xref: /netbsd-src/sys/kern/subr_pool.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: subr_pool.c,v 1.39 2000/06/27 17:41:34 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 
54 #include <uvm/uvm.h>
55 
56 /*
57  * Pool resource management utility.
58  *
59  * Memory is allocated in pages which are split into pieces according
60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61  * in the pool structure and the individual pool items are on a linked list
62  * headed by `ph_itemlist' in each page header. The memory for building
63  * the page list is either taken from the allocated pages themselves (for
64  * small pool items) or taken from an internal pool of page headers (`phpool').
65  */
66 
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69 
70 /* Private pool for page header structures */
71 static struct pool phpool;
72 
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75 
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool	*drainpp;
78 
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81 
82 struct pool_item_header {
83 	/* Page headers */
84 	TAILQ_ENTRY(pool_item_header)
85 				ph_pagelist;	/* pool page list */
86 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
87 	LIST_ENTRY(pool_item_header)
88 				ph_hashlist;	/* Off-page page headers */
89 	int			ph_nmissing;	/* # of chunks in use */
90 	caddr_t			ph_page;	/* this page's address */
91 	struct timeval		ph_time;	/* last referenced */
92 };
93 
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 	int pi_magic;
97 #endif
98 #define	PI_MAGIC 0xdeadbeef
99 	/* Other entries use only this list entry */
100 	TAILQ_ENTRY(pool_item)	pi_list;
101 };
102 
103 
104 #define	PR_HASH_INDEX(pp,addr) \
105 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
106 
107 
108 
109 static struct pool_item_header
110 		*pr_find_pagehead __P((struct pool *, caddr_t));
111 static void	pr_rmpage __P((struct pool *, struct pool_item_header *));
112 static int	pool_catchup __P((struct pool *));
113 static void	pool_prime_page __P((struct pool *, caddr_t));
114 static void	*pool_page_alloc __P((unsigned long, int, int));
115 static void	pool_page_free __P((void *, unsigned long, int));
116 
117 static void pool_print1 __P((struct pool *, const char *,
118 	void (*)(const char *, ...)));
119 
120 /*
121  * Pool log entry. An array of these is allocated in pool_create().
122  */
123 struct pool_log {
124 	const char	*pl_file;
125 	long		pl_line;
126 	int		pl_action;
127 #define	PRLOG_GET	1
128 #define	PRLOG_PUT	2
129 	void		*pl_addr;
130 };
131 
132 /* Number of entries in pool log buffers */
133 #ifndef POOL_LOGSIZE
134 #define	POOL_LOGSIZE	10
135 #endif
136 
137 int pool_logsize = POOL_LOGSIZE;
138 
139 #ifdef DIAGNOSTIC
140 static void	pr_log __P((struct pool *, void *, int, const char *, long));
141 static void	pr_printlog __P((struct pool *, struct pool_item *,
142 		    void (*)(const char *, ...)));
143 static void	pr_enter __P((struct pool *, const char *, long));
144 static void	pr_leave __P((struct pool *));
145 static void	pr_enter_check __P((struct pool *,
146 		    void (*)(const char *, ...)));
147 
148 static __inline__ void
149 pr_log(pp, v, action, file, line)
150 	struct pool	*pp;
151 	void		*v;
152 	int		action;
153 	const char	*file;
154 	long		line;
155 {
156 	int n = pp->pr_curlogentry;
157 	struct pool_log *pl;
158 
159 	if ((pp->pr_roflags & PR_LOGGING) == 0)
160 		return;
161 
162 	/*
163 	 * Fill in the current entry. Wrap around and overwrite
164 	 * the oldest entry if necessary.
165 	 */
166 	pl = &pp->pr_log[n];
167 	pl->pl_file = file;
168 	pl->pl_line = line;
169 	pl->pl_action = action;
170 	pl->pl_addr = v;
171 	if (++n >= pp->pr_logsize)
172 		n = 0;
173 	pp->pr_curlogentry = n;
174 }
175 
176 static void
177 pr_printlog(pp, pi, pr)
178 	struct pool *pp;
179 	struct pool_item *pi;
180 	void (*pr) __P((const char *, ...));
181 {
182 	int i = pp->pr_logsize;
183 	int n = pp->pr_curlogentry;
184 
185 	if ((pp->pr_roflags & PR_LOGGING) == 0)
186 		return;
187 
188 	/*
189 	 * Print all entries in this pool's log.
190 	 */
191 	while (i-- > 0) {
192 		struct pool_log *pl = &pp->pr_log[n];
193 		if (pl->pl_action != 0) {
194 			if (pi == NULL || pi == pl->pl_addr) {
195 				(*pr)("\tlog entry %d:\n", i);
196 				(*pr)("\t\taction = %s, addr = %p\n",
197 				    pl->pl_action == PRLOG_GET ? "get" : "put",
198 				    pl->pl_addr);
199 				(*pr)("\t\tfile: %s at line %lu\n",
200 				    pl->pl_file, pl->pl_line);
201 			}
202 		}
203 		if (++n >= pp->pr_logsize)
204 			n = 0;
205 	}
206 }
207 
208 static __inline__ void
209 pr_enter(pp, file, line)
210 	struct pool *pp;
211 	const char *file;
212 	long line;
213 {
214 
215 	if (__predict_false(pp->pr_entered_file != NULL)) {
216 		printf("pool %s: reentrancy at file %s line %ld\n",
217 		    pp->pr_wchan, file, line);
218 		printf("         previous entry at file %s line %ld\n",
219 		    pp->pr_entered_file, pp->pr_entered_line);
220 		panic("pr_enter");
221 	}
222 
223 	pp->pr_entered_file = file;
224 	pp->pr_entered_line = line;
225 }
226 
227 static __inline__ void
228 pr_leave(pp)
229 	struct pool *pp;
230 {
231 
232 	if (__predict_false(pp->pr_entered_file == NULL)) {
233 		printf("pool %s not entered?\n", pp->pr_wchan);
234 		panic("pr_leave");
235 	}
236 
237 	pp->pr_entered_file = NULL;
238 	pp->pr_entered_line = 0;
239 }
240 
241 static __inline__ void
242 pr_enter_check(pp, pr)
243 	struct pool *pp;
244 	void (*pr) __P((const char *, ...));
245 {
246 
247 	if (pp->pr_entered_file != NULL)
248 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
249 		    pp->pr_entered_file, pp->pr_entered_line);
250 }
251 #else
252 #define	pr_log(pp, v, action, file, line)
253 #define	pr_printlog(pp, pi, pr)
254 #define	pr_enter(pp, file, line)
255 #define	pr_leave(pp)
256 #define	pr_enter_check(pp, pr)
257 #endif /* DIAGNOSTIC */
258 
259 /*
260  * Return the pool page header based on page address.
261  */
262 static __inline__ struct pool_item_header *
263 pr_find_pagehead(pp, page)
264 	struct pool *pp;
265 	caddr_t page;
266 {
267 	struct pool_item_header *ph;
268 
269 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
270 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
271 
272 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
273 	     ph != NULL;
274 	     ph = LIST_NEXT(ph, ph_hashlist)) {
275 		if (ph->ph_page == page)
276 			return (ph);
277 	}
278 	return (NULL);
279 }
280 
281 /*
282  * Remove a page from the pool.
283  */
284 static __inline__ void
285 pr_rmpage(pp, ph)
286 	struct pool *pp;
287 	struct pool_item_header *ph;
288 {
289 
290 	/*
291 	 * If the page was idle, decrement the idle page count.
292 	 */
293 	if (ph->ph_nmissing == 0) {
294 #ifdef DIAGNOSTIC
295 		if (pp->pr_nidle == 0)
296 			panic("pr_rmpage: nidle inconsistent");
297 		if (pp->pr_nitems < pp->pr_itemsperpage)
298 			panic("pr_rmpage: nitems inconsistent");
299 #endif
300 		pp->pr_nidle--;
301 	}
302 
303 	pp->pr_nitems -= pp->pr_itemsperpage;
304 
305 	/*
306 	 * Unlink a page from the pool and release it.
307 	 */
308 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
309 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
310 	pp->pr_npages--;
311 	pp->pr_npagefree++;
312 
313 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
314 		int s;
315 		LIST_REMOVE(ph, ph_hashlist);
316 		s = splhigh();
317 		pool_put(&phpool, ph);
318 		splx(s);
319 	}
320 
321 	if (pp->pr_curpage == ph) {
322 		/*
323 		 * Find a new non-empty page header, if any.
324 		 * Start search from the page head, to increase the
325 		 * chance for "high water" pages to be freed.
326 		 */
327 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
328 		     ph = TAILQ_NEXT(ph, ph_pagelist))
329 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
330 				break;
331 
332 		pp->pr_curpage = ph;
333 	}
334 }
335 
336 /*
337  * Allocate and initialize a pool.
338  */
339 struct pool *
340 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
341 	size_t	size;
342 	u_int	align;
343 	u_int	ioff;
344 	int	nitems;
345 	const char *wchan;
346 	size_t	pagesz;
347 	void	*(*alloc) __P((unsigned long, int, int));
348 	void	(*release) __P((void *, unsigned long, int));
349 	int	mtype;
350 {
351 	struct pool *pp;
352 	int flags;
353 
354 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
355 	if (pp == NULL)
356 		return (NULL);
357 
358 	flags = PR_FREEHEADER;
359 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
360 		  alloc, release, mtype);
361 
362 	if (nitems != 0) {
363 		if (pool_prime(pp, nitems, NULL) != 0) {
364 			pool_destroy(pp);
365 			return (NULL);
366 		}
367 	}
368 
369 	return (pp);
370 }
371 
372 /*
373  * Initialize the given pool resource structure.
374  *
375  * We export this routine to allow other kernel parts to declare
376  * static pools that must be initialized before malloc() is available.
377  */
378 void
379 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
380 	struct pool	*pp;
381 	size_t		size;
382 	u_int		align;
383 	u_int		ioff;
384 	int		flags;
385 	const char	*wchan;
386 	size_t		pagesz;
387 	void		*(*alloc) __P((unsigned long, int, int));
388 	void		(*release) __P((void *, unsigned long, int));
389 	int		mtype;
390 {
391 	int off, slack, i;
392 
393 #ifdef POOL_DIAGNOSTIC
394 	/*
395 	 * Always log if POOL_DIAGNOSTIC is defined.
396 	 */
397 	if (pool_logsize != 0)
398 		flags |= PR_LOGGING;
399 #endif
400 
401 	/*
402 	 * Check arguments and construct default values.
403 	 */
404 	if (!powerof2(pagesz))
405 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
406 
407 	if (alloc == NULL && release == NULL) {
408 		alloc = pool_page_alloc;
409 		release = pool_page_free;
410 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
411 	} else if ((alloc != NULL && release != NULL) == 0) {
412 		/* If you specifiy one, must specify both. */
413 		panic("pool_init: must specify alloc and release together");
414 	}
415 
416 	if (pagesz == 0)
417 		pagesz = PAGE_SIZE;
418 
419 	if (align == 0)
420 		align = ALIGN(1);
421 
422 	if (size < sizeof(struct pool_item))
423 		size = sizeof(struct pool_item);
424 
425 	size = ALIGN(size);
426 	if (size >= pagesz)
427 		panic("pool_init: pool item size (%lu) too large",
428 		      (u_long)size);
429 
430 	/*
431 	 * Initialize the pool structure.
432 	 */
433 	TAILQ_INIT(&pp->pr_pagelist);
434 	pp->pr_curpage = NULL;
435 	pp->pr_npages = 0;
436 	pp->pr_minitems = 0;
437 	pp->pr_minpages = 0;
438 	pp->pr_maxpages = UINT_MAX;
439 	pp->pr_roflags = flags;
440 	pp->pr_flags = 0;
441 	pp->pr_size = size;
442 	pp->pr_align = align;
443 	pp->pr_wchan = wchan;
444 	pp->pr_mtype = mtype;
445 	pp->pr_alloc = alloc;
446 	pp->pr_free = release;
447 	pp->pr_pagesz = pagesz;
448 	pp->pr_pagemask = ~(pagesz - 1);
449 	pp->pr_pageshift = ffs(pagesz) - 1;
450 	pp->pr_nitems = 0;
451 	pp->pr_nout = 0;
452 	pp->pr_hardlimit = UINT_MAX;
453 	pp->pr_hardlimit_warning = NULL;
454 	pp->pr_hardlimit_ratecap.tv_sec = 0;
455 	pp->pr_hardlimit_ratecap.tv_usec = 0;
456 	pp->pr_hardlimit_warning_last.tv_sec = 0;
457 	pp->pr_hardlimit_warning_last.tv_usec = 0;
458 
459 	/*
460 	 * Decide whether to put the page header off page to avoid
461 	 * wasting too large a part of the page. Off-page page headers
462 	 * go on a hash table, so we can match a returned item
463 	 * with its header based on the page address.
464 	 * We use 1/16 of the page size as the threshold (XXX: tune)
465 	 */
466 	if (pp->pr_size < pagesz/16) {
467 		/* Use the end of the page for the page header */
468 		pp->pr_roflags |= PR_PHINPAGE;
469 		pp->pr_phoffset = off =
470 			pagesz - ALIGN(sizeof(struct pool_item_header));
471 	} else {
472 		/* The page header will be taken from our page header pool */
473 		pp->pr_phoffset = 0;
474 		off = pagesz;
475 		for (i = 0; i < PR_HASHTABSIZE; i++) {
476 			LIST_INIT(&pp->pr_hashtab[i]);
477 		}
478 	}
479 
480 	/*
481 	 * Alignment is to take place at `ioff' within the item. This means
482 	 * we must reserve up to `align - 1' bytes on the page to allow
483 	 * appropriate positioning of each item.
484 	 *
485 	 * Silently enforce `0 <= ioff < align'.
486 	 */
487 	pp->pr_itemoffset = ioff = ioff % align;
488 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
489 
490 	/*
491 	 * Use the slack between the chunks and the page header
492 	 * for "cache coloring".
493 	 */
494 	slack = off - pp->pr_itemsperpage * pp->pr_size;
495 	pp->pr_maxcolor = (slack / align) * align;
496 	pp->pr_curcolor = 0;
497 
498 	pp->pr_nget = 0;
499 	pp->pr_nfail = 0;
500 	pp->pr_nput = 0;
501 	pp->pr_npagealloc = 0;
502 	pp->pr_npagefree = 0;
503 	pp->pr_hiwat = 0;
504 	pp->pr_nidle = 0;
505 
506 	if (flags & PR_LOGGING) {
507 		if (kmem_map == NULL ||
508 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
509 		     M_TEMP, M_NOWAIT)) == NULL)
510 			pp->pr_roflags &= ~PR_LOGGING;
511 		pp->pr_curlogentry = 0;
512 		pp->pr_logsize = pool_logsize;
513 	}
514 
515 	pp->pr_entered_file = NULL;
516 	pp->pr_entered_line = 0;
517 
518 	simple_lock_init(&pp->pr_slock);
519 
520 	/*
521 	 * Initialize private page header pool if we haven't done so yet.
522 	 * XXX LOCKING.
523 	 */
524 	if (phpool.pr_size == 0) {
525 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
526 			  0, "phpool", 0, 0, 0, 0);
527 	}
528 
529 	/* Insert into the list of all pools. */
530 	simple_lock(&pool_head_slock);
531 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
532 	simple_unlock(&pool_head_slock);
533 }
534 
535 /*
536  * De-commision a pool resource.
537  */
538 void
539 pool_destroy(pp)
540 	struct pool *pp;
541 {
542 	struct pool_item_header *ph;
543 
544 #ifdef DIAGNOSTIC
545 	if (pp->pr_nout != 0) {
546 		pr_printlog(pp, NULL, printf);
547 		panic("pool_destroy: pool busy: still out: %u\n",
548 		    pp->pr_nout);
549 	}
550 #endif
551 
552 	/* Remove all pages */
553 	if ((pp->pr_roflags & PR_STATIC) == 0)
554 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
555 			pr_rmpage(pp, ph);
556 
557 	/* Remove from global pool list */
558 	simple_lock(&pool_head_slock);
559 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
560 	/* XXX Only clear this if we were drainpp? */
561 	drainpp = NULL;
562 	simple_unlock(&pool_head_slock);
563 
564 	if ((pp->pr_roflags & PR_LOGGING) != 0)
565 		free(pp->pr_log, M_TEMP);
566 
567 	if (pp->pr_roflags & PR_FREEHEADER)
568 		free(pp, M_POOL);
569 }
570 
571 
572 /*
573  * Grab an item from the pool; must be called at appropriate spl level
574  */
575 void *
576 _pool_get(pp, flags, file, line)
577 	struct pool *pp;
578 	int flags;
579 	const char *file;
580 	long line;
581 {
582 	void *v;
583 	struct pool_item *pi;
584 	struct pool_item_header *ph;
585 
586 #ifdef DIAGNOSTIC
587 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
588 			    (flags & PR_MALLOCOK))) {
589 		pr_printlog(pp, NULL, printf);
590 		panic("pool_get: static");
591 	}
592 #endif
593 
594 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
595 			    (flags & PR_WAITOK) != 0))
596 		panic("pool_get: must have NOWAIT");
597 
598 	simple_lock(&pp->pr_slock);
599 	pr_enter(pp, file, line);
600 
601  startover:
602 	/*
603 	 * Check to see if we've reached the hard limit.  If we have,
604 	 * and we can wait, then wait until an item has been returned to
605 	 * the pool.
606 	 */
607 #ifdef DIAGNOSTIC
608 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
609 		pr_leave(pp);
610 		simple_unlock(&pp->pr_slock);
611 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
612 	}
613 #endif
614 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
615 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
616 			/*
617 			 * XXX: A warning isn't logged in this case.  Should
618 			 * it be?
619 			 */
620 			pp->pr_flags |= PR_WANTED;
621 			pr_leave(pp);
622 			simple_unlock(&pp->pr_slock);
623 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
624 			simple_lock(&pp->pr_slock);
625 			pr_enter(pp, file, line);
626 			goto startover;
627 		}
628 
629 		/*
630 		 * Log a message that the hard limit has been hit.
631 		 */
632 		if (pp->pr_hardlimit_warning != NULL &&
633 		    ratecheck(&pp->pr_hardlimit_warning_last,
634 			      &pp->pr_hardlimit_ratecap))
635 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
636 
637 		if (flags & PR_URGENT)
638 			panic("pool_get: urgent");
639 
640 		pp->pr_nfail++;
641 
642 		pr_leave(pp);
643 		simple_unlock(&pp->pr_slock);
644 		return (NULL);
645 	}
646 
647 	/*
648 	 * The convention we use is that if `curpage' is not NULL, then
649 	 * it points at a non-empty bucket. In particular, `curpage'
650 	 * never points at a page header which has PR_PHINPAGE set and
651 	 * has no items in its bucket.
652 	 */
653 	if ((ph = pp->pr_curpage) == NULL) {
654 		void *v;
655 
656 #ifdef DIAGNOSTIC
657 		if (pp->pr_nitems != 0) {
658 			simple_unlock(&pp->pr_slock);
659 			printf("pool_get: %s: curpage NULL, nitems %u\n",
660 			    pp->pr_wchan, pp->pr_nitems);
661 			panic("pool_get: nitems inconsistent\n");
662 		}
663 #endif
664 
665 		/*
666 		 * Call the back-end page allocator for more memory.
667 		 * Release the pool lock, as the back-end page allocator
668 		 * may block.
669 		 */
670 		pr_leave(pp);
671 		simple_unlock(&pp->pr_slock);
672 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
673 		simple_lock(&pp->pr_slock);
674 		pr_enter(pp, file, line);
675 
676 		if (v == NULL) {
677 			/*
678 			 * We were unable to allocate a page, but
679 			 * we released the lock during allocation,
680 			 * so perhaps items were freed back to the
681 			 * pool.  Check for this case.
682 			 */
683 			if (pp->pr_curpage != NULL)
684 				goto startover;
685 
686 			if (flags & PR_URGENT)
687 				panic("pool_get: urgent");
688 
689 			if ((flags & PR_WAITOK) == 0) {
690 				pp->pr_nfail++;
691 				pr_leave(pp);
692 				simple_unlock(&pp->pr_slock);
693 				return (NULL);
694 			}
695 
696 			/*
697 			 * Wait for items to be returned to this pool.
698 			 *
699 			 * XXX: we actually want to wait just until
700 			 * the page allocator has memory again. Depending
701 			 * on this pool's usage, we might get stuck here
702 			 * for a long time.
703 			 *
704 			 * XXX: maybe we should wake up once a second and
705 			 * try again?
706 			 */
707 			pp->pr_flags |= PR_WANTED;
708 			pr_leave(pp);
709 			simple_unlock(&pp->pr_slock);
710 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
711 			simple_lock(&pp->pr_slock);
712 			pr_enter(pp, file, line);
713 			goto startover;
714 		}
715 
716 		/* We have more memory; add it to the pool */
717 		pp->pr_npagealloc++;
718 		pool_prime_page(pp, v);
719 
720 		/* Start the allocation process over. */
721 		goto startover;
722 	}
723 
724 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
725 		pr_leave(pp);
726 		simple_unlock(&pp->pr_slock);
727 		panic("pool_get: %s: page empty", pp->pr_wchan);
728 	}
729 #ifdef DIAGNOSTIC
730 	if (__predict_false(pp->pr_nitems == 0)) {
731 		pr_leave(pp);
732 		simple_unlock(&pp->pr_slock);
733 		printf("pool_get: %s: items on itemlist, nitems %u\n",
734 		    pp->pr_wchan, pp->pr_nitems);
735 		panic("pool_get: nitems inconsistent\n");
736 	}
737 #endif
738 	pr_log(pp, v, PRLOG_GET, file, line);
739 
740 #ifdef DIAGNOSTIC
741 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
742 		pr_printlog(pp, pi, printf);
743 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
744 		       " item addr %p\n",
745 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
746 	}
747 #endif
748 
749 	/*
750 	 * Remove from item list.
751 	 */
752 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
753 	pp->pr_nitems--;
754 	pp->pr_nout++;
755 	if (ph->ph_nmissing == 0) {
756 #ifdef DIAGNOSTIC
757 		if (__predict_false(pp->pr_nidle == 0))
758 			panic("pool_get: nidle inconsistent");
759 #endif
760 		pp->pr_nidle--;
761 	}
762 	ph->ph_nmissing++;
763 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
764 #ifdef DIAGNOSTIC
765 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
766 			pr_leave(pp);
767 			simple_unlock(&pp->pr_slock);
768 			panic("pool_get: %s: nmissing inconsistent",
769 			    pp->pr_wchan);
770 		}
771 #endif
772 		/*
773 		 * Find a new non-empty page header, if any.
774 		 * Start search from the page head, to increase
775 		 * the chance for "high water" pages to be freed.
776 		 *
777 		 * Migrate empty pages to the end of the list.  This
778 		 * will speed the update of curpage as pages become
779 		 * idle.  Empty pages intermingled with idle pages
780 		 * is no big deal.  As soon as a page becomes un-empty,
781 		 * it will move back to the head of the list.
782 		 */
783 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
784 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
785 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
786 		     ph = TAILQ_NEXT(ph, ph_pagelist))
787 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
788 				break;
789 
790 		pp->pr_curpage = ph;
791 	}
792 
793 	pp->pr_nget++;
794 
795 	/*
796 	 * If we have a low water mark and we are now below that low
797 	 * water mark, add more items to the pool.
798 	 */
799 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
800 		/*
801 		 * XXX: Should we log a warning?  Should we set up a timeout
802 		 * to try again in a second or so?  The latter could break
803 		 * a caller's assumptions about interrupt protection, etc.
804 		 */
805 	}
806 
807 	pr_leave(pp);
808 	simple_unlock(&pp->pr_slock);
809 	return (v);
810 }
811 
812 /*
813  * Return resource to the pool; must be called at appropriate spl level
814  */
815 void
816 _pool_put(pp, v, file, line)
817 	struct pool *pp;
818 	void *v;
819 	const char *file;
820 	long line;
821 {
822 	struct pool_item *pi = v;
823 	struct pool_item_header *ph;
824 	caddr_t page;
825 	int s;
826 
827 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
828 
829 	simple_lock(&pp->pr_slock);
830 	pr_enter(pp, file, line);
831 
832 #ifdef DIAGNOSTIC
833 	if (__predict_false(pp->pr_nout == 0)) {
834 		printf("pool %s: putting with none out\n",
835 		    pp->pr_wchan);
836 		panic("pool_put");
837 	}
838 #endif
839 
840 	pr_log(pp, v, PRLOG_PUT, file, line);
841 
842 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
843 		pr_printlog(pp, NULL, printf);
844 		panic("pool_put: %s: page header missing", pp->pr_wchan);
845 	}
846 
847 #ifdef LOCKDEBUG
848 	/*
849 	 * Check if we're freeing a locked simple lock.
850 	 */
851 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
852 #endif
853 
854 	/*
855 	 * Return to item list.
856 	 */
857 #ifdef DIAGNOSTIC
858 	pi->pi_magic = PI_MAGIC;
859 #endif
860 #ifdef DEBUG
861 	{
862 		int i, *ip = v;
863 
864 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
865 			*ip++ = PI_MAGIC;
866 		}
867 	}
868 #endif
869 
870 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
871 	ph->ph_nmissing--;
872 	pp->pr_nput++;
873 	pp->pr_nitems++;
874 	pp->pr_nout--;
875 
876 	/* Cancel "pool empty" condition if it exists */
877 	if (pp->pr_curpage == NULL)
878 		pp->pr_curpage = ph;
879 
880 	if (pp->pr_flags & PR_WANTED) {
881 		pp->pr_flags &= ~PR_WANTED;
882 		if (ph->ph_nmissing == 0)
883 			pp->pr_nidle++;
884 		pr_leave(pp);
885 		simple_unlock(&pp->pr_slock);
886 		wakeup((caddr_t)pp);
887 		return;
888 	}
889 
890 	/*
891 	 * If this page is now complete, do one of two things:
892 	 *
893 	 *	(1) If we have more pages than the page high water
894 	 *	    mark, free the page back to the system.
895 	 *
896 	 *	(2) Move it to the end of the page list, so that
897 	 *	    we minimize our chances of fragmenting the
898 	 *	    pool.  Idle pages migrate to the end (along with
899 	 *	    completely empty pages, so that we find un-empty
900 	 *	    pages more quickly when we update curpage) of the
901 	 *	    list so they can be more easily swept up by
902 	 *	    the pagedaemon when pages are scarce.
903 	 */
904 	if (ph->ph_nmissing == 0) {
905 		pp->pr_nidle++;
906 		if (pp->pr_npages > pp->pr_maxpages) {
907 			pr_rmpage(pp, ph);
908 		} else {
909 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
910 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
911 
912 			/*
913 			 * Update the timestamp on the page.  A page must
914 			 * be idle for some period of time before it can
915 			 * be reclaimed by the pagedaemon.  This minimizes
916 			 * ping-pong'ing for memory.
917 			 */
918 			s = splclock();
919 			ph->ph_time = mono_time;
920 			splx(s);
921 
922 			/*
923 			 * Update the current page pointer.  Just look for
924 			 * the first page with any free items.
925 			 *
926 			 * XXX: Maybe we want an option to look for the
927 			 * page with the fewest available items, to minimize
928 			 * fragmentation?
929 			 */
930 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
931 			     ph = TAILQ_NEXT(ph, ph_pagelist))
932 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
933 					break;
934 
935 			pp->pr_curpage = ph;
936 		}
937 	}
938 	/*
939 	 * If the page has just become un-empty, move it to the head of
940 	 * the list, and make it the current page.  The next allocation
941 	 * will get the item from this page, instead of further fragmenting
942 	 * the pool.
943 	 */
944 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
945 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
946 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
947 		pp->pr_curpage = ph;
948 	}
949 
950 	pr_leave(pp);
951 	simple_unlock(&pp->pr_slock);
952 
953 }
954 
955 /*
956  * Add N items to the pool.
957  */
958 int
959 pool_prime(pp, n, storage)
960 	struct pool *pp;
961 	int n;
962 	caddr_t storage;
963 {
964 	caddr_t cp;
965 	int newnitems, newpages;
966 
967 #ifdef DIAGNOSTIC
968 	if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
969 		panic("pool_prime: static");
970 	/* !storage && static caught below */
971 #endif
972 
973 	simple_lock(&pp->pr_slock);
974 
975 	newnitems = pp->pr_minitems + n;
976 	newpages =
977 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
978 		- pp->pr_minpages;
979 
980 	while (newpages-- > 0) {
981 		if (pp->pr_roflags & PR_STATIC) {
982 			cp = storage;
983 			storage += pp->pr_pagesz;
984 		} else {
985 			simple_unlock(&pp->pr_slock);
986 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
987 			simple_lock(&pp->pr_slock);
988 		}
989 
990 		if (cp == NULL) {
991 			simple_unlock(&pp->pr_slock);
992 			return (ENOMEM);
993 		}
994 
995 		pp->pr_npagealloc++;
996 		pool_prime_page(pp, cp);
997 		pp->pr_minpages++;
998 	}
999 
1000 	pp->pr_minitems = newnitems;
1001 
1002 	if (pp->pr_minpages >= pp->pr_maxpages)
1003 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1004 
1005 	simple_unlock(&pp->pr_slock);
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Add a page worth of items to the pool.
1011  *
1012  * Note, we must be called with the pool descriptor LOCKED.
1013  */
1014 static void
1015 pool_prime_page(pp, storage)
1016 	struct pool *pp;
1017 	caddr_t storage;
1018 {
1019 	struct pool_item *pi;
1020 	struct pool_item_header *ph;
1021 	caddr_t cp = storage;
1022 	unsigned int align = pp->pr_align;
1023 	unsigned int ioff = pp->pr_itemoffset;
1024 	int s, n;
1025 
1026 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1027 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1028 
1029 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1030 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1031 	} else {
1032 		s = splhigh();
1033 		ph = pool_get(&phpool, PR_URGENT);
1034 		splx(s);
1035 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1036 				 ph, ph_hashlist);
1037 	}
1038 
1039 	/*
1040 	 * Insert page header.
1041 	 */
1042 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1043 	TAILQ_INIT(&ph->ph_itemlist);
1044 	ph->ph_page = storage;
1045 	ph->ph_nmissing = 0;
1046 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1047 
1048 	pp->pr_nidle++;
1049 
1050 	/*
1051 	 * Color this page.
1052 	 */
1053 	cp = (caddr_t)(cp + pp->pr_curcolor);
1054 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1055 		pp->pr_curcolor = 0;
1056 
1057 	/*
1058 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1059 	 */
1060 	if (ioff != 0)
1061 		cp = (caddr_t)(cp + (align - ioff));
1062 
1063 	/*
1064 	 * Insert remaining chunks on the bucket list.
1065 	 */
1066 	n = pp->pr_itemsperpage;
1067 	pp->pr_nitems += n;
1068 
1069 	while (n--) {
1070 		pi = (struct pool_item *)cp;
1071 
1072 		/* Insert on page list */
1073 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1074 #ifdef DIAGNOSTIC
1075 		pi->pi_magic = PI_MAGIC;
1076 #endif
1077 		cp = (caddr_t)(cp + pp->pr_size);
1078 	}
1079 
1080 	/*
1081 	 * If the pool was depleted, point at the new page.
1082 	 */
1083 	if (pp->pr_curpage == NULL)
1084 		pp->pr_curpage = ph;
1085 
1086 	if (++pp->pr_npages > pp->pr_hiwat)
1087 		pp->pr_hiwat = pp->pr_npages;
1088 }
1089 
1090 /*
1091  * Like pool_prime(), except this is used by pool_get() when nitems
1092  * drops below the low water mark.  This is used to catch up nitmes
1093  * with the low water mark.
1094  *
1095  * Note 1, we never wait for memory here, we let the caller decide what to do.
1096  *
1097  * Note 2, this doesn't work with static pools.
1098  *
1099  * Note 3, we must be called with the pool already locked, and we return
1100  * with it locked.
1101  */
1102 static int
1103 pool_catchup(pp)
1104 	struct pool *pp;
1105 {
1106 	caddr_t cp;
1107 	int error = 0;
1108 
1109 	if (pp->pr_roflags & PR_STATIC) {
1110 		/*
1111 		 * We dropped below the low water mark, and this is not a
1112 		 * good thing.  Log a warning.
1113 		 *
1114 		 * XXX: rate-limit this?
1115 		 */
1116 		printf("WARNING: static pool `%s' dropped below low water "
1117 		    "mark\n", pp->pr_wchan);
1118 		return (0);
1119 	}
1120 
1121 	while (pp->pr_nitems < pp->pr_minitems) {
1122 		/*
1123 		 * Call the page back-end allocator for more memory.
1124 		 *
1125 		 * XXX: We never wait, so should we bother unlocking
1126 		 * the pool descriptor?
1127 		 */
1128 		simple_unlock(&pp->pr_slock);
1129 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1130 		simple_lock(&pp->pr_slock);
1131 		if (__predict_false(cp == NULL)) {
1132 			error = ENOMEM;
1133 			break;
1134 		}
1135 		pp->pr_npagealloc++;
1136 		pool_prime_page(pp, cp);
1137 	}
1138 
1139 	return (error);
1140 }
1141 
1142 void
1143 pool_setlowat(pp, n)
1144 	pool_handle_t	pp;
1145 	int n;
1146 {
1147 	int error;
1148 
1149 	simple_lock(&pp->pr_slock);
1150 
1151 	pp->pr_minitems = n;
1152 	pp->pr_minpages = (n == 0)
1153 		? 0
1154 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1155 
1156 	/* Make sure we're caught up with the newly-set low water mark. */
1157 	if ((error = pool_catchup(pp)) != 0) {
1158 		/*
1159 		 * XXX: Should we log a warning?  Should we set up a timeout
1160 		 * to try again in a second or so?  The latter could break
1161 		 * a caller's assumptions about interrupt protection, etc.
1162 		 */
1163 	}
1164 
1165 	simple_unlock(&pp->pr_slock);
1166 }
1167 
1168 void
1169 pool_sethiwat(pp, n)
1170 	pool_handle_t	pp;
1171 	int n;
1172 {
1173 
1174 	simple_lock(&pp->pr_slock);
1175 
1176 	pp->pr_maxpages = (n == 0)
1177 		? 0
1178 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1179 
1180 	simple_unlock(&pp->pr_slock);
1181 }
1182 
1183 void
1184 pool_sethardlimit(pp, n, warnmess, ratecap)
1185 	pool_handle_t pp;
1186 	int n;
1187 	const char *warnmess;
1188 	int ratecap;
1189 {
1190 
1191 	simple_lock(&pp->pr_slock);
1192 
1193 	pp->pr_hardlimit = n;
1194 	pp->pr_hardlimit_warning = warnmess;
1195 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1196 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1197 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1198 
1199 	/*
1200 	 * In-line version of pool_sethiwat(), because we don't want to
1201 	 * release the lock.
1202 	 */
1203 	pp->pr_maxpages = (n == 0)
1204 		? 0
1205 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1206 
1207 	simple_unlock(&pp->pr_slock);
1208 }
1209 
1210 /*
1211  * Default page allocator.
1212  */
1213 static void *
1214 pool_page_alloc(sz, flags, mtype)
1215 	unsigned long sz;
1216 	int flags;
1217 	int mtype;
1218 {
1219 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1220 
1221 	return ((void *)uvm_km_alloc_poolpage(waitok));
1222 }
1223 
1224 static void
1225 pool_page_free(v, sz, mtype)
1226 	void *v;
1227 	unsigned long sz;
1228 	int mtype;
1229 {
1230 
1231 	uvm_km_free_poolpage((vaddr_t)v);
1232 }
1233 
1234 /*
1235  * Alternate pool page allocator for pools that know they will
1236  * never be accessed in interrupt context.
1237  */
1238 void *
1239 pool_page_alloc_nointr(sz, flags, mtype)
1240 	unsigned long sz;
1241 	int flags;
1242 	int mtype;
1243 {
1244 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1245 
1246 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1247 	    waitok));
1248 }
1249 
1250 void
1251 pool_page_free_nointr(v, sz, mtype)
1252 	void *v;
1253 	unsigned long sz;
1254 	int mtype;
1255 {
1256 
1257 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1258 }
1259 
1260 
1261 /*
1262  * Release all complete pages that have not been used recently.
1263  */
1264 void
1265 _pool_reclaim(pp, file, line)
1266 	pool_handle_t pp;
1267 	const char *file;
1268 	long line;
1269 {
1270 	struct pool_item_header *ph, *phnext;
1271 	struct timeval curtime;
1272 	int s;
1273 
1274 	if (pp->pr_roflags & PR_STATIC)
1275 		return;
1276 
1277 	if (simple_lock_try(&pp->pr_slock) == 0)
1278 		return;
1279 	pr_enter(pp, file, line);
1280 
1281 	s = splclock();
1282 	curtime = mono_time;
1283 	splx(s);
1284 
1285 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1286 		phnext = TAILQ_NEXT(ph, ph_pagelist);
1287 
1288 		/* Check our minimum page claim */
1289 		if (pp->pr_npages <= pp->pr_minpages)
1290 			break;
1291 
1292 		if (ph->ph_nmissing == 0) {
1293 			struct timeval diff;
1294 			timersub(&curtime, &ph->ph_time, &diff);
1295 			if (diff.tv_sec < pool_inactive_time)
1296 				continue;
1297 
1298 			/*
1299 			 * If freeing this page would put us below
1300 			 * the low water mark, stop now.
1301 			 */
1302 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
1303 			    pp->pr_minitems)
1304 				break;
1305 
1306 			pr_rmpage(pp, ph);
1307 		}
1308 	}
1309 
1310 	pr_leave(pp);
1311 	simple_unlock(&pp->pr_slock);
1312 }
1313 
1314 
1315 /*
1316  * Drain pools, one at a time.
1317  *
1318  * Note, we must never be called from an interrupt context.
1319  */
1320 void
1321 pool_drain(arg)
1322 	void *arg;
1323 {
1324 	struct pool *pp;
1325 	int s;
1326 
1327 	s = splimp();
1328 	simple_lock(&pool_head_slock);
1329 
1330 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1331 		goto out;
1332 
1333 	pp = drainpp;
1334 	drainpp = TAILQ_NEXT(pp, pr_poollist);
1335 
1336 	pool_reclaim(pp);
1337 
1338  out:
1339 	simple_unlock(&pool_head_slock);
1340 	splx(s);
1341 }
1342 
1343 
1344 /*
1345  * Diagnostic helpers.
1346  */
1347 void
1348 pool_print(pp, modif)
1349 	struct pool *pp;
1350 	const char *modif;
1351 {
1352 	int s;
1353 
1354 	s = splimp();
1355 	if (simple_lock_try(&pp->pr_slock) == 0) {
1356 		printf("pool %s is locked; try again later\n",
1357 		    pp->pr_wchan);
1358 		splx(s);
1359 		return;
1360 	}
1361 	pool_print1(pp, modif, printf);
1362 	simple_unlock(&pp->pr_slock);
1363 	splx(s);
1364 }
1365 
1366 void
1367 pool_printit(pp, modif, pr)
1368 	struct pool *pp;
1369 	const char *modif;
1370 	void (*pr) __P((const char *, ...));
1371 {
1372 	int didlock = 0;
1373 
1374 	if (pp == NULL) {
1375 		(*pr)("Must specify a pool to print.\n");
1376 		return;
1377 	}
1378 
1379 	/*
1380 	 * Called from DDB; interrupts should be blocked, and all
1381 	 * other processors should be paused.  We can skip locking
1382 	 * the pool in this case.
1383 	 *
1384 	 * We do a simple_lock_try() just to print the lock
1385 	 * status, however.
1386 	 */
1387 
1388 	if (simple_lock_try(&pp->pr_slock) == 0)
1389 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1390 	else
1391 		didlock = 1;
1392 
1393 	pool_print1(pp, modif, pr);
1394 
1395 	if (didlock)
1396 		simple_unlock(&pp->pr_slock);
1397 }
1398 
1399 static void
1400 pool_print1(pp, modif, pr)
1401 	struct pool *pp;
1402 	const char *modif;
1403 	void (*pr) __P((const char *, ...));
1404 {
1405 	struct pool_item_header *ph;
1406 #ifdef DIAGNOSTIC
1407 	struct pool_item *pi;
1408 #endif
1409 	int print_log = 0, print_pagelist = 0;
1410 	char c;
1411 
1412 	while ((c = *modif++) != '\0') {
1413 		if (c == 'l')
1414 			print_log = 1;
1415 		if (c == 'p')
1416 			print_pagelist = 1;
1417 		modif++;
1418 	}
1419 
1420 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1421 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1422 	    pp->pr_roflags);
1423 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1424 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1425 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1426 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1427 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1428 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1429 
1430 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1431 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1432 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1433 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1434 
1435 	if (print_pagelist == 0)
1436 		goto skip_pagelist;
1437 
1438 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1439 		(*pr)("\n\tpage list:\n");
1440 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1441 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1442 		    ph->ph_page, ph->ph_nmissing,
1443 		    (u_long)ph->ph_time.tv_sec,
1444 		    (u_long)ph->ph_time.tv_usec);
1445 #ifdef DIAGNOSTIC
1446 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1447 		     pi = TAILQ_NEXT(pi, pi_list)) {
1448 			if (pi->pi_magic != PI_MAGIC) {
1449 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1450 				    pi, pi->pi_magic);
1451 			}
1452 		}
1453 #endif
1454 	}
1455 	if (pp->pr_curpage == NULL)
1456 		(*pr)("\tno current page\n");
1457 	else
1458 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1459 
1460  skip_pagelist:
1461 
1462 	if (print_log == 0)
1463 		goto skip_log;
1464 
1465 	(*pr)("\n");
1466 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1467 		(*pr)("\tno log\n");
1468 	else
1469 		pr_printlog(pp, NULL, pr);
1470 
1471  skip_log:
1472 
1473 	pr_enter_check(pp, pr);
1474 }
1475 
1476 int
1477 pool_chk(pp, label)
1478 	struct pool *pp;
1479 	char *label;
1480 {
1481 	struct pool_item_header *ph;
1482 	int r = 0;
1483 
1484 	simple_lock(&pp->pr_slock);
1485 
1486 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1487 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
1488 
1489 		struct pool_item *pi;
1490 		int n;
1491 		caddr_t page;
1492 
1493 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1494 		if (page != ph->ph_page &&
1495 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1496 			if (label != NULL)
1497 				printf("%s: ", label);
1498 			printf("pool(%p:%s): page inconsistency: page %p;"
1499 			       " at page head addr %p (p %p)\n", pp,
1500 				pp->pr_wchan, ph->ph_page,
1501 				ph, page);
1502 			r++;
1503 			goto out;
1504 		}
1505 
1506 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1507 		     pi != NULL;
1508 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
1509 
1510 #ifdef DIAGNOSTIC
1511 			if (pi->pi_magic != PI_MAGIC) {
1512 				if (label != NULL)
1513 					printf("%s: ", label);
1514 				printf("pool(%s): free list modified: magic=%x;"
1515 				       " page %p; item ordinal %d;"
1516 				       " addr %p (p %p)\n",
1517 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
1518 					n, pi, page);
1519 				panic("pool");
1520 			}
1521 #endif
1522 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1523 			if (page == ph->ph_page)
1524 				continue;
1525 
1526 			if (label != NULL)
1527 				printf("%s: ", label);
1528 			printf("pool(%p:%s): page inconsistency: page %p;"
1529 			       " item ordinal %d; addr %p (p %p)\n", pp,
1530 				pp->pr_wchan, ph->ph_page,
1531 				n, pi, page);
1532 			r++;
1533 			goto out;
1534 		}
1535 	}
1536 out:
1537 	simple_unlock(&pp->pr_slock);
1538 	return (r);
1539 }
1540