1 /* $NetBSD: subr_pool.c,v 1.36 2000/05/31 15:29:42 pk Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include "opt_pool.h" 41 #include "opt_poollog.h" 42 #include "opt_lockdebug.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/errno.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_kern.h> 56 57 #include <uvm/uvm.h> 58 59 /* 60 * Pool resource management utility. 61 * 62 * Memory is allocated in pages which are split into pieces according 63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist' 64 * in the pool structure and the individual pool items are on a linked list 65 * headed by `ph_itemlist' in each page header. The memory for building 66 * the page list is either taken from the allocated pages themselves (for 67 * small pool items) or taken from an internal pool of page headers (`phpool'). 68 */ 69 70 /* List of all pools */ 71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 72 73 /* Private pool for page header structures */ 74 static struct pool phpool; 75 76 /* # of seconds to retain page after last use */ 77 int pool_inactive_time = 10; 78 79 /* Next candidate for drainage (see pool_drain()) */ 80 static struct pool *drainpp; 81 82 /* This spin lock protects both pool_head and drainpp. */ 83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 84 85 struct pool_item_header { 86 /* Page headers */ 87 TAILQ_ENTRY(pool_item_header) 88 ph_pagelist; /* pool page list */ 89 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 90 LIST_ENTRY(pool_item_header) 91 ph_hashlist; /* Off-page page headers */ 92 int ph_nmissing; /* # of chunks in use */ 93 caddr_t ph_page; /* this page's address */ 94 struct timeval ph_time; /* last referenced */ 95 }; 96 97 struct pool_item { 98 #ifdef DIAGNOSTIC 99 int pi_magic; 100 #endif 101 #define PI_MAGIC 0xdeadbeef 102 /* Other entries use only this list entry */ 103 TAILQ_ENTRY(pool_item) pi_list; 104 }; 105 106 107 #define PR_HASH_INDEX(pp,addr) \ 108 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1)) 109 110 111 112 static struct pool_item_header 113 *pr_find_pagehead __P((struct pool *, caddr_t)); 114 static void pr_rmpage __P((struct pool *, struct pool_item_header *)); 115 static int pool_catchup __P((struct pool *)); 116 static void pool_prime_page __P((struct pool *, caddr_t)); 117 static void *pool_page_alloc __P((unsigned long, int, int)); 118 static void pool_page_free __P((void *, unsigned long, int)); 119 120 static void pool_print1 __P((struct pool *, const char *, 121 void (*)(const char *, ...))); 122 123 /* 124 * Pool log entry. An array of these is allocated in pool_create(). 125 */ 126 struct pool_log { 127 const char *pl_file; 128 long pl_line; 129 int pl_action; 130 #define PRLOG_GET 1 131 #define PRLOG_PUT 2 132 void *pl_addr; 133 }; 134 135 /* Number of entries in pool log buffers */ 136 #ifndef POOL_LOGSIZE 137 #define POOL_LOGSIZE 10 138 #endif 139 140 int pool_logsize = POOL_LOGSIZE; 141 142 #ifdef DIAGNOSTIC 143 static void pr_log __P((struct pool *, void *, int, const char *, long)); 144 static void pr_printlog __P((struct pool *, struct pool_item *, 145 void (*)(const char *, ...))); 146 static void pr_enter __P((struct pool *, const char *, long)); 147 static void pr_leave __P((struct pool *)); 148 static void pr_enter_check __P((struct pool *, 149 void (*)(const char *, ...))); 150 151 static __inline__ void 152 pr_log(pp, v, action, file, line) 153 struct pool *pp; 154 void *v; 155 int action; 156 const char *file; 157 long line; 158 { 159 int n = pp->pr_curlogentry; 160 struct pool_log *pl; 161 162 if ((pp->pr_roflags & PR_LOGGING) == 0) 163 return; 164 165 /* 166 * Fill in the current entry. Wrap around and overwrite 167 * the oldest entry if necessary. 168 */ 169 pl = &pp->pr_log[n]; 170 pl->pl_file = file; 171 pl->pl_line = line; 172 pl->pl_action = action; 173 pl->pl_addr = v; 174 if (++n >= pp->pr_logsize) 175 n = 0; 176 pp->pr_curlogentry = n; 177 } 178 179 static void 180 pr_printlog(pp, pi, pr) 181 struct pool *pp; 182 struct pool_item *pi; 183 void (*pr) __P((const char *, ...)); 184 { 185 int i = pp->pr_logsize; 186 int n = pp->pr_curlogentry; 187 188 if ((pp->pr_roflags & PR_LOGGING) == 0) 189 return; 190 191 /* 192 * Print all entries in this pool's log. 193 */ 194 while (i-- > 0) { 195 struct pool_log *pl = &pp->pr_log[n]; 196 if (pl->pl_action != 0) { 197 if (pi == NULL || pi == pl->pl_addr) { 198 (*pr)("\tlog entry %d:\n", i); 199 (*pr)("\t\taction = %s, addr = %p\n", 200 pl->pl_action == PRLOG_GET ? "get" : "put", 201 pl->pl_addr); 202 (*pr)("\t\tfile: %s at line %lu\n", 203 pl->pl_file, pl->pl_line); 204 } 205 } 206 if (++n >= pp->pr_logsize) 207 n = 0; 208 } 209 } 210 211 static __inline__ void 212 pr_enter(pp, file, line) 213 struct pool *pp; 214 const char *file; 215 long line; 216 { 217 218 if (__predict_false(pp->pr_entered_file != NULL)) { 219 printf("pool %s: reentrancy at file %s line %ld\n", 220 pp->pr_wchan, file, line); 221 printf(" previous entry at file %s line %ld\n", 222 pp->pr_entered_file, pp->pr_entered_line); 223 panic("pr_enter"); 224 } 225 226 pp->pr_entered_file = file; 227 pp->pr_entered_line = line; 228 } 229 230 static __inline__ void 231 pr_leave(pp) 232 struct pool *pp; 233 { 234 235 if (__predict_false(pp->pr_entered_file == NULL)) { 236 printf("pool %s not entered?\n", pp->pr_wchan); 237 panic("pr_leave"); 238 } 239 240 pp->pr_entered_file = NULL; 241 pp->pr_entered_line = 0; 242 } 243 244 static __inline__ void 245 pr_enter_check(pp, pr) 246 struct pool *pp; 247 void (*pr) __P((const char *, ...)); 248 { 249 250 if (pp->pr_entered_file != NULL) 251 (*pr)("\n\tcurrently entered from file %s line %ld\n", 252 pp->pr_entered_file, pp->pr_entered_line); 253 } 254 #else 255 #define pr_log(pp, v, action, file, line) 256 #define pr_printlog(pp, pi, pr) 257 #define pr_enter(pp, file, line) 258 #define pr_leave(pp) 259 #define pr_enter_check(pp, pr) 260 #endif /* DIAGNOSTIC */ 261 262 /* 263 * Return the pool page header based on page address. 264 */ 265 static __inline__ struct pool_item_header * 266 pr_find_pagehead(pp, page) 267 struct pool *pp; 268 caddr_t page; 269 { 270 struct pool_item_header *ph; 271 272 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 273 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 274 275 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]); 276 ph != NULL; 277 ph = LIST_NEXT(ph, ph_hashlist)) { 278 if (ph->ph_page == page) 279 return (ph); 280 } 281 return (NULL); 282 } 283 284 /* 285 * Remove a page from the pool. 286 */ 287 static __inline__ void 288 pr_rmpage(pp, ph) 289 struct pool *pp; 290 struct pool_item_header *ph; 291 { 292 293 /* 294 * If the page was idle, decrement the idle page count. 295 */ 296 if (ph->ph_nmissing == 0) { 297 #ifdef DIAGNOSTIC 298 if (pp->pr_nidle == 0) 299 panic("pr_rmpage: nidle inconsistent"); 300 if (pp->pr_nitems < pp->pr_itemsperpage) 301 panic("pr_rmpage: nitems inconsistent"); 302 #endif 303 pp->pr_nidle--; 304 } 305 306 pp->pr_nitems -= pp->pr_itemsperpage; 307 308 /* 309 * Unlink a page from the pool and release it. 310 */ 311 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 312 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype); 313 pp->pr_npages--; 314 pp->pr_npagefree++; 315 316 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 317 int s; 318 LIST_REMOVE(ph, ph_hashlist); 319 s = splhigh(); 320 pool_put(&phpool, ph); 321 splx(s); 322 } 323 324 if (pp->pr_curpage == ph) { 325 /* 326 * Find a new non-empty page header, if any. 327 * Start search from the page head, to increase the 328 * chance for "high water" pages to be freed. 329 */ 330 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 331 ph = TAILQ_NEXT(ph, ph_pagelist)) 332 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 333 break; 334 335 pp->pr_curpage = ph; 336 } 337 } 338 339 /* 340 * Allocate and initialize a pool. 341 */ 342 struct pool * 343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype) 344 size_t size; 345 u_int align; 346 u_int ioff; 347 int nitems; 348 const char *wchan; 349 size_t pagesz; 350 void *(*alloc) __P((unsigned long, int, int)); 351 void (*release) __P((void *, unsigned long, int)); 352 int mtype; 353 { 354 struct pool *pp; 355 int flags; 356 357 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT); 358 if (pp == NULL) 359 return (NULL); 360 361 flags = PR_FREEHEADER; 362 pool_init(pp, size, align, ioff, flags, wchan, pagesz, 363 alloc, release, mtype); 364 365 if (nitems != 0) { 366 if (pool_prime(pp, nitems, NULL) != 0) { 367 pool_destroy(pp); 368 return (NULL); 369 } 370 } 371 372 return (pp); 373 } 374 375 /* 376 * Initialize the given pool resource structure. 377 * 378 * We export this routine to allow other kernel parts to declare 379 * static pools that must be initialized before malloc() is available. 380 */ 381 void 382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype) 383 struct pool *pp; 384 size_t size; 385 u_int align; 386 u_int ioff; 387 int flags; 388 const char *wchan; 389 size_t pagesz; 390 void *(*alloc) __P((unsigned long, int, int)); 391 void (*release) __P((void *, unsigned long, int)); 392 int mtype; 393 { 394 int off, slack, i; 395 396 #ifdef POOL_DIAGNOSTIC 397 /* 398 * Always log if POOL_DIAGNOSTIC is defined. 399 */ 400 if (pool_logsize != 0) 401 flags |= PR_LOGGING; 402 #endif 403 404 /* 405 * Check arguments and construct default values. 406 */ 407 if (!powerof2(pagesz)) 408 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz); 409 410 if (alloc == NULL && release == NULL) { 411 alloc = pool_page_alloc; 412 release = pool_page_free; 413 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */ 414 } else if ((alloc != NULL && release != NULL) == 0) { 415 /* If you specifiy one, must specify both. */ 416 panic("pool_init: must specify alloc and release together"); 417 } 418 419 if (pagesz == 0) 420 pagesz = PAGE_SIZE; 421 422 if (align == 0) 423 align = ALIGN(1); 424 425 if (size < sizeof(struct pool_item)) 426 size = sizeof(struct pool_item); 427 428 size = ALIGN(size); 429 if (size >= pagesz) 430 panic("pool_init: pool item size (%lu) too large", 431 (u_long)size); 432 433 /* 434 * Initialize the pool structure. 435 */ 436 TAILQ_INIT(&pp->pr_pagelist); 437 pp->pr_curpage = NULL; 438 pp->pr_npages = 0; 439 pp->pr_minitems = 0; 440 pp->pr_minpages = 0; 441 pp->pr_maxpages = UINT_MAX; 442 pp->pr_roflags = flags; 443 pp->pr_flags = 0; 444 pp->pr_size = size; 445 pp->pr_align = align; 446 pp->pr_wchan = wchan; 447 pp->pr_mtype = mtype; 448 pp->pr_alloc = alloc; 449 pp->pr_free = release; 450 pp->pr_pagesz = pagesz; 451 pp->pr_pagemask = ~(pagesz - 1); 452 pp->pr_pageshift = ffs(pagesz) - 1; 453 pp->pr_nitems = 0; 454 pp->pr_nout = 0; 455 pp->pr_hardlimit = UINT_MAX; 456 pp->pr_hardlimit_warning = NULL; 457 pp->pr_hardlimit_ratecap.tv_sec = 0; 458 pp->pr_hardlimit_ratecap.tv_usec = 0; 459 pp->pr_hardlimit_warning_last.tv_sec = 0; 460 pp->pr_hardlimit_warning_last.tv_usec = 0; 461 462 /* 463 * Decide whether to put the page header off page to avoid 464 * wasting too large a part of the page. Off-page page headers 465 * go on a hash table, so we can match a returned item 466 * with its header based on the page address. 467 * We use 1/16 of the page size as the threshold (XXX: tune) 468 */ 469 if (pp->pr_size < pagesz/16) { 470 /* Use the end of the page for the page header */ 471 pp->pr_roflags |= PR_PHINPAGE; 472 pp->pr_phoffset = off = 473 pagesz - ALIGN(sizeof(struct pool_item_header)); 474 } else { 475 /* The page header will be taken from our page header pool */ 476 pp->pr_phoffset = 0; 477 off = pagesz; 478 for (i = 0; i < PR_HASHTABSIZE; i++) { 479 LIST_INIT(&pp->pr_hashtab[i]); 480 } 481 } 482 483 /* 484 * Alignment is to take place at `ioff' within the item. This means 485 * we must reserve up to `align - 1' bytes on the page to allow 486 * appropriate positioning of each item. 487 * 488 * Silently enforce `0 <= ioff < align'. 489 */ 490 pp->pr_itemoffset = ioff = ioff % align; 491 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 492 493 /* 494 * Use the slack between the chunks and the page header 495 * for "cache coloring". 496 */ 497 slack = off - pp->pr_itemsperpage * pp->pr_size; 498 pp->pr_maxcolor = (slack / align) * align; 499 pp->pr_curcolor = 0; 500 501 pp->pr_nget = 0; 502 pp->pr_nfail = 0; 503 pp->pr_nput = 0; 504 pp->pr_npagealloc = 0; 505 pp->pr_npagefree = 0; 506 pp->pr_hiwat = 0; 507 pp->pr_nidle = 0; 508 509 if (flags & PR_LOGGING) { 510 if (kmem_map == NULL || 511 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 512 M_TEMP, M_NOWAIT)) == NULL) 513 pp->pr_roflags &= ~PR_LOGGING; 514 pp->pr_curlogentry = 0; 515 pp->pr_logsize = pool_logsize; 516 } 517 518 pp->pr_entered_file = NULL; 519 pp->pr_entered_line = 0; 520 521 simple_lock_init(&pp->pr_slock); 522 523 /* 524 * Initialize private page header pool if we haven't done so yet. 525 * XXX LOCKING. 526 */ 527 if (phpool.pr_size == 0) { 528 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 529 0, "phpool", 0, 0, 0, 0); 530 } 531 532 /* Insert into the list of all pools. */ 533 simple_lock(&pool_head_slock); 534 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 535 simple_unlock(&pool_head_slock); 536 } 537 538 /* 539 * De-commision a pool resource. 540 */ 541 void 542 pool_destroy(pp) 543 struct pool *pp; 544 { 545 struct pool_item_header *ph; 546 547 #ifdef DIAGNOSTIC 548 if (pp->pr_nout != 0) { 549 pr_printlog(pp, NULL, printf); 550 panic("pool_destroy: pool busy: still out: %u\n", 551 pp->pr_nout); 552 } 553 #endif 554 555 /* Remove all pages */ 556 if ((pp->pr_roflags & PR_STATIC) == 0) 557 while ((ph = pp->pr_pagelist.tqh_first) != NULL) 558 pr_rmpage(pp, ph); 559 560 /* Remove from global pool list */ 561 simple_lock(&pool_head_slock); 562 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 563 /* XXX Only clear this if we were drainpp? */ 564 drainpp = NULL; 565 simple_unlock(&pool_head_slock); 566 567 if ((pp->pr_roflags & PR_LOGGING) != 0) 568 free(pp->pr_log, M_TEMP); 569 570 if (pp->pr_roflags & PR_FREEHEADER) 571 free(pp, M_POOL); 572 } 573 574 575 /* 576 * Grab an item from the pool; must be called at appropriate spl level 577 */ 578 void * 579 _pool_get(pp, flags, file, line) 580 struct pool *pp; 581 int flags; 582 const char *file; 583 long line; 584 { 585 void *v; 586 struct pool_item *pi; 587 struct pool_item_header *ph; 588 589 #ifdef DIAGNOSTIC 590 if (__predict_false((pp->pr_roflags & PR_STATIC) && 591 (flags & PR_MALLOCOK))) { 592 pr_printlog(pp, NULL, printf); 593 panic("pool_get: static"); 594 } 595 #endif 596 597 if (__predict_false(curproc == NULL && (flags & PR_WAITOK) != 0)) 598 panic("pool_get: must have NOWAIT"); 599 600 simple_lock(&pp->pr_slock); 601 pr_enter(pp, file, line); 602 603 startover: 604 /* 605 * Check to see if we've reached the hard limit. If we have, 606 * and we can wait, then wait until an item has been returned to 607 * the pool. 608 */ 609 #ifdef DIAGNOSTIC 610 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 611 pr_leave(pp); 612 simple_unlock(&pp->pr_slock); 613 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 614 } 615 #endif 616 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 617 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 618 /* 619 * XXX: A warning isn't logged in this case. Should 620 * it be? 621 */ 622 pp->pr_flags |= PR_WANTED; 623 pr_leave(pp); 624 simple_unlock(&pp->pr_slock); 625 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0); 626 simple_lock(&pp->pr_slock); 627 pr_enter(pp, file, line); 628 goto startover; 629 } 630 631 /* 632 * Log a message that the hard limit has been hit. 633 */ 634 if (pp->pr_hardlimit_warning != NULL && 635 ratecheck(&pp->pr_hardlimit_warning_last, 636 &pp->pr_hardlimit_ratecap)) 637 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 638 639 if (flags & PR_URGENT) 640 panic("pool_get: urgent"); 641 642 pp->pr_nfail++; 643 644 pr_leave(pp); 645 simple_unlock(&pp->pr_slock); 646 return (NULL); 647 } 648 649 /* 650 * The convention we use is that if `curpage' is not NULL, then 651 * it points at a non-empty bucket. In particular, `curpage' 652 * never points at a page header which has PR_PHINPAGE set and 653 * has no items in its bucket. 654 */ 655 if ((ph = pp->pr_curpage) == NULL) { 656 void *v; 657 658 #ifdef DIAGNOSTIC 659 if (pp->pr_nitems != 0) { 660 simple_unlock(&pp->pr_slock); 661 printf("pool_get: %s: curpage NULL, nitems %u\n", 662 pp->pr_wchan, pp->pr_nitems); 663 panic("pool_get: nitems inconsistent\n"); 664 } 665 #endif 666 667 /* 668 * Call the back-end page allocator for more memory. 669 * Release the pool lock, as the back-end page allocator 670 * may block. 671 */ 672 pr_leave(pp); 673 simple_unlock(&pp->pr_slock); 674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype); 675 simple_lock(&pp->pr_slock); 676 pr_enter(pp, file, line); 677 678 if (v == NULL) { 679 /* 680 * We were unable to allocate a page, but 681 * we released the lock during allocation, 682 * so perhaps items were freed back to the 683 * pool. Check for this case. 684 */ 685 if (pp->pr_curpage != NULL) 686 goto startover; 687 688 if (flags & PR_URGENT) 689 panic("pool_get: urgent"); 690 691 if ((flags & PR_WAITOK) == 0) { 692 pp->pr_nfail++; 693 pr_leave(pp); 694 simple_unlock(&pp->pr_slock); 695 return (NULL); 696 } 697 698 /* 699 * Wait for items to be returned to this pool. 700 * 701 * XXX: we actually want to wait just until 702 * the page allocator has memory again. Depending 703 * on this pool's usage, we might get stuck here 704 * for a long time. 705 * 706 * XXX: maybe we should wake up once a second and 707 * try again? 708 */ 709 pp->pr_flags |= PR_WANTED; 710 pr_leave(pp); 711 simple_unlock(&pp->pr_slock); 712 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0); 713 simple_lock(&pp->pr_slock); 714 pr_enter(pp, file, line); 715 goto startover; 716 } 717 718 /* We have more memory; add it to the pool */ 719 pp->pr_npagealloc++; 720 pool_prime_page(pp, v); 721 722 /* Start the allocation process over. */ 723 goto startover; 724 } 725 726 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 727 pr_leave(pp); 728 simple_unlock(&pp->pr_slock); 729 panic("pool_get: %s: page empty", pp->pr_wchan); 730 } 731 #ifdef DIAGNOSTIC 732 if (__predict_false(pp->pr_nitems == 0)) { 733 pr_leave(pp); 734 simple_unlock(&pp->pr_slock); 735 printf("pool_get: %s: items on itemlist, nitems %u\n", 736 pp->pr_wchan, pp->pr_nitems); 737 panic("pool_get: nitems inconsistent\n"); 738 } 739 #endif 740 pr_log(pp, v, PRLOG_GET, file, line); 741 742 #ifdef DIAGNOSTIC 743 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 744 pr_printlog(pp, pi, printf); 745 panic("pool_get(%s): free list modified: magic=%x; page %p;" 746 " item addr %p\n", 747 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 748 } 749 #endif 750 751 /* 752 * Remove from item list. 753 */ 754 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 755 pp->pr_nitems--; 756 pp->pr_nout++; 757 if (ph->ph_nmissing == 0) { 758 #ifdef DIAGNOSTIC 759 if (__predict_false(pp->pr_nidle == 0)) 760 panic("pool_get: nidle inconsistent"); 761 #endif 762 pp->pr_nidle--; 763 } 764 ph->ph_nmissing++; 765 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) { 766 #ifdef DIAGNOSTIC 767 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 768 pr_leave(pp); 769 simple_unlock(&pp->pr_slock); 770 panic("pool_get: %s: nmissing inconsistent", 771 pp->pr_wchan); 772 } 773 #endif 774 /* 775 * Find a new non-empty page header, if any. 776 * Start search from the page head, to increase 777 * the chance for "high water" pages to be freed. 778 * 779 * Migrate empty pages to the end of the list. This 780 * will speed the update of curpage as pages become 781 * idle. Empty pages intermingled with idle pages 782 * is no big deal. As soon as a page becomes un-empty, 783 * it will move back to the head of the list. 784 */ 785 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 786 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 787 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 788 ph = TAILQ_NEXT(ph, ph_pagelist)) 789 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 790 break; 791 792 pp->pr_curpage = ph; 793 } 794 795 pp->pr_nget++; 796 797 /* 798 * If we have a low water mark and we are now below that low 799 * water mark, add more items to the pool. 800 */ 801 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) { 802 /* 803 * XXX: Should we log a warning? Should we set up a timeout 804 * to try again in a second or so? The latter could break 805 * a caller's assumptions about interrupt protection, etc. 806 */ 807 } 808 809 pr_leave(pp); 810 simple_unlock(&pp->pr_slock); 811 return (v); 812 } 813 814 /* 815 * Return resource to the pool; must be called at appropriate spl level 816 */ 817 void 818 _pool_put(pp, v, file, line) 819 struct pool *pp; 820 void *v; 821 const char *file; 822 long line; 823 { 824 struct pool_item *pi = v; 825 struct pool_item_header *ph; 826 caddr_t page; 827 int s; 828 829 page = (caddr_t)((u_long)v & pp->pr_pagemask); 830 831 simple_lock(&pp->pr_slock); 832 pr_enter(pp, file, line); 833 834 #ifdef DIAGNOSTIC 835 if (__predict_false(pp->pr_nout == 0)) { 836 printf("pool %s: putting with none out\n", 837 pp->pr_wchan); 838 panic("pool_put"); 839 } 840 #endif 841 842 pr_log(pp, v, PRLOG_PUT, file, line); 843 844 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 845 pr_printlog(pp, NULL, printf); 846 panic("pool_put: %s: page header missing", pp->pr_wchan); 847 } 848 849 #ifdef LOCKDEBUG 850 /* 851 * Check if we're freeing a locked simple lock. 852 */ 853 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 854 #endif 855 856 /* 857 * Return to item list. 858 */ 859 #ifdef DIAGNOSTIC 860 pi->pi_magic = PI_MAGIC; 861 #endif 862 #ifdef DEBUG 863 { 864 int i, *ip = v; 865 866 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 867 *ip++ = PI_MAGIC; 868 } 869 } 870 #endif 871 872 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 873 ph->ph_nmissing--; 874 pp->pr_nput++; 875 pp->pr_nitems++; 876 pp->pr_nout--; 877 878 /* Cancel "pool empty" condition if it exists */ 879 if (pp->pr_curpage == NULL) 880 pp->pr_curpage = ph; 881 882 if (pp->pr_flags & PR_WANTED) { 883 pp->pr_flags &= ~PR_WANTED; 884 if (ph->ph_nmissing == 0) 885 pp->pr_nidle++; 886 pr_leave(pp); 887 simple_unlock(&pp->pr_slock); 888 wakeup((caddr_t)pp); 889 return; 890 } 891 892 /* 893 * If this page is now complete, do one of two things: 894 * 895 * (1) If we have more pages than the page high water 896 * mark, free the page back to the system. 897 * 898 * (2) Move it to the end of the page list, so that 899 * we minimize our chances of fragmenting the 900 * pool. Idle pages migrate to the end (along with 901 * completely empty pages, so that we find un-empty 902 * pages more quickly when we update curpage) of the 903 * list so they can be more easily swept up by 904 * the pagedaemon when pages are scarce. 905 */ 906 if (ph->ph_nmissing == 0) { 907 pp->pr_nidle++; 908 if (pp->pr_npages > pp->pr_maxpages) { 909 pr_rmpage(pp, ph); 910 } else { 911 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 912 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 913 914 /* 915 * Update the timestamp on the page. A page must 916 * be idle for some period of time before it can 917 * be reclaimed by the pagedaemon. This minimizes 918 * ping-pong'ing for memory. 919 */ 920 s = splclock(); 921 ph->ph_time = mono_time; 922 splx(s); 923 924 /* 925 * Update the current page pointer. Just look for 926 * the first page with any free items. 927 * 928 * XXX: Maybe we want an option to look for the 929 * page with the fewest available items, to minimize 930 * fragmentation? 931 */ 932 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 933 ph = TAILQ_NEXT(ph, ph_pagelist)) 934 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 935 break; 936 937 pp->pr_curpage = ph; 938 } 939 } 940 /* 941 * If the page has just become un-empty, move it to the head of 942 * the list, and make it the current page. The next allocation 943 * will get the item from this page, instead of further fragmenting 944 * the pool. 945 */ 946 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 947 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 948 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 949 pp->pr_curpage = ph; 950 } 951 952 pr_leave(pp); 953 simple_unlock(&pp->pr_slock); 954 955 } 956 957 /* 958 * Add N items to the pool. 959 */ 960 int 961 pool_prime(pp, n, storage) 962 struct pool *pp; 963 int n; 964 caddr_t storage; 965 { 966 caddr_t cp; 967 int newnitems, newpages; 968 969 #ifdef DIAGNOSTIC 970 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC))) 971 panic("pool_prime: static"); 972 /* !storage && static caught below */ 973 #endif 974 975 simple_lock(&pp->pr_slock); 976 977 newnitems = pp->pr_minitems + n; 978 newpages = 979 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage 980 - pp->pr_minpages; 981 982 while (newpages-- > 0) { 983 if (pp->pr_roflags & PR_STATIC) { 984 cp = storage; 985 storage += pp->pr_pagesz; 986 } else { 987 simple_unlock(&pp->pr_slock); 988 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 989 simple_lock(&pp->pr_slock); 990 } 991 992 if (cp == NULL) { 993 simple_unlock(&pp->pr_slock); 994 return (ENOMEM); 995 } 996 997 pp->pr_npagealloc++; 998 pool_prime_page(pp, cp); 999 pp->pr_minpages++; 1000 } 1001 1002 pp->pr_minitems = newnitems; 1003 1004 if (pp->pr_minpages >= pp->pr_maxpages) 1005 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1006 1007 simple_unlock(&pp->pr_slock); 1008 return (0); 1009 } 1010 1011 /* 1012 * Add a page worth of items to the pool. 1013 * 1014 * Note, we must be called with the pool descriptor LOCKED. 1015 */ 1016 static void 1017 pool_prime_page(pp, storage) 1018 struct pool *pp; 1019 caddr_t storage; 1020 { 1021 struct pool_item *pi; 1022 struct pool_item_header *ph; 1023 caddr_t cp = storage; 1024 unsigned int align = pp->pr_align; 1025 unsigned int ioff = pp->pr_itemoffset; 1026 int s, n; 1027 1028 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0) 1029 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1030 1031 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 1032 ph = (struct pool_item_header *)(cp + pp->pr_phoffset); 1033 } else { 1034 s = splhigh(); 1035 ph = pool_get(&phpool, PR_URGENT); 1036 splx(s); 1037 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)], 1038 ph, ph_hashlist); 1039 } 1040 1041 /* 1042 * Insert page header. 1043 */ 1044 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1045 TAILQ_INIT(&ph->ph_itemlist); 1046 ph->ph_page = storage; 1047 ph->ph_nmissing = 0; 1048 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1049 1050 pp->pr_nidle++; 1051 1052 /* 1053 * Color this page. 1054 */ 1055 cp = (caddr_t)(cp + pp->pr_curcolor); 1056 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1057 pp->pr_curcolor = 0; 1058 1059 /* 1060 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1061 */ 1062 if (ioff != 0) 1063 cp = (caddr_t)(cp + (align - ioff)); 1064 1065 /* 1066 * Insert remaining chunks on the bucket list. 1067 */ 1068 n = pp->pr_itemsperpage; 1069 pp->pr_nitems += n; 1070 1071 while (n--) { 1072 pi = (struct pool_item *)cp; 1073 1074 /* Insert on page list */ 1075 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1076 #ifdef DIAGNOSTIC 1077 pi->pi_magic = PI_MAGIC; 1078 #endif 1079 cp = (caddr_t)(cp + pp->pr_size); 1080 } 1081 1082 /* 1083 * If the pool was depleted, point at the new page. 1084 */ 1085 if (pp->pr_curpage == NULL) 1086 pp->pr_curpage = ph; 1087 1088 if (++pp->pr_npages > pp->pr_hiwat) 1089 pp->pr_hiwat = pp->pr_npages; 1090 } 1091 1092 /* 1093 * Like pool_prime(), except this is used by pool_get() when nitems 1094 * drops below the low water mark. This is used to catch up nitmes 1095 * with the low water mark. 1096 * 1097 * Note 1, we never wait for memory here, we let the caller decide what to do. 1098 * 1099 * Note 2, this doesn't work with static pools. 1100 * 1101 * Note 3, we must be called with the pool already locked, and we return 1102 * with it locked. 1103 */ 1104 static int 1105 pool_catchup(pp) 1106 struct pool *pp; 1107 { 1108 caddr_t cp; 1109 int error = 0; 1110 1111 if (pp->pr_roflags & PR_STATIC) { 1112 /* 1113 * We dropped below the low water mark, and this is not a 1114 * good thing. Log a warning. 1115 * 1116 * XXX: rate-limit this? 1117 */ 1118 printf("WARNING: static pool `%s' dropped below low water " 1119 "mark\n", pp->pr_wchan); 1120 return (0); 1121 } 1122 1123 while (pp->pr_nitems < pp->pr_minitems) { 1124 /* 1125 * Call the page back-end allocator for more memory. 1126 * 1127 * XXX: We never wait, so should we bother unlocking 1128 * the pool descriptor? 1129 */ 1130 simple_unlock(&pp->pr_slock); 1131 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 1132 simple_lock(&pp->pr_slock); 1133 if (__predict_false(cp == NULL)) { 1134 error = ENOMEM; 1135 break; 1136 } 1137 pp->pr_npagealloc++; 1138 pool_prime_page(pp, cp); 1139 } 1140 1141 return (error); 1142 } 1143 1144 void 1145 pool_setlowat(pp, n) 1146 pool_handle_t pp; 1147 int n; 1148 { 1149 int error; 1150 1151 simple_lock(&pp->pr_slock); 1152 1153 pp->pr_minitems = n; 1154 pp->pr_minpages = (n == 0) 1155 ? 0 1156 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1157 1158 /* Make sure we're caught up with the newly-set low water mark. */ 1159 if ((error = pool_catchup(pp)) != 0) { 1160 /* 1161 * XXX: Should we log a warning? Should we set up a timeout 1162 * to try again in a second or so? The latter could break 1163 * a caller's assumptions about interrupt protection, etc. 1164 */ 1165 } 1166 1167 simple_unlock(&pp->pr_slock); 1168 } 1169 1170 void 1171 pool_sethiwat(pp, n) 1172 pool_handle_t pp; 1173 int n; 1174 { 1175 1176 simple_lock(&pp->pr_slock); 1177 1178 pp->pr_maxpages = (n == 0) 1179 ? 0 1180 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1181 1182 simple_unlock(&pp->pr_slock); 1183 } 1184 1185 void 1186 pool_sethardlimit(pp, n, warnmess, ratecap) 1187 pool_handle_t pp; 1188 int n; 1189 const char *warnmess; 1190 int ratecap; 1191 { 1192 1193 simple_lock(&pp->pr_slock); 1194 1195 pp->pr_hardlimit = n; 1196 pp->pr_hardlimit_warning = warnmess; 1197 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1198 pp->pr_hardlimit_warning_last.tv_sec = 0; 1199 pp->pr_hardlimit_warning_last.tv_usec = 0; 1200 1201 /* 1202 * In-line version of pool_sethiwat(), because we don't want to 1203 * release the lock. 1204 */ 1205 pp->pr_maxpages = (n == 0) 1206 ? 0 1207 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1208 1209 simple_unlock(&pp->pr_slock); 1210 } 1211 1212 /* 1213 * Default page allocator. 1214 */ 1215 static void * 1216 pool_page_alloc(sz, flags, mtype) 1217 unsigned long sz; 1218 int flags; 1219 int mtype; 1220 { 1221 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1222 1223 return ((void *)uvm_km_alloc_poolpage(waitok)); 1224 } 1225 1226 static void 1227 pool_page_free(v, sz, mtype) 1228 void *v; 1229 unsigned long sz; 1230 int mtype; 1231 { 1232 1233 uvm_km_free_poolpage((vaddr_t)v); 1234 } 1235 1236 /* 1237 * Alternate pool page allocator for pools that know they will 1238 * never be accessed in interrupt context. 1239 */ 1240 void * 1241 pool_page_alloc_nointr(sz, flags, mtype) 1242 unsigned long sz; 1243 int flags; 1244 int mtype; 1245 { 1246 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1247 1248 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object, 1249 waitok)); 1250 } 1251 1252 void 1253 pool_page_free_nointr(v, sz, mtype) 1254 void *v; 1255 unsigned long sz; 1256 int mtype; 1257 { 1258 1259 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v); 1260 } 1261 1262 1263 /* 1264 * Release all complete pages that have not been used recently. 1265 */ 1266 void 1267 _pool_reclaim(pp, file, line) 1268 pool_handle_t pp; 1269 const char *file; 1270 long line; 1271 { 1272 struct pool_item_header *ph, *phnext; 1273 struct timeval curtime; 1274 int s; 1275 1276 if (pp->pr_roflags & PR_STATIC) 1277 return; 1278 1279 if (simple_lock_try(&pp->pr_slock) == 0) 1280 return; 1281 pr_enter(pp, file, line); 1282 1283 s = splclock(); 1284 curtime = mono_time; 1285 splx(s); 1286 1287 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) { 1288 phnext = TAILQ_NEXT(ph, ph_pagelist); 1289 1290 /* Check our minimum page claim */ 1291 if (pp->pr_npages <= pp->pr_minpages) 1292 break; 1293 1294 if (ph->ph_nmissing == 0) { 1295 struct timeval diff; 1296 timersub(&curtime, &ph->ph_time, &diff); 1297 if (diff.tv_sec < pool_inactive_time) 1298 continue; 1299 1300 /* 1301 * If freeing this page would put us below 1302 * the low water mark, stop now. 1303 */ 1304 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1305 pp->pr_minitems) 1306 break; 1307 1308 pr_rmpage(pp, ph); 1309 } 1310 } 1311 1312 pr_leave(pp); 1313 simple_unlock(&pp->pr_slock); 1314 } 1315 1316 1317 /* 1318 * Drain pools, one at a time. 1319 * 1320 * Note, we must never be called from an interrupt context. 1321 */ 1322 void 1323 pool_drain(arg) 1324 void *arg; 1325 { 1326 struct pool *pp; 1327 int s; 1328 1329 s = splimp(); 1330 simple_lock(&pool_head_slock); 1331 1332 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL) 1333 goto out; 1334 1335 pp = drainpp; 1336 drainpp = TAILQ_NEXT(pp, pr_poollist); 1337 1338 pool_reclaim(pp); 1339 1340 out: 1341 simple_unlock(&pool_head_slock); 1342 splx(s); 1343 } 1344 1345 1346 /* 1347 * Diagnostic helpers. 1348 */ 1349 void 1350 pool_print(pp, modif) 1351 struct pool *pp; 1352 const char *modif; 1353 { 1354 int s; 1355 1356 s = splimp(); 1357 if (simple_lock_try(&pp->pr_slock) == 0) { 1358 printf("pool %s is locked; try again later\n", 1359 pp->pr_wchan); 1360 splx(s); 1361 return; 1362 } 1363 pool_print1(pp, modif, printf); 1364 simple_unlock(&pp->pr_slock); 1365 splx(s); 1366 } 1367 1368 void 1369 pool_printit(pp, modif, pr) 1370 struct pool *pp; 1371 const char *modif; 1372 void (*pr) __P((const char *, ...)); 1373 { 1374 int didlock = 0; 1375 1376 if (pp == NULL) { 1377 (*pr)("Must specify a pool to print.\n"); 1378 return; 1379 } 1380 1381 /* 1382 * Called from DDB; interrupts should be blocked, and all 1383 * other processors should be paused. We can skip locking 1384 * the pool in this case. 1385 * 1386 * We do a simple_lock_try() just to print the lock 1387 * status, however. 1388 */ 1389 1390 if (simple_lock_try(&pp->pr_slock) == 0) 1391 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1392 else 1393 didlock = 1; 1394 1395 pool_print1(pp, modif, pr); 1396 1397 if (didlock) 1398 simple_unlock(&pp->pr_slock); 1399 } 1400 1401 static void 1402 pool_print1(pp, modif, pr) 1403 struct pool *pp; 1404 const char *modif; 1405 void (*pr) __P((const char *, ...)); 1406 { 1407 struct pool_item_header *ph; 1408 #ifdef DIAGNOSTIC 1409 struct pool_item *pi; 1410 #endif 1411 int print_log = 0, print_pagelist = 0; 1412 char c; 1413 1414 while ((c = *modif++) != '\0') { 1415 if (c == 'l') 1416 print_log = 1; 1417 if (c == 'p') 1418 print_pagelist = 1; 1419 modif++; 1420 } 1421 1422 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1423 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1424 pp->pr_roflags); 1425 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype); 1426 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free); 1427 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1428 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1429 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1430 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1431 1432 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1433 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1434 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1435 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1436 1437 if (print_pagelist == 0) 1438 goto skip_pagelist; 1439 1440 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 1441 (*pr)("\n\tpage list:\n"); 1442 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) { 1443 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1444 ph->ph_page, ph->ph_nmissing, 1445 (u_long)ph->ph_time.tv_sec, 1446 (u_long)ph->ph_time.tv_usec); 1447 #ifdef DIAGNOSTIC 1448 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL; 1449 pi = TAILQ_NEXT(pi, pi_list)) { 1450 if (pi->pi_magic != PI_MAGIC) { 1451 (*pr)("\t\t\titem %p, magic 0x%x\n", 1452 pi, pi->pi_magic); 1453 } 1454 } 1455 #endif 1456 } 1457 if (pp->pr_curpage == NULL) 1458 (*pr)("\tno current page\n"); 1459 else 1460 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1461 1462 skip_pagelist: 1463 1464 if (print_log == 0) 1465 goto skip_log; 1466 1467 (*pr)("\n"); 1468 if ((pp->pr_roflags & PR_LOGGING) == 0) 1469 (*pr)("\tno log\n"); 1470 else 1471 pr_printlog(pp, NULL, pr); 1472 1473 skip_log: 1474 1475 pr_enter_check(pp, pr); 1476 } 1477 1478 int 1479 pool_chk(pp, label) 1480 struct pool *pp; 1481 char *label; 1482 { 1483 struct pool_item_header *ph; 1484 int r = 0; 1485 1486 simple_lock(&pp->pr_slock); 1487 1488 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 1489 ph = TAILQ_NEXT(ph, ph_pagelist)) { 1490 1491 struct pool_item *pi; 1492 int n; 1493 caddr_t page; 1494 1495 page = (caddr_t)((u_long)ph & pp->pr_pagemask); 1496 if (page != ph->ph_page && 1497 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1498 if (label != NULL) 1499 printf("%s: ", label); 1500 printf("pool(%p:%s): page inconsistency: page %p;" 1501 " at page head addr %p (p %p)\n", pp, 1502 pp->pr_wchan, ph->ph_page, 1503 ph, page); 1504 r++; 1505 goto out; 1506 } 1507 1508 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1509 pi != NULL; 1510 pi = TAILQ_NEXT(pi,pi_list), n++) { 1511 1512 #ifdef DIAGNOSTIC 1513 if (pi->pi_magic != PI_MAGIC) { 1514 if (label != NULL) 1515 printf("%s: ", label); 1516 printf("pool(%s): free list modified: magic=%x;" 1517 " page %p; item ordinal %d;" 1518 " addr %p (p %p)\n", 1519 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1520 n, pi, page); 1521 panic("pool"); 1522 } 1523 #endif 1524 page = (caddr_t)((u_long)pi & pp->pr_pagemask); 1525 if (page == ph->ph_page) 1526 continue; 1527 1528 if (label != NULL) 1529 printf("%s: ", label); 1530 printf("pool(%p:%s): page inconsistency: page %p;" 1531 " item ordinal %d; addr %p (p %p)\n", pp, 1532 pp->pr_wchan, ph->ph_page, 1533 n, pi, page); 1534 r++; 1535 goto out; 1536 } 1537 } 1538 out: 1539 simple_unlock(&pp->pr_slock); 1540 return (r); 1541 } 1542