1 /* $NetBSD: subr_pool.c,v 1.95 2004/05/20 05:08:29 atatat Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.95 2004/05/20 05:08:29 atatat Exp $"); 42 43 #include "opt_pool.h" 44 #include "opt_poollog.h" 45 #include "opt_lockdebug.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/errno.h> 51 #include <sys/kernel.h> 52 #include <sys/malloc.h> 53 #include <sys/lock.h> 54 #include <sys/pool.h> 55 #include <sys/syslog.h> 56 57 #include <uvm/uvm.h> 58 59 /* 60 * Pool resource management utility. 61 * 62 * Memory is allocated in pages which are split into pieces according to 63 * the pool item size. Each page is kept on one of three lists in the 64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 65 * for empty, full and partially-full pages respectively. The individual 66 * pool items are on a linked list headed by `ph_itemlist' in each page 67 * header. The memory for building the page list is either taken from 68 * the allocated pages themselves (for small pool items) or taken from 69 * an internal pool of page headers (`phpool'). 70 */ 71 72 /* List of all pools */ 73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 74 75 /* Private pool for page header structures */ 76 static struct pool phpool; 77 78 #ifdef POOL_SUBPAGE 79 /* Pool of subpages for use by normal pools. */ 80 static struct pool psppool; 81 #endif 82 83 /* # of seconds to retain page after last use */ 84 int pool_inactive_time = 10; 85 86 /* Next candidate for drainage (see pool_drain()) */ 87 static struct pool *drainpp; 88 89 /* This spin lock protects both pool_head and drainpp. */ 90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 91 92 struct pool_item_header { 93 /* Page headers */ 94 LIST_ENTRY(pool_item_header) 95 ph_pagelist; /* pool page list */ 96 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 97 SPLAY_ENTRY(pool_item_header) 98 ph_node; /* Off-page page headers */ 99 unsigned int ph_nmissing; /* # of chunks in use */ 100 caddr_t ph_page; /* this page's address */ 101 struct timeval ph_time; /* last referenced */ 102 }; 103 104 struct pool_item { 105 #ifdef DIAGNOSTIC 106 u_int pi_magic; 107 #endif 108 #define PI_MAGIC 0xdeadbeefU 109 /* Other entries use only this list entry */ 110 TAILQ_ENTRY(pool_item) pi_list; 111 }; 112 113 #define POOL_NEEDS_CATCHUP(pp) \ 114 ((pp)->pr_nitems < (pp)->pr_minitems) 115 116 /* 117 * Pool cache management. 118 * 119 * Pool caches provide a way for constructed objects to be cached by the 120 * pool subsystem. This can lead to performance improvements by avoiding 121 * needless object construction/destruction; it is deferred until absolutely 122 * necessary. 123 * 124 * Caches are grouped into cache groups. Each cache group references 125 * up to 16 constructed objects. When a cache allocates an object 126 * from the pool, it calls the object's constructor and places it into 127 * a cache group. When a cache group frees an object back to the pool, 128 * it first calls the object's destructor. This allows the object to 129 * persist in constructed form while freed to the cache. 130 * 131 * Multiple caches may exist for each pool. This allows a single 132 * object type to have multiple constructed forms. The pool references 133 * each cache, so that when a pool is drained by the pagedaemon, it can 134 * drain each individual cache as well. Each time a cache is drained, 135 * the most idle cache group is freed to the pool in its entirety. 136 * 137 * Pool caches are layed on top of pools. By layering them, we can avoid 138 * the complexity of cache management for pools which would not benefit 139 * from it. 140 */ 141 142 /* The cache group pool. */ 143 static struct pool pcgpool; 144 145 static void pool_cache_reclaim(struct pool_cache *); 146 147 static int pool_catchup(struct pool *); 148 static void pool_prime_page(struct pool *, caddr_t, 149 struct pool_item_header *); 150 static void pool_update_curpage(struct pool *); 151 152 void *pool_allocator_alloc(struct pool *, int); 153 void pool_allocator_free(struct pool *, void *); 154 155 static void pool_print_pagelist(struct pool_pagelist *, 156 void (*)(const char *, ...)); 157 static void pool_print1(struct pool *, const char *, 158 void (*)(const char *, ...)); 159 160 static int pool_chk_page(struct pool *, const char *, 161 struct pool_item_header *); 162 163 /* 164 * Pool log entry. An array of these is allocated in pool_init(). 165 */ 166 struct pool_log { 167 const char *pl_file; 168 long pl_line; 169 int pl_action; 170 #define PRLOG_GET 1 171 #define PRLOG_PUT 2 172 void *pl_addr; 173 }; 174 175 #ifdef POOL_DIAGNOSTIC 176 /* Number of entries in pool log buffers */ 177 #ifndef POOL_LOGSIZE 178 #define POOL_LOGSIZE 10 179 #endif 180 181 int pool_logsize = POOL_LOGSIZE; 182 183 static __inline void 184 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 185 { 186 int n = pp->pr_curlogentry; 187 struct pool_log *pl; 188 189 if ((pp->pr_roflags & PR_LOGGING) == 0) 190 return; 191 192 /* 193 * Fill in the current entry. Wrap around and overwrite 194 * the oldest entry if necessary. 195 */ 196 pl = &pp->pr_log[n]; 197 pl->pl_file = file; 198 pl->pl_line = line; 199 pl->pl_action = action; 200 pl->pl_addr = v; 201 if (++n >= pp->pr_logsize) 202 n = 0; 203 pp->pr_curlogentry = n; 204 } 205 206 static void 207 pr_printlog(struct pool *pp, struct pool_item *pi, 208 void (*pr)(const char *, ...)) 209 { 210 int i = pp->pr_logsize; 211 int n = pp->pr_curlogentry; 212 213 if ((pp->pr_roflags & PR_LOGGING) == 0) 214 return; 215 216 /* 217 * Print all entries in this pool's log. 218 */ 219 while (i-- > 0) { 220 struct pool_log *pl = &pp->pr_log[n]; 221 if (pl->pl_action != 0) { 222 if (pi == NULL || pi == pl->pl_addr) { 223 (*pr)("\tlog entry %d:\n", i); 224 (*pr)("\t\taction = %s, addr = %p\n", 225 pl->pl_action == PRLOG_GET ? "get" : "put", 226 pl->pl_addr); 227 (*pr)("\t\tfile: %s at line %lu\n", 228 pl->pl_file, pl->pl_line); 229 } 230 } 231 if (++n >= pp->pr_logsize) 232 n = 0; 233 } 234 } 235 236 static __inline void 237 pr_enter(struct pool *pp, const char *file, long line) 238 { 239 240 if (__predict_false(pp->pr_entered_file != NULL)) { 241 printf("pool %s: reentrancy at file %s line %ld\n", 242 pp->pr_wchan, file, line); 243 printf(" previous entry at file %s line %ld\n", 244 pp->pr_entered_file, pp->pr_entered_line); 245 panic("pr_enter"); 246 } 247 248 pp->pr_entered_file = file; 249 pp->pr_entered_line = line; 250 } 251 252 static __inline void 253 pr_leave(struct pool *pp) 254 { 255 256 if (__predict_false(pp->pr_entered_file == NULL)) { 257 printf("pool %s not entered?\n", pp->pr_wchan); 258 panic("pr_leave"); 259 } 260 261 pp->pr_entered_file = NULL; 262 pp->pr_entered_line = 0; 263 } 264 265 static __inline void 266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 267 { 268 269 if (pp->pr_entered_file != NULL) 270 (*pr)("\n\tcurrently entered from file %s line %ld\n", 271 pp->pr_entered_file, pp->pr_entered_line); 272 } 273 #else 274 #define pr_log(pp, v, action, file, line) 275 #define pr_printlog(pp, pi, pr) 276 #define pr_enter(pp, file, line) 277 #define pr_leave(pp) 278 #define pr_enter_check(pp, pr) 279 #endif /* POOL_DIAGNOSTIC */ 280 281 static __inline int 282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 283 { 284 if (a->ph_page < b->ph_page) 285 return (-1); 286 else if (a->ph_page > b->ph_page) 287 return (1); 288 else 289 return (0); 290 } 291 292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 294 295 /* 296 * Return the pool page header based on page address. 297 */ 298 static __inline struct pool_item_header * 299 pr_find_pagehead(struct pool *pp, caddr_t page) 300 { 301 struct pool_item_header *ph, tmp; 302 303 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 304 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 305 306 tmp.ph_page = page; 307 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 308 return ph; 309 } 310 311 /* 312 * Remove a page from the pool. 313 */ 314 static __inline void 315 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 316 struct pool_pagelist *pq) 317 { 318 int s; 319 320 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock) || pq != NULL); 321 322 /* 323 * If the page was idle, decrement the idle page count. 324 */ 325 if (ph->ph_nmissing == 0) { 326 #ifdef DIAGNOSTIC 327 if (pp->pr_nidle == 0) 328 panic("pr_rmpage: nidle inconsistent"); 329 if (pp->pr_nitems < pp->pr_itemsperpage) 330 panic("pr_rmpage: nitems inconsistent"); 331 #endif 332 pp->pr_nidle--; 333 } 334 335 pp->pr_nitems -= pp->pr_itemsperpage; 336 337 /* 338 * Unlink a page from the pool and release it (or queue it for release). 339 */ 340 LIST_REMOVE(ph, ph_pagelist); 341 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 342 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 343 if (pq) { 344 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 345 } else { 346 pool_allocator_free(pp, ph->ph_page); 347 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 348 s = splvm(); 349 pool_put(&phpool, ph); 350 splx(s); 351 } 352 } 353 pp->pr_npages--; 354 pp->pr_npagefree++; 355 356 pool_update_curpage(pp); 357 } 358 359 /* 360 * Initialize all the pools listed in the "pools" link set. 361 */ 362 void 363 link_pool_init(void) 364 { 365 __link_set_decl(pools, struct link_pool_init); 366 struct link_pool_init * const *pi; 367 368 __link_set_foreach(pi, pools) 369 pool_init((*pi)->pp, (*pi)->size, (*pi)->align, 370 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan, 371 (*pi)->palloc); 372 } 373 374 /* 375 * Initialize the given pool resource structure. 376 * 377 * We export this routine to allow other kernel parts to declare 378 * static pools that must be initialized before malloc() is available. 379 */ 380 void 381 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 382 const char *wchan, struct pool_allocator *palloc) 383 { 384 int off, slack; 385 size_t trysize, phsize; 386 int s; 387 388 #ifdef POOL_DIAGNOSTIC 389 /* 390 * Always log if POOL_DIAGNOSTIC is defined. 391 */ 392 if (pool_logsize != 0) 393 flags |= PR_LOGGING; 394 #endif 395 396 #ifdef POOL_SUBPAGE 397 /* 398 * XXX We don't provide a real `nointr' back-end 399 * yet; all sub-pages come from a kmem back-end. 400 * maybe some day... 401 */ 402 if (palloc == NULL) { 403 extern struct pool_allocator pool_allocator_kmem_subpage; 404 palloc = &pool_allocator_kmem_subpage; 405 } 406 /* 407 * We'll assume any user-specified back-end allocator 408 * will deal with sub-pages, or simply don't care. 409 */ 410 #else 411 if (palloc == NULL) 412 palloc = &pool_allocator_kmem; 413 #endif /* POOL_SUBPAGE */ 414 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 415 if (palloc->pa_pagesz == 0) { 416 #ifdef POOL_SUBPAGE 417 if (palloc == &pool_allocator_kmem) 418 palloc->pa_pagesz = PAGE_SIZE; 419 else 420 palloc->pa_pagesz = POOL_SUBPAGE; 421 #else 422 palloc->pa_pagesz = PAGE_SIZE; 423 #endif /* POOL_SUBPAGE */ 424 } 425 426 TAILQ_INIT(&palloc->pa_list); 427 428 simple_lock_init(&palloc->pa_slock); 429 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 430 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 431 palloc->pa_flags |= PA_INITIALIZED; 432 } 433 434 if (align == 0) 435 align = ALIGN(1); 436 437 if (size < sizeof(struct pool_item)) 438 size = sizeof(struct pool_item); 439 440 size = roundup(size, align); 441 #ifdef DIAGNOSTIC 442 if (size > palloc->pa_pagesz) 443 panic("pool_init: pool item size (%lu) too large", 444 (u_long)size); 445 #endif 446 447 /* 448 * Initialize the pool structure. 449 */ 450 LIST_INIT(&pp->pr_emptypages); 451 LIST_INIT(&pp->pr_fullpages); 452 LIST_INIT(&pp->pr_partpages); 453 TAILQ_INIT(&pp->pr_cachelist); 454 pp->pr_curpage = NULL; 455 pp->pr_npages = 0; 456 pp->pr_minitems = 0; 457 pp->pr_minpages = 0; 458 pp->pr_maxpages = UINT_MAX; 459 pp->pr_roflags = flags; 460 pp->pr_flags = 0; 461 pp->pr_size = size; 462 pp->pr_align = align; 463 pp->pr_wchan = wchan; 464 pp->pr_alloc = palloc; 465 pp->pr_nitems = 0; 466 pp->pr_nout = 0; 467 pp->pr_hardlimit = UINT_MAX; 468 pp->pr_hardlimit_warning = NULL; 469 pp->pr_hardlimit_ratecap.tv_sec = 0; 470 pp->pr_hardlimit_ratecap.tv_usec = 0; 471 pp->pr_hardlimit_warning_last.tv_sec = 0; 472 pp->pr_hardlimit_warning_last.tv_usec = 0; 473 pp->pr_drain_hook = NULL; 474 pp->pr_drain_hook_arg = NULL; 475 476 /* 477 * Decide whether to put the page header off page to avoid 478 * wasting too large a part of the page or too big item. 479 * Off-page page headers go on a hash table, so we can match 480 * a returned item with its header based on the page address. 481 * We use 1/16 of the page size and about 8 times of the item 482 * size as the threshold (XXX: tune) 483 * 484 * However, we'll put the header into the page if we can put 485 * it without wasting any items. 486 * 487 * Silently enforce `0 <= ioff < align'. 488 */ 489 pp->pr_itemoffset = ioff %= align; 490 /* See the comment below about reserved bytes. */ 491 trysize = palloc->pa_pagesz - ((align - ioff) % align); 492 phsize = ALIGN(sizeof(struct pool_item_header)); 493 if (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 494 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size) { 495 /* Use the end of the page for the page header */ 496 pp->pr_roflags |= PR_PHINPAGE; 497 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 498 } else { 499 /* The page header will be taken from our page header pool */ 500 pp->pr_phoffset = 0; 501 off = palloc->pa_pagesz; 502 SPLAY_INIT(&pp->pr_phtree); 503 } 504 505 /* 506 * Alignment is to take place at `ioff' within the item. This means 507 * we must reserve up to `align - 1' bytes on the page to allow 508 * appropriate positioning of each item. 509 */ 510 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 511 KASSERT(pp->pr_itemsperpage != 0); 512 513 /* 514 * Use the slack between the chunks and the page header 515 * for "cache coloring". 516 */ 517 slack = off - pp->pr_itemsperpage * pp->pr_size; 518 pp->pr_maxcolor = (slack / align) * align; 519 pp->pr_curcolor = 0; 520 521 pp->pr_nget = 0; 522 pp->pr_nfail = 0; 523 pp->pr_nput = 0; 524 pp->pr_npagealloc = 0; 525 pp->pr_npagefree = 0; 526 pp->pr_hiwat = 0; 527 pp->pr_nidle = 0; 528 529 #ifdef POOL_DIAGNOSTIC 530 if (flags & PR_LOGGING) { 531 if (kmem_map == NULL || 532 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 533 M_TEMP, M_NOWAIT)) == NULL) 534 pp->pr_roflags &= ~PR_LOGGING; 535 pp->pr_curlogentry = 0; 536 pp->pr_logsize = pool_logsize; 537 } 538 #endif 539 540 pp->pr_entered_file = NULL; 541 pp->pr_entered_line = 0; 542 543 simple_lock_init(&pp->pr_slock); 544 545 /* 546 * Initialize private page header pool and cache magazine pool if we 547 * haven't done so yet. 548 * XXX LOCKING. 549 */ 550 if (phpool.pr_size == 0) { 551 #ifdef POOL_SUBPAGE 552 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0, 553 "phpool", &pool_allocator_kmem); 554 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 555 PR_RECURSIVE, "psppool", &pool_allocator_kmem); 556 #else 557 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 558 0, "phpool", NULL); 559 #endif 560 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0, 561 0, "pcgpool", NULL); 562 } 563 564 /* Insert into the list of all pools. */ 565 simple_lock(&pool_head_slock); 566 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 567 simple_unlock(&pool_head_slock); 568 569 /* Insert this into the list of pools using this allocator. */ 570 s = splvm(); 571 simple_lock(&palloc->pa_slock); 572 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 573 simple_unlock(&palloc->pa_slock); 574 splx(s); 575 } 576 577 /* 578 * De-commision a pool resource. 579 */ 580 void 581 pool_destroy(struct pool *pp) 582 { 583 struct pool_item_header *ph; 584 struct pool_cache *pc; 585 int s; 586 587 /* Locking order: pool_allocator -> pool */ 588 s = splvm(); 589 simple_lock(&pp->pr_alloc->pa_slock); 590 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 591 simple_unlock(&pp->pr_alloc->pa_slock); 592 splx(s); 593 594 /* Destroy all caches for this pool. */ 595 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL) 596 pool_cache_destroy(pc); 597 598 #ifdef DIAGNOSTIC 599 if (pp->pr_nout != 0) { 600 pr_printlog(pp, NULL, printf); 601 panic("pool_destroy: pool busy: still out: %u", 602 pp->pr_nout); 603 } 604 #endif 605 606 /* Remove all pages */ 607 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 608 pr_rmpage(pp, ph, NULL); 609 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 610 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 611 612 /* Remove from global pool list */ 613 simple_lock(&pool_head_slock); 614 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 615 if (drainpp == pp) { 616 drainpp = NULL; 617 } 618 simple_unlock(&pool_head_slock); 619 620 #ifdef POOL_DIAGNOSTIC 621 if ((pp->pr_roflags & PR_LOGGING) != 0) 622 free(pp->pr_log, M_TEMP); 623 #endif 624 } 625 626 void 627 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 628 { 629 630 /* XXX no locking -- must be used just after pool_init() */ 631 #ifdef DIAGNOSTIC 632 if (pp->pr_drain_hook != NULL) 633 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 634 #endif 635 pp->pr_drain_hook = fn; 636 pp->pr_drain_hook_arg = arg; 637 } 638 639 static struct pool_item_header * 640 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags) 641 { 642 struct pool_item_header *ph; 643 int s; 644 645 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0); 646 647 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 648 ph = (struct pool_item_header *) (storage + pp->pr_phoffset); 649 else { 650 s = splvm(); 651 ph = pool_get(&phpool, flags); 652 splx(s); 653 } 654 655 return (ph); 656 } 657 658 /* 659 * Grab an item from the pool; must be called at appropriate spl level 660 */ 661 void * 662 #ifdef POOL_DIAGNOSTIC 663 _pool_get(struct pool *pp, int flags, const char *file, long line) 664 #else 665 pool_get(struct pool *pp, int flags) 666 #endif 667 { 668 struct pool_item *pi; 669 struct pool_item_header *ph; 670 void *v; 671 672 #ifdef DIAGNOSTIC 673 if (__predict_false(pp->pr_itemsperpage == 0)) 674 panic("pool_get: pool %p: pr_itemsperpage is zero, " 675 "pool not initialized?", pp); 676 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 677 (flags & PR_WAITOK) != 0)) 678 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 679 680 #ifdef LOCKDEBUG 681 if (flags & PR_WAITOK) 682 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)"); 683 #endif 684 #endif /* DIAGNOSTIC */ 685 686 simple_lock(&pp->pr_slock); 687 pr_enter(pp, file, line); 688 689 startover: 690 /* 691 * Check to see if we've reached the hard limit. If we have, 692 * and we can wait, then wait until an item has been returned to 693 * the pool. 694 */ 695 #ifdef DIAGNOSTIC 696 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 697 pr_leave(pp); 698 simple_unlock(&pp->pr_slock); 699 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 700 } 701 #endif 702 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 703 if (pp->pr_drain_hook != NULL) { 704 /* 705 * Since the drain hook is going to free things 706 * back to the pool, unlock, call the hook, re-lock, 707 * and check the hardlimit condition again. 708 */ 709 pr_leave(pp); 710 simple_unlock(&pp->pr_slock); 711 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 712 simple_lock(&pp->pr_slock); 713 pr_enter(pp, file, line); 714 if (pp->pr_nout < pp->pr_hardlimit) 715 goto startover; 716 } 717 718 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 719 /* 720 * XXX: A warning isn't logged in this case. Should 721 * it be? 722 */ 723 pp->pr_flags |= PR_WANTED; 724 pr_leave(pp); 725 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 726 pr_enter(pp, file, line); 727 goto startover; 728 } 729 730 /* 731 * Log a message that the hard limit has been hit. 732 */ 733 if (pp->pr_hardlimit_warning != NULL && 734 ratecheck(&pp->pr_hardlimit_warning_last, 735 &pp->pr_hardlimit_ratecap)) 736 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 737 738 pp->pr_nfail++; 739 740 pr_leave(pp); 741 simple_unlock(&pp->pr_slock); 742 return (NULL); 743 } 744 745 /* 746 * The convention we use is that if `curpage' is not NULL, then 747 * it points at a non-empty bucket. In particular, `curpage' 748 * never points at a page header which has PR_PHINPAGE set and 749 * has no items in its bucket. 750 */ 751 if ((ph = pp->pr_curpage) == NULL) { 752 #ifdef DIAGNOSTIC 753 if (pp->pr_nitems != 0) { 754 simple_unlock(&pp->pr_slock); 755 printf("pool_get: %s: curpage NULL, nitems %u\n", 756 pp->pr_wchan, pp->pr_nitems); 757 panic("pool_get: nitems inconsistent"); 758 } 759 #endif 760 761 /* 762 * Call the back-end page allocator for more memory. 763 * Release the pool lock, as the back-end page allocator 764 * may block. 765 */ 766 pr_leave(pp); 767 simple_unlock(&pp->pr_slock); 768 v = pool_allocator_alloc(pp, flags); 769 if (__predict_true(v != NULL)) 770 ph = pool_alloc_item_header(pp, v, flags); 771 772 if (__predict_false(v == NULL || ph == NULL)) { 773 if (v != NULL) 774 pool_allocator_free(pp, v); 775 776 simple_lock(&pp->pr_slock); 777 pr_enter(pp, file, line); 778 779 /* 780 * We were unable to allocate a page or item 781 * header, but we released the lock during 782 * allocation, so perhaps items were freed 783 * back to the pool. Check for this case. 784 */ 785 if (pp->pr_curpage != NULL) 786 goto startover; 787 788 if ((flags & PR_WAITOK) == 0) { 789 pp->pr_nfail++; 790 pr_leave(pp); 791 simple_unlock(&pp->pr_slock); 792 return (NULL); 793 } 794 795 /* 796 * Wait for items to be returned to this pool. 797 * 798 * XXX: maybe we should wake up once a second and 799 * try again? 800 */ 801 pp->pr_flags |= PR_WANTED; 802 /* PA_WANTED is already set on the allocator. */ 803 pr_leave(pp); 804 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 805 pr_enter(pp, file, line); 806 goto startover; 807 } 808 809 /* We have more memory; add it to the pool */ 810 simple_lock(&pp->pr_slock); 811 pr_enter(pp, file, line); 812 pool_prime_page(pp, v, ph); 813 pp->pr_npagealloc++; 814 815 /* Start the allocation process over. */ 816 goto startover; 817 } 818 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 819 pr_leave(pp); 820 simple_unlock(&pp->pr_slock); 821 panic("pool_get: %s: page empty", pp->pr_wchan); 822 } 823 #ifdef DIAGNOSTIC 824 if (__predict_false(pp->pr_nitems == 0)) { 825 pr_leave(pp); 826 simple_unlock(&pp->pr_slock); 827 printf("pool_get: %s: items on itemlist, nitems %u\n", 828 pp->pr_wchan, pp->pr_nitems); 829 panic("pool_get: nitems inconsistent"); 830 } 831 #endif 832 833 #ifdef POOL_DIAGNOSTIC 834 pr_log(pp, v, PRLOG_GET, file, line); 835 #endif 836 837 #ifdef DIAGNOSTIC 838 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 839 pr_printlog(pp, pi, printf); 840 panic("pool_get(%s): free list modified: magic=%x; page %p;" 841 " item addr %p\n", 842 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 843 } 844 #endif 845 846 /* 847 * Remove from item list. 848 */ 849 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 850 pp->pr_nitems--; 851 pp->pr_nout++; 852 if (ph->ph_nmissing == 0) { 853 #ifdef DIAGNOSTIC 854 if (__predict_false(pp->pr_nidle == 0)) 855 panic("pool_get: nidle inconsistent"); 856 #endif 857 pp->pr_nidle--; 858 859 /* 860 * This page was previously empty. Move it to the list of 861 * partially-full pages. This page is already curpage. 862 */ 863 LIST_REMOVE(ph, ph_pagelist); 864 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 865 } 866 ph->ph_nmissing++; 867 if (TAILQ_EMPTY(&ph->ph_itemlist)) { 868 #ifdef DIAGNOSTIC 869 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 870 pr_leave(pp); 871 simple_unlock(&pp->pr_slock); 872 panic("pool_get: %s: nmissing inconsistent", 873 pp->pr_wchan); 874 } 875 #endif 876 /* 877 * This page is now full. Move it to the full list 878 * and select a new current page. 879 */ 880 LIST_REMOVE(ph, ph_pagelist); 881 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 882 pool_update_curpage(pp); 883 } 884 885 pp->pr_nget++; 886 887 /* 888 * If we have a low water mark and we are now below that low 889 * water mark, add more items to the pool. 890 */ 891 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 892 /* 893 * XXX: Should we log a warning? Should we set up a timeout 894 * to try again in a second or so? The latter could break 895 * a caller's assumptions about interrupt protection, etc. 896 */ 897 } 898 899 pr_leave(pp); 900 simple_unlock(&pp->pr_slock); 901 return (v); 902 } 903 904 /* 905 * Internal version of pool_put(). Pool is already locked/entered. 906 */ 907 static void 908 pool_do_put(struct pool *pp, void *v) 909 { 910 struct pool_item *pi = v; 911 struct pool_item_header *ph; 912 caddr_t page; 913 int s; 914 915 LOCK_ASSERT(simple_lock_held(&pp->pr_slock)); 916 917 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask); 918 919 #ifdef DIAGNOSTIC 920 if (__predict_false(pp->pr_nout == 0)) { 921 printf("pool %s: putting with none out\n", 922 pp->pr_wchan); 923 panic("pool_put"); 924 } 925 #endif 926 927 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 928 pr_printlog(pp, NULL, printf); 929 panic("pool_put: %s: page header missing", pp->pr_wchan); 930 } 931 932 #ifdef LOCKDEBUG 933 /* 934 * Check if we're freeing a locked simple lock. 935 */ 936 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 937 #endif 938 939 /* 940 * Return to item list. 941 */ 942 #ifdef DIAGNOSTIC 943 pi->pi_magic = PI_MAGIC; 944 #endif 945 #ifdef DEBUG 946 { 947 int i, *ip = v; 948 949 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 950 *ip++ = PI_MAGIC; 951 } 952 } 953 #endif 954 955 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 956 KDASSERT(ph->ph_nmissing != 0); 957 ph->ph_nmissing--; 958 pp->pr_nput++; 959 pp->pr_nitems++; 960 pp->pr_nout--; 961 962 /* Cancel "pool empty" condition if it exists */ 963 if (pp->pr_curpage == NULL) 964 pp->pr_curpage = ph; 965 966 if (pp->pr_flags & PR_WANTED) { 967 pp->pr_flags &= ~PR_WANTED; 968 if (ph->ph_nmissing == 0) 969 pp->pr_nidle++; 970 wakeup((caddr_t)pp); 971 return; 972 } 973 974 /* 975 * If this page is now empty, do one of two things: 976 * 977 * (1) If we have more pages than the page high water mark, 978 * or if we are flagged as immediately freeing back idle 979 * pages, free the page back to the system. ONLY CONSIDER 980 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 981 * CLAIM. 982 * 983 * (2) Otherwise, move the page to the empty page list. 984 * 985 * Either way, select a new current page (so we use a partially-full 986 * page if one is available). 987 */ 988 if (ph->ph_nmissing == 0) { 989 pp->pr_nidle++; 990 if (pp->pr_npages > pp->pr_minpages && 991 (pp->pr_npages > pp->pr_maxpages || 992 (pp->pr_roflags & PR_IMMEDRELEASE) != 0 || 993 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) { 994 simple_unlock(&pp->pr_slock); 995 pr_rmpage(pp, ph, NULL); 996 simple_lock(&pp->pr_slock); 997 } else { 998 LIST_REMOVE(ph, ph_pagelist); 999 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1000 1001 /* 1002 * Update the timestamp on the page. A page must 1003 * be idle for some period of time before it can 1004 * be reclaimed by the pagedaemon. This minimizes 1005 * ping-pong'ing for memory. 1006 */ 1007 s = splclock(); 1008 ph->ph_time = mono_time; 1009 splx(s); 1010 } 1011 pool_update_curpage(pp); 1012 } 1013 1014 /* 1015 * If the page was previously completely full, move it to the 1016 * partially-full list and make it the current page. The next 1017 * allocation will get the item from this page, instead of 1018 * further fragmenting the pool. 1019 */ 1020 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1021 LIST_REMOVE(ph, ph_pagelist); 1022 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1023 pp->pr_curpage = ph; 1024 } 1025 } 1026 1027 /* 1028 * Return resource to the pool; must be called at appropriate spl level 1029 */ 1030 #ifdef POOL_DIAGNOSTIC 1031 void 1032 _pool_put(struct pool *pp, void *v, const char *file, long line) 1033 { 1034 1035 simple_lock(&pp->pr_slock); 1036 pr_enter(pp, file, line); 1037 1038 pr_log(pp, v, PRLOG_PUT, file, line); 1039 1040 pool_do_put(pp, v); 1041 1042 pr_leave(pp); 1043 simple_unlock(&pp->pr_slock); 1044 } 1045 #undef pool_put 1046 #endif /* POOL_DIAGNOSTIC */ 1047 1048 void 1049 pool_put(struct pool *pp, void *v) 1050 { 1051 1052 simple_lock(&pp->pr_slock); 1053 1054 pool_do_put(pp, v); 1055 1056 simple_unlock(&pp->pr_slock); 1057 } 1058 1059 #ifdef POOL_DIAGNOSTIC 1060 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1061 #endif 1062 1063 /* 1064 * Add N items to the pool. 1065 */ 1066 int 1067 pool_prime(struct pool *pp, int n) 1068 { 1069 struct pool_item_header *ph = NULL; 1070 caddr_t cp; 1071 int newpages; 1072 1073 simple_lock(&pp->pr_slock); 1074 1075 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1076 1077 while (newpages-- > 0) { 1078 simple_unlock(&pp->pr_slock); 1079 cp = pool_allocator_alloc(pp, PR_NOWAIT); 1080 if (__predict_true(cp != NULL)) 1081 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1082 1083 if (__predict_false(cp == NULL || ph == NULL)) { 1084 if (cp != NULL) 1085 pool_allocator_free(pp, cp); 1086 simple_lock(&pp->pr_slock); 1087 break; 1088 } 1089 1090 simple_lock(&pp->pr_slock); 1091 pool_prime_page(pp, cp, ph); 1092 pp->pr_npagealloc++; 1093 pp->pr_minpages++; 1094 } 1095 1096 if (pp->pr_minpages >= pp->pr_maxpages) 1097 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1098 1099 simple_unlock(&pp->pr_slock); 1100 return (0); 1101 } 1102 1103 /* 1104 * Add a page worth of items to the pool. 1105 * 1106 * Note, we must be called with the pool descriptor LOCKED. 1107 */ 1108 static void 1109 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph) 1110 { 1111 struct pool_item *pi; 1112 caddr_t cp = storage; 1113 unsigned int align = pp->pr_align; 1114 unsigned int ioff = pp->pr_itemoffset; 1115 int n; 1116 int s; 1117 1118 LOCK_ASSERT(simple_lock_held(&pp->pr_slock)); 1119 1120 #ifdef DIAGNOSTIC 1121 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1122 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1123 #endif 1124 1125 /* 1126 * Insert page header. 1127 */ 1128 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1129 TAILQ_INIT(&ph->ph_itemlist); 1130 ph->ph_page = storage; 1131 ph->ph_nmissing = 0; 1132 s = splclock(); 1133 ph->ph_time = mono_time; 1134 splx(s); 1135 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1136 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1137 1138 pp->pr_nidle++; 1139 1140 /* 1141 * Color this page. 1142 */ 1143 cp = (caddr_t)(cp + pp->pr_curcolor); 1144 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1145 pp->pr_curcolor = 0; 1146 1147 /* 1148 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1149 */ 1150 if (ioff != 0) 1151 cp = (caddr_t)(cp + (align - ioff)); 1152 1153 /* 1154 * Insert remaining chunks on the bucket list. 1155 */ 1156 n = pp->pr_itemsperpage; 1157 pp->pr_nitems += n; 1158 1159 while (n--) { 1160 pi = (struct pool_item *)cp; 1161 1162 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1163 1164 /* Insert on page list */ 1165 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1166 #ifdef DIAGNOSTIC 1167 pi->pi_magic = PI_MAGIC; 1168 #endif 1169 cp = (caddr_t)(cp + pp->pr_size); 1170 } 1171 1172 /* 1173 * If the pool was depleted, point at the new page. 1174 */ 1175 if (pp->pr_curpage == NULL) 1176 pp->pr_curpage = ph; 1177 1178 if (++pp->pr_npages > pp->pr_hiwat) 1179 pp->pr_hiwat = pp->pr_npages; 1180 } 1181 1182 /* 1183 * Used by pool_get() when nitems drops below the low water mark. This 1184 * is used to catch up pr_nitems with the low water mark. 1185 * 1186 * Note 1, we never wait for memory here, we let the caller decide what to do. 1187 * 1188 * Note 2, we must be called with the pool already locked, and we return 1189 * with it locked. 1190 */ 1191 static int 1192 pool_catchup(struct pool *pp) 1193 { 1194 struct pool_item_header *ph = NULL; 1195 caddr_t cp; 1196 int error = 0; 1197 1198 while (POOL_NEEDS_CATCHUP(pp)) { 1199 /* 1200 * Call the page back-end allocator for more memory. 1201 * 1202 * XXX: We never wait, so should we bother unlocking 1203 * the pool descriptor? 1204 */ 1205 simple_unlock(&pp->pr_slock); 1206 cp = pool_allocator_alloc(pp, PR_NOWAIT); 1207 if (__predict_true(cp != NULL)) 1208 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1209 if (__predict_false(cp == NULL || ph == NULL)) { 1210 if (cp != NULL) 1211 pool_allocator_free(pp, cp); 1212 error = ENOMEM; 1213 simple_lock(&pp->pr_slock); 1214 break; 1215 } 1216 simple_lock(&pp->pr_slock); 1217 pool_prime_page(pp, cp, ph); 1218 pp->pr_npagealloc++; 1219 } 1220 1221 return (error); 1222 } 1223 1224 static void 1225 pool_update_curpage(struct pool *pp) 1226 { 1227 1228 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1229 if (pp->pr_curpage == NULL) { 1230 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1231 } 1232 } 1233 1234 void 1235 pool_setlowat(struct pool *pp, int n) 1236 { 1237 1238 simple_lock(&pp->pr_slock); 1239 1240 pp->pr_minitems = n; 1241 pp->pr_minpages = (n == 0) 1242 ? 0 1243 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1244 1245 /* Make sure we're caught up with the newly-set low water mark. */ 1246 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1247 /* 1248 * XXX: Should we log a warning? Should we set up a timeout 1249 * to try again in a second or so? The latter could break 1250 * a caller's assumptions about interrupt protection, etc. 1251 */ 1252 } 1253 1254 simple_unlock(&pp->pr_slock); 1255 } 1256 1257 void 1258 pool_sethiwat(struct pool *pp, int n) 1259 { 1260 1261 simple_lock(&pp->pr_slock); 1262 1263 pp->pr_maxpages = (n == 0) 1264 ? 0 1265 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1266 1267 simple_unlock(&pp->pr_slock); 1268 } 1269 1270 void 1271 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1272 { 1273 1274 simple_lock(&pp->pr_slock); 1275 1276 pp->pr_hardlimit = n; 1277 pp->pr_hardlimit_warning = warnmess; 1278 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1279 pp->pr_hardlimit_warning_last.tv_sec = 0; 1280 pp->pr_hardlimit_warning_last.tv_usec = 0; 1281 1282 /* 1283 * In-line version of pool_sethiwat(), because we don't want to 1284 * release the lock. 1285 */ 1286 pp->pr_maxpages = (n == 0) 1287 ? 0 1288 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1289 1290 simple_unlock(&pp->pr_slock); 1291 } 1292 1293 /* 1294 * Release all complete pages that have not been used recently. 1295 */ 1296 int 1297 #ifdef POOL_DIAGNOSTIC 1298 _pool_reclaim(struct pool *pp, const char *file, long line) 1299 #else 1300 pool_reclaim(struct pool *pp) 1301 #endif 1302 { 1303 struct pool_item_header *ph, *phnext; 1304 struct pool_cache *pc; 1305 struct timeval curtime; 1306 struct pool_pagelist pq; 1307 struct timeval diff; 1308 int s; 1309 1310 if (pp->pr_drain_hook != NULL) { 1311 /* 1312 * The drain hook must be called with the pool unlocked. 1313 */ 1314 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1315 } 1316 1317 if (simple_lock_try(&pp->pr_slock) == 0) 1318 return (0); 1319 pr_enter(pp, file, line); 1320 1321 LIST_INIT(&pq); 1322 1323 /* 1324 * Reclaim items from the pool's caches. 1325 */ 1326 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) 1327 pool_cache_reclaim(pc); 1328 1329 s = splclock(); 1330 curtime = mono_time; 1331 splx(s); 1332 1333 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1334 phnext = LIST_NEXT(ph, ph_pagelist); 1335 1336 /* Check our minimum page claim */ 1337 if (pp->pr_npages <= pp->pr_minpages) 1338 break; 1339 1340 KASSERT(ph->ph_nmissing == 0); 1341 timersub(&curtime, &ph->ph_time, &diff); 1342 if (diff.tv_sec < pool_inactive_time) 1343 continue; 1344 1345 /* 1346 * If freeing this page would put us below 1347 * the low water mark, stop now. 1348 */ 1349 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1350 pp->pr_minitems) 1351 break; 1352 1353 pr_rmpage(pp, ph, &pq); 1354 } 1355 1356 pr_leave(pp); 1357 simple_unlock(&pp->pr_slock); 1358 if (LIST_EMPTY(&pq)) 1359 return (0); 1360 1361 while ((ph = LIST_FIRST(&pq)) != NULL) { 1362 LIST_REMOVE(ph, ph_pagelist); 1363 pool_allocator_free(pp, ph->ph_page); 1364 if (pp->pr_roflags & PR_PHINPAGE) { 1365 continue; 1366 } 1367 s = splvm(); 1368 pool_put(&phpool, ph); 1369 splx(s); 1370 } 1371 1372 return (1); 1373 } 1374 1375 /* 1376 * Drain pools, one at a time. 1377 * 1378 * Note, we must never be called from an interrupt context. 1379 */ 1380 void 1381 pool_drain(void *arg) 1382 { 1383 struct pool *pp; 1384 int s; 1385 1386 pp = NULL; 1387 s = splvm(); 1388 simple_lock(&pool_head_slock); 1389 if (drainpp == NULL) { 1390 drainpp = TAILQ_FIRST(&pool_head); 1391 } 1392 if (drainpp) { 1393 pp = drainpp; 1394 drainpp = TAILQ_NEXT(pp, pr_poollist); 1395 } 1396 simple_unlock(&pool_head_slock); 1397 pool_reclaim(pp); 1398 splx(s); 1399 } 1400 1401 /* 1402 * Diagnostic helpers. 1403 */ 1404 void 1405 pool_print(struct pool *pp, const char *modif) 1406 { 1407 int s; 1408 1409 s = splvm(); 1410 if (simple_lock_try(&pp->pr_slock) == 0) { 1411 printf("pool %s is locked; try again later\n", 1412 pp->pr_wchan); 1413 splx(s); 1414 return; 1415 } 1416 pool_print1(pp, modif, printf); 1417 simple_unlock(&pp->pr_slock); 1418 splx(s); 1419 } 1420 1421 void 1422 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1423 { 1424 int didlock = 0; 1425 1426 if (pp == NULL) { 1427 (*pr)("Must specify a pool to print.\n"); 1428 return; 1429 } 1430 1431 /* 1432 * Called from DDB; interrupts should be blocked, and all 1433 * other processors should be paused. We can skip locking 1434 * the pool in this case. 1435 * 1436 * We do a simple_lock_try() just to print the lock 1437 * status, however. 1438 */ 1439 1440 if (simple_lock_try(&pp->pr_slock) == 0) 1441 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1442 else 1443 didlock = 1; 1444 1445 pool_print1(pp, modif, pr); 1446 1447 if (didlock) 1448 simple_unlock(&pp->pr_slock); 1449 } 1450 1451 static void 1452 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...)) 1453 { 1454 struct pool_item_header *ph; 1455 #ifdef DIAGNOSTIC 1456 struct pool_item *pi; 1457 #endif 1458 1459 LIST_FOREACH(ph, pl, ph_pagelist) { 1460 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1461 ph->ph_page, ph->ph_nmissing, 1462 (u_long)ph->ph_time.tv_sec, 1463 (u_long)ph->ph_time.tv_usec); 1464 #ifdef DIAGNOSTIC 1465 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1466 if (pi->pi_magic != PI_MAGIC) { 1467 (*pr)("\t\t\titem %p, magic 0x%x\n", 1468 pi, pi->pi_magic); 1469 } 1470 } 1471 #endif 1472 } 1473 } 1474 1475 static void 1476 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1477 { 1478 struct pool_item_header *ph; 1479 struct pool_cache *pc; 1480 struct pool_cache_group *pcg; 1481 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1482 char c; 1483 1484 while ((c = *modif++) != '\0') { 1485 if (c == 'l') 1486 print_log = 1; 1487 if (c == 'p') 1488 print_pagelist = 1; 1489 if (c == 'c') 1490 print_cache = 1; 1491 } 1492 1493 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1494 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1495 pp->pr_roflags); 1496 (*pr)("\talloc %p\n", pp->pr_alloc); 1497 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1498 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1499 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1500 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1501 1502 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1503 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1504 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1505 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1506 1507 if (print_pagelist == 0) 1508 goto skip_pagelist; 1509 1510 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1511 (*pr)("\n\tempty page list:\n"); 1512 pool_print_pagelist(&pp->pr_emptypages, pr); 1513 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1514 (*pr)("\n\tfull page list:\n"); 1515 pool_print_pagelist(&pp->pr_fullpages, pr); 1516 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1517 (*pr)("\n\tpartial-page list:\n"); 1518 pool_print_pagelist(&pp->pr_partpages, pr); 1519 1520 if (pp->pr_curpage == NULL) 1521 (*pr)("\tno current page\n"); 1522 else 1523 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1524 1525 skip_pagelist: 1526 if (print_log == 0) 1527 goto skip_log; 1528 1529 (*pr)("\n"); 1530 if ((pp->pr_roflags & PR_LOGGING) == 0) 1531 (*pr)("\tno log\n"); 1532 else 1533 pr_printlog(pp, NULL, pr); 1534 1535 skip_log: 1536 if (print_cache == 0) 1537 goto skip_cache; 1538 1539 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) { 1540 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc, 1541 pc->pc_allocfrom, pc->pc_freeto); 1542 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n", 1543 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems); 1544 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1545 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); 1546 for (i = 0; i < PCG_NOBJECTS; i++) { 1547 if (pcg->pcg_objects[i].pcgo_pa != 1548 POOL_PADDR_INVALID) { 1549 (*pr)("\t\t\t%p, 0x%llx\n", 1550 pcg->pcg_objects[i].pcgo_va, 1551 (unsigned long long) 1552 pcg->pcg_objects[i].pcgo_pa); 1553 } else { 1554 (*pr)("\t\t\t%p\n", 1555 pcg->pcg_objects[i].pcgo_va); 1556 } 1557 } 1558 } 1559 } 1560 1561 skip_cache: 1562 pr_enter_check(pp, pr); 1563 } 1564 1565 static int 1566 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1567 { 1568 struct pool_item *pi; 1569 caddr_t page; 1570 int n; 1571 1572 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask); 1573 if (page != ph->ph_page && 1574 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1575 if (label != NULL) 1576 printf("%s: ", label); 1577 printf("pool(%p:%s): page inconsistency: page %p;" 1578 " at page head addr %p (p %p)\n", pp, 1579 pp->pr_wchan, ph->ph_page, 1580 ph, page); 1581 return 1; 1582 } 1583 1584 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1585 pi != NULL; 1586 pi = TAILQ_NEXT(pi,pi_list), n++) { 1587 1588 #ifdef DIAGNOSTIC 1589 if (pi->pi_magic != PI_MAGIC) { 1590 if (label != NULL) 1591 printf("%s: ", label); 1592 printf("pool(%s): free list modified: magic=%x;" 1593 " page %p; item ordinal %d;" 1594 " addr %p (p %p)\n", 1595 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1596 n, pi, page); 1597 panic("pool"); 1598 } 1599 #endif 1600 page = 1601 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask); 1602 if (page == ph->ph_page) 1603 continue; 1604 1605 if (label != NULL) 1606 printf("%s: ", label); 1607 printf("pool(%p:%s): page inconsistency: page %p;" 1608 " item ordinal %d; addr %p (p %p)\n", pp, 1609 pp->pr_wchan, ph->ph_page, 1610 n, pi, page); 1611 return 1; 1612 } 1613 return 0; 1614 } 1615 1616 1617 int 1618 pool_chk(struct pool *pp, const char *label) 1619 { 1620 struct pool_item_header *ph; 1621 int r = 0; 1622 1623 simple_lock(&pp->pr_slock); 1624 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1625 r = pool_chk_page(pp, label, ph); 1626 if (r) { 1627 goto out; 1628 } 1629 } 1630 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1631 r = pool_chk_page(pp, label, ph); 1632 if (r) { 1633 goto out; 1634 } 1635 } 1636 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1637 r = pool_chk_page(pp, label, ph); 1638 if (r) { 1639 goto out; 1640 } 1641 } 1642 1643 out: 1644 simple_unlock(&pp->pr_slock); 1645 return (r); 1646 } 1647 1648 /* 1649 * pool_cache_init: 1650 * 1651 * Initialize a pool cache. 1652 * 1653 * NOTE: If the pool must be protected from interrupts, we expect 1654 * to be called at the appropriate interrupt priority level. 1655 */ 1656 void 1657 pool_cache_init(struct pool_cache *pc, struct pool *pp, 1658 int (*ctor)(void *, void *, int), 1659 void (*dtor)(void *, void *), 1660 void *arg) 1661 { 1662 1663 TAILQ_INIT(&pc->pc_grouplist); 1664 simple_lock_init(&pc->pc_slock); 1665 1666 pc->pc_allocfrom = NULL; 1667 pc->pc_freeto = NULL; 1668 pc->pc_pool = pp; 1669 1670 pc->pc_ctor = ctor; 1671 pc->pc_dtor = dtor; 1672 pc->pc_arg = arg; 1673 1674 pc->pc_hits = 0; 1675 pc->pc_misses = 0; 1676 1677 pc->pc_ngroups = 0; 1678 1679 pc->pc_nitems = 0; 1680 1681 simple_lock(&pp->pr_slock); 1682 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist); 1683 simple_unlock(&pp->pr_slock); 1684 } 1685 1686 /* 1687 * pool_cache_destroy: 1688 * 1689 * Destroy a pool cache. 1690 */ 1691 void 1692 pool_cache_destroy(struct pool_cache *pc) 1693 { 1694 struct pool *pp = pc->pc_pool; 1695 1696 /* First, invalidate the entire cache. */ 1697 pool_cache_invalidate(pc); 1698 1699 /* ...and remove it from the pool's cache list. */ 1700 simple_lock(&pp->pr_slock); 1701 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist); 1702 simple_unlock(&pp->pr_slock); 1703 } 1704 1705 static __inline void * 1706 pcg_get(struct pool_cache_group *pcg, paddr_t *pap) 1707 { 1708 void *object; 1709 u_int idx; 1710 1711 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 1712 KASSERT(pcg->pcg_avail != 0); 1713 idx = --pcg->pcg_avail; 1714 1715 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL); 1716 object = pcg->pcg_objects[idx].pcgo_va; 1717 if (pap != NULL) 1718 *pap = pcg->pcg_objects[idx].pcgo_pa; 1719 pcg->pcg_objects[idx].pcgo_va = NULL; 1720 1721 return (object); 1722 } 1723 1724 static __inline void 1725 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa) 1726 { 1727 u_int idx; 1728 1729 KASSERT(pcg->pcg_avail < PCG_NOBJECTS); 1730 idx = pcg->pcg_avail++; 1731 1732 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL); 1733 pcg->pcg_objects[idx].pcgo_va = object; 1734 pcg->pcg_objects[idx].pcgo_pa = pa; 1735 } 1736 1737 /* 1738 * pool_cache_get{,_paddr}: 1739 * 1740 * Get an object from a pool cache (optionally returning 1741 * the physical address of the object). 1742 */ 1743 void * 1744 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap) 1745 { 1746 struct pool_cache_group *pcg; 1747 void *object; 1748 1749 #ifdef LOCKDEBUG 1750 if (flags & PR_WAITOK) 1751 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)"); 1752 #endif 1753 1754 simple_lock(&pc->pc_slock); 1755 1756 if ((pcg = pc->pc_allocfrom) == NULL) { 1757 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1758 if (pcg->pcg_avail != 0) { 1759 pc->pc_allocfrom = pcg; 1760 goto have_group; 1761 } 1762 } 1763 1764 /* 1765 * No groups with any available objects. Allocate 1766 * a new object, construct it, and return it to 1767 * the caller. We will allocate a group, if necessary, 1768 * when the object is freed back to the cache. 1769 */ 1770 pc->pc_misses++; 1771 simple_unlock(&pc->pc_slock); 1772 object = pool_get(pc->pc_pool, flags); 1773 if (object != NULL && pc->pc_ctor != NULL) { 1774 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 1775 pool_put(pc->pc_pool, object); 1776 return (NULL); 1777 } 1778 } 1779 if (object != NULL && pap != NULL) { 1780 #ifdef POOL_VTOPHYS 1781 *pap = POOL_VTOPHYS(object); 1782 #else 1783 *pap = POOL_PADDR_INVALID; 1784 #endif 1785 } 1786 return (object); 1787 } 1788 1789 have_group: 1790 pc->pc_hits++; 1791 pc->pc_nitems--; 1792 object = pcg_get(pcg, pap); 1793 1794 if (pcg->pcg_avail == 0) 1795 pc->pc_allocfrom = NULL; 1796 1797 simple_unlock(&pc->pc_slock); 1798 1799 return (object); 1800 } 1801 1802 /* 1803 * pool_cache_put{,_paddr}: 1804 * 1805 * Put an object back to the pool cache (optionally caching the 1806 * physical address of the object). 1807 */ 1808 void 1809 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa) 1810 { 1811 struct pool_cache_group *pcg; 1812 int s; 1813 1814 simple_lock(&pc->pc_slock); 1815 1816 if ((pcg = pc->pc_freeto) == NULL) { 1817 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1818 if (pcg->pcg_avail != PCG_NOBJECTS) { 1819 pc->pc_freeto = pcg; 1820 goto have_group; 1821 } 1822 } 1823 1824 /* 1825 * No empty groups to free the object to. Attempt to 1826 * allocate one. 1827 */ 1828 simple_unlock(&pc->pc_slock); 1829 s = splvm(); 1830 pcg = pool_get(&pcgpool, PR_NOWAIT); 1831 splx(s); 1832 if (pcg != NULL) { 1833 memset(pcg, 0, sizeof(*pcg)); 1834 simple_lock(&pc->pc_slock); 1835 pc->pc_ngroups++; 1836 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list); 1837 if (pc->pc_freeto == NULL) 1838 pc->pc_freeto = pcg; 1839 goto have_group; 1840 } 1841 1842 /* 1843 * Unable to allocate a cache group; destruct the object 1844 * and free it back to the pool. 1845 */ 1846 pool_cache_destruct_object(pc, object); 1847 return; 1848 } 1849 1850 have_group: 1851 pc->pc_nitems++; 1852 pcg_put(pcg, object, pa); 1853 1854 if (pcg->pcg_avail == PCG_NOBJECTS) 1855 pc->pc_freeto = NULL; 1856 1857 simple_unlock(&pc->pc_slock); 1858 } 1859 1860 /* 1861 * pool_cache_destruct_object: 1862 * 1863 * Force destruction of an object and its release back into 1864 * the pool. 1865 */ 1866 void 1867 pool_cache_destruct_object(struct pool_cache *pc, void *object) 1868 { 1869 1870 if (pc->pc_dtor != NULL) 1871 (*pc->pc_dtor)(pc->pc_arg, object); 1872 pool_put(pc->pc_pool, object); 1873 } 1874 1875 /* 1876 * pool_cache_do_invalidate: 1877 * 1878 * This internal function implements pool_cache_invalidate() and 1879 * pool_cache_reclaim(). 1880 */ 1881 static void 1882 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups, 1883 void (*putit)(struct pool *, void *)) 1884 { 1885 struct pool_cache_group *pcg, *npcg; 1886 void *object; 1887 int s; 1888 1889 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1890 pcg = npcg) { 1891 npcg = TAILQ_NEXT(pcg, pcg_list); 1892 while (pcg->pcg_avail != 0) { 1893 pc->pc_nitems--; 1894 object = pcg_get(pcg, NULL); 1895 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg) 1896 pc->pc_allocfrom = NULL; 1897 if (pc->pc_dtor != NULL) 1898 (*pc->pc_dtor)(pc->pc_arg, object); 1899 (*putit)(pc->pc_pool, object); 1900 } 1901 if (free_groups) { 1902 pc->pc_ngroups--; 1903 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list); 1904 if (pc->pc_freeto == pcg) 1905 pc->pc_freeto = NULL; 1906 s = splvm(); 1907 pool_put(&pcgpool, pcg); 1908 splx(s); 1909 } 1910 } 1911 } 1912 1913 /* 1914 * pool_cache_invalidate: 1915 * 1916 * Invalidate a pool cache (destruct and release all of the 1917 * cached objects). 1918 */ 1919 void 1920 pool_cache_invalidate(struct pool_cache *pc) 1921 { 1922 1923 simple_lock(&pc->pc_slock); 1924 pool_cache_do_invalidate(pc, 0, pool_put); 1925 simple_unlock(&pc->pc_slock); 1926 } 1927 1928 /* 1929 * pool_cache_reclaim: 1930 * 1931 * Reclaim a pool cache for pool_reclaim(). 1932 */ 1933 static void 1934 pool_cache_reclaim(struct pool_cache *pc) 1935 { 1936 1937 simple_lock(&pc->pc_slock); 1938 pool_cache_do_invalidate(pc, 1, pool_do_put); 1939 simple_unlock(&pc->pc_slock); 1940 } 1941 1942 /* 1943 * Pool backend allocators. 1944 * 1945 * Each pool has a backend allocator that handles allocation, deallocation, 1946 * and any additional draining that might be needed. 1947 * 1948 * We provide two standard allocators: 1949 * 1950 * pool_allocator_kmem - the default when no allocator is specified 1951 * 1952 * pool_allocator_nointr - used for pools that will not be accessed 1953 * in interrupt context. 1954 */ 1955 void *pool_page_alloc(struct pool *, int); 1956 void pool_page_free(struct pool *, void *); 1957 1958 struct pool_allocator pool_allocator_kmem = { 1959 pool_page_alloc, pool_page_free, 0, 1960 }; 1961 1962 void *pool_page_alloc_nointr(struct pool *, int); 1963 void pool_page_free_nointr(struct pool *, void *); 1964 1965 struct pool_allocator pool_allocator_nointr = { 1966 pool_page_alloc_nointr, pool_page_free_nointr, 0, 1967 }; 1968 1969 #ifdef POOL_SUBPAGE 1970 void *pool_subpage_alloc(struct pool *, int); 1971 void pool_subpage_free(struct pool *, void *); 1972 1973 struct pool_allocator pool_allocator_kmem_subpage = { 1974 pool_subpage_alloc, pool_subpage_free, 0, 1975 }; 1976 #endif /* POOL_SUBPAGE */ 1977 1978 /* 1979 * We have at least three different resources for the same allocation and 1980 * each resource can be depleted. First, we have the ready elements in the 1981 * pool. Then we have the resource (typically a vm_map) for this allocator. 1982 * Finally, we have physical memory. Waiting for any of these can be 1983 * unnecessary when any other is freed, but the kernel doesn't support 1984 * sleeping on multiple wait channels, so we have to employ another strategy. 1985 * 1986 * The caller sleeps on the pool (so that it can be awakened when an item 1987 * is returned to the pool), but we set PA_WANT on the allocator. When a 1988 * page is returned to the allocator and PA_WANT is set, pool_allocator_free 1989 * will wake up all sleeping pools belonging to this allocator. 1990 * 1991 * XXX Thundering herd. 1992 */ 1993 void * 1994 pool_allocator_alloc(struct pool *org, int flags) 1995 { 1996 struct pool_allocator *pa = org->pr_alloc; 1997 struct pool *pp, *start; 1998 int s, freed; 1999 void *res; 2000 2001 LOCK_ASSERT(!simple_lock_held(&org->pr_slock)); 2002 2003 do { 2004 if ((res = (*pa->pa_alloc)(org, flags)) != NULL) 2005 return (res); 2006 if ((flags & PR_WAITOK) == 0) { 2007 /* 2008 * We only run the drain hookhere if PR_NOWAIT. 2009 * In other cases, the hook will be run in 2010 * pool_reclaim(). 2011 */ 2012 if (org->pr_drain_hook != NULL) { 2013 (*org->pr_drain_hook)(org->pr_drain_hook_arg, 2014 flags); 2015 if ((res = (*pa->pa_alloc)(org, flags)) != NULL) 2016 return (res); 2017 } 2018 break; 2019 } 2020 2021 /* 2022 * Drain all pools, except "org", that use this 2023 * allocator. We do this to reclaim VA space. 2024 * pa_alloc is responsible for waiting for 2025 * physical memory. 2026 * 2027 * XXX We risk looping forever if start if someone 2028 * calls pool_destroy on "start". But there is no 2029 * other way to have potentially sleeping pool_reclaim, 2030 * non-sleeping locks on pool_allocator, and some 2031 * stirring of drained pools in the allocator. 2032 * 2033 * XXX Maybe we should use pool_head_slock for locking 2034 * the allocators? 2035 */ 2036 freed = 0; 2037 2038 s = splvm(); 2039 simple_lock(&pa->pa_slock); 2040 pp = start = TAILQ_FIRST(&pa->pa_list); 2041 do { 2042 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list); 2043 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list); 2044 if (pp == org) 2045 continue; 2046 simple_unlock(&pa->pa_slock); 2047 freed = pool_reclaim(pp); 2048 simple_lock(&pa->pa_slock); 2049 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start && 2050 freed == 0); 2051 2052 if (freed == 0) { 2053 /* 2054 * We set PA_WANT here, the caller will most likely 2055 * sleep waiting for pages (if not, this won't hurt 2056 * that much), and there is no way to set this in 2057 * the caller without violating locking order. 2058 */ 2059 pa->pa_flags |= PA_WANT; 2060 } 2061 simple_unlock(&pa->pa_slock); 2062 splx(s); 2063 } while (freed); 2064 return (NULL); 2065 } 2066 2067 void 2068 pool_allocator_free(struct pool *pp, void *v) 2069 { 2070 struct pool_allocator *pa = pp->pr_alloc; 2071 int s; 2072 2073 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock)); 2074 2075 (*pa->pa_free)(pp, v); 2076 2077 s = splvm(); 2078 simple_lock(&pa->pa_slock); 2079 if ((pa->pa_flags & PA_WANT) == 0) { 2080 simple_unlock(&pa->pa_slock); 2081 splx(s); 2082 return; 2083 } 2084 2085 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 2086 simple_lock(&pp->pr_slock); 2087 if ((pp->pr_flags & PR_WANTED) != 0) { 2088 pp->pr_flags &= ~PR_WANTED; 2089 wakeup(pp); 2090 } 2091 simple_unlock(&pp->pr_slock); 2092 } 2093 pa->pa_flags &= ~PA_WANT; 2094 simple_unlock(&pa->pa_slock); 2095 splx(s); 2096 } 2097 2098 void * 2099 pool_page_alloc(struct pool *pp, int flags) 2100 { 2101 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 2102 2103 return ((void *) uvm_km_alloc_poolpage(waitok)); 2104 } 2105 2106 void 2107 pool_page_free(struct pool *pp, void *v) 2108 { 2109 2110 uvm_km_free_poolpage((vaddr_t) v); 2111 } 2112 2113 #ifdef POOL_SUBPAGE 2114 /* Sub-page allocator, for machines with large hardware pages. */ 2115 void * 2116 pool_subpage_alloc(struct pool *pp, int flags) 2117 { 2118 void *v; 2119 int s; 2120 s = splvm(); 2121 v = pool_get(&psppool, flags); 2122 splx(s); 2123 return v; 2124 } 2125 2126 void 2127 pool_subpage_free(struct pool *pp, void *v) 2128 { 2129 int s; 2130 s = splvm(); 2131 pool_put(&psppool, v); 2132 splx(s); 2133 } 2134 2135 /* We don't provide a real nointr allocator. Maybe later. */ 2136 void * 2137 pool_page_alloc_nointr(struct pool *pp, int flags) 2138 { 2139 2140 return (pool_subpage_alloc(pp, flags)); 2141 } 2142 2143 void 2144 pool_page_free_nointr(struct pool *pp, void *v) 2145 { 2146 2147 pool_subpage_free(pp, v); 2148 } 2149 #else 2150 void * 2151 pool_page_alloc_nointr(struct pool *pp, int flags) 2152 { 2153 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 2154 2155 return ((void *) uvm_km_alloc_poolpage1(kernel_map, 2156 uvm.kernel_object, waitok)); 2157 } 2158 2159 void 2160 pool_page_free_nointr(struct pool *pp, void *v) 2161 { 2162 2163 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v); 2164 } 2165 #endif /* POOL_SUBPAGE */ 2166