xref: /netbsd-src/sys/kern/subr_pool.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: subr_pool.c,v 1.36 2000/05/31 15:29:42 pk Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_kern.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according
63  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64  * in the pool structure and the individual pool items are on a linked list
65  * headed by `ph_itemlist' in each page header. The memory for building
66  * the page list is either taken from the allocated pages themselves (for
67  * small pool items) or taken from an internal pool of page headers (`phpool').
68  */
69 
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72 
73 /* Private pool for page header structures */
74 static struct pool phpool;
75 
76 /* # of seconds to retain page after last use */
77 int pool_inactive_time = 10;
78 
79 /* Next candidate for drainage (see pool_drain()) */
80 static struct pool	*drainpp;
81 
82 /* This spin lock protects both pool_head and drainpp. */
83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
84 
85 struct pool_item_header {
86 	/* Page headers */
87 	TAILQ_ENTRY(pool_item_header)
88 				ph_pagelist;	/* pool page list */
89 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
90 	LIST_ENTRY(pool_item_header)
91 				ph_hashlist;	/* Off-page page headers */
92 	int			ph_nmissing;	/* # of chunks in use */
93 	caddr_t			ph_page;	/* this page's address */
94 	struct timeval		ph_time;	/* last referenced */
95 };
96 
97 struct pool_item {
98 #ifdef DIAGNOSTIC
99 	int pi_magic;
100 #endif
101 #define	PI_MAGIC 0xdeadbeef
102 	/* Other entries use only this list entry */
103 	TAILQ_ENTRY(pool_item)	pi_list;
104 };
105 
106 
107 #define	PR_HASH_INDEX(pp,addr) \
108 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
109 
110 
111 
112 static struct pool_item_header
113 		*pr_find_pagehead __P((struct pool *, caddr_t));
114 static void	pr_rmpage __P((struct pool *, struct pool_item_header *));
115 static int	pool_catchup __P((struct pool *));
116 static void	pool_prime_page __P((struct pool *, caddr_t));
117 static void	*pool_page_alloc __P((unsigned long, int, int));
118 static void	pool_page_free __P((void *, unsigned long, int));
119 
120 static void pool_print1 __P((struct pool *, const char *,
121 	void (*)(const char *, ...)));
122 
123 /*
124  * Pool log entry. An array of these is allocated in pool_create().
125  */
126 struct pool_log {
127 	const char	*pl_file;
128 	long		pl_line;
129 	int		pl_action;
130 #define	PRLOG_GET	1
131 #define	PRLOG_PUT	2
132 	void		*pl_addr;
133 };
134 
135 /* Number of entries in pool log buffers */
136 #ifndef POOL_LOGSIZE
137 #define	POOL_LOGSIZE	10
138 #endif
139 
140 int pool_logsize = POOL_LOGSIZE;
141 
142 #ifdef DIAGNOSTIC
143 static void	pr_log __P((struct pool *, void *, int, const char *, long));
144 static void	pr_printlog __P((struct pool *, struct pool_item *,
145 		    void (*)(const char *, ...)));
146 static void	pr_enter __P((struct pool *, const char *, long));
147 static void	pr_leave __P((struct pool *));
148 static void	pr_enter_check __P((struct pool *,
149 		    void (*)(const char *, ...)));
150 
151 static __inline__ void
152 pr_log(pp, v, action, file, line)
153 	struct pool	*pp;
154 	void		*v;
155 	int		action;
156 	const char	*file;
157 	long		line;
158 {
159 	int n = pp->pr_curlogentry;
160 	struct pool_log *pl;
161 
162 	if ((pp->pr_roflags & PR_LOGGING) == 0)
163 		return;
164 
165 	/*
166 	 * Fill in the current entry. Wrap around and overwrite
167 	 * the oldest entry if necessary.
168 	 */
169 	pl = &pp->pr_log[n];
170 	pl->pl_file = file;
171 	pl->pl_line = line;
172 	pl->pl_action = action;
173 	pl->pl_addr = v;
174 	if (++n >= pp->pr_logsize)
175 		n = 0;
176 	pp->pr_curlogentry = n;
177 }
178 
179 static void
180 pr_printlog(pp, pi, pr)
181 	struct pool *pp;
182 	struct pool_item *pi;
183 	void (*pr) __P((const char *, ...));
184 {
185 	int i = pp->pr_logsize;
186 	int n = pp->pr_curlogentry;
187 
188 	if ((pp->pr_roflags & PR_LOGGING) == 0)
189 		return;
190 
191 	/*
192 	 * Print all entries in this pool's log.
193 	 */
194 	while (i-- > 0) {
195 		struct pool_log *pl = &pp->pr_log[n];
196 		if (pl->pl_action != 0) {
197 			if (pi == NULL || pi == pl->pl_addr) {
198 				(*pr)("\tlog entry %d:\n", i);
199 				(*pr)("\t\taction = %s, addr = %p\n",
200 				    pl->pl_action == PRLOG_GET ? "get" : "put",
201 				    pl->pl_addr);
202 				(*pr)("\t\tfile: %s at line %lu\n",
203 				    pl->pl_file, pl->pl_line);
204 			}
205 		}
206 		if (++n >= pp->pr_logsize)
207 			n = 0;
208 	}
209 }
210 
211 static __inline__ void
212 pr_enter(pp, file, line)
213 	struct pool *pp;
214 	const char *file;
215 	long line;
216 {
217 
218 	if (__predict_false(pp->pr_entered_file != NULL)) {
219 		printf("pool %s: reentrancy at file %s line %ld\n",
220 		    pp->pr_wchan, file, line);
221 		printf("         previous entry at file %s line %ld\n",
222 		    pp->pr_entered_file, pp->pr_entered_line);
223 		panic("pr_enter");
224 	}
225 
226 	pp->pr_entered_file = file;
227 	pp->pr_entered_line = line;
228 }
229 
230 static __inline__ void
231 pr_leave(pp)
232 	struct pool *pp;
233 {
234 
235 	if (__predict_false(pp->pr_entered_file == NULL)) {
236 		printf("pool %s not entered?\n", pp->pr_wchan);
237 		panic("pr_leave");
238 	}
239 
240 	pp->pr_entered_file = NULL;
241 	pp->pr_entered_line = 0;
242 }
243 
244 static __inline__ void
245 pr_enter_check(pp, pr)
246 	struct pool *pp;
247 	void (*pr) __P((const char *, ...));
248 {
249 
250 	if (pp->pr_entered_file != NULL)
251 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
252 		    pp->pr_entered_file, pp->pr_entered_line);
253 }
254 #else
255 #define	pr_log(pp, v, action, file, line)
256 #define	pr_printlog(pp, pi, pr)
257 #define	pr_enter(pp, file, line)
258 #define	pr_leave(pp)
259 #define	pr_enter_check(pp, pr)
260 #endif /* DIAGNOSTIC */
261 
262 /*
263  * Return the pool page header based on page address.
264  */
265 static __inline__ struct pool_item_header *
266 pr_find_pagehead(pp, page)
267 	struct pool *pp;
268 	caddr_t page;
269 {
270 	struct pool_item_header *ph;
271 
272 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
273 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
274 
275 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
276 	     ph != NULL;
277 	     ph = LIST_NEXT(ph, ph_hashlist)) {
278 		if (ph->ph_page == page)
279 			return (ph);
280 	}
281 	return (NULL);
282 }
283 
284 /*
285  * Remove a page from the pool.
286  */
287 static __inline__ void
288 pr_rmpage(pp, ph)
289 	struct pool *pp;
290 	struct pool_item_header *ph;
291 {
292 
293 	/*
294 	 * If the page was idle, decrement the idle page count.
295 	 */
296 	if (ph->ph_nmissing == 0) {
297 #ifdef DIAGNOSTIC
298 		if (pp->pr_nidle == 0)
299 			panic("pr_rmpage: nidle inconsistent");
300 		if (pp->pr_nitems < pp->pr_itemsperpage)
301 			panic("pr_rmpage: nitems inconsistent");
302 #endif
303 		pp->pr_nidle--;
304 	}
305 
306 	pp->pr_nitems -= pp->pr_itemsperpage;
307 
308 	/*
309 	 * Unlink a page from the pool and release it.
310 	 */
311 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
312 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
313 	pp->pr_npages--;
314 	pp->pr_npagefree++;
315 
316 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
317 		int s;
318 		LIST_REMOVE(ph, ph_hashlist);
319 		s = splhigh();
320 		pool_put(&phpool, ph);
321 		splx(s);
322 	}
323 
324 	if (pp->pr_curpage == ph) {
325 		/*
326 		 * Find a new non-empty page header, if any.
327 		 * Start search from the page head, to increase the
328 		 * chance for "high water" pages to be freed.
329 		 */
330 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
331 		     ph = TAILQ_NEXT(ph, ph_pagelist))
332 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
333 				break;
334 
335 		pp->pr_curpage = ph;
336 	}
337 }
338 
339 /*
340  * Allocate and initialize a pool.
341  */
342 struct pool *
343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
344 	size_t	size;
345 	u_int	align;
346 	u_int	ioff;
347 	int	nitems;
348 	const char *wchan;
349 	size_t	pagesz;
350 	void	*(*alloc) __P((unsigned long, int, int));
351 	void	(*release) __P((void *, unsigned long, int));
352 	int	mtype;
353 {
354 	struct pool *pp;
355 	int flags;
356 
357 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
358 	if (pp == NULL)
359 		return (NULL);
360 
361 	flags = PR_FREEHEADER;
362 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
363 		  alloc, release, mtype);
364 
365 	if (nitems != 0) {
366 		if (pool_prime(pp, nitems, NULL) != 0) {
367 			pool_destroy(pp);
368 			return (NULL);
369 		}
370 	}
371 
372 	return (pp);
373 }
374 
375 /*
376  * Initialize the given pool resource structure.
377  *
378  * We export this routine to allow other kernel parts to declare
379  * static pools that must be initialized before malloc() is available.
380  */
381 void
382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
383 	struct pool	*pp;
384 	size_t		size;
385 	u_int		align;
386 	u_int		ioff;
387 	int		flags;
388 	const char	*wchan;
389 	size_t		pagesz;
390 	void		*(*alloc) __P((unsigned long, int, int));
391 	void		(*release) __P((void *, unsigned long, int));
392 	int		mtype;
393 {
394 	int off, slack, i;
395 
396 #ifdef POOL_DIAGNOSTIC
397 	/*
398 	 * Always log if POOL_DIAGNOSTIC is defined.
399 	 */
400 	if (pool_logsize != 0)
401 		flags |= PR_LOGGING;
402 #endif
403 
404 	/*
405 	 * Check arguments and construct default values.
406 	 */
407 	if (!powerof2(pagesz))
408 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
409 
410 	if (alloc == NULL && release == NULL) {
411 		alloc = pool_page_alloc;
412 		release = pool_page_free;
413 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
414 	} else if ((alloc != NULL && release != NULL) == 0) {
415 		/* If you specifiy one, must specify both. */
416 		panic("pool_init: must specify alloc and release together");
417 	}
418 
419 	if (pagesz == 0)
420 		pagesz = PAGE_SIZE;
421 
422 	if (align == 0)
423 		align = ALIGN(1);
424 
425 	if (size < sizeof(struct pool_item))
426 		size = sizeof(struct pool_item);
427 
428 	size = ALIGN(size);
429 	if (size >= pagesz)
430 		panic("pool_init: pool item size (%lu) too large",
431 		      (u_long)size);
432 
433 	/*
434 	 * Initialize the pool structure.
435 	 */
436 	TAILQ_INIT(&pp->pr_pagelist);
437 	pp->pr_curpage = NULL;
438 	pp->pr_npages = 0;
439 	pp->pr_minitems = 0;
440 	pp->pr_minpages = 0;
441 	pp->pr_maxpages = UINT_MAX;
442 	pp->pr_roflags = flags;
443 	pp->pr_flags = 0;
444 	pp->pr_size = size;
445 	pp->pr_align = align;
446 	pp->pr_wchan = wchan;
447 	pp->pr_mtype = mtype;
448 	pp->pr_alloc = alloc;
449 	pp->pr_free = release;
450 	pp->pr_pagesz = pagesz;
451 	pp->pr_pagemask = ~(pagesz - 1);
452 	pp->pr_pageshift = ffs(pagesz) - 1;
453 	pp->pr_nitems = 0;
454 	pp->pr_nout = 0;
455 	pp->pr_hardlimit = UINT_MAX;
456 	pp->pr_hardlimit_warning = NULL;
457 	pp->pr_hardlimit_ratecap.tv_sec = 0;
458 	pp->pr_hardlimit_ratecap.tv_usec = 0;
459 	pp->pr_hardlimit_warning_last.tv_sec = 0;
460 	pp->pr_hardlimit_warning_last.tv_usec = 0;
461 
462 	/*
463 	 * Decide whether to put the page header off page to avoid
464 	 * wasting too large a part of the page. Off-page page headers
465 	 * go on a hash table, so we can match a returned item
466 	 * with its header based on the page address.
467 	 * We use 1/16 of the page size as the threshold (XXX: tune)
468 	 */
469 	if (pp->pr_size < pagesz/16) {
470 		/* Use the end of the page for the page header */
471 		pp->pr_roflags |= PR_PHINPAGE;
472 		pp->pr_phoffset = off =
473 			pagesz - ALIGN(sizeof(struct pool_item_header));
474 	} else {
475 		/* The page header will be taken from our page header pool */
476 		pp->pr_phoffset = 0;
477 		off = pagesz;
478 		for (i = 0; i < PR_HASHTABSIZE; i++) {
479 			LIST_INIT(&pp->pr_hashtab[i]);
480 		}
481 	}
482 
483 	/*
484 	 * Alignment is to take place at `ioff' within the item. This means
485 	 * we must reserve up to `align - 1' bytes on the page to allow
486 	 * appropriate positioning of each item.
487 	 *
488 	 * Silently enforce `0 <= ioff < align'.
489 	 */
490 	pp->pr_itemoffset = ioff = ioff % align;
491 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
492 
493 	/*
494 	 * Use the slack between the chunks and the page header
495 	 * for "cache coloring".
496 	 */
497 	slack = off - pp->pr_itemsperpage * pp->pr_size;
498 	pp->pr_maxcolor = (slack / align) * align;
499 	pp->pr_curcolor = 0;
500 
501 	pp->pr_nget = 0;
502 	pp->pr_nfail = 0;
503 	pp->pr_nput = 0;
504 	pp->pr_npagealloc = 0;
505 	pp->pr_npagefree = 0;
506 	pp->pr_hiwat = 0;
507 	pp->pr_nidle = 0;
508 
509 	if (flags & PR_LOGGING) {
510 		if (kmem_map == NULL ||
511 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
512 		     M_TEMP, M_NOWAIT)) == NULL)
513 			pp->pr_roflags &= ~PR_LOGGING;
514 		pp->pr_curlogentry = 0;
515 		pp->pr_logsize = pool_logsize;
516 	}
517 
518 	pp->pr_entered_file = NULL;
519 	pp->pr_entered_line = 0;
520 
521 	simple_lock_init(&pp->pr_slock);
522 
523 	/*
524 	 * Initialize private page header pool if we haven't done so yet.
525 	 * XXX LOCKING.
526 	 */
527 	if (phpool.pr_size == 0) {
528 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
529 			  0, "phpool", 0, 0, 0, 0);
530 	}
531 
532 	/* Insert into the list of all pools. */
533 	simple_lock(&pool_head_slock);
534 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
535 	simple_unlock(&pool_head_slock);
536 }
537 
538 /*
539  * De-commision a pool resource.
540  */
541 void
542 pool_destroy(pp)
543 	struct pool *pp;
544 {
545 	struct pool_item_header *ph;
546 
547 #ifdef DIAGNOSTIC
548 	if (pp->pr_nout != 0) {
549 		pr_printlog(pp, NULL, printf);
550 		panic("pool_destroy: pool busy: still out: %u\n",
551 		    pp->pr_nout);
552 	}
553 #endif
554 
555 	/* Remove all pages */
556 	if ((pp->pr_roflags & PR_STATIC) == 0)
557 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
558 			pr_rmpage(pp, ph);
559 
560 	/* Remove from global pool list */
561 	simple_lock(&pool_head_slock);
562 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
563 	/* XXX Only clear this if we were drainpp? */
564 	drainpp = NULL;
565 	simple_unlock(&pool_head_slock);
566 
567 	if ((pp->pr_roflags & PR_LOGGING) != 0)
568 		free(pp->pr_log, M_TEMP);
569 
570 	if (pp->pr_roflags & PR_FREEHEADER)
571 		free(pp, M_POOL);
572 }
573 
574 
575 /*
576  * Grab an item from the pool; must be called at appropriate spl level
577  */
578 void *
579 _pool_get(pp, flags, file, line)
580 	struct pool *pp;
581 	int flags;
582 	const char *file;
583 	long line;
584 {
585 	void *v;
586 	struct pool_item *pi;
587 	struct pool_item_header *ph;
588 
589 #ifdef DIAGNOSTIC
590 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
591 			    (flags & PR_MALLOCOK))) {
592 		pr_printlog(pp, NULL, printf);
593 		panic("pool_get: static");
594 	}
595 #endif
596 
597 	if (__predict_false(curproc == NULL && (flags & PR_WAITOK) != 0))
598 		panic("pool_get: must have NOWAIT");
599 
600 	simple_lock(&pp->pr_slock);
601 	pr_enter(pp, file, line);
602 
603  startover:
604 	/*
605 	 * Check to see if we've reached the hard limit.  If we have,
606 	 * and we can wait, then wait until an item has been returned to
607 	 * the pool.
608 	 */
609 #ifdef DIAGNOSTIC
610 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
611 		pr_leave(pp);
612 		simple_unlock(&pp->pr_slock);
613 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
614 	}
615 #endif
616 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
617 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
618 			/*
619 			 * XXX: A warning isn't logged in this case.  Should
620 			 * it be?
621 			 */
622 			pp->pr_flags |= PR_WANTED;
623 			pr_leave(pp);
624 			simple_unlock(&pp->pr_slock);
625 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
626 			simple_lock(&pp->pr_slock);
627 			pr_enter(pp, file, line);
628 			goto startover;
629 		}
630 
631 		/*
632 		 * Log a message that the hard limit has been hit.
633 		 */
634 		if (pp->pr_hardlimit_warning != NULL &&
635 		    ratecheck(&pp->pr_hardlimit_warning_last,
636 			      &pp->pr_hardlimit_ratecap))
637 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
638 
639 		if (flags & PR_URGENT)
640 			panic("pool_get: urgent");
641 
642 		pp->pr_nfail++;
643 
644 		pr_leave(pp);
645 		simple_unlock(&pp->pr_slock);
646 		return (NULL);
647 	}
648 
649 	/*
650 	 * The convention we use is that if `curpage' is not NULL, then
651 	 * it points at a non-empty bucket. In particular, `curpage'
652 	 * never points at a page header which has PR_PHINPAGE set and
653 	 * has no items in its bucket.
654 	 */
655 	if ((ph = pp->pr_curpage) == NULL) {
656 		void *v;
657 
658 #ifdef DIAGNOSTIC
659 		if (pp->pr_nitems != 0) {
660 			simple_unlock(&pp->pr_slock);
661 			printf("pool_get: %s: curpage NULL, nitems %u\n",
662 			    pp->pr_wchan, pp->pr_nitems);
663 			panic("pool_get: nitems inconsistent\n");
664 		}
665 #endif
666 
667 		/*
668 		 * Call the back-end page allocator for more memory.
669 		 * Release the pool lock, as the back-end page allocator
670 		 * may block.
671 		 */
672 		pr_leave(pp);
673 		simple_unlock(&pp->pr_slock);
674 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
675 		simple_lock(&pp->pr_slock);
676 		pr_enter(pp, file, line);
677 
678 		if (v == NULL) {
679 			/*
680 			 * We were unable to allocate a page, but
681 			 * we released the lock during allocation,
682 			 * so perhaps items were freed back to the
683 			 * pool.  Check for this case.
684 			 */
685 			if (pp->pr_curpage != NULL)
686 				goto startover;
687 
688 			if (flags & PR_URGENT)
689 				panic("pool_get: urgent");
690 
691 			if ((flags & PR_WAITOK) == 0) {
692 				pp->pr_nfail++;
693 				pr_leave(pp);
694 				simple_unlock(&pp->pr_slock);
695 				return (NULL);
696 			}
697 
698 			/*
699 			 * Wait for items to be returned to this pool.
700 			 *
701 			 * XXX: we actually want to wait just until
702 			 * the page allocator has memory again. Depending
703 			 * on this pool's usage, we might get stuck here
704 			 * for a long time.
705 			 *
706 			 * XXX: maybe we should wake up once a second and
707 			 * try again?
708 			 */
709 			pp->pr_flags |= PR_WANTED;
710 			pr_leave(pp);
711 			simple_unlock(&pp->pr_slock);
712 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
713 			simple_lock(&pp->pr_slock);
714 			pr_enter(pp, file, line);
715 			goto startover;
716 		}
717 
718 		/* We have more memory; add it to the pool */
719 		pp->pr_npagealloc++;
720 		pool_prime_page(pp, v);
721 
722 		/* Start the allocation process over. */
723 		goto startover;
724 	}
725 
726 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
727 		pr_leave(pp);
728 		simple_unlock(&pp->pr_slock);
729 		panic("pool_get: %s: page empty", pp->pr_wchan);
730 	}
731 #ifdef DIAGNOSTIC
732 	if (__predict_false(pp->pr_nitems == 0)) {
733 		pr_leave(pp);
734 		simple_unlock(&pp->pr_slock);
735 		printf("pool_get: %s: items on itemlist, nitems %u\n",
736 		    pp->pr_wchan, pp->pr_nitems);
737 		panic("pool_get: nitems inconsistent\n");
738 	}
739 #endif
740 	pr_log(pp, v, PRLOG_GET, file, line);
741 
742 #ifdef DIAGNOSTIC
743 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
744 		pr_printlog(pp, pi, printf);
745 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
746 		       " item addr %p\n",
747 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
748 	}
749 #endif
750 
751 	/*
752 	 * Remove from item list.
753 	 */
754 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
755 	pp->pr_nitems--;
756 	pp->pr_nout++;
757 	if (ph->ph_nmissing == 0) {
758 #ifdef DIAGNOSTIC
759 		if (__predict_false(pp->pr_nidle == 0))
760 			panic("pool_get: nidle inconsistent");
761 #endif
762 		pp->pr_nidle--;
763 	}
764 	ph->ph_nmissing++;
765 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
766 #ifdef DIAGNOSTIC
767 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
768 			pr_leave(pp);
769 			simple_unlock(&pp->pr_slock);
770 			panic("pool_get: %s: nmissing inconsistent",
771 			    pp->pr_wchan);
772 		}
773 #endif
774 		/*
775 		 * Find a new non-empty page header, if any.
776 		 * Start search from the page head, to increase
777 		 * the chance for "high water" pages to be freed.
778 		 *
779 		 * Migrate empty pages to the end of the list.  This
780 		 * will speed the update of curpage as pages become
781 		 * idle.  Empty pages intermingled with idle pages
782 		 * is no big deal.  As soon as a page becomes un-empty,
783 		 * it will move back to the head of the list.
784 		 */
785 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
786 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
787 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
788 		     ph = TAILQ_NEXT(ph, ph_pagelist))
789 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
790 				break;
791 
792 		pp->pr_curpage = ph;
793 	}
794 
795 	pp->pr_nget++;
796 
797 	/*
798 	 * If we have a low water mark and we are now below that low
799 	 * water mark, add more items to the pool.
800 	 */
801 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
802 		/*
803 		 * XXX: Should we log a warning?  Should we set up a timeout
804 		 * to try again in a second or so?  The latter could break
805 		 * a caller's assumptions about interrupt protection, etc.
806 		 */
807 	}
808 
809 	pr_leave(pp);
810 	simple_unlock(&pp->pr_slock);
811 	return (v);
812 }
813 
814 /*
815  * Return resource to the pool; must be called at appropriate spl level
816  */
817 void
818 _pool_put(pp, v, file, line)
819 	struct pool *pp;
820 	void *v;
821 	const char *file;
822 	long line;
823 {
824 	struct pool_item *pi = v;
825 	struct pool_item_header *ph;
826 	caddr_t page;
827 	int s;
828 
829 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
830 
831 	simple_lock(&pp->pr_slock);
832 	pr_enter(pp, file, line);
833 
834 #ifdef DIAGNOSTIC
835 	if (__predict_false(pp->pr_nout == 0)) {
836 		printf("pool %s: putting with none out\n",
837 		    pp->pr_wchan);
838 		panic("pool_put");
839 	}
840 #endif
841 
842 	pr_log(pp, v, PRLOG_PUT, file, line);
843 
844 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
845 		pr_printlog(pp, NULL, printf);
846 		panic("pool_put: %s: page header missing", pp->pr_wchan);
847 	}
848 
849 #ifdef LOCKDEBUG
850 	/*
851 	 * Check if we're freeing a locked simple lock.
852 	 */
853 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
854 #endif
855 
856 	/*
857 	 * Return to item list.
858 	 */
859 #ifdef DIAGNOSTIC
860 	pi->pi_magic = PI_MAGIC;
861 #endif
862 #ifdef DEBUG
863 	{
864 		int i, *ip = v;
865 
866 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
867 			*ip++ = PI_MAGIC;
868 		}
869 	}
870 #endif
871 
872 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
873 	ph->ph_nmissing--;
874 	pp->pr_nput++;
875 	pp->pr_nitems++;
876 	pp->pr_nout--;
877 
878 	/* Cancel "pool empty" condition if it exists */
879 	if (pp->pr_curpage == NULL)
880 		pp->pr_curpage = ph;
881 
882 	if (pp->pr_flags & PR_WANTED) {
883 		pp->pr_flags &= ~PR_WANTED;
884 		if (ph->ph_nmissing == 0)
885 			pp->pr_nidle++;
886 		pr_leave(pp);
887 		simple_unlock(&pp->pr_slock);
888 		wakeup((caddr_t)pp);
889 		return;
890 	}
891 
892 	/*
893 	 * If this page is now complete, do one of two things:
894 	 *
895 	 *	(1) If we have more pages than the page high water
896 	 *	    mark, free the page back to the system.
897 	 *
898 	 *	(2) Move it to the end of the page list, so that
899 	 *	    we minimize our chances of fragmenting the
900 	 *	    pool.  Idle pages migrate to the end (along with
901 	 *	    completely empty pages, so that we find un-empty
902 	 *	    pages more quickly when we update curpage) of the
903 	 *	    list so they can be more easily swept up by
904 	 *	    the pagedaemon when pages are scarce.
905 	 */
906 	if (ph->ph_nmissing == 0) {
907 		pp->pr_nidle++;
908 		if (pp->pr_npages > pp->pr_maxpages) {
909 			pr_rmpage(pp, ph);
910 		} else {
911 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
912 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
913 
914 			/*
915 			 * Update the timestamp on the page.  A page must
916 			 * be idle for some period of time before it can
917 			 * be reclaimed by the pagedaemon.  This minimizes
918 			 * ping-pong'ing for memory.
919 			 */
920 			s = splclock();
921 			ph->ph_time = mono_time;
922 			splx(s);
923 
924 			/*
925 			 * Update the current page pointer.  Just look for
926 			 * the first page with any free items.
927 			 *
928 			 * XXX: Maybe we want an option to look for the
929 			 * page with the fewest available items, to minimize
930 			 * fragmentation?
931 			 */
932 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
933 			     ph = TAILQ_NEXT(ph, ph_pagelist))
934 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
935 					break;
936 
937 			pp->pr_curpage = ph;
938 		}
939 	}
940 	/*
941 	 * If the page has just become un-empty, move it to the head of
942 	 * the list, and make it the current page.  The next allocation
943 	 * will get the item from this page, instead of further fragmenting
944 	 * the pool.
945 	 */
946 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
947 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
948 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
949 		pp->pr_curpage = ph;
950 	}
951 
952 	pr_leave(pp);
953 	simple_unlock(&pp->pr_slock);
954 
955 }
956 
957 /*
958  * Add N items to the pool.
959  */
960 int
961 pool_prime(pp, n, storage)
962 	struct pool *pp;
963 	int n;
964 	caddr_t storage;
965 {
966 	caddr_t cp;
967 	int newnitems, newpages;
968 
969 #ifdef DIAGNOSTIC
970 	if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
971 		panic("pool_prime: static");
972 	/* !storage && static caught below */
973 #endif
974 
975 	simple_lock(&pp->pr_slock);
976 
977 	newnitems = pp->pr_minitems + n;
978 	newpages =
979 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
980 		- pp->pr_minpages;
981 
982 	while (newpages-- > 0) {
983 		if (pp->pr_roflags & PR_STATIC) {
984 			cp = storage;
985 			storage += pp->pr_pagesz;
986 		} else {
987 			simple_unlock(&pp->pr_slock);
988 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
989 			simple_lock(&pp->pr_slock);
990 		}
991 
992 		if (cp == NULL) {
993 			simple_unlock(&pp->pr_slock);
994 			return (ENOMEM);
995 		}
996 
997 		pp->pr_npagealloc++;
998 		pool_prime_page(pp, cp);
999 		pp->pr_minpages++;
1000 	}
1001 
1002 	pp->pr_minitems = newnitems;
1003 
1004 	if (pp->pr_minpages >= pp->pr_maxpages)
1005 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1006 
1007 	simple_unlock(&pp->pr_slock);
1008 	return (0);
1009 }
1010 
1011 /*
1012  * Add a page worth of items to the pool.
1013  *
1014  * Note, we must be called with the pool descriptor LOCKED.
1015  */
1016 static void
1017 pool_prime_page(pp, storage)
1018 	struct pool *pp;
1019 	caddr_t storage;
1020 {
1021 	struct pool_item *pi;
1022 	struct pool_item_header *ph;
1023 	caddr_t cp = storage;
1024 	unsigned int align = pp->pr_align;
1025 	unsigned int ioff = pp->pr_itemoffset;
1026 	int s, n;
1027 
1028 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1029 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1030 
1031 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1032 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1033 	} else {
1034 		s = splhigh();
1035 		ph = pool_get(&phpool, PR_URGENT);
1036 		splx(s);
1037 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1038 				 ph, ph_hashlist);
1039 	}
1040 
1041 	/*
1042 	 * Insert page header.
1043 	 */
1044 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1045 	TAILQ_INIT(&ph->ph_itemlist);
1046 	ph->ph_page = storage;
1047 	ph->ph_nmissing = 0;
1048 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1049 
1050 	pp->pr_nidle++;
1051 
1052 	/*
1053 	 * Color this page.
1054 	 */
1055 	cp = (caddr_t)(cp + pp->pr_curcolor);
1056 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1057 		pp->pr_curcolor = 0;
1058 
1059 	/*
1060 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1061 	 */
1062 	if (ioff != 0)
1063 		cp = (caddr_t)(cp + (align - ioff));
1064 
1065 	/*
1066 	 * Insert remaining chunks on the bucket list.
1067 	 */
1068 	n = pp->pr_itemsperpage;
1069 	pp->pr_nitems += n;
1070 
1071 	while (n--) {
1072 		pi = (struct pool_item *)cp;
1073 
1074 		/* Insert on page list */
1075 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1076 #ifdef DIAGNOSTIC
1077 		pi->pi_magic = PI_MAGIC;
1078 #endif
1079 		cp = (caddr_t)(cp + pp->pr_size);
1080 	}
1081 
1082 	/*
1083 	 * If the pool was depleted, point at the new page.
1084 	 */
1085 	if (pp->pr_curpage == NULL)
1086 		pp->pr_curpage = ph;
1087 
1088 	if (++pp->pr_npages > pp->pr_hiwat)
1089 		pp->pr_hiwat = pp->pr_npages;
1090 }
1091 
1092 /*
1093  * Like pool_prime(), except this is used by pool_get() when nitems
1094  * drops below the low water mark.  This is used to catch up nitmes
1095  * with the low water mark.
1096  *
1097  * Note 1, we never wait for memory here, we let the caller decide what to do.
1098  *
1099  * Note 2, this doesn't work with static pools.
1100  *
1101  * Note 3, we must be called with the pool already locked, and we return
1102  * with it locked.
1103  */
1104 static int
1105 pool_catchup(pp)
1106 	struct pool *pp;
1107 {
1108 	caddr_t cp;
1109 	int error = 0;
1110 
1111 	if (pp->pr_roflags & PR_STATIC) {
1112 		/*
1113 		 * We dropped below the low water mark, and this is not a
1114 		 * good thing.  Log a warning.
1115 		 *
1116 		 * XXX: rate-limit this?
1117 		 */
1118 		printf("WARNING: static pool `%s' dropped below low water "
1119 		    "mark\n", pp->pr_wchan);
1120 		return (0);
1121 	}
1122 
1123 	while (pp->pr_nitems < pp->pr_minitems) {
1124 		/*
1125 		 * Call the page back-end allocator for more memory.
1126 		 *
1127 		 * XXX: We never wait, so should we bother unlocking
1128 		 * the pool descriptor?
1129 		 */
1130 		simple_unlock(&pp->pr_slock);
1131 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1132 		simple_lock(&pp->pr_slock);
1133 		if (__predict_false(cp == NULL)) {
1134 			error = ENOMEM;
1135 			break;
1136 		}
1137 		pp->pr_npagealloc++;
1138 		pool_prime_page(pp, cp);
1139 	}
1140 
1141 	return (error);
1142 }
1143 
1144 void
1145 pool_setlowat(pp, n)
1146 	pool_handle_t	pp;
1147 	int n;
1148 {
1149 	int error;
1150 
1151 	simple_lock(&pp->pr_slock);
1152 
1153 	pp->pr_minitems = n;
1154 	pp->pr_minpages = (n == 0)
1155 		? 0
1156 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1157 
1158 	/* Make sure we're caught up with the newly-set low water mark. */
1159 	if ((error = pool_catchup(pp)) != 0) {
1160 		/*
1161 		 * XXX: Should we log a warning?  Should we set up a timeout
1162 		 * to try again in a second or so?  The latter could break
1163 		 * a caller's assumptions about interrupt protection, etc.
1164 		 */
1165 	}
1166 
1167 	simple_unlock(&pp->pr_slock);
1168 }
1169 
1170 void
1171 pool_sethiwat(pp, n)
1172 	pool_handle_t	pp;
1173 	int n;
1174 {
1175 
1176 	simple_lock(&pp->pr_slock);
1177 
1178 	pp->pr_maxpages = (n == 0)
1179 		? 0
1180 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1181 
1182 	simple_unlock(&pp->pr_slock);
1183 }
1184 
1185 void
1186 pool_sethardlimit(pp, n, warnmess, ratecap)
1187 	pool_handle_t pp;
1188 	int n;
1189 	const char *warnmess;
1190 	int ratecap;
1191 {
1192 
1193 	simple_lock(&pp->pr_slock);
1194 
1195 	pp->pr_hardlimit = n;
1196 	pp->pr_hardlimit_warning = warnmess;
1197 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1198 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1199 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1200 
1201 	/*
1202 	 * In-line version of pool_sethiwat(), because we don't want to
1203 	 * release the lock.
1204 	 */
1205 	pp->pr_maxpages = (n == 0)
1206 		? 0
1207 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1208 
1209 	simple_unlock(&pp->pr_slock);
1210 }
1211 
1212 /*
1213  * Default page allocator.
1214  */
1215 static void *
1216 pool_page_alloc(sz, flags, mtype)
1217 	unsigned long sz;
1218 	int flags;
1219 	int mtype;
1220 {
1221 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1222 
1223 	return ((void *)uvm_km_alloc_poolpage(waitok));
1224 }
1225 
1226 static void
1227 pool_page_free(v, sz, mtype)
1228 	void *v;
1229 	unsigned long sz;
1230 	int mtype;
1231 {
1232 
1233 	uvm_km_free_poolpage((vaddr_t)v);
1234 }
1235 
1236 /*
1237  * Alternate pool page allocator for pools that know they will
1238  * never be accessed in interrupt context.
1239  */
1240 void *
1241 pool_page_alloc_nointr(sz, flags, mtype)
1242 	unsigned long sz;
1243 	int flags;
1244 	int mtype;
1245 {
1246 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1247 
1248 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1249 	    waitok));
1250 }
1251 
1252 void
1253 pool_page_free_nointr(v, sz, mtype)
1254 	void *v;
1255 	unsigned long sz;
1256 	int mtype;
1257 {
1258 
1259 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1260 }
1261 
1262 
1263 /*
1264  * Release all complete pages that have not been used recently.
1265  */
1266 void
1267 _pool_reclaim(pp, file, line)
1268 	pool_handle_t pp;
1269 	const char *file;
1270 	long line;
1271 {
1272 	struct pool_item_header *ph, *phnext;
1273 	struct timeval curtime;
1274 	int s;
1275 
1276 	if (pp->pr_roflags & PR_STATIC)
1277 		return;
1278 
1279 	if (simple_lock_try(&pp->pr_slock) == 0)
1280 		return;
1281 	pr_enter(pp, file, line);
1282 
1283 	s = splclock();
1284 	curtime = mono_time;
1285 	splx(s);
1286 
1287 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1288 		phnext = TAILQ_NEXT(ph, ph_pagelist);
1289 
1290 		/* Check our minimum page claim */
1291 		if (pp->pr_npages <= pp->pr_minpages)
1292 			break;
1293 
1294 		if (ph->ph_nmissing == 0) {
1295 			struct timeval diff;
1296 			timersub(&curtime, &ph->ph_time, &diff);
1297 			if (diff.tv_sec < pool_inactive_time)
1298 				continue;
1299 
1300 			/*
1301 			 * If freeing this page would put us below
1302 			 * the low water mark, stop now.
1303 			 */
1304 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
1305 			    pp->pr_minitems)
1306 				break;
1307 
1308 			pr_rmpage(pp, ph);
1309 		}
1310 	}
1311 
1312 	pr_leave(pp);
1313 	simple_unlock(&pp->pr_slock);
1314 }
1315 
1316 
1317 /*
1318  * Drain pools, one at a time.
1319  *
1320  * Note, we must never be called from an interrupt context.
1321  */
1322 void
1323 pool_drain(arg)
1324 	void *arg;
1325 {
1326 	struct pool *pp;
1327 	int s;
1328 
1329 	s = splimp();
1330 	simple_lock(&pool_head_slock);
1331 
1332 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1333 		goto out;
1334 
1335 	pp = drainpp;
1336 	drainpp = TAILQ_NEXT(pp, pr_poollist);
1337 
1338 	pool_reclaim(pp);
1339 
1340  out:
1341 	simple_unlock(&pool_head_slock);
1342 	splx(s);
1343 }
1344 
1345 
1346 /*
1347  * Diagnostic helpers.
1348  */
1349 void
1350 pool_print(pp, modif)
1351 	struct pool *pp;
1352 	const char *modif;
1353 {
1354 	int s;
1355 
1356 	s = splimp();
1357 	if (simple_lock_try(&pp->pr_slock) == 0) {
1358 		printf("pool %s is locked; try again later\n",
1359 		    pp->pr_wchan);
1360 		splx(s);
1361 		return;
1362 	}
1363 	pool_print1(pp, modif, printf);
1364 	simple_unlock(&pp->pr_slock);
1365 	splx(s);
1366 }
1367 
1368 void
1369 pool_printit(pp, modif, pr)
1370 	struct pool *pp;
1371 	const char *modif;
1372 	void (*pr) __P((const char *, ...));
1373 {
1374 	int didlock = 0;
1375 
1376 	if (pp == NULL) {
1377 		(*pr)("Must specify a pool to print.\n");
1378 		return;
1379 	}
1380 
1381 	/*
1382 	 * Called from DDB; interrupts should be blocked, and all
1383 	 * other processors should be paused.  We can skip locking
1384 	 * the pool in this case.
1385 	 *
1386 	 * We do a simple_lock_try() just to print the lock
1387 	 * status, however.
1388 	 */
1389 
1390 	if (simple_lock_try(&pp->pr_slock) == 0)
1391 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1392 	else
1393 		didlock = 1;
1394 
1395 	pool_print1(pp, modif, pr);
1396 
1397 	if (didlock)
1398 		simple_unlock(&pp->pr_slock);
1399 }
1400 
1401 static void
1402 pool_print1(pp, modif, pr)
1403 	struct pool *pp;
1404 	const char *modif;
1405 	void (*pr) __P((const char *, ...));
1406 {
1407 	struct pool_item_header *ph;
1408 #ifdef DIAGNOSTIC
1409 	struct pool_item *pi;
1410 #endif
1411 	int print_log = 0, print_pagelist = 0;
1412 	char c;
1413 
1414 	while ((c = *modif++) != '\0') {
1415 		if (c == 'l')
1416 			print_log = 1;
1417 		if (c == 'p')
1418 			print_pagelist = 1;
1419 		modif++;
1420 	}
1421 
1422 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1423 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1424 	    pp->pr_roflags);
1425 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1426 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1427 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1428 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1429 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1430 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1431 
1432 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1433 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1434 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1435 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1436 
1437 	if (print_pagelist == 0)
1438 		goto skip_pagelist;
1439 
1440 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1441 		(*pr)("\n\tpage list:\n");
1442 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1443 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1444 		    ph->ph_page, ph->ph_nmissing,
1445 		    (u_long)ph->ph_time.tv_sec,
1446 		    (u_long)ph->ph_time.tv_usec);
1447 #ifdef DIAGNOSTIC
1448 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1449 		     pi = TAILQ_NEXT(pi, pi_list)) {
1450 			if (pi->pi_magic != PI_MAGIC) {
1451 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1452 				    pi, pi->pi_magic);
1453 			}
1454 		}
1455 #endif
1456 	}
1457 	if (pp->pr_curpage == NULL)
1458 		(*pr)("\tno current page\n");
1459 	else
1460 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1461 
1462  skip_pagelist:
1463 
1464 	if (print_log == 0)
1465 		goto skip_log;
1466 
1467 	(*pr)("\n");
1468 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1469 		(*pr)("\tno log\n");
1470 	else
1471 		pr_printlog(pp, NULL, pr);
1472 
1473  skip_log:
1474 
1475 	pr_enter_check(pp, pr);
1476 }
1477 
1478 int
1479 pool_chk(pp, label)
1480 	struct pool *pp;
1481 	char *label;
1482 {
1483 	struct pool_item_header *ph;
1484 	int r = 0;
1485 
1486 	simple_lock(&pp->pr_slock);
1487 
1488 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1489 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
1490 
1491 		struct pool_item *pi;
1492 		int n;
1493 		caddr_t page;
1494 
1495 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1496 		if (page != ph->ph_page &&
1497 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1498 			if (label != NULL)
1499 				printf("%s: ", label);
1500 			printf("pool(%p:%s): page inconsistency: page %p;"
1501 			       " at page head addr %p (p %p)\n", pp,
1502 				pp->pr_wchan, ph->ph_page,
1503 				ph, page);
1504 			r++;
1505 			goto out;
1506 		}
1507 
1508 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1509 		     pi != NULL;
1510 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
1511 
1512 #ifdef DIAGNOSTIC
1513 			if (pi->pi_magic != PI_MAGIC) {
1514 				if (label != NULL)
1515 					printf("%s: ", label);
1516 				printf("pool(%s): free list modified: magic=%x;"
1517 				       " page %p; item ordinal %d;"
1518 				       " addr %p (p %p)\n",
1519 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
1520 					n, pi, page);
1521 				panic("pool");
1522 			}
1523 #endif
1524 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1525 			if (page == ph->ph_page)
1526 				continue;
1527 
1528 			if (label != NULL)
1529 				printf("%s: ", label);
1530 			printf("pool(%p:%s): page inconsistency: page %p;"
1531 			       " item ordinal %d; addr %p (p %p)\n", pp,
1532 				pp->pr_wchan, ph->ph_page,
1533 				n, pi, page);
1534 			r++;
1535 			goto out;
1536 		}
1537 	}
1538 out:
1539 	simple_unlock(&pp->pr_slock);
1540 	return (r);
1541 }
1542