1 /* $NetBSD: subr_pool.c,v 1.39 2000/06/27 17:41:34 mrg Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include "opt_pool.h" 41 #include "opt_poollog.h" 42 #include "opt_lockdebug.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/errno.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 54 #include <uvm/uvm.h> 55 56 /* 57 * Pool resource management utility. 58 * 59 * Memory is allocated in pages which are split into pieces according 60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist' 61 * in the pool structure and the individual pool items are on a linked list 62 * headed by `ph_itemlist' in each page header. The memory for building 63 * the page list is either taken from the allocated pages themselves (for 64 * small pool items) or taken from an internal pool of page headers (`phpool'). 65 */ 66 67 /* List of all pools */ 68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 69 70 /* Private pool for page header structures */ 71 static struct pool phpool; 72 73 /* # of seconds to retain page after last use */ 74 int pool_inactive_time = 10; 75 76 /* Next candidate for drainage (see pool_drain()) */ 77 static struct pool *drainpp; 78 79 /* This spin lock protects both pool_head and drainpp. */ 80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 81 82 struct pool_item_header { 83 /* Page headers */ 84 TAILQ_ENTRY(pool_item_header) 85 ph_pagelist; /* pool page list */ 86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 87 LIST_ENTRY(pool_item_header) 88 ph_hashlist; /* Off-page page headers */ 89 int ph_nmissing; /* # of chunks in use */ 90 caddr_t ph_page; /* this page's address */ 91 struct timeval ph_time; /* last referenced */ 92 }; 93 94 struct pool_item { 95 #ifdef DIAGNOSTIC 96 int pi_magic; 97 #endif 98 #define PI_MAGIC 0xdeadbeef 99 /* Other entries use only this list entry */ 100 TAILQ_ENTRY(pool_item) pi_list; 101 }; 102 103 104 #define PR_HASH_INDEX(pp,addr) \ 105 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1)) 106 107 108 109 static struct pool_item_header 110 *pr_find_pagehead __P((struct pool *, caddr_t)); 111 static void pr_rmpage __P((struct pool *, struct pool_item_header *)); 112 static int pool_catchup __P((struct pool *)); 113 static void pool_prime_page __P((struct pool *, caddr_t)); 114 static void *pool_page_alloc __P((unsigned long, int, int)); 115 static void pool_page_free __P((void *, unsigned long, int)); 116 117 static void pool_print1 __P((struct pool *, const char *, 118 void (*)(const char *, ...))); 119 120 /* 121 * Pool log entry. An array of these is allocated in pool_create(). 122 */ 123 struct pool_log { 124 const char *pl_file; 125 long pl_line; 126 int pl_action; 127 #define PRLOG_GET 1 128 #define PRLOG_PUT 2 129 void *pl_addr; 130 }; 131 132 /* Number of entries in pool log buffers */ 133 #ifndef POOL_LOGSIZE 134 #define POOL_LOGSIZE 10 135 #endif 136 137 int pool_logsize = POOL_LOGSIZE; 138 139 #ifdef DIAGNOSTIC 140 static void pr_log __P((struct pool *, void *, int, const char *, long)); 141 static void pr_printlog __P((struct pool *, struct pool_item *, 142 void (*)(const char *, ...))); 143 static void pr_enter __P((struct pool *, const char *, long)); 144 static void pr_leave __P((struct pool *)); 145 static void pr_enter_check __P((struct pool *, 146 void (*)(const char *, ...))); 147 148 static __inline__ void 149 pr_log(pp, v, action, file, line) 150 struct pool *pp; 151 void *v; 152 int action; 153 const char *file; 154 long line; 155 { 156 int n = pp->pr_curlogentry; 157 struct pool_log *pl; 158 159 if ((pp->pr_roflags & PR_LOGGING) == 0) 160 return; 161 162 /* 163 * Fill in the current entry. Wrap around and overwrite 164 * the oldest entry if necessary. 165 */ 166 pl = &pp->pr_log[n]; 167 pl->pl_file = file; 168 pl->pl_line = line; 169 pl->pl_action = action; 170 pl->pl_addr = v; 171 if (++n >= pp->pr_logsize) 172 n = 0; 173 pp->pr_curlogentry = n; 174 } 175 176 static void 177 pr_printlog(pp, pi, pr) 178 struct pool *pp; 179 struct pool_item *pi; 180 void (*pr) __P((const char *, ...)); 181 { 182 int i = pp->pr_logsize; 183 int n = pp->pr_curlogentry; 184 185 if ((pp->pr_roflags & PR_LOGGING) == 0) 186 return; 187 188 /* 189 * Print all entries in this pool's log. 190 */ 191 while (i-- > 0) { 192 struct pool_log *pl = &pp->pr_log[n]; 193 if (pl->pl_action != 0) { 194 if (pi == NULL || pi == pl->pl_addr) { 195 (*pr)("\tlog entry %d:\n", i); 196 (*pr)("\t\taction = %s, addr = %p\n", 197 pl->pl_action == PRLOG_GET ? "get" : "put", 198 pl->pl_addr); 199 (*pr)("\t\tfile: %s at line %lu\n", 200 pl->pl_file, pl->pl_line); 201 } 202 } 203 if (++n >= pp->pr_logsize) 204 n = 0; 205 } 206 } 207 208 static __inline__ void 209 pr_enter(pp, file, line) 210 struct pool *pp; 211 const char *file; 212 long line; 213 { 214 215 if (__predict_false(pp->pr_entered_file != NULL)) { 216 printf("pool %s: reentrancy at file %s line %ld\n", 217 pp->pr_wchan, file, line); 218 printf(" previous entry at file %s line %ld\n", 219 pp->pr_entered_file, pp->pr_entered_line); 220 panic("pr_enter"); 221 } 222 223 pp->pr_entered_file = file; 224 pp->pr_entered_line = line; 225 } 226 227 static __inline__ void 228 pr_leave(pp) 229 struct pool *pp; 230 { 231 232 if (__predict_false(pp->pr_entered_file == NULL)) { 233 printf("pool %s not entered?\n", pp->pr_wchan); 234 panic("pr_leave"); 235 } 236 237 pp->pr_entered_file = NULL; 238 pp->pr_entered_line = 0; 239 } 240 241 static __inline__ void 242 pr_enter_check(pp, pr) 243 struct pool *pp; 244 void (*pr) __P((const char *, ...)); 245 { 246 247 if (pp->pr_entered_file != NULL) 248 (*pr)("\n\tcurrently entered from file %s line %ld\n", 249 pp->pr_entered_file, pp->pr_entered_line); 250 } 251 #else 252 #define pr_log(pp, v, action, file, line) 253 #define pr_printlog(pp, pi, pr) 254 #define pr_enter(pp, file, line) 255 #define pr_leave(pp) 256 #define pr_enter_check(pp, pr) 257 #endif /* DIAGNOSTIC */ 258 259 /* 260 * Return the pool page header based on page address. 261 */ 262 static __inline__ struct pool_item_header * 263 pr_find_pagehead(pp, page) 264 struct pool *pp; 265 caddr_t page; 266 { 267 struct pool_item_header *ph; 268 269 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 270 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 271 272 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]); 273 ph != NULL; 274 ph = LIST_NEXT(ph, ph_hashlist)) { 275 if (ph->ph_page == page) 276 return (ph); 277 } 278 return (NULL); 279 } 280 281 /* 282 * Remove a page from the pool. 283 */ 284 static __inline__ void 285 pr_rmpage(pp, ph) 286 struct pool *pp; 287 struct pool_item_header *ph; 288 { 289 290 /* 291 * If the page was idle, decrement the idle page count. 292 */ 293 if (ph->ph_nmissing == 0) { 294 #ifdef DIAGNOSTIC 295 if (pp->pr_nidle == 0) 296 panic("pr_rmpage: nidle inconsistent"); 297 if (pp->pr_nitems < pp->pr_itemsperpage) 298 panic("pr_rmpage: nitems inconsistent"); 299 #endif 300 pp->pr_nidle--; 301 } 302 303 pp->pr_nitems -= pp->pr_itemsperpage; 304 305 /* 306 * Unlink a page from the pool and release it. 307 */ 308 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 309 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype); 310 pp->pr_npages--; 311 pp->pr_npagefree++; 312 313 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 314 int s; 315 LIST_REMOVE(ph, ph_hashlist); 316 s = splhigh(); 317 pool_put(&phpool, ph); 318 splx(s); 319 } 320 321 if (pp->pr_curpage == ph) { 322 /* 323 * Find a new non-empty page header, if any. 324 * Start search from the page head, to increase the 325 * chance for "high water" pages to be freed. 326 */ 327 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 328 ph = TAILQ_NEXT(ph, ph_pagelist)) 329 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 330 break; 331 332 pp->pr_curpage = ph; 333 } 334 } 335 336 /* 337 * Allocate and initialize a pool. 338 */ 339 struct pool * 340 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype) 341 size_t size; 342 u_int align; 343 u_int ioff; 344 int nitems; 345 const char *wchan; 346 size_t pagesz; 347 void *(*alloc) __P((unsigned long, int, int)); 348 void (*release) __P((void *, unsigned long, int)); 349 int mtype; 350 { 351 struct pool *pp; 352 int flags; 353 354 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT); 355 if (pp == NULL) 356 return (NULL); 357 358 flags = PR_FREEHEADER; 359 pool_init(pp, size, align, ioff, flags, wchan, pagesz, 360 alloc, release, mtype); 361 362 if (nitems != 0) { 363 if (pool_prime(pp, nitems, NULL) != 0) { 364 pool_destroy(pp); 365 return (NULL); 366 } 367 } 368 369 return (pp); 370 } 371 372 /* 373 * Initialize the given pool resource structure. 374 * 375 * We export this routine to allow other kernel parts to declare 376 * static pools that must be initialized before malloc() is available. 377 */ 378 void 379 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype) 380 struct pool *pp; 381 size_t size; 382 u_int align; 383 u_int ioff; 384 int flags; 385 const char *wchan; 386 size_t pagesz; 387 void *(*alloc) __P((unsigned long, int, int)); 388 void (*release) __P((void *, unsigned long, int)); 389 int mtype; 390 { 391 int off, slack, i; 392 393 #ifdef POOL_DIAGNOSTIC 394 /* 395 * Always log if POOL_DIAGNOSTIC is defined. 396 */ 397 if (pool_logsize != 0) 398 flags |= PR_LOGGING; 399 #endif 400 401 /* 402 * Check arguments and construct default values. 403 */ 404 if (!powerof2(pagesz)) 405 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz); 406 407 if (alloc == NULL && release == NULL) { 408 alloc = pool_page_alloc; 409 release = pool_page_free; 410 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */ 411 } else if ((alloc != NULL && release != NULL) == 0) { 412 /* If you specifiy one, must specify both. */ 413 panic("pool_init: must specify alloc and release together"); 414 } 415 416 if (pagesz == 0) 417 pagesz = PAGE_SIZE; 418 419 if (align == 0) 420 align = ALIGN(1); 421 422 if (size < sizeof(struct pool_item)) 423 size = sizeof(struct pool_item); 424 425 size = ALIGN(size); 426 if (size >= pagesz) 427 panic("pool_init: pool item size (%lu) too large", 428 (u_long)size); 429 430 /* 431 * Initialize the pool structure. 432 */ 433 TAILQ_INIT(&pp->pr_pagelist); 434 pp->pr_curpage = NULL; 435 pp->pr_npages = 0; 436 pp->pr_minitems = 0; 437 pp->pr_minpages = 0; 438 pp->pr_maxpages = UINT_MAX; 439 pp->pr_roflags = flags; 440 pp->pr_flags = 0; 441 pp->pr_size = size; 442 pp->pr_align = align; 443 pp->pr_wchan = wchan; 444 pp->pr_mtype = mtype; 445 pp->pr_alloc = alloc; 446 pp->pr_free = release; 447 pp->pr_pagesz = pagesz; 448 pp->pr_pagemask = ~(pagesz - 1); 449 pp->pr_pageshift = ffs(pagesz) - 1; 450 pp->pr_nitems = 0; 451 pp->pr_nout = 0; 452 pp->pr_hardlimit = UINT_MAX; 453 pp->pr_hardlimit_warning = NULL; 454 pp->pr_hardlimit_ratecap.tv_sec = 0; 455 pp->pr_hardlimit_ratecap.tv_usec = 0; 456 pp->pr_hardlimit_warning_last.tv_sec = 0; 457 pp->pr_hardlimit_warning_last.tv_usec = 0; 458 459 /* 460 * Decide whether to put the page header off page to avoid 461 * wasting too large a part of the page. Off-page page headers 462 * go on a hash table, so we can match a returned item 463 * with its header based on the page address. 464 * We use 1/16 of the page size as the threshold (XXX: tune) 465 */ 466 if (pp->pr_size < pagesz/16) { 467 /* Use the end of the page for the page header */ 468 pp->pr_roflags |= PR_PHINPAGE; 469 pp->pr_phoffset = off = 470 pagesz - ALIGN(sizeof(struct pool_item_header)); 471 } else { 472 /* The page header will be taken from our page header pool */ 473 pp->pr_phoffset = 0; 474 off = pagesz; 475 for (i = 0; i < PR_HASHTABSIZE; i++) { 476 LIST_INIT(&pp->pr_hashtab[i]); 477 } 478 } 479 480 /* 481 * Alignment is to take place at `ioff' within the item. This means 482 * we must reserve up to `align - 1' bytes on the page to allow 483 * appropriate positioning of each item. 484 * 485 * Silently enforce `0 <= ioff < align'. 486 */ 487 pp->pr_itemoffset = ioff = ioff % align; 488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 489 490 /* 491 * Use the slack between the chunks and the page header 492 * for "cache coloring". 493 */ 494 slack = off - pp->pr_itemsperpage * pp->pr_size; 495 pp->pr_maxcolor = (slack / align) * align; 496 pp->pr_curcolor = 0; 497 498 pp->pr_nget = 0; 499 pp->pr_nfail = 0; 500 pp->pr_nput = 0; 501 pp->pr_npagealloc = 0; 502 pp->pr_npagefree = 0; 503 pp->pr_hiwat = 0; 504 pp->pr_nidle = 0; 505 506 if (flags & PR_LOGGING) { 507 if (kmem_map == NULL || 508 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 509 M_TEMP, M_NOWAIT)) == NULL) 510 pp->pr_roflags &= ~PR_LOGGING; 511 pp->pr_curlogentry = 0; 512 pp->pr_logsize = pool_logsize; 513 } 514 515 pp->pr_entered_file = NULL; 516 pp->pr_entered_line = 0; 517 518 simple_lock_init(&pp->pr_slock); 519 520 /* 521 * Initialize private page header pool if we haven't done so yet. 522 * XXX LOCKING. 523 */ 524 if (phpool.pr_size == 0) { 525 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 526 0, "phpool", 0, 0, 0, 0); 527 } 528 529 /* Insert into the list of all pools. */ 530 simple_lock(&pool_head_slock); 531 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 532 simple_unlock(&pool_head_slock); 533 } 534 535 /* 536 * De-commision a pool resource. 537 */ 538 void 539 pool_destroy(pp) 540 struct pool *pp; 541 { 542 struct pool_item_header *ph; 543 544 #ifdef DIAGNOSTIC 545 if (pp->pr_nout != 0) { 546 pr_printlog(pp, NULL, printf); 547 panic("pool_destroy: pool busy: still out: %u\n", 548 pp->pr_nout); 549 } 550 #endif 551 552 /* Remove all pages */ 553 if ((pp->pr_roflags & PR_STATIC) == 0) 554 while ((ph = pp->pr_pagelist.tqh_first) != NULL) 555 pr_rmpage(pp, ph); 556 557 /* Remove from global pool list */ 558 simple_lock(&pool_head_slock); 559 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 560 /* XXX Only clear this if we were drainpp? */ 561 drainpp = NULL; 562 simple_unlock(&pool_head_slock); 563 564 if ((pp->pr_roflags & PR_LOGGING) != 0) 565 free(pp->pr_log, M_TEMP); 566 567 if (pp->pr_roflags & PR_FREEHEADER) 568 free(pp, M_POOL); 569 } 570 571 572 /* 573 * Grab an item from the pool; must be called at appropriate spl level 574 */ 575 void * 576 _pool_get(pp, flags, file, line) 577 struct pool *pp; 578 int flags; 579 const char *file; 580 long line; 581 { 582 void *v; 583 struct pool_item *pi; 584 struct pool_item_header *ph; 585 586 #ifdef DIAGNOSTIC 587 if (__predict_false((pp->pr_roflags & PR_STATIC) && 588 (flags & PR_MALLOCOK))) { 589 pr_printlog(pp, NULL, printf); 590 panic("pool_get: static"); 591 } 592 #endif 593 594 if (__predict_false(curproc == NULL && doing_shutdown == 0 && 595 (flags & PR_WAITOK) != 0)) 596 panic("pool_get: must have NOWAIT"); 597 598 simple_lock(&pp->pr_slock); 599 pr_enter(pp, file, line); 600 601 startover: 602 /* 603 * Check to see if we've reached the hard limit. If we have, 604 * and we can wait, then wait until an item has been returned to 605 * the pool. 606 */ 607 #ifdef DIAGNOSTIC 608 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 609 pr_leave(pp); 610 simple_unlock(&pp->pr_slock); 611 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 612 } 613 #endif 614 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 615 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 616 /* 617 * XXX: A warning isn't logged in this case. Should 618 * it be? 619 */ 620 pp->pr_flags |= PR_WANTED; 621 pr_leave(pp); 622 simple_unlock(&pp->pr_slock); 623 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0); 624 simple_lock(&pp->pr_slock); 625 pr_enter(pp, file, line); 626 goto startover; 627 } 628 629 /* 630 * Log a message that the hard limit has been hit. 631 */ 632 if (pp->pr_hardlimit_warning != NULL && 633 ratecheck(&pp->pr_hardlimit_warning_last, 634 &pp->pr_hardlimit_ratecap)) 635 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 636 637 if (flags & PR_URGENT) 638 panic("pool_get: urgent"); 639 640 pp->pr_nfail++; 641 642 pr_leave(pp); 643 simple_unlock(&pp->pr_slock); 644 return (NULL); 645 } 646 647 /* 648 * The convention we use is that if `curpage' is not NULL, then 649 * it points at a non-empty bucket. In particular, `curpage' 650 * never points at a page header which has PR_PHINPAGE set and 651 * has no items in its bucket. 652 */ 653 if ((ph = pp->pr_curpage) == NULL) { 654 void *v; 655 656 #ifdef DIAGNOSTIC 657 if (pp->pr_nitems != 0) { 658 simple_unlock(&pp->pr_slock); 659 printf("pool_get: %s: curpage NULL, nitems %u\n", 660 pp->pr_wchan, pp->pr_nitems); 661 panic("pool_get: nitems inconsistent\n"); 662 } 663 #endif 664 665 /* 666 * Call the back-end page allocator for more memory. 667 * Release the pool lock, as the back-end page allocator 668 * may block. 669 */ 670 pr_leave(pp); 671 simple_unlock(&pp->pr_slock); 672 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype); 673 simple_lock(&pp->pr_slock); 674 pr_enter(pp, file, line); 675 676 if (v == NULL) { 677 /* 678 * We were unable to allocate a page, but 679 * we released the lock during allocation, 680 * so perhaps items were freed back to the 681 * pool. Check for this case. 682 */ 683 if (pp->pr_curpage != NULL) 684 goto startover; 685 686 if (flags & PR_URGENT) 687 panic("pool_get: urgent"); 688 689 if ((flags & PR_WAITOK) == 0) { 690 pp->pr_nfail++; 691 pr_leave(pp); 692 simple_unlock(&pp->pr_slock); 693 return (NULL); 694 } 695 696 /* 697 * Wait for items to be returned to this pool. 698 * 699 * XXX: we actually want to wait just until 700 * the page allocator has memory again. Depending 701 * on this pool's usage, we might get stuck here 702 * for a long time. 703 * 704 * XXX: maybe we should wake up once a second and 705 * try again? 706 */ 707 pp->pr_flags |= PR_WANTED; 708 pr_leave(pp); 709 simple_unlock(&pp->pr_slock); 710 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0); 711 simple_lock(&pp->pr_slock); 712 pr_enter(pp, file, line); 713 goto startover; 714 } 715 716 /* We have more memory; add it to the pool */ 717 pp->pr_npagealloc++; 718 pool_prime_page(pp, v); 719 720 /* Start the allocation process over. */ 721 goto startover; 722 } 723 724 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 725 pr_leave(pp); 726 simple_unlock(&pp->pr_slock); 727 panic("pool_get: %s: page empty", pp->pr_wchan); 728 } 729 #ifdef DIAGNOSTIC 730 if (__predict_false(pp->pr_nitems == 0)) { 731 pr_leave(pp); 732 simple_unlock(&pp->pr_slock); 733 printf("pool_get: %s: items on itemlist, nitems %u\n", 734 pp->pr_wchan, pp->pr_nitems); 735 panic("pool_get: nitems inconsistent\n"); 736 } 737 #endif 738 pr_log(pp, v, PRLOG_GET, file, line); 739 740 #ifdef DIAGNOSTIC 741 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 742 pr_printlog(pp, pi, printf); 743 panic("pool_get(%s): free list modified: magic=%x; page %p;" 744 " item addr %p\n", 745 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 746 } 747 #endif 748 749 /* 750 * Remove from item list. 751 */ 752 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 753 pp->pr_nitems--; 754 pp->pr_nout++; 755 if (ph->ph_nmissing == 0) { 756 #ifdef DIAGNOSTIC 757 if (__predict_false(pp->pr_nidle == 0)) 758 panic("pool_get: nidle inconsistent"); 759 #endif 760 pp->pr_nidle--; 761 } 762 ph->ph_nmissing++; 763 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) { 764 #ifdef DIAGNOSTIC 765 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 766 pr_leave(pp); 767 simple_unlock(&pp->pr_slock); 768 panic("pool_get: %s: nmissing inconsistent", 769 pp->pr_wchan); 770 } 771 #endif 772 /* 773 * Find a new non-empty page header, if any. 774 * Start search from the page head, to increase 775 * the chance for "high water" pages to be freed. 776 * 777 * Migrate empty pages to the end of the list. This 778 * will speed the update of curpage as pages become 779 * idle. Empty pages intermingled with idle pages 780 * is no big deal. As soon as a page becomes un-empty, 781 * it will move back to the head of the list. 782 */ 783 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 784 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 785 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 786 ph = TAILQ_NEXT(ph, ph_pagelist)) 787 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 788 break; 789 790 pp->pr_curpage = ph; 791 } 792 793 pp->pr_nget++; 794 795 /* 796 * If we have a low water mark and we are now below that low 797 * water mark, add more items to the pool. 798 */ 799 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) { 800 /* 801 * XXX: Should we log a warning? Should we set up a timeout 802 * to try again in a second or so? The latter could break 803 * a caller's assumptions about interrupt protection, etc. 804 */ 805 } 806 807 pr_leave(pp); 808 simple_unlock(&pp->pr_slock); 809 return (v); 810 } 811 812 /* 813 * Return resource to the pool; must be called at appropriate spl level 814 */ 815 void 816 _pool_put(pp, v, file, line) 817 struct pool *pp; 818 void *v; 819 const char *file; 820 long line; 821 { 822 struct pool_item *pi = v; 823 struct pool_item_header *ph; 824 caddr_t page; 825 int s; 826 827 page = (caddr_t)((u_long)v & pp->pr_pagemask); 828 829 simple_lock(&pp->pr_slock); 830 pr_enter(pp, file, line); 831 832 #ifdef DIAGNOSTIC 833 if (__predict_false(pp->pr_nout == 0)) { 834 printf("pool %s: putting with none out\n", 835 pp->pr_wchan); 836 panic("pool_put"); 837 } 838 #endif 839 840 pr_log(pp, v, PRLOG_PUT, file, line); 841 842 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 843 pr_printlog(pp, NULL, printf); 844 panic("pool_put: %s: page header missing", pp->pr_wchan); 845 } 846 847 #ifdef LOCKDEBUG 848 /* 849 * Check if we're freeing a locked simple lock. 850 */ 851 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 852 #endif 853 854 /* 855 * Return to item list. 856 */ 857 #ifdef DIAGNOSTIC 858 pi->pi_magic = PI_MAGIC; 859 #endif 860 #ifdef DEBUG 861 { 862 int i, *ip = v; 863 864 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 865 *ip++ = PI_MAGIC; 866 } 867 } 868 #endif 869 870 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 871 ph->ph_nmissing--; 872 pp->pr_nput++; 873 pp->pr_nitems++; 874 pp->pr_nout--; 875 876 /* Cancel "pool empty" condition if it exists */ 877 if (pp->pr_curpage == NULL) 878 pp->pr_curpage = ph; 879 880 if (pp->pr_flags & PR_WANTED) { 881 pp->pr_flags &= ~PR_WANTED; 882 if (ph->ph_nmissing == 0) 883 pp->pr_nidle++; 884 pr_leave(pp); 885 simple_unlock(&pp->pr_slock); 886 wakeup((caddr_t)pp); 887 return; 888 } 889 890 /* 891 * If this page is now complete, do one of two things: 892 * 893 * (1) If we have more pages than the page high water 894 * mark, free the page back to the system. 895 * 896 * (2) Move it to the end of the page list, so that 897 * we minimize our chances of fragmenting the 898 * pool. Idle pages migrate to the end (along with 899 * completely empty pages, so that we find un-empty 900 * pages more quickly when we update curpage) of the 901 * list so they can be more easily swept up by 902 * the pagedaemon when pages are scarce. 903 */ 904 if (ph->ph_nmissing == 0) { 905 pp->pr_nidle++; 906 if (pp->pr_npages > pp->pr_maxpages) { 907 pr_rmpage(pp, ph); 908 } else { 909 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 910 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 911 912 /* 913 * Update the timestamp on the page. A page must 914 * be idle for some period of time before it can 915 * be reclaimed by the pagedaemon. This minimizes 916 * ping-pong'ing for memory. 917 */ 918 s = splclock(); 919 ph->ph_time = mono_time; 920 splx(s); 921 922 /* 923 * Update the current page pointer. Just look for 924 * the first page with any free items. 925 * 926 * XXX: Maybe we want an option to look for the 927 * page with the fewest available items, to minimize 928 * fragmentation? 929 */ 930 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 931 ph = TAILQ_NEXT(ph, ph_pagelist)) 932 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 933 break; 934 935 pp->pr_curpage = ph; 936 } 937 } 938 /* 939 * If the page has just become un-empty, move it to the head of 940 * the list, and make it the current page. The next allocation 941 * will get the item from this page, instead of further fragmenting 942 * the pool. 943 */ 944 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 945 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 946 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 947 pp->pr_curpage = ph; 948 } 949 950 pr_leave(pp); 951 simple_unlock(&pp->pr_slock); 952 953 } 954 955 /* 956 * Add N items to the pool. 957 */ 958 int 959 pool_prime(pp, n, storage) 960 struct pool *pp; 961 int n; 962 caddr_t storage; 963 { 964 caddr_t cp; 965 int newnitems, newpages; 966 967 #ifdef DIAGNOSTIC 968 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC))) 969 panic("pool_prime: static"); 970 /* !storage && static caught below */ 971 #endif 972 973 simple_lock(&pp->pr_slock); 974 975 newnitems = pp->pr_minitems + n; 976 newpages = 977 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage 978 - pp->pr_minpages; 979 980 while (newpages-- > 0) { 981 if (pp->pr_roflags & PR_STATIC) { 982 cp = storage; 983 storage += pp->pr_pagesz; 984 } else { 985 simple_unlock(&pp->pr_slock); 986 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 987 simple_lock(&pp->pr_slock); 988 } 989 990 if (cp == NULL) { 991 simple_unlock(&pp->pr_slock); 992 return (ENOMEM); 993 } 994 995 pp->pr_npagealloc++; 996 pool_prime_page(pp, cp); 997 pp->pr_minpages++; 998 } 999 1000 pp->pr_minitems = newnitems; 1001 1002 if (pp->pr_minpages >= pp->pr_maxpages) 1003 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1004 1005 simple_unlock(&pp->pr_slock); 1006 return (0); 1007 } 1008 1009 /* 1010 * Add a page worth of items to the pool. 1011 * 1012 * Note, we must be called with the pool descriptor LOCKED. 1013 */ 1014 static void 1015 pool_prime_page(pp, storage) 1016 struct pool *pp; 1017 caddr_t storage; 1018 { 1019 struct pool_item *pi; 1020 struct pool_item_header *ph; 1021 caddr_t cp = storage; 1022 unsigned int align = pp->pr_align; 1023 unsigned int ioff = pp->pr_itemoffset; 1024 int s, n; 1025 1026 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0) 1027 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1028 1029 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 1030 ph = (struct pool_item_header *)(cp + pp->pr_phoffset); 1031 } else { 1032 s = splhigh(); 1033 ph = pool_get(&phpool, PR_URGENT); 1034 splx(s); 1035 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)], 1036 ph, ph_hashlist); 1037 } 1038 1039 /* 1040 * Insert page header. 1041 */ 1042 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1043 TAILQ_INIT(&ph->ph_itemlist); 1044 ph->ph_page = storage; 1045 ph->ph_nmissing = 0; 1046 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1047 1048 pp->pr_nidle++; 1049 1050 /* 1051 * Color this page. 1052 */ 1053 cp = (caddr_t)(cp + pp->pr_curcolor); 1054 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1055 pp->pr_curcolor = 0; 1056 1057 /* 1058 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1059 */ 1060 if (ioff != 0) 1061 cp = (caddr_t)(cp + (align - ioff)); 1062 1063 /* 1064 * Insert remaining chunks on the bucket list. 1065 */ 1066 n = pp->pr_itemsperpage; 1067 pp->pr_nitems += n; 1068 1069 while (n--) { 1070 pi = (struct pool_item *)cp; 1071 1072 /* Insert on page list */ 1073 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1074 #ifdef DIAGNOSTIC 1075 pi->pi_magic = PI_MAGIC; 1076 #endif 1077 cp = (caddr_t)(cp + pp->pr_size); 1078 } 1079 1080 /* 1081 * If the pool was depleted, point at the new page. 1082 */ 1083 if (pp->pr_curpage == NULL) 1084 pp->pr_curpage = ph; 1085 1086 if (++pp->pr_npages > pp->pr_hiwat) 1087 pp->pr_hiwat = pp->pr_npages; 1088 } 1089 1090 /* 1091 * Like pool_prime(), except this is used by pool_get() when nitems 1092 * drops below the low water mark. This is used to catch up nitmes 1093 * with the low water mark. 1094 * 1095 * Note 1, we never wait for memory here, we let the caller decide what to do. 1096 * 1097 * Note 2, this doesn't work with static pools. 1098 * 1099 * Note 3, we must be called with the pool already locked, and we return 1100 * with it locked. 1101 */ 1102 static int 1103 pool_catchup(pp) 1104 struct pool *pp; 1105 { 1106 caddr_t cp; 1107 int error = 0; 1108 1109 if (pp->pr_roflags & PR_STATIC) { 1110 /* 1111 * We dropped below the low water mark, and this is not a 1112 * good thing. Log a warning. 1113 * 1114 * XXX: rate-limit this? 1115 */ 1116 printf("WARNING: static pool `%s' dropped below low water " 1117 "mark\n", pp->pr_wchan); 1118 return (0); 1119 } 1120 1121 while (pp->pr_nitems < pp->pr_minitems) { 1122 /* 1123 * Call the page back-end allocator for more memory. 1124 * 1125 * XXX: We never wait, so should we bother unlocking 1126 * the pool descriptor? 1127 */ 1128 simple_unlock(&pp->pr_slock); 1129 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 1130 simple_lock(&pp->pr_slock); 1131 if (__predict_false(cp == NULL)) { 1132 error = ENOMEM; 1133 break; 1134 } 1135 pp->pr_npagealloc++; 1136 pool_prime_page(pp, cp); 1137 } 1138 1139 return (error); 1140 } 1141 1142 void 1143 pool_setlowat(pp, n) 1144 pool_handle_t pp; 1145 int n; 1146 { 1147 int error; 1148 1149 simple_lock(&pp->pr_slock); 1150 1151 pp->pr_minitems = n; 1152 pp->pr_minpages = (n == 0) 1153 ? 0 1154 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1155 1156 /* Make sure we're caught up with the newly-set low water mark. */ 1157 if ((error = pool_catchup(pp)) != 0) { 1158 /* 1159 * XXX: Should we log a warning? Should we set up a timeout 1160 * to try again in a second or so? The latter could break 1161 * a caller's assumptions about interrupt protection, etc. 1162 */ 1163 } 1164 1165 simple_unlock(&pp->pr_slock); 1166 } 1167 1168 void 1169 pool_sethiwat(pp, n) 1170 pool_handle_t pp; 1171 int n; 1172 { 1173 1174 simple_lock(&pp->pr_slock); 1175 1176 pp->pr_maxpages = (n == 0) 1177 ? 0 1178 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1179 1180 simple_unlock(&pp->pr_slock); 1181 } 1182 1183 void 1184 pool_sethardlimit(pp, n, warnmess, ratecap) 1185 pool_handle_t pp; 1186 int n; 1187 const char *warnmess; 1188 int ratecap; 1189 { 1190 1191 simple_lock(&pp->pr_slock); 1192 1193 pp->pr_hardlimit = n; 1194 pp->pr_hardlimit_warning = warnmess; 1195 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1196 pp->pr_hardlimit_warning_last.tv_sec = 0; 1197 pp->pr_hardlimit_warning_last.tv_usec = 0; 1198 1199 /* 1200 * In-line version of pool_sethiwat(), because we don't want to 1201 * release the lock. 1202 */ 1203 pp->pr_maxpages = (n == 0) 1204 ? 0 1205 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1206 1207 simple_unlock(&pp->pr_slock); 1208 } 1209 1210 /* 1211 * Default page allocator. 1212 */ 1213 static void * 1214 pool_page_alloc(sz, flags, mtype) 1215 unsigned long sz; 1216 int flags; 1217 int mtype; 1218 { 1219 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1220 1221 return ((void *)uvm_km_alloc_poolpage(waitok)); 1222 } 1223 1224 static void 1225 pool_page_free(v, sz, mtype) 1226 void *v; 1227 unsigned long sz; 1228 int mtype; 1229 { 1230 1231 uvm_km_free_poolpage((vaddr_t)v); 1232 } 1233 1234 /* 1235 * Alternate pool page allocator for pools that know they will 1236 * never be accessed in interrupt context. 1237 */ 1238 void * 1239 pool_page_alloc_nointr(sz, flags, mtype) 1240 unsigned long sz; 1241 int flags; 1242 int mtype; 1243 { 1244 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1245 1246 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object, 1247 waitok)); 1248 } 1249 1250 void 1251 pool_page_free_nointr(v, sz, mtype) 1252 void *v; 1253 unsigned long sz; 1254 int mtype; 1255 { 1256 1257 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v); 1258 } 1259 1260 1261 /* 1262 * Release all complete pages that have not been used recently. 1263 */ 1264 void 1265 _pool_reclaim(pp, file, line) 1266 pool_handle_t pp; 1267 const char *file; 1268 long line; 1269 { 1270 struct pool_item_header *ph, *phnext; 1271 struct timeval curtime; 1272 int s; 1273 1274 if (pp->pr_roflags & PR_STATIC) 1275 return; 1276 1277 if (simple_lock_try(&pp->pr_slock) == 0) 1278 return; 1279 pr_enter(pp, file, line); 1280 1281 s = splclock(); 1282 curtime = mono_time; 1283 splx(s); 1284 1285 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) { 1286 phnext = TAILQ_NEXT(ph, ph_pagelist); 1287 1288 /* Check our minimum page claim */ 1289 if (pp->pr_npages <= pp->pr_minpages) 1290 break; 1291 1292 if (ph->ph_nmissing == 0) { 1293 struct timeval diff; 1294 timersub(&curtime, &ph->ph_time, &diff); 1295 if (diff.tv_sec < pool_inactive_time) 1296 continue; 1297 1298 /* 1299 * If freeing this page would put us below 1300 * the low water mark, stop now. 1301 */ 1302 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1303 pp->pr_minitems) 1304 break; 1305 1306 pr_rmpage(pp, ph); 1307 } 1308 } 1309 1310 pr_leave(pp); 1311 simple_unlock(&pp->pr_slock); 1312 } 1313 1314 1315 /* 1316 * Drain pools, one at a time. 1317 * 1318 * Note, we must never be called from an interrupt context. 1319 */ 1320 void 1321 pool_drain(arg) 1322 void *arg; 1323 { 1324 struct pool *pp; 1325 int s; 1326 1327 s = splimp(); 1328 simple_lock(&pool_head_slock); 1329 1330 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL) 1331 goto out; 1332 1333 pp = drainpp; 1334 drainpp = TAILQ_NEXT(pp, pr_poollist); 1335 1336 pool_reclaim(pp); 1337 1338 out: 1339 simple_unlock(&pool_head_slock); 1340 splx(s); 1341 } 1342 1343 1344 /* 1345 * Diagnostic helpers. 1346 */ 1347 void 1348 pool_print(pp, modif) 1349 struct pool *pp; 1350 const char *modif; 1351 { 1352 int s; 1353 1354 s = splimp(); 1355 if (simple_lock_try(&pp->pr_slock) == 0) { 1356 printf("pool %s is locked; try again later\n", 1357 pp->pr_wchan); 1358 splx(s); 1359 return; 1360 } 1361 pool_print1(pp, modif, printf); 1362 simple_unlock(&pp->pr_slock); 1363 splx(s); 1364 } 1365 1366 void 1367 pool_printit(pp, modif, pr) 1368 struct pool *pp; 1369 const char *modif; 1370 void (*pr) __P((const char *, ...)); 1371 { 1372 int didlock = 0; 1373 1374 if (pp == NULL) { 1375 (*pr)("Must specify a pool to print.\n"); 1376 return; 1377 } 1378 1379 /* 1380 * Called from DDB; interrupts should be blocked, and all 1381 * other processors should be paused. We can skip locking 1382 * the pool in this case. 1383 * 1384 * We do a simple_lock_try() just to print the lock 1385 * status, however. 1386 */ 1387 1388 if (simple_lock_try(&pp->pr_slock) == 0) 1389 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1390 else 1391 didlock = 1; 1392 1393 pool_print1(pp, modif, pr); 1394 1395 if (didlock) 1396 simple_unlock(&pp->pr_slock); 1397 } 1398 1399 static void 1400 pool_print1(pp, modif, pr) 1401 struct pool *pp; 1402 const char *modif; 1403 void (*pr) __P((const char *, ...)); 1404 { 1405 struct pool_item_header *ph; 1406 #ifdef DIAGNOSTIC 1407 struct pool_item *pi; 1408 #endif 1409 int print_log = 0, print_pagelist = 0; 1410 char c; 1411 1412 while ((c = *modif++) != '\0') { 1413 if (c == 'l') 1414 print_log = 1; 1415 if (c == 'p') 1416 print_pagelist = 1; 1417 modif++; 1418 } 1419 1420 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1421 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1422 pp->pr_roflags); 1423 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype); 1424 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free); 1425 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1426 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1427 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1428 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1429 1430 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1431 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1432 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1433 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1434 1435 if (print_pagelist == 0) 1436 goto skip_pagelist; 1437 1438 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 1439 (*pr)("\n\tpage list:\n"); 1440 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) { 1441 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1442 ph->ph_page, ph->ph_nmissing, 1443 (u_long)ph->ph_time.tv_sec, 1444 (u_long)ph->ph_time.tv_usec); 1445 #ifdef DIAGNOSTIC 1446 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL; 1447 pi = TAILQ_NEXT(pi, pi_list)) { 1448 if (pi->pi_magic != PI_MAGIC) { 1449 (*pr)("\t\t\titem %p, magic 0x%x\n", 1450 pi, pi->pi_magic); 1451 } 1452 } 1453 #endif 1454 } 1455 if (pp->pr_curpage == NULL) 1456 (*pr)("\tno current page\n"); 1457 else 1458 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1459 1460 skip_pagelist: 1461 1462 if (print_log == 0) 1463 goto skip_log; 1464 1465 (*pr)("\n"); 1466 if ((pp->pr_roflags & PR_LOGGING) == 0) 1467 (*pr)("\tno log\n"); 1468 else 1469 pr_printlog(pp, NULL, pr); 1470 1471 skip_log: 1472 1473 pr_enter_check(pp, pr); 1474 } 1475 1476 int 1477 pool_chk(pp, label) 1478 struct pool *pp; 1479 char *label; 1480 { 1481 struct pool_item_header *ph; 1482 int r = 0; 1483 1484 simple_lock(&pp->pr_slock); 1485 1486 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 1487 ph = TAILQ_NEXT(ph, ph_pagelist)) { 1488 1489 struct pool_item *pi; 1490 int n; 1491 caddr_t page; 1492 1493 page = (caddr_t)((u_long)ph & pp->pr_pagemask); 1494 if (page != ph->ph_page && 1495 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1496 if (label != NULL) 1497 printf("%s: ", label); 1498 printf("pool(%p:%s): page inconsistency: page %p;" 1499 " at page head addr %p (p %p)\n", pp, 1500 pp->pr_wchan, ph->ph_page, 1501 ph, page); 1502 r++; 1503 goto out; 1504 } 1505 1506 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1507 pi != NULL; 1508 pi = TAILQ_NEXT(pi,pi_list), n++) { 1509 1510 #ifdef DIAGNOSTIC 1511 if (pi->pi_magic != PI_MAGIC) { 1512 if (label != NULL) 1513 printf("%s: ", label); 1514 printf("pool(%s): free list modified: magic=%x;" 1515 " page %p; item ordinal %d;" 1516 " addr %p (p %p)\n", 1517 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1518 n, pi, page); 1519 panic("pool"); 1520 } 1521 #endif 1522 page = (caddr_t)((u_long)pi & pp->pr_pagemask); 1523 if (page == ph->ph_page) 1524 continue; 1525 1526 if (label != NULL) 1527 printf("%s: ", label); 1528 printf("pool(%p:%s): page inconsistency: page %p;" 1529 " item ordinal %d; addr %p (p %p)\n", pp, 1530 pp->pr_wchan, ph->ph_page, 1531 n, pi, page); 1532 r++; 1533 goto out; 1534 } 1535 } 1536 out: 1537 simple_unlock(&pp->pr_slock); 1538 return (r); 1539 } 1540