pr_curpage == NULL) {
1574 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1575 	}
1576 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1577 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1578 }
1579 
1580 void
1581 pool_setlowat(struct pool *pp, int n)
1582 {
1583 
1584 	mutex_enter(&pp->pr_lock);
1585 	pp->pr_minitems = n;
1586 
1587 	/* Make sure we're caught up with the newly-set low water mark. */
1588 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1589 		/*
1590 		 * XXX: Should we log a warning?  Should we set up a timeout
1591 		 * to try again in a second or so?  The latter could break
1592 		 * a caller's assumptions about interrupt protection, etc.
1593 		 */
1594 	}
1595 
1596 	mutex_exit(&pp->pr_lock);
1597 }
1598 
1599 void
1600 pool_sethiwat(struct pool *pp, int n)
1601 {
1602 
1603 	mutex_enter(&pp->pr_lock);
1604 
1605 	pp->pr_maxitems = n;
1606 
1607 	mutex_exit(&pp->pr_lock);
1608 }
1609 
1610 void
1611 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1612 {
1613 
1614 	mutex_enter(&pp->pr_lock);
1615 
1616 	pp->pr_hardlimit = n;
1617 	pp->pr_hardlimit_warning = warnmess;
1618 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1619 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1620 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1621 
1622 	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1623 
1624 	mutex_exit(&pp->pr_lock);
1625 }
1626 
1627 unsigned int
1628 pool_nget(struct pool *pp)
1629 {
1630 
1631 	return pp->pr_nget;
1632 }
1633 
1634 unsigned int
1635 pool_nput(struct pool *pp)
1636 {
1637 
1638 	return pp->pr_nput;
1639 }
1640 
1641 /*
1642  * Release all complete pages that have not been used recently.
1643  *
1644  * Must not be called from interrupt context.
1645  */
1646 int
1647 pool_reclaim(struct pool *pp)
1648 {
1649 	struct pool_item_header *ph, *phnext;
1650 	struct pool_pagelist pq;
1651 	uint32_t curtime;
1652 	bool klock;
1653 	int rv;
1654 
1655 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1656 
1657 	if (pp->pr_drain_hook != NULL) {
1658 		/*
1659 		 * The drain hook must be called with the pool unlocked.
1660 		 */
1661 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1662 	}
1663 
1664 	/*
1665 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1666 	 * to block.
1667 	 */
1668 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1669 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1670 		KERNEL_LOCK(1, NULL);
1671 		klock = true;
1672 	} else
1673 		klock = false;
1674 
1675 	/* Reclaim items from the pool's cache (if any). */
1676 	if (pp->pr_cache != NULL)
1677 		pool_cache_invalidate(pp->pr_cache);
1678 
1679 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1680 		if (klock) {
1681 			KERNEL_UNLOCK_ONE(NULL);
1682 		}
1683 		return 0;
1684 	}
1685 
1686 	LIST_INIT(&pq);
1687 
1688 	curtime = time_uptime;
1689 
1690 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1691 		phnext = LIST_NEXT(ph, ph_pagelist);
1692 
1693 		/* Check our minimum page claim */
1694 		if (pp->pr_npages <= pp->pr_minpages)
1695 			break;
1696 
1697 		KASSERT(ph->ph_nmissing == 0);
1698 		if (curtime - ph->ph_time < pool_inactive_time)
1699 			continue;
1700 
1701 		/*
1702 		 * If freeing this page would put us below the minimum free items
1703 		 * or the minimum pages, stop now.
1704 		 */
1705 		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1706 		    pp->pr_npages - 1 < pp->pr_minpages)
1707 			break;
1708 
1709 		pr_rmpage(pp, ph, &pq);
1710 	}
1711 
1712 	mutex_exit(&pp->pr_lock);
1713 
1714 	if (LIST_EMPTY(&pq))
1715 		rv = 0;
1716 	else {
1717 		pr_pagelist_free(pp, &pq);
1718 		rv = 1;
1719 	}
1720 
1721 	if (klock) {
1722 		KERNEL_UNLOCK_ONE(NULL);
1723 	}
1724 
1725 	return rv;
1726 }
1727 
1728 /*
1729  * Drain pools, one at a time. The drained pool is returned within ppp.
1730  *
1731  * Note, must never be called from interrupt context.
1732  */
1733 bool
1734 pool_drain(struct pool **ppp)
1735 {
1736 	bool reclaimed;
1737 	struct pool *pp;
1738 
1739 	KASSERT(!TAILQ_EMPTY(&pool_head));
1740 
1741 	pp = NULL;
1742 
1743 	/* Find next pool to drain, and add a reference. */
1744 	mutex_enter(&pool_head_lock);
1745 	do {
1746 		if (drainpp == NULL) {
1747 			drainpp = TAILQ_FIRST(&pool_head);
1748 		}
1749 		if (drainpp != NULL) {
1750 			pp = drainpp;
1751 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1752 		}
1753 		/*
1754 		 * Skip completely idle pools.  We depend on at least
1755 		 * one pool in the system being active.
1756 		 */
1757 	} while (pp == NULL || pp->pr_npages == 0);
1758 	pp->pr_refcnt++;
1759 	mutex_exit(&pool_head_lock);
1760 
1761 	/* Drain the cache (if any) and pool.. */
1762 	reclaimed = pool_reclaim(pp);
1763 
1764 	/* Finally, unlock the pool. */
1765 	mutex_enter(&pool_head_lock);
1766 	pp->pr_refcnt--;
1767 	cv_broadcast(&pool_busy);
1768 	mutex_exit(&pool_head_lock);
1769 
1770 	if (ppp != NULL)
1771 		*ppp = pp;
1772 
1773 	return reclaimed;
1774 }
1775 
1776 /*
1777  * Calculate the total number of pages consumed by pools.
1778  */
1779 int
1780 pool_totalpages(void)
1781 {
1782 
1783 	mutex_enter(&pool_head_lock);
1784 	int pages = pool_totalpages_locked();
1785 	mutex_exit(&pool_head_lock);
1786 
1787 	return pages;
1788 }
1789 
1790 int
1791 pool_totalpages_locked(void)
1792 {
1793 	struct pool *pp;
1794 	uint64_t total = 0;
1795 
1796 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1797 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1798 
1799 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1800 			bytes -= (pp->pr_nout * pp->pr_size);
1801 		total += bytes;
1802 	}
1803 
1804 	return atop(total);
1805 }
1806 
1807 /*
1808  * Diagnostic helpers.
1809  */
1810 
1811 void
1812 pool_printall(const char *modif, void (*pr)(const char *, ...))
1813 {
1814 	struct pool *pp;
1815 
1816 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1817 		pool_printit(pp, modif, pr);
1818 	}
1819 }
1820 
1821 void
1822 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1823 {
1824 
1825 	if (pp == NULL) {
1826 		(*pr)("Must specify a pool to print.\n");
1827 		return;
1828 	}
1829 
1830 	pool_print1(pp, modif, pr);
1831 }
1832 
1833 static void
1834 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1835     void (*pr)(const char *, ...))
1836 {
1837 	struct pool_item_header *ph;
1838 
1839 	LIST_FOREACH(ph, pl, ph_pagelist) {
1840 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1841 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1842 #ifdef POOL_CHECK_MAGIC
1843 		struct pool_item *pi;
1844 		if (!(pp->pr_roflags & PR_USEBMAP)) {
1845 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1846 				if (pi->pi_magic != PI_MAGIC) {
1847 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1848 					    pi, pi->pi_magic);
1849 				}
1850 			}
1851 		}
1852 #endif
1853 	}
1854 }
1855 
1856 static void
1857 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1858 {
1859 	struct pool_item_header *ph;
1860 	pool_cache_t pc;
1861 	pcg_t *pcg;
1862 	pool_cache_cpu_t *cc;
1863 	uint64_t cpuhit, cpumiss, pchit, pcmiss;
1864 	uint32_t nfull;
1865 	int i;
1866 	bool print_log = false, print_pagelist = false, print_cache = false;
1867 	bool print_short = false, skip_empty = false;
1868 	char c;
1869 
1870 	while ((c = *modif++) != '\0') {
1871 		if (c == 'l')
1872 			print_log = true;
1873 		if (c == 'p')
1874 			print_pagelist = true;
1875 		if (c == 'c')
1876 			print_cache = true;
1877 		if (c == 's')
1878 			print_short = true;
1879 		if (c == 'S')
1880 			skip_empty = true;
1881 	}
1882 
1883 	if (skip_empty && pp->pr_nget == 0)
1884 		return;
1885 
1886 	if ((pc = pp->pr_cache) != NULL) {
1887 		(*pr)("POOLCACHE");
1888 	} else {
1889 		(*pr)("POOL");
1890 	}
1891 
1892 	/* Single line output. */
1893 	if (print_short) {
1894 		(*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n",
1895 		    pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1896 		    pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1897 		    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle);
1898 
1899 		return;
1900 	}
1901 
1902 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1903 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1904 	    pp->pr_roflags);
1905 	(*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1906 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1907 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1908 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1909 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1910 
1911 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1912 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1913 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1914 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1915 
1916 	if (!print_pagelist)
1917 		goto skip_pagelist;
1918 
1919 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1920 		(*pr)("\n\tempty page list:\n");
1921 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1922 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1923 		(*pr)("\n\tfull page list:\n");
1924 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1925 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1926 		(*pr)("\n\tpartial-page list:\n");
1927 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1928 
1929 	if (pp->pr_curpage == NULL)
1930 		(*pr)("\tno current page\n");
1931 	else
1932 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1933 
1934  skip_pagelist:
1935 	if (print_log)
1936 		goto skip_log;
1937 
1938 	(*pr)("\n");
1939 
1940  skip_log:
1941 
1942 #define PR_GROUPLIST(pcg)						\
1943 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1944 	for (i = 0; i < pcg->pcg_size; i++) {				\
1945 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1946 		    POOL_PADDR_INVALID) {				\
1947 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1948 			    pcg->pcg_objects[i].pcgo_va,		\
1949 			    (unsigned long long)			\
1950 			    pcg->pcg_objects[i].pcgo_pa);		\
1951 		} else {						\
1952 			(*pr)("\t\t\t%p\n",				\
1953 			    pcg->pcg_objects[i].pcgo_va);		\
1954 		}							\
1955 	}
1956 
1957 	if (pc != NULL) {
1958 		cpuhit = 0;
1959 		cpumiss = 0;
1960 		pcmiss = 0;
1961 		nfull = 0;
1962 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1963 			if ((cc = pc->pc_cpus[i]) == NULL)
1964 				continue;
1965 			cpuhit += cc->cc_hits;
1966 			cpumiss += cc->cc_misses;
1967 			pcmiss += cc->cc_pcmisses;
1968 			nfull += cc->cc_nfull;
1969 		}
1970 		pchit = cpumiss - pcmiss;
1971 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1972 		(*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1973 		(*pr)("\tcache layer full groups %u\n", nfull);
1974 		if (print_cache) {
1975 			(*pr)("\tfull cache groups:\n");
1976 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1977 			    pcg = pcg->pcg_next) {
1978 				PR_GROUPLIST(pcg);
1979 			}
1980 		}
1981 	}
1982 #undef PR_GROUPLIST
1983 }
1984 
1985 static int
1986 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1987 {
1988 	struct pool_item *pi;
1989 	void *page;
1990 	int n;
1991 
1992 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1993 		page = POOL_OBJ_TO_PAGE(pp, ph);
1994 		if (page != ph->ph_page &&
1995 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1996 			if (label != NULL)
1997 				printf("%s: ", label);
1998 			printf("pool(%p:%s): page inconsistency: page %p;"
1999 			       " at page head addr %p (p %p)\n", pp,
2000 				pp->pr_wchan, ph->ph_page,
2001 				ph, page);
2002 			return 1;
2003 		}
2004 	}
2005 
2006 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
2007 		return 0;
2008 
2009 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
2010 	     pi != NULL;
2011 	     pi = LIST_NEXT(pi,pi_list), n++) {
2012 
2013 #ifdef POOL_CHECK_MAGIC
2014 		if (pi->pi_magic != PI_MAGIC) {
2015 			if (label != NULL)
2016 				printf("%s: ", label);
2017 			printf("pool(%s): free list modified: magic=%x;"
2018 			       " page %p; item ordinal %d; addr %p\n",
2019 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
2020 				n, pi);
2021 			panic("pool");
2022 		}
2023 #endif
2024 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
2025 			continue;
2026 		}
2027 		page = POOL_OBJ_TO_PAGE(pp, pi);
2028 		if (page == ph->ph_page)
2029 			continue;
2030 
2031 		if (label != NULL)
2032 			printf("%s: ", label);
2033 		printf("pool(%p:%s): page inconsistency: page %p;"
2034 		       " item ordinal %d; addr %p (p %p)\n", pp,
2035 			pp->pr_wchan, ph->ph_page,
2036 			n, pi, page);
2037 		return 1;
2038 	}
2039 	return 0;
2040 }
2041 
2042 
2043 int
2044 pool_chk(struct pool *pp, const char *label)
2045 {
2046 	struct pool_item_header *ph;
2047 	int r = 0;
2048 
2049 	mutex_enter(&pp->pr_lock);
2050 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2051 		r = pool_chk_page(pp, label, ph);
2052 		if (r) {
2053 			goto out;
2054 		}
2055 	}
2056 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2057 		r = pool_chk_page(pp, label, ph);
2058 		if (r) {
2059 			goto out;
2060 		}
2061 	}
2062 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2063 		r = pool_chk_page(pp, label, ph);
2064 		if (r) {
2065 			goto out;
2066 		}
2067 	}
2068 
2069 out:
2070 	mutex_exit(&pp->pr_lock);
2071 	return r;
2072 }
2073 
2074 /*
2075  * pool_cache_init:
2076  *
2077  *	Initialize a pool cache.
2078  */
2079 pool_cache_t
2080 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2081     const char *wchan, struct pool_allocator *palloc, int ipl,
2082     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2083 {
2084 	pool_cache_t pc;
2085 
2086 	pc = pool_get(&cache_pool, PR_WAITOK);
2087 	if (pc == NULL)
2088 		return NULL;
2089 
2090 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2091 	   palloc, ipl, ctor, dtor, arg);
2092 
2093 	return pc;
2094 }
2095 
2096 /*
2097  * pool_cache_bootstrap:
2098  *
2099  *	Kernel-private version of pool_cache_init().  The caller
2100  *	provides initial storage.
2101  */
2102 void
2103 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2104     u_int align_offset, u_int flags, const char *wchan,
2105     struct pool_allocator *palloc, int ipl,
2106     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2107     void *arg)
2108 {
2109 	CPU_INFO_ITERATOR cii;
2110 	pool_cache_t pc1;
2111 	struct cpu_info *ci;
2112 	struct pool *pp;
2113 	unsigned int ppflags;
2114 
2115 	pp = &pc->pc_pool;
2116 	if (palloc == NULL && ipl == IPL_NONE) {
2117 		if (size > PAGE_SIZE) {
2118 			int bigidx = pool_bigidx(size);
2119 
2120 			palloc = &pool_allocator_big[bigidx];
2121 			flags |= PR_NOALIGN;
2122 		} else
2123 			palloc = &pool_allocator_nointr;
2124 	}
2125 
2126 	ppflags = flags;
2127 	if (ctor == NULL) {
2128 		ctor = NO_CTOR;
2129 	}
2130 	if (dtor == NULL) {
2131 		dtor = NO_DTOR;
2132 	} else {
2133 		/*
2134 		 * If we have a destructor, then the pool layer does not
2135 		 * need to worry about PR_PSERIALIZE.
2136 		 */
2137 		ppflags &= ~PR_PSERIALIZE;
2138 	}
2139 
2140 	pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl);
2141 
2142 	pc->pc_fullgroups = NULL;
2143 	pc->pc_partgroups = NULL;
2144 	pc->pc_ctor = ctor;
2145 	pc->pc_dtor = dtor;
2146 	pc->pc_arg  = arg;
2147 	pc->pc_refcnt = 0;
2148 	pc->pc_roflags = flags;
2149 	pc->pc_freecheck = NULL;
2150 
2151 	if ((flags & PR_LARGECACHE) != 0) {
2152 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2153 		pc->pc_pcgpool = &pcg_large_pool;
2154 		pc->pc_pcgcache = &pcg_large_cache;
2155 	} else {
2156 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2157 		pc->pc_pcgpool = &pcg_normal_pool;
2158 		pc->pc_pcgcache = &pcg_normal_cache;
2159 	}
2160 
2161 	/* Allocate per-CPU caches. */
2162 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2163 	pc->pc_ncpu = 0;
2164 	if (ncpu < 2) {
2165 		/* XXX For sparc: boot CPU is not attached yet. */
2166 		pool_cache_cpu_init1(curcpu(), pc);
2167 	} else {
2168 		for (CPU_INFO_FOREACH(cii, ci)) {
2169 			pool_cache_cpu_init1(ci, pc);
2170 		}
2171 	}
2172 
2173 	/* Add to list of all pools. */
2174 	if (__predict_true(!cold))
2175 		mutex_enter(&pool_head_lock);
2176 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2177 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2178 			break;
2179 	}
2180 	if (pc1 == NULL)
2181 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2182 	else
2183 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2184 	if (__predict_true(!cold))
2185 		mutex_exit(&pool_head_lock);
2186 
2187 	membar_sync();
2188 	pp->pr_cache = pc;
2189 }
2190 
2191 /*
2192  * pool_cache_destroy:
2193  *
2194  *	Destroy a pool cache.
2195  */
2196 void
2197 pool_cache_destroy(pool_cache_t pc)
2198 {
2199 
2200 	pool_cache_bootstrap_destroy(pc);
2201 	pool_put(&cache_pool, pc);
2202 }
2203 
2204 /*
2205  * pool_cache_bootstrap_destroy:
2206  *
2207  *	Destroy a pool cache.
2208  */
2209 void
2210 pool_cache_bootstrap_destroy(pool_cache_t pc)
2211 {
2212 	struct pool *pp = &pc->pc_pool;
2213 	u_int i;
2214 
2215 	/* Remove it from the global list. */
2216 	mutex_enter(&pool_head_lock);
2217 	while (pc->pc_refcnt != 0)
2218 		cv_wait(&pool_busy, &pool_head_lock);
2219 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2220 	mutex_exit(&pool_head_lock);
2221 
2222 	/* First, invalidate the entire cache. */
2223 	pool_cache_invalidate(pc);
2224 
2225 	/* Disassociate it from the pool. */
2226 	mutex_enter(&pp->pr_lock);
2227 	pp->pr_cache = NULL;
2228 	mutex_exit(&pp->pr_lock);
2229 
2230 	/* Destroy per-CPU data */
2231 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2232 		pool_cache_invalidate_cpu(pc, i);
2233 
2234 	/* Finally, destroy it. */
2235 	pool_destroy(pp);
2236 }
2237 
2238 /*
2239  * pool_cache_cpu_init1:
2240  *
2241  *	Called for each pool_cache whenever a new CPU is attached.
2242  */
2243 static void
2244 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2245 {
2246 	pool_cache_cpu_t *cc;
2247 	int index;
2248 
2249 	index = ci->ci_index;
2250 
2251 	KASSERT(index < __arraycount(pc->pc_cpus));
2252 
2253 	if ((cc = pc->pc_cpus[index]) != NULL) {
2254 		return;
2255 	}
2256 
2257 	/*
2258 	 * The first CPU is 'free'.  This needs to be the case for
2259 	 * bootstrap - we may not be able to allocate yet.
2260 	 */
2261 	if (pc->pc_ncpu == 0) {
2262 		cc = &pc->pc_cpu0;
2263 		pc->pc_ncpu = 1;
2264 	} else {
2265 		pc->pc_ncpu++;
2266 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2267 	}
2268 
2269 	cc->cc_current = __UNCONST(&pcg_dummy);
2270 	cc->cc_previous = __UNCONST(&pcg_dummy);
2271 	cc->cc_pcgcache = pc->pc_pcgcache;
2272 	cc->cc_hits = 0;
2273 	cc->cc_misses = 0;
2274 	cc->cc_pcmisses = 0;
2275 	cc->cc_contended = 0;
2276 	cc->cc_nfull = 0;
2277 	cc->cc_npart = 0;
2278 
2279 	pc->pc_cpus[index] = cc;
2280 }
2281 
2282 /*
2283  * pool_cache_cpu_init:
2284  *
2285  *	Called whenever a new CPU is attached.
2286  */
2287 void
2288 pool_cache_cpu_init(struct cpu_info *ci)
2289 {
2290 	pool_cache_t pc;
2291 
2292 	mutex_enter(&pool_head_lock);
2293 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2294 		pc->pc_refcnt++;
2295 		mutex_exit(&pool_head_lock);
2296 
2297 		pool_cache_cpu_init1(ci, pc);
2298 
2299 		mutex_enter(&pool_head_lock);
2300 		pc->pc_refcnt--;
2301 		cv_broadcast(&pool_busy);
2302 	}
2303 	mutex_exit(&pool_head_lock);
2304 }
2305 
2306 /*
2307  * pool_cache_reclaim:
2308  *
2309  *	Reclaim memory from a pool cache.
2310  */
2311 bool
2312 pool_cache_reclaim(pool_cache_t pc)
2313 {
2314 
2315 	return pool_reclaim(&pc->pc_pool);
2316 }
2317 
2318 static inline void
2319 pool_cache_pre_destruct(pool_cache_t pc)
2320 {
2321 	/*
2322 	 * Perform a passive serialization barrier before destructing
2323 	 * a batch of one or more objects.
2324 	 */
2325 	if (__predict_false(pc_has_pser(pc))) {
2326 		pool_barrier();
2327 	}
2328 }
2329 
2330 static void
2331 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2332 {
2333 	(*pc->pc_dtor)(pc->pc_arg, object);
2334 	pool_put(&pc->pc_pool, object);
2335 }
2336 
2337 /*
2338  * pool_cache_destruct_object:
2339  *
2340  *	Force destruction of an object and its release back into
2341  *	the pool.
2342  */
2343 void
2344 pool_cache_destruct_object(pool_cache_t pc, void *object)
2345 {
2346 
2347 	FREECHECK_IN(&pc->pc_freecheck, object);
2348 
2349 	pool_cache_pre_destruct(pc);
2350 	pool_cache_destruct_object1(pc, object);
2351 }
2352 
2353 /*
2354  * pool_cache_invalidate_groups:
2355  *
2356  *	Invalidate a chain of groups and destruct all objects.  Return the
2357  *	number of groups that were invalidated.
2358  */
2359 static int
2360 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2361 {
2362 	void *object;
2363 	pcg_t *next;
2364 	int i, n;
2365 
2366 	if (pcg == NULL) {
2367 		return 0;
2368 	}
2369 
2370 	pool_cache_pre_destruct(pc);
2371 
2372 	for (n = 0; pcg != NULL; pcg = next, n++) {
2373 		next = pcg->pcg_next;
2374 
2375 		for (i = 0; i < pcg->pcg_avail; i++) {
2376 			object = pcg->pcg_objects[i].pcgo_va;
2377 			pool_cache_destruct_object1(pc, object);
2378 		}
2379 
2380 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2381 			pool_put(&pcg_large_pool, pcg);
2382 		} else {
2383 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2384 			pool_put(&pcg_normal_pool, pcg);
2385 		}
2386 	}
2387 	return n;
2388 }
2389 
2390 /*
2391  * pool_cache_invalidate:
2392  *
2393  *	Invalidate a pool cache (destruct and release all of the
2394  *	cached objects).  Does not reclaim objects from the pool.
2395  *
2396  *	Note: For pool caches that provide constructed objects, there
2397  *	is an assumption that another level of synchronization is occurring
2398  *	between the input to the constructor and the cache invalidation.
2399  *
2400  *	Invalidation is a costly process and should not be called from
2401  *	interrupt context.
2402  */
2403 void
2404 pool_cache_invalidate(pool_cache_t pc)
2405 {
2406 	uint64_t where;
2407 	pcg_t *pcg;
2408 	int n, s;
2409 
2410 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2411 
2412 	if (ncpu < 2 || !mp_online) {
2413 		/*
2414 		 * We might be called early enough in the boot process
2415 		 * for the CPU data structures to not be fully initialized.
2416 		 * In this case, transfer the content of the local CPU's
2417 		 * cache back into global cache as only this CPU is currently
2418 		 * running.
2419 		 */
2420 		pool_cache_transfer(pc);
2421 	} else {
2422 		/*
2423 		 * Signal all CPUs that they must transfer their local
2424 		 * cache back to the global pool then wait for the xcall to
2425 		 * complete.
2426 		 */
2427 		where = xc_broadcast(0,
2428 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2429 		xc_wait(where);
2430 	}
2431 
2432 	/* Now dequeue and invalidate everything. */
2433 	pcg = pool_pcg_trunc(&pcg_normal_cache);
2434 	(void)pool_cache_invalidate_groups(pc, pcg);
2435 
2436 	pcg = pool_pcg_trunc(&pcg_large_cache);
2437 	(void)pool_cache_invalidate_groups(pc, pcg);
2438 
2439 	pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2440 	n = pool_cache_invalidate_groups(pc, pcg);
2441 	s = splvm();
2442 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2443 	splx(s);
2444 
2445 	pcg = pool_pcg_trunc(&pc->pc_partgroups);
2446 	n = pool_cache_invalidate_groups(pc, pcg);
2447 	s = splvm();
2448 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2449 	splx(s);
2450 }
2451 
2452 /*
2453  * pool_cache_invalidate_cpu:
2454  *
2455  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2456  *	identified by its associated index.
2457  *	It is caller's responsibility to ensure that no operation is
2458  *	taking place on this pool cache while doing this invalidation.
2459  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2460  *	pool cached objects from a CPU different from the one currently running
2461  *	may result in an undefined behaviour.
2462  */
2463 static void
2464 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2465 {
2466 	pool_cache_cpu_t *cc;
2467 	pcg_t *pcg;
2468 
2469 	if ((cc = pc->pc_cpus[index]) == NULL)
2470 		return;
2471 
2472 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2473 		pcg->pcg_next = NULL;
2474 		pool_cache_invalidate_groups(pc, pcg);
2475 	}
2476 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2477 		pcg->pcg_next = NULL;
2478 		pool_cache_invalidate_groups(pc, pcg);
2479 	}
2480 	if (cc != &pc->pc_cpu0)
2481 		pool_put(&cache_cpu_pool, cc);
2482 
2483 }
2484 
2485 void
2486 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2487 {
2488 
2489 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2490 }
2491 
2492 void
2493 pool_cache_setlowat(pool_cache_t pc, int n)
2494 {
2495 
2496 	pool_setlowat(&pc->pc_pool, n);
2497 }
2498 
2499 void
2500 pool_cache_sethiwat(pool_cache_t pc, int n)
2501 {
2502 
2503 	pool_sethiwat(&pc->pc_pool, n);
2504 }
2505 
2506 void
2507 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2508 {
2509 
2510 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2511 }
2512 
2513 void
2514 pool_cache_prime(pool_cache_t pc, int n)
2515 {
2516 
2517 	pool_prime(&pc->pc_pool, n);
2518 }
2519 
2520 unsigned int
2521 pool_cache_nget(pool_cache_t pc)
2522 {
2523 
2524 	return pool_nget(&pc->pc_pool);
2525 }
2526 
2527 unsigned int
2528 pool_cache_nput(pool_cache_t pc)
2529 {
2530 
2531 	return pool_nput(&pc->pc_pool);
2532 }
2533 
2534 /*
2535  * pool_pcg_get:
2536  *
2537  *	Get a cache group from the specified list.  Return true if
2538  *	contention was encountered.  Must be called at IPL_VM because
2539  *	of spin wait vs. kernel_lock.
2540  */
2541 static int
2542 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2543 {
2544 	int count = SPINLOCK_BACKOFF_MIN;
2545 	pcg_t *o, *n;
2546 
2547 	for (o = atomic_load_relaxed(head);; o = n) {
2548 		if (__predict_false(o == &pcg_dummy)) {
2549 			/* Wait for concurrent get to complete. */
2550 			SPINLOCK_BACKOFF(count);
2551 			n = atomic_load_relaxed(head);
2552 			continue;
2553 		}
2554 		if (__predict_false(o == NULL)) {
2555 			break;
2556 		}
2557 		/* Lock out concurrent get/put. */
2558 		n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2559 		if (o == n) {
2560 			/* Fetch pointer to next item and then unlock. */
2561 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2562 			membar_datadep_consumer(); /* alpha */
2563 #endif
2564 			n = atomic_load_relaxed(&o->pcg_next);
2565 			atomic_store_release(head, n);
2566 			break;
2567 		}
2568 	}
2569 	*pcgp = o;
2570 	return count != SPINLOCK_BACKOFF_MIN;
2571 }
2572 
2573 /*
2574  * pool_pcg_trunc:
2575  *
2576  *	Chop out entire list of pool cache groups.
2577  */
2578 static pcg_t *
2579 pool_pcg_trunc(pcg_t *volatile *head)
2580 {
2581 	int count = SPINLOCK_BACKOFF_MIN, s;
2582 	pcg_t *o, *n;
2583 
2584 	s = splvm();
2585 	for (o = atomic_load_relaxed(head);; o = n) {
2586 		if (__predict_false(o == &pcg_dummy)) {
2587 			/* Wait for concurrent get to complete. */
2588 			SPINLOCK_BACKOFF(count);
2589 			n = atomic_load_relaxed(head);
2590 			continue;
2591 		}
2592 		n = atomic_cas_ptr(head, o, NULL);
2593 		if (o == n) {
2594 			splx(s);
2595 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2596 			membar_datadep_consumer(); /* alpha */
2597 #endif
2598 			return o;
2599 		}
2600 	}
2601 }
2602 
2603 /*
2604  * pool_pcg_put:
2605  *
2606  *	Put a pool cache group to the specified list.  Return true if
2607  *	contention was encountered.  Must be called at IPL_VM because of
2608  *	spin wait vs. kernel_lock.
2609  */
2610 static int
2611 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2612 {
2613 	int count = SPINLOCK_BACKOFF_MIN;
2614 	pcg_t *o, *n;
2615 
2616 	for (o = atomic_load_relaxed(head);; o = n) {
2617 		if (__predict_false(o == &pcg_dummy)) {
2618 			/* Wait for concurrent get to complete. */
2619 			SPINLOCK_BACKOFF(count);
2620 			n = atomic_load_relaxed(head);
2621 			continue;
2622 		}
2623 		pcg->pcg_next = o;
2624 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2625 		membar_exit();
2626 #endif
2627 		n = atomic_cas_ptr(head, o, pcg);
2628 		if (o == n) {
2629 			return count != SPINLOCK_BACKOFF_MIN;
2630 		}
2631 	}
2632 }
2633 
2634 static bool __noinline
2635 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2636     void **objectp, paddr_t *pap, int flags)
2637 {
2638 	pcg_t *pcg, *cur;
2639 	void *object;
2640 
2641 	KASSERT(cc->cc_current->pcg_avail == 0);
2642 	KASSERT(cc->cc_previous->pcg_avail == 0);
2643 
2644 	cc->cc_misses++;
2645 
2646 	/*
2647 	 * If there's a full group, release our empty group back to the
2648 	 * cache.  Install the full group as cc_current and return.
2649 	 */
2650 	cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2651 	if (__predict_true(pcg != NULL)) {
2652 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2653 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2654 			KASSERT(cur->pcg_avail == 0);
2655 			(void)pool_pcg_put(cc->cc_pcgcache, cur);
2656 		}
2657 		cc->cc_nfull--;
2658 		cc->cc_current = pcg;
2659 		return true;
2660 	}
2661 
2662 	/*
2663 	 * Nothing available locally or in cache.  Take the slow
2664 	 * path: fetch a new object from the pool and construct
2665 	 * it.
2666 	 */
2667 	cc->cc_pcmisses++;
2668 	splx(s);
2669 
2670 	object = pool_get(&pc->pc_pool, flags);
2671 	*objectp = object;
2672 	if (__predict_false(object == NULL)) {
2673 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2674 		return false;
2675 	}
2676 
2677 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2678 		pool_put(&pc->pc_pool, object);
2679 		*objectp = NULL;
2680 		return false;
2681 	}
2682 
2683 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2684 
2685 	if (pap != NULL) {
2686 #ifdef POOL_VTOPHYS
2687 		*pap = POOL_VTOPHYS(object);
2688 #else
2689 		*pap = POOL_PADDR_INVALID;
2690 #endif
2691 	}
2692 
2693 	FREECHECK_OUT(&pc->pc_freecheck, object);
2694 	return false;
2695 }
2696 
2697 /*
2698  * pool_cache_get{,_paddr}:
2699  *
2700  *	Get an object from a pool cache (optionally returning
2701  *	the physical address of the object).
2702  */
2703 void *
2704 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2705 {
2706 	pool_cache_cpu_t *cc;
2707 	pcg_t *pcg;
2708 	void *object;
2709 	int s;
2710 
2711 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2712 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2713 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2714 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
2715 	    __func__, pc->pc_pool.pr_wchan);
2716 
2717 	if (flags & PR_WAITOK) {
2718 		ASSERT_SLEEPABLE();
2719 	}
2720 
2721 	if (flags & PR_NOWAIT) {
2722 		if (fault_inject())
2723 			return NULL;
2724 	}
2725 
2726 	/* Lock out interrupts and disable preemption. */
2727 	s = splvm();
2728 	while (/* CONSTCOND */ true) {
2729 		/* Try and allocate an object from the current group. */
2730 		cc = pc->pc_cpus[curcpu()->ci_index];
2731 	 	pcg = cc->cc_current;
2732 		if (__predict_true(pcg->pcg_avail > 0)) {
2733 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2734 			if (__predict_false(pap != NULL))
2735 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2736 #if defined(DIAGNOSTIC)
2737 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2738 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2739 			KASSERT(object != NULL);
2740 #endif
2741 			cc->cc_hits++;
2742 			splx(s);
2743 			FREECHECK_OUT(&pc->pc_freecheck, object);
2744 			pool_redzone_fill(&pc->pc_pool, object);
2745 			pool_cache_get_kmsan(pc, object);
2746 			return object;
2747 		}
2748 
2749 		/*
2750 		 * That failed.  If the previous group isn't empty, swap
2751 		 * it with the current group and allocate from there.
2752 		 */
2753 		pcg = cc->cc_previous;
2754 		if (__predict_true(pcg->pcg_avail > 0)) {
2755 			cc->cc_previous = cc->cc_current;
2756 			cc->cc_current = pcg;
2757 			continue;
2758 		}
2759 
2760 		/*
2761 		 * Can't allocate from either group: try the slow path.
2762 		 * If get_slow() allocated an object for us, or if
2763 		 * no more objects are available, it will return false.
2764 		 * Otherwise, we need to retry.
2765 		 */
2766 		if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2767 			if (object != NULL) {
2768 				kmsan_orig(object, pc->pc_pool.pr_size,
2769 				    KMSAN_TYPE_POOL, __RET_ADDR);
2770 			}
2771 			break;
2772 		}
2773 	}
2774 
2775 	/*
2776 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2777 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2778 	 * constructor fails.
2779 	 */
2780 	return object;
2781 }
2782 
2783 static bool __noinline
2784 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2785 {
2786 	pcg_t *pcg, *cur;
2787 
2788 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2789 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2790 
2791 	cc->cc_misses++;
2792 
2793 	/*
2794 	 * Try to get an empty group from the cache.  If there are no empty
2795 	 * groups in the cache then allocate one.
2796 	 */
2797 	(void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2798 	if (__predict_false(pcg == NULL)) {
2799 		if (__predict_true(!pool_cache_disable)) {
2800 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2801 		}
2802 		if (__predict_true(pcg != NULL)) {
2803 			pcg->pcg_avail = 0;
2804 			pcg->pcg_size = pc->pc_pcgsize;
2805 		}
2806 	}
2807 
2808 	/*
2809 	 * If there's a empty group, release our full group back to the
2810 	 * cache.  Install the empty group to the local CPU and return.
2811 	 */
2812 	if (pcg != NULL) {
2813 		KASSERT(pcg->pcg_avail == 0);
2814 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2815 			cc->cc_previous = pcg;
2816 		} else {
2817 			cur = cc->cc_current;
2818 			if (__predict_true(cur != &pcg_dummy)) {
2819 				KASSERT(cur->pcg_avail == cur->pcg_size);
2820 				cc->cc_contended +=
2821 				    pool_pcg_put(&pc->pc_fullgroups, cur);
2822 				cc->cc_nfull++;
2823 			}
2824 			cc->cc_current = pcg;
2825 		}
2826 		return true;
2827 	}
2828 
2829 	/*
2830 	 * Nothing available locally or in cache, and we didn't
2831 	 * allocate an empty group.  Take the slow path and destroy
2832 	 * the object here and now.
2833 	 */
2834 	cc->cc_pcmisses++;
2835 	splx(s);
2836 	pool_cache_destruct_object(pc, object);
2837 
2838 	return false;
2839 }
2840 
2841 /*
2842  * pool_cache_put{,_paddr}:
2843  *
2844  *	Put an object back to the pool cache (optionally caching the
2845  *	physical address of the object).
2846  */
2847 void
2848 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2849 {
2850 	pool_cache_cpu_t *cc;
2851 	pcg_t *pcg;
2852 	int s;
2853 
2854 	KASSERT(object != NULL);
2855 	pool_cache_put_kmsan(pc, object);
2856 	pool_cache_redzone_check(pc, object);
2857 	FREECHECK_IN(&pc->pc_freecheck, object);
2858 
2859 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2860 		pc_phinpage_check(pc, object);
2861 	}
2862 
2863 	if (pool_cache_put_nocache(pc, object)) {
2864 		return;
2865 	}
2866 
2867 	/* Lock out interrupts and disable preemption. */
2868 	s = splvm();
2869 	while (/* CONSTCOND */ true) {
2870 		/* If the current group isn't full, release it there. */
2871 		cc = pc->pc_cpus[curcpu()->ci_index];
2872 	 	pcg = cc->cc_current;
2873 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2874 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2875 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2876 			pcg->pcg_avail++;
2877 			cc->cc_hits++;
2878 			splx(s);
2879 			return;
2880 		}
2881 
2882 		/*
2883 		 * That failed.  If the previous group isn't full, swap
2884 		 * it with the current group and try again.
2885 		 */
2886 		pcg = cc->cc_previous;
2887 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2888 			cc->cc_previous = cc->cc_current;
2889 			cc->cc_current = pcg;
2890 			continue;
2891 		}
2892 
2893 		/*
2894 		 * Can't free to either group: try the slow path.
2895 		 * If put_slow() releases the object for us, it
2896 		 * will return false.  Otherwise we need to retry.
2897 		 */
2898 		if (!pool_cache_put_slow(pc, cc, s, object))
2899 			break;
2900 	}
2901 }
2902 
2903 /*
2904  * pool_cache_transfer:
2905  *
2906  *	Transfer objects from the per-CPU cache to the global cache.
2907  *	Run within a cross-call thread.
2908  */
2909 static void
2910 pool_cache_transfer(pool_cache_t pc)
2911 {
2912 	pool_cache_cpu_t *cc;
2913 	pcg_t *prev, *cur;
2914 	int s;
2915 
2916 	s = splvm();
2917 	cc = pc->pc_cpus[curcpu()->ci_index];
2918 	cur = cc->cc_current;
2919 	cc->cc_current = __UNCONST(&pcg_dummy);
2920 	prev = cc->cc_previous;
2921 	cc->cc_previous = __UNCONST(&pcg_dummy);
2922 	if (cur != &pcg_dummy) {
2923 		if (cur->pcg_avail == cur->pcg_size) {
2924 			(void)pool_pcg_put(&pc->pc_fullgroups, cur);
2925 			cc->cc_nfull++;
2926 		} else if (cur->pcg_avail == 0) {
2927 			(void)pool_pcg_put(pc->pc_pcgcache, cur);
2928 		} else {
2929 			(void)pool_pcg_put(&pc->pc_partgroups, cur);
2930 			cc->cc_npart++;
2931 		}
2932 	}
2933 	if (prev != &pcg_dummy) {
2934 		if (prev->pcg_avail == prev->pcg_size) {
2935 			(void)pool_pcg_put(&pc->pc_fullgroups, prev);
2936 			cc->cc_nfull++;
2937 		} else if (prev->pcg_avail == 0) {
2938 			(void)pool_pcg_put(pc->pc_pcgcache, prev);
2939 		} else {
2940 			(void)pool_pcg_put(&pc->pc_partgroups, prev);
2941 			cc->cc_npart++;
2942 		}
2943 	}
2944 	splx(s);
2945 }
2946 
2947 static int
2948 pool_bigidx(size_t size)
2949 {
2950 	int i;
2951 
2952 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2953 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2954 			return i;
2955 	}
2956 	panic("pool item size %zu too large, use a custom allocator", size);
2957 }
2958 
2959 static void *
2960 pool_allocator_alloc(struct pool *pp, int flags)
2961 {
2962 	struct pool_allocator *pa = pp->pr_alloc;
2963 	void *res;
2964 
2965 	res = (*pa->pa_alloc)(pp, flags);
2966 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2967 		/*
2968 		 * We only run the drain hook here if PR_NOWAIT.
2969 		 * In other cases, the hook will be run in
2970 		 * pool_reclaim().
2971 		 */
2972 		if (pp->pr_drain_hook != NULL) {
2973 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2974 			res = (*pa->pa_alloc)(pp, flags);
2975 		}
2976 	}
2977 	return res;
2978 }
2979 
2980 static void
2981 pool_allocator_free(struct pool *pp, void *v)
2982 {
2983 	struct pool_allocator *pa = pp->pr_alloc;
2984 
2985 	if (pp->pr_redzone) {
2986 		KASSERT(!pp_has_pser(pp));
2987 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2988 	} else if (__predict_false(pp_has_pser(pp))) {
2989 		/*
2990 		 * Perform a passive serialization barrier before freeing
2991 		 * the pool page back to the system.
2992 		 */
2993 		pool_barrier();
2994 	}
2995 	(*pa->pa_free)(pp, v);
2996 }
2997 
2998 void *
2999 pool_page_alloc(struct pool *pp, int flags)
3000 {
3001 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3002 	vmem_addr_t va;
3003 	int ret;
3004 
3005 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
3006 	    vflags | VM_INSTANTFIT, &va);
3007 
3008 	return ret ? NULL : (void *)va;
3009 }
3010 
3011 void
3012 pool_page_free(struct pool *pp, void *v)
3013 {
3014 
3015 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
3016 }
3017 
3018 static void *
3019 pool_page_alloc_meta(struct pool *pp, int flags)
3020 {
3021 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3022 	vmem_addr_t va;
3023 	int ret;
3024 
3025 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
3026 	    vflags | VM_INSTANTFIT, &va);
3027 
3028 	return ret ? NULL : (void *)va;
3029 }
3030 
3031 static void
3032 pool_page_free_meta(struct pool *pp, void *v)
3033 {
3034 
3035 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
3036 }
3037 
3038 #ifdef KMSAN
3039 static inline void
3040 pool_get_kmsan(struct pool *pp, void *p)
3041 {
3042 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
3043 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
3044 }
3045 
3046 static inline void
3047 pool_put_kmsan(struct pool *pp, void *p)
3048 {
3049 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
3050 }
3051 
3052 static inline void
3053 pool_cache_get_kmsan(pool_cache_t pc, void *p)
3054 {
3055 	if (__predict_false(pc_has_ctor(pc))) {
3056 		return;
3057 	}
3058 	pool_get_kmsan(&pc->pc_pool, p);
3059 }
3060 
3061 static inline void
3062 pool_cache_put_kmsan(pool_cache_t pc, void *p)
3063 {
3064 	pool_put_kmsan(&pc->pc_pool, p);
3065 }
3066 #endif
3067 
3068 #ifdef POOL_QUARANTINE
3069 static void
3070 pool_quarantine_init(struct pool *pp)
3071 {
3072 	pp->pr_quar.rotor = 0;
3073 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
3074 }
3075 
3076 static void
3077 pool_quarantine_flush(struct pool *pp)
3078 {
3079 	pool_quar_t *quar = &pp->pr_quar;
3080 	struct pool_pagelist pq;
3081 	size_t i;
3082 
3083 	LIST_INIT(&pq);
3084 
3085 	mutex_enter(&pp->pr_lock);
3086 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3087 		if (quar->list[i] == 0)
3088 			continue;
3089 		pool_do_put(pp, (void *)quar->list[i], &pq);
3090 	}
3091 	mutex_exit(&pp->pr_lock);
3092 
3093 	pr_pagelist_free(pp, &pq);
3094 }
3095 
3096 static bool
3097 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3098 {
3099 	pool_quar_t *quar = &pp->pr_quar;
3100 	uintptr_t old;
3101 
3102 	if (pp->pr_roflags & PR_NOTOUCH) {
3103 		return false;
3104 	}
3105 
3106 	pool_redzone_check(pp, v);
3107 
3108 	old = quar->list[quar->rotor];
3109 	quar->list[quar->rotor] = (uintptr_t)v;
3110 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3111 	if (old != 0) {
3112 		pool_do_put(pp, (void *)old, pq);
3113 	}
3114 
3115 	return true;
3116 }
3117 #endif
3118 
3119 #ifdef POOL_NOCACHE
3120 static bool
3121 pool_cache_put_nocache(pool_cache_t pc, void *p)
3122 {
3123 	pool_cache_destruct_object(pc, p);
3124 	return true;
3125 }
3126 #endif
3127 
3128 #ifdef POOL_REDZONE
3129 #if defined(_LP64)
3130 # define PRIME 0x9e37fffffffc0000UL
3131 #else /* defined(_LP64) */
3132 # define PRIME 0x9e3779b1
3133 #endif /* defined(_LP64) */
3134 #define STATIC_BYTE	0xFE
3135 CTASSERT(POOL_REDZONE_SIZE > 1);
3136 
3137 #ifndef KASAN
3138 static inline uint8_t
3139 pool_pattern_generate(const void *p)
3140 {
3141 	return (uint8_t)(((uintptr_t)p) * PRIME
3142 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3143 }
3144 #endif
3145 
3146 static void
3147 pool_redzone_init(struct pool *pp, size_t requested_size)
3148 {
3149 	size_t redzsz;
3150 	size_t nsz;
3151 
3152 #ifdef KASAN
3153 	redzsz = requested_size;
3154 	kasan_add_redzone(&redzsz);
3155 	redzsz -= requested_size;
3156 #else
3157 	redzsz = POOL_REDZONE_SIZE;
3158 #endif
3159 
3160 	if (pp->pr_roflags & PR_NOTOUCH) {
3161 		pp->pr_redzone = false;
3162 		return;
3163 	}
3164 
3165 	/*
3166 	 * We may have extended the requested size earlier; check if
3167 	 * there's naturally space in the padding for a red zone.
3168 	 */
3169 	if (pp->pr_size - requested_size >= redzsz) {
3170 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3171 		pp->pr_redzone = true;
3172 		return;
3173 	}
3174 
3175 	/*
3176 	 * No space in the natural padding; check if we can extend a
3177 	 * bit the size of the pool.
3178 	 *
3179 	 * Avoid using redzone for allocations half of a page or larger.
3180 	 * For pagesize items, we'd waste a whole new page (could be
3181 	 * unmapped?), and for half pagesize items, approximately half
3182 	 * the space is lost (eg, 4K pages, you get one 2K allocation.)
3183 	 */
3184 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3185 	if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3186 		/* Ok, we can */
3187 		pp->pr_size = nsz;
3188 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3189 		pp->pr_redzone = true;
3190 	} else {
3191 		/* No space for a red zone... snif :'( */
3192 		pp->pr_redzone = false;
3193 		aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3194 	}
3195 }
3196 
3197 static void
3198 pool_redzone_fill(struct pool *pp, void *p)
3199 {
3200 	if (!pp->pr_redzone)
3201 		return;
3202 	KASSERT(!pp_has_pser(pp));
3203 #ifdef KASAN
3204 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3205 	    KASAN_POOL_REDZONE);
3206 #else
3207 	uint8_t *cp, pat;
3208 	const uint8_t *ep;
3209 
3210 	cp = (uint8_t *)p + pp->pr_reqsize;
3211 	ep = cp + POOL_REDZONE_SIZE;
3212 
3213 	/*
3214 	 * We really don't want the first byte of the red zone to be '\0';
3215 	 * an off-by-one in a string may not be properly detected.
3216 	 */
3217 	pat = pool_pattern_generate(cp);
3218 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
3219 	cp++;
3220 
3221 	while (cp < ep) {
3222 		*cp = pool_pattern_generate(cp);
3223 		cp++;
3224 	}
3225 #endif
3226 }
3227 
3228 static void
3229 pool_redzone_check(struct pool *pp, void *p)
3230 {
3231 	if (!pp->pr_redzone)
3232 		return;
3233 	KASSERT(!pp_has_pser(pp));
3234 #ifdef KASAN
3235 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3236 #else
3237 	uint8_t *cp, pat, expected;
3238 	const uint8_t *ep;
3239 
3240 	cp = (uint8_t *)p + pp->pr_reqsize;
3241 	ep = cp + POOL_REDZONE_SIZE;
3242 
3243 	pat = pool_pattern_generate(cp);
3244 	expected = (pat == '\0') ? STATIC_BYTE: pat;
3245 	if (__predict_false(*cp != expected)) {
3246 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3247 		    pp->pr_wchan, *cp, expected);
3248 	}
3249 	cp++;
3250 
3251 	while (cp < ep) {
3252 		expected = pool_pattern_generate(cp);
3253 		if (__predict_false(*cp != expected)) {
3254 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3255 			    pp->pr_wchan, *cp, expected);
3256 		}
3257 		cp++;
3258 	}
3259 #endif
3260 }
3261 
3262 static void
3263 pool_cache_redzone_check(pool_cache_t pc, void *p)
3264 {
3265 #ifdef KASAN
3266 	/*
3267 	 * If there is a ctor/dtor, or if the cache objects use
3268 	 * passive serialization, leave the data as valid.
3269 	 */
3270 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) ||
3271 	    pc_has_pser(pc))) {
3272 		return;
3273 	}
3274 #endif
3275 	pool_redzone_check(&pc->pc_pool, p);
3276 }
3277 
3278 #endif /* POOL_REDZONE */
3279 
3280 #if defined(DDB)
3281 static bool
3282 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3283 {
3284 
3285 	return (uintptr_t)ph->ph_page <= addr &&
3286 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3287 }
3288 
3289 static bool
3290 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3291 {
3292 
3293 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3294 }
3295 
3296 static bool
3297 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3298 {
3299 	int i;
3300 
3301 	if (pcg == NULL) {
3302 		return false;
3303 	}
3304 	for (i = 0; i < pcg->pcg_avail; i++) {
3305 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3306 			return true;
3307 		}
3308 	}
3309 	return false;
3310 }
3311 
3312 static bool
3313 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3314 {
3315 
3316 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3317 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3318 		pool_item_bitmap_t *bitmap =
3319 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
3320 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3321 
3322 		return (*bitmap & mask) == 0;
3323 	} else {
3324 		struct pool_item *pi;
3325 
3326 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3327 			if (pool_in_item(pp, pi, addr)) {
3328 				return false;
3329 			}
3330 		}
3331 		return true;
3332 	}
3333 }
3334 
3335 void
3336 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3337 {
3338 	struct pool *pp;
3339 
3340 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3341 		struct pool_item_header *ph;
3342 		uintptr_t item;
3343 		bool allocated = true;
3344 		bool incache = false;
3345 		bool incpucache = false;
3346 		char cpucachestr[32];
3347 
3348 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3349 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3350 				if (pool_in_page(pp, ph, addr)) {
3351 					goto found;
3352 				}
3353 			}
3354 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3355 				if (pool_in_page(pp, ph, addr)) {
3356 					allocated =
3357 					    pool_allocated(pp, ph, addr);
3358 					goto found;
3359 				}
3360 			}
3361 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3362 				if (pool_in_page(pp, ph, addr)) {
3363 					allocated = false;
3364 					goto found;
3365 				}
3366 			}
3367 			continue;
3368 		} else {
3369 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3370 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3371 				continue;
3372 			}
3373 			allocated = pool_allocated(pp, ph, addr);
3374 		}
3375 found:
3376 		if (allocated && pp->pr_cache) {
3377 			pool_cache_t pc = pp->pr_cache;
3378 			struct pool_cache_group *pcg;
3379 			int i;
3380 
3381 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3382 			    pcg = pcg->pcg_next) {
3383 				if (pool_in_cg(pp, pcg, addr)) {
3384 					incache = true;
3385 					goto print;
3386 				}
3387 			}
3388 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3389 				pool_cache_cpu_t *cc;
3390 
3391 				if ((cc = pc->pc_cpus[i]) == NULL) {
3392 					continue;
3393 				}
3394 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3395 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3396 					struct cpu_info *ci =
3397 					    cpu_lookup(i);
3398 
3399 					incpucache = true;
3400 					snprintf(cpucachestr,
3401 					    sizeof(cpucachestr),
3402 					    "cached by CPU %u",
3403 					    ci->ci_index);
3404 					goto print;
3405 				}
3406 			}
3407 		}
3408 print:
3409 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3410 		item = item + rounddown(addr - item, pp->pr_size);
3411 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3412 		    (void *)addr, item, (size_t)(addr - item),
3413 		    pp->pr_wchan,
3414 		    incpucache ? cpucachestr :
3415 		    incache ? "cached" : allocated ? "allocated" : "free");
3416 	}
3417 }
3418 #endif /* defined(DDB) */
3419 
3420 static int
3421 pool_sysctl(SYSCTLFN_ARGS)
3422 {
3423 	struct pool_sysctl data;
3424 	struct pool *pp;
3425 	struct pool_cache *pc;
3426 	pool_cache_cpu_t *cc;
3427 	int error;
3428 	size_t i, written;
3429 
3430 	if (oldp == NULL) {
3431 		*oldlenp = 0;
3432 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3433 			*oldlenp += sizeof(data);
3434 		return 0;
3435 	}
3436 
3437 	memset(&data, 0, sizeof(data));
3438 	error = 0;
3439 	written = 0;
3440 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3441 		if (written + sizeof(data) > *oldlenp)
3442 			break;
3443 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3444 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3445 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3446 #define COPY(field) data.field = pp->field
3447 		COPY(pr_size);
3448 
3449 		COPY(pr_itemsperpage);
3450 		COPY(pr_nitems);
3451 		COPY(pr_nout);
3452 		COPY(pr_hardlimit);
3453 		COPY(pr_npages);
3454 		COPY(pr_minpages);
3455 		COPY(pr_maxpages);
3456 
3457 		COPY(pr_nget);
3458 		COPY(pr_nfail);
3459 		COPY(pr_nput);
3460 		COPY(pr_npagealloc);
3461 		COPY(pr_npagefree);
3462 		COPY(pr_hiwat);
3463 		COPY(pr_nidle);
3464 #undef COPY
3465 
3466 		data.pr_cache_nmiss_pcpu = 0;
3467 		data.pr_cache_nhit_pcpu = 0;
3468 		data.pr_cache_nmiss_global = 0;
3469 		data.pr_cache_nempty = 0;
3470 		data.pr_cache_ncontended = 0;
3471 		data.pr_cache_npartial = 0;
3472 		if (pp->pr_cache) {
3473 			uint32_t nfull = 0;
3474 			pc = pp->pr_cache;
3475 			data.pr_cache_meta_size = pc->pc_pcgsize;
3476 			for (i = 0; i < pc->pc_ncpu; ++i) {
3477 				cc = pc->pc_cpus[i];
3478 				if (cc == NULL)
3479 					continue;
3480 				data.pr_cache_ncontended += cc->cc_contended;
3481 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3482 				data.pr_cache_nhit_pcpu += cc->cc_hits;
3483 				data.pr_cache_nmiss_global += cc->cc_pcmisses;
3484 				nfull += cc->cc_nfull; /* 32-bit rollover! */
3485 				data.pr_cache_npartial += cc->cc_npart;
3486 			}
3487 			data.pr_cache_nfull = nfull;
3488 		} else {
3489 			data.pr_cache_meta_size = 0;
3490 			data.pr_cache_nfull = 0;
3491 		}
3492 		data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3493 		    data.pr_cache_nmiss_global;
3494 
3495 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3496 		if (error)
3497 			break;
3498 		written += sizeof(data);
3499 		oldp = (char *)oldp + sizeof(data);
3500 	}
3501 
3502 	*oldlenp = written;
3503 	return error;
3504 }
3505 
3506 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3507 {
3508 	const struct sysctlnode *rnode = NULL;
3509 
3510 	sysctl_createv(clog, 0, NULL, &rnode,
3511 		       CTLFLAG_PERMANENT,
3512 		       CTLTYPE_STRUCT, "pool",
3513 		       SYSCTL_DESCR("Get pool statistics"),
3514 		       pool_sysctl, 0, NULL, 0,
3515 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3516 }
3517