1 /* $NetBSD: subr_pool.c,v 1.30 1999/08/29 00:26:01 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include "opt_pool.h" 41 #include "opt_poollog.h" 42 #include "opt_lockdebug.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/errno.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_kern.h> 56 57 #include <uvm/uvm.h> 58 59 /* 60 * Pool resource management utility. 61 * 62 * Memory is allocated in pages which are split into pieces according 63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist' 64 * in the pool structure and the individual pool items are on a linked list 65 * headed by `ph_itemlist' in each page header. The memory for building 66 * the page list is either taken from the allocated pages themselves (for 67 * small pool items) or taken from an internal pool of page headers (`phpool'). 68 */ 69 70 /* List of all pools */ 71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 72 73 /* Private pool for page header structures */ 74 static struct pool phpool; 75 76 /* # of seconds to retain page after last use */ 77 int pool_inactive_time = 10; 78 79 /* Next candidate for drainage (see pool_drain()) */ 80 static struct pool *drainpp; 81 82 /* This spin lock protects both pool_head and drainpp. */ 83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 84 85 struct pool_item_header { 86 /* Page headers */ 87 TAILQ_ENTRY(pool_item_header) 88 ph_pagelist; /* pool page list */ 89 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 90 LIST_ENTRY(pool_item_header) 91 ph_hashlist; /* Off-page page headers */ 92 int ph_nmissing; /* # of chunks in use */ 93 caddr_t ph_page; /* this page's address */ 94 struct timeval ph_time; /* last referenced */ 95 }; 96 97 struct pool_item { 98 #ifdef DIAGNOSTIC 99 int pi_magic; 100 #define PI_MAGIC 0xdeadbeef 101 #endif 102 /* Other entries use only this list entry */ 103 TAILQ_ENTRY(pool_item) pi_list; 104 }; 105 106 107 #define PR_HASH_INDEX(pp,addr) \ 108 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1)) 109 110 111 112 static struct pool_item_header 113 *pr_find_pagehead __P((struct pool *, caddr_t)); 114 static void pr_rmpage __P((struct pool *, struct pool_item_header *)); 115 static int pool_catchup __P((struct pool *)); 116 static void pool_prime_page __P((struct pool *, caddr_t)); 117 static void *pool_page_alloc __P((unsigned long, int, int)); 118 static void pool_page_free __P((void *, unsigned long, int)); 119 120 static void pool_print1 __P((struct pool *, const char *, 121 void (*)(const char *, ...))); 122 123 /* 124 * Pool log entry. An array of these is allocated in pool_create(). 125 */ 126 struct pool_log { 127 const char *pl_file; 128 long pl_line; 129 int pl_action; 130 #define PRLOG_GET 1 131 #define PRLOG_PUT 2 132 void *pl_addr; 133 }; 134 135 /* Number of entries in pool log buffers */ 136 #ifndef POOL_LOGSIZE 137 #define POOL_LOGSIZE 10 138 #endif 139 140 int pool_logsize = POOL_LOGSIZE; 141 142 #ifdef DIAGNOSTIC 143 static void pr_log __P((struct pool *, void *, int, const char *, long)); 144 static void pr_printlog __P((struct pool *, struct pool_item *, 145 void (*)(const char *, ...))); 146 static void pr_enter __P((struct pool *, const char *, long)); 147 static void pr_leave __P((struct pool *)); 148 static void pr_enter_check __P((struct pool *, 149 void (*)(const char *, ...))); 150 151 static __inline__ void 152 pr_log(pp, v, action, file, line) 153 struct pool *pp; 154 void *v; 155 int action; 156 const char *file; 157 long line; 158 { 159 int n = pp->pr_curlogentry; 160 struct pool_log *pl; 161 162 if ((pp->pr_roflags & PR_LOGGING) == 0) 163 return; 164 165 /* 166 * Fill in the current entry. Wrap around and overwrite 167 * the oldest entry if necessary. 168 */ 169 pl = &pp->pr_log[n]; 170 pl->pl_file = file; 171 pl->pl_line = line; 172 pl->pl_action = action; 173 pl->pl_addr = v; 174 if (++n >= pp->pr_logsize) 175 n = 0; 176 pp->pr_curlogentry = n; 177 } 178 179 static void 180 pr_printlog(pp, pi, pr) 181 struct pool *pp; 182 struct pool_item *pi; 183 void (*pr) __P((const char *, ...)); 184 { 185 int i = pp->pr_logsize; 186 int n = pp->pr_curlogentry; 187 188 if ((pp->pr_roflags & PR_LOGGING) == 0) 189 return; 190 191 /* 192 * Print all entries in this pool's log. 193 */ 194 while (i-- > 0) { 195 struct pool_log *pl = &pp->pr_log[n]; 196 if (pl->pl_action != 0) { 197 if (pi == NULL || pi == pl->pl_addr) { 198 (*pr)("\tlog entry %d:\n", i); 199 (*pr)("\t\taction = %s, addr = %p\n", 200 pl->pl_action == PRLOG_GET ? "get" : "put", 201 pl->pl_addr); 202 (*pr)("\t\tfile: %s at line %lu\n", 203 pl->pl_file, pl->pl_line); 204 } 205 } 206 if (++n >= pp->pr_logsize) 207 n = 0; 208 } 209 } 210 211 static __inline__ void 212 pr_enter(pp, file, line) 213 struct pool *pp; 214 const char *file; 215 long line; 216 { 217 218 if (pp->pr_entered_file != NULL) { 219 printf("pool %s: reentrancy at file %s line %ld\n", 220 pp->pr_wchan, file, line); 221 printf(" previous entry at file %s line %ld\n", 222 pp->pr_entered_file, pp->pr_entered_line); 223 panic("pr_enter"); 224 } 225 226 pp->pr_entered_file = file; 227 pp->pr_entered_line = line; 228 } 229 230 static __inline__ void 231 pr_leave(pp) 232 struct pool *pp; 233 { 234 235 if (pp->pr_entered_file == NULL) { 236 printf("pool %s not entered?\n", pp->pr_wchan); 237 panic("pr_leave"); 238 } 239 240 pp->pr_entered_file = NULL; 241 pp->pr_entered_line = 0; 242 } 243 244 static __inline__ void 245 pr_enter_check(pp, pr) 246 struct pool *pp; 247 void (*pr) __P((const char *, ...)); 248 { 249 250 if (pp->pr_entered_file != NULL) 251 (*pr)("\n\tcurrently entered from file %s line %ld\n", 252 pp->pr_entered_file, pp->pr_entered_line); 253 } 254 #else 255 #define pr_log(pp, v, action, file, line) 256 #define pr_printlog(pp, pi, pr) 257 #define pr_enter(pp, file, line) 258 #define pr_leave(pp) 259 #define pr_enter_check(pp, pr) 260 #endif /* DIAGNOSTIC */ 261 262 /* 263 * Return the pool page header based on page address. 264 */ 265 static __inline__ struct pool_item_header * 266 pr_find_pagehead(pp, page) 267 struct pool *pp; 268 caddr_t page; 269 { 270 struct pool_item_header *ph; 271 272 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 273 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 274 275 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]); 276 ph != NULL; 277 ph = LIST_NEXT(ph, ph_hashlist)) { 278 if (ph->ph_page == page) 279 return (ph); 280 } 281 return (NULL); 282 } 283 284 /* 285 * Remove a page from the pool. 286 */ 287 static __inline__ void 288 pr_rmpage(pp, ph) 289 struct pool *pp; 290 struct pool_item_header *ph; 291 { 292 293 /* 294 * If the page was idle, decrement the idle page count. 295 */ 296 if (ph->ph_nmissing == 0) { 297 #ifdef DIAGNOSTIC 298 if (pp->pr_nidle == 0) 299 panic("pr_rmpage: nidle inconsistent"); 300 if (pp->pr_nitems < pp->pr_itemsperpage) 301 panic("pr_rmpage: nitems inconsistent"); 302 #endif 303 pp->pr_nidle--; 304 } 305 306 pp->pr_nitems -= pp->pr_itemsperpage; 307 308 /* 309 * Unlink a page from the pool and release it. 310 */ 311 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 312 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype); 313 pp->pr_npages--; 314 pp->pr_npagefree++; 315 316 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 317 int s; 318 LIST_REMOVE(ph, ph_hashlist); 319 s = splhigh(); 320 pool_put(&phpool, ph); 321 splx(s); 322 } 323 324 if (pp->pr_curpage == ph) { 325 /* 326 * Find a new non-empty page header, if any. 327 * Start search from the page head, to increase the 328 * chance for "high water" pages to be freed. 329 */ 330 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 331 ph = TAILQ_NEXT(ph, ph_pagelist)) 332 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 333 break; 334 335 pp->pr_curpage = ph; 336 } 337 } 338 339 /* 340 * Allocate and initialize a pool. 341 */ 342 struct pool * 343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype) 344 size_t size; 345 u_int align; 346 u_int ioff; 347 int nitems; 348 const char *wchan; 349 size_t pagesz; 350 void *(*alloc) __P((unsigned long, int, int)); 351 void (*release) __P((void *, unsigned long, int)); 352 int mtype; 353 { 354 struct pool *pp; 355 int flags; 356 357 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT); 358 if (pp == NULL) 359 return (NULL); 360 361 flags = PR_FREEHEADER; 362 pool_init(pp, size, align, ioff, flags, wchan, pagesz, 363 alloc, release, mtype); 364 365 if (nitems != 0) { 366 if (pool_prime(pp, nitems, NULL) != 0) { 367 pool_destroy(pp); 368 return (NULL); 369 } 370 } 371 372 return (pp); 373 } 374 375 /* 376 * Initialize the given pool resource structure. 377 * 378 * We export this routine to allow other kernel parts to declare 379 * static pools that must be initialized before malloc() is available. 380 */ 381 void 382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype) 383 struct pool *pp; 384 size_t size; 385 u_int align; 386 u_int ioff; 387 int flags; 388 const char *wchan; 389 size_t pagesz; 390 void *(*alloc) __P((unsigned long, int, int)); 391 void (*release) __P((void *, unsigned long, int)); 392 int mtype; 393 { 394 int off, slack, i; 395 396 #ifdef POOL_DIAGNOSTIC 397 /* 398 * Always log if POOL_DIAGNOSTIC is defined. 399 */ 400 if (pool_logsize != 0) 401 flags |= PR_LOGGING; 402 #endif 403 404 /* 405 * Check arguments and construct default values. 406 */ 407 if (!powerof2(pagesz) || pagesz > PAGE_SIZE) 408 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz); 409 410 if (alloc == NULL && release == NULL) { 411 alloc = pool_page_alloc; 412 release = pool_page_free; 413 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */ 414 } else if ((alloc != NULL && release != NULL) == 0) { 415 /* If you specifiy one, must specify both. */ 416 panic("pool_init: must specify alloc and release together"); 417 } 418 419 if (pagesz == 0) 420 pagesz = PAGE_SIZE; 421 422 if (align == 0) 423 align = ALIGN(1); 424 425 if (size < sizeof(struct pool_item)) 426 size = sizeof(struct pool_item); 427 428 /* 429 * Initialize the pool structure. 430 */ 431 TAILQ_INIT(&pp->pr_pagelist); 432 pp->pr_curpage = NULL; 433 pp->pr_npages = 0; 434 pp->pr_minitems = 0; 435 pp->pr_minpages = 0; 436 pp->pr_maxpages = UINT_MAX; 437 pp->pr_roflags = flags; 438 pp->pr_flags = 0; 439 pp->pr_size = ALIGN(size); 440 pp->pr_align = align; 441 pp->pr_wchan = wchan; 442 pp->pr_mtype = mtype; 443 pp->pr_alloc = alloc; 444 pp->pr_free = release; 445 pp->pr_pagesz = pagesz; 446 pp->pr_pagemask = ~(pagesz - 1); 447 pp->pr_pageshift = ffs(pagesz) - 1; 448 pp->pr_nitems = 0; 449 pp->pr_nout = 0; 450 pp->pr_hardlimit = UINT_MAX; 451 pp->pr_hardlimit_warning = NULL; 452 pp->pr_hardlimit_ratecap = 0; 453 memset(&pp->pr_hardlimit_warning_last, 0, 454 sizeof(pp->pr_hardlimit_warning_last)); 455 456 /* 457 * Decide whether to put the page header off page to avoid 458 * wasting too large a part of the page. Off-page page headers 459 * go on a hash table, so we can match a returned item 460 * with its header based on the page address. 461 * We use 1/16 of the page size as the threshold (XXX: tune) 462 */ 463 if (pp->pr_size < pagesz/16) { 464 /* Use the end of the page for the page header */ 465 pp->pr_roflags |= PR_PHINPAGE; 466 pp->pr_phoffset = off = 467 pagesz - ALIGN(sizeof(struct pool_item_header)); 468 } else { 469 /* The page header will be taken from our page header pool */ 470 pp->pr_phoffset = 0; 471 off = pagesz; 472 for (i = 0; i < PR_HASHTABSIZE; i++) { 473 LIST_INIT(&pp->pr_hashtab[i]); 474 } 475 } 476 477 /* 478 * Alignment is to take place at `ioff' within the item. This means 479 * we must reserve up to `align - 1' bytes on the page to allow 480 * appropriate positioning of each item. 481 * 482 * Silently enforce `0 <= ioff < align'. 483 */ 484 pp->pr_itemoffset = ioff = ioff % align; 485 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 486 487 /* 488 * Use the slack between the chunks and the page header 489 * for "cache coloring". 490 */ 491 slack = off - pp->pr_itemsperpage * pp->pr_size; 492 pp->pr_maxcolor = (slack / align) * align; 493 pp->pr_curcolor = 0; 494 495 pp->pr_nget = 0; 496 pp->pr_nfail = 0; 497 pp->pr_nput = 0; 498 pp->pr_npagealloc = 0; 499 pp->pr_npagefree = 0; 500 pp->pr_hiwat = 0; 501 pp->pr_nidle = 0; 502 503 if (flags & PR_LOGGING) { 504 if (kmem_map == NULL || 505 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 506 M_TEMP, M_NOWAIT)) == NULL) 507 pp->pr_roflags &= ~PR_LOGGING; 508 pp->pr_curlogentry = 0; 509 pp->pr_logsize = pool_logsize; 510 } 511 512 pp->pr_entered_file = NULL; 513 pp->pr_entered_line = 0; 514 515 simple_lock_init(&pp->pr_slock); 516 517 /* 518 * Initialize private page header pool if we haven't done so yet. 519 * XXX LOCKING. 520 */ 521 if (phpool.pr_size == 0) { 522 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 523 0, "phpool", 0, 0, 0, 0); 524 } 525 526 /* Insert into the list of all pools. */ 527 simple_lock(&pool_head_slock); 528 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 529 simple_unlock(&pool_head_slock); 530 } 531 532 /* 533 * De-commision a pool resource. 534 */ 535 void 536 pool_destroy(pp) 537 struct pool *pp; 538 { 539 struct pool_item_header *ph; 540 541 #ifdef DIAGNOSTIC 542 if (pp->pr_nout != 0) { 543 pr_printlog(pp, NULL, printf); 544 panic("pool_destroy: pool busy: still out: %u\n", 545 pp->pr_nout); 546 } 547 #endif 548 549 /* Remove all pages */ 550 if ((pp->pr_roflags & PR_STATIC) == 0) 551 while ((ph = pp->pr_pagelist.tqh_first) != NULL) 552 pr_rmpage(pp, ph); 553 554 /* Remove from global pool list */ 555 simple_lock(&pool_head_slock); 556 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 557 /* XXX Only clear this if we were drainpp? */ 558 drainpp = NULL; 559 simple_unlock(&pool_head_slock); 560 561 if ((pp->pr_roflags & PR_LOGGING) != 0) 562 free(pp->pr_log, M_TEMP); 563 564 if (pp->pr_roflags & PR_FREEHEADER) 565 free(pp, M_POOL); 566 } 567 568 569 /* 570 * Grab an item from the pool; must be called at appropriate spl level 571 */ 572 void * 573 _pool_get(pp, flags, file, line) 574 struct pool *pp; 575 int flags; 576 const char *file; 577 long line; 578 { 579 void *v; 580 struct pool_item *pi; 581 struct pool_item_header *ph; 582 583 #ifdef DIAGNOSTIC 584 if ((pp->pr_roflags & PR_STATIC) && (flags & PR_MALLOCOK)) { 585 pr_printlog(pp, NULL, printf); 586 panic("pool_get: static"); 587 } 588 #endif 589 590 if (curproc == NULL && (flags & PR_WAITOK) != 0) 591 panic("pool_get: must have NOWAIT"); 592 593 simple_lock(&pp->pr_slock); 594 pr_enter(pp, file, line); 595 596 startover: 597 /* 598 * Check to see if we've reached the hard limit. If we have, 599 * and we can wait, then wait until an item has been returned to 600 * the pool. 601 */ 602 #ifdef DIAGNOSTIC 603 if (pp->pr_nout > pp->pr_hardlimit) { 604 pr_leave(pp); 605 simple_unlock(&pp->pr_slock); 606 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 607 } 608 #endif 609 if (pp->pr_nout == pp->pr_hardlimit) { 610 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 611 /* 612 * XXX: A warning isn't logged in this case. Should 613 * it be? 614 */ 615 pp->pr_flags |= PR_WANTED; 616 pr_leave(pp); 617 simple_unlock(&pp->pr_slock); 618 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0); 619 simple_lock(&pp->pr_slock); 620 pr_enter(pp, file, line); 621 goto startover; 622 } 623 if (pp->pr_hardlimit_warning != NULL) { 624 /* 625 * Log a message that the hard limit has been hit. 626 */ 627 struct timeval curtime, logdiff; 628 int s = splclock(); 629 curtime = mono_time; 630 splx(s); 631 timersub(&curtime, &pp->pr_hardlimit_warning_last, 632 &logdiff); 633 if (logdiff.tv_sec >= pp->pr_hardlimit_ratecap) { 634 pp->pr_hardlimit_warning_last = curtime; 635 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 636 } 637 } 638 639 if (flags & PR_URGENT) 640 panic("pool_get: urgent"); 641 642 pp->pr_nfail++; 643 644 pr_leave(pp); 645 simple_unlock(&pp->pr_slock); 646 return (NULL); 647 } 648 649 /* 650 * The convention we use is that if `curpage' is not NULL, then 651 * it points at a non-empty bucket. In particular, `curpage' 652 * never points at a page header which has PR_PHINPAGE set and 653 * has no items in its bucket. 654 */ 655 if ((ph = pp->pr_curpage) == NULL) { 656 void *v; 657 658 #ifdef DIAGNOSTIC 659 if (pp->pr_nitems != 0) { 660 simple_unlock(&pp->pr_slock); 661 printf("pool_get: %s: curpage NULL, nitems %u\n", 662 pp->pr_wchan, pp->pr_nitems); 663 panic("pool_get: nitems inconsistent\n"); 664 } 665 #endif 666 667 /* 668 * Call the back-end page allocator for more memory. 669 * Release the pool lock, as the back-end page allocator 670 * may block. 671 */ 672 pr_leave(pp); 673 simple_unlock(&pp->pr_slock); 674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype); 675 simple_lock(&pp->pr_slock); 676 pr_enter(pp, file, line); 677 678 if (v == NULL) { 679 /* 680 * We were unable to allocate a page, but 681 * we released the lock during allocation, 682 * so perhaps items were freed back to the 683 * pool. Check for this case. 684 */ 685 if (pp->pr_curpage != NULL) 686 goto startover; 687 688 if (flags & PR_URGENT) 689 panic("pool_get: urgent"); 690 691 if ((flags & PR_WAITOK) == 0) { 692 pp->pr_nfail++; 693 pr_leave(pp); 694 simple_unlock(&pp->pr_slock); 695 return (NULL); 696 } 697 698 /* 699 * Wait for items to be returned to this pool. 700 * 701 * XXX: we actually want to wait just until 702 * the page allocator has memory again. Depending 703 * on this pool's usage, we might get stuck here 704 * for a long time. 705 * 706 * XXX: maybe we should wake up once a second and 707 * try again? 708 */ 709 pp->pr_flags |= PR_WANTED; 710 pr_leave(pp); 711 simple_unlock(&pp->pr_slock); 712 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0); 713 simple_lock(&pp->pr_slock); 714 pr_enter(pp, file, line); 715 goto startover; 716 } 717 718 /* We have more memory; add it to the pool */ 719 pp->pr_npagealloc++; 720 pool_prime_page(pp, v); 721 722 /* Start the allocation process over. */ 723 goto startover; 724 } 725 726 if ((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL) { 727 pr_leave(pp); 728 simple_unlock(&pp->pr_slock); 729 panic("pool_get: %s: page empty", pp->pr_wchan); 730 } 731 #ifdef DIAGNOSTIC 732 if (pp->pr_nitems == 0) { 733 pr_leave(pp); 734 simple_unlock(&pp->pr_slock); 735 printf("pool_get: %s: items on itemlist, nitems %u\n", 736 pp->pr_wchan, pp->pr_nitems); 737 panic("pool_get: nitems inconsistent\n"); 738 } 739 #endif 740 pr_log(pp, v, PRLOG_GET, file, line); 741 742 #ifdef DIAGNOSTIC 743 if (pi->pi_magic != PI_MAGIC) { 744 pr_printlog(pp, pi, printf); 745 panic("pool_get(%s): free list modified: magic=%x; page %p;" 746 " item addr %p\n", 747 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 748 } 749 #endif 750 751 /* 752 * Remove from item list. 753 */ 754 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 755 pp->pr_nitems--; 756 pp->pr_nout++; 757 if (ph->ph_nmissing == 0) { 758 #ifdef DIAGNOSTIC 759 if (pp->pr_nidle == 0) 760 panic("pool_get: nidle inconsistent"); 761 #endif 762 pp->pr_nidle--; 763 } 764 ph->ph_nmissing++; 765 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) { 766 #ifdef DIAGNOSTIC 767 if (ph->ph_nmissing != pp->pr_itemsperpage) { 768 pr_leave(pp); 769 simple_unlock(&pp->pr_slock); 770 panic("pool_get: %s: nmissing inconsistent", 771 pp->pr_wchan); 772 } 773 #endif 774 /* 775 * Find a new non-empty page header, if any. 776 * Start search from the page head, to increase 777 * the chance for "high water" pages to be freed. 778 * 779 * Migrate empty pages to the end of the list. This 780 * will speed the update of curpage as pages become 781 * idle. Empty pages intermingled with idle pages 782 * is no big deal. As soon as a page becomes un-empty, 783 * it will move back to the head of the list. 784 */ 785 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 786 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 787 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 788 ph = TAILQ_NEXT(ph, ph_pagelist)) 789 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 790 break; 791 792 pp->pr_curpage = ph; 793 } 794 795 pp->pr_nget++; 796 797 /* 798 * If we have a low water mark and we are now below that low 799 * water mark, add more items to the pool. 800 */ 801 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) { 802 /* 803 * XXX: Should we log a warning? Should we set up a timeout 804 * to try again in a second or so? The latter could break 805 * a caller's assumptions about interrupt protection, etc. 806 */ 807 } 808 809 pr_leave(pp); 810 simple_unlock(&pp->pr_slock); 811 return (v); 812 } 813 814 /* 815 * Return resource to the pool; must be called at appropriate spl level 816 */ 817 void 818 _pool_put(pp, v, file, line) 819 struct pool *pp; 820 void *v; 821 const char *file; 822 long line; 823 { 824 struct pool_item *pi = v; 825 struct pool_item_header *ph; 826 caddr_t page; 827 int s; 828 829 page = (caddr_t)((u_long)v & pp->pr_pagemask); 830 831 simple_lock(&pp->pr_slock); 832 pr_enter(pp, file, line); 833 834 #ifdef DIAGNOSTIC 835 if (pp->pr_nout == 0) { 836 printf("pool %s: putting with none out\n", 837 pp->pr_wchan); 838 panic("pool_put"); 839 } 840 #endif 841 842 pr_log(pp, v, PRLOG_PUT, file, line); 843 844 if ((ph = pr_find_pagehead(pp, page)) == NULL) { 845 pr_printlog(pp, NULL, printf); 846 panic("pool_put: %s: page header missing", pp->pr_wchan); 847 } 848 849 #ifdef LOCKDEBUG 850 /* 851 * Check if we're freeing a locked simple lock. 852 */ 853 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 854 #endif 855 856 /* 857 * Return to item list. 858 */ 859 #ifdef DIAGNOSTIC 860 /* XXX Should fill the item. */ 861 pi->pi_magic = PI_MAGIC; 862 #endif 863 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 864 ph->ph_nmissing--; 865 pp->pr_nput++; 866 pp->pr_nitems++; 867 pp->pr_nout--; 868 869 /* Cancel "pool empty" condition if it exists */ 870 if (pp->pr_curpage == NULL) 871 pp->pr_curpage = ph; 872 873 if (pp->pr_flags & PR_WANTED) { 874 pp->pr_flags &= ~PR_WANTED; 875 if (ph->ph_nmissing == 0) 876 pp->pr_nidle++; 877 pr_leave(pp); 878 simple_unlock(&pp->pr_slock); 879 wakeup((caddr_t)pp); 880 return; 881 } 882 883 /* 884 * If this page is now complete, do one of two things: 885 * 886 * (1) If we have more pages than the page high water 887 * mark, free the page back to the system. 888 * 889 * (2) Move it to the end of the page list, so that 890 * we minimize our chances of fragmenting the 891 * pool. Idle pages migrate to the end (along with 892 * completely empty pages, so that we find un-empty 893 * pages more quickly when we update curpage) of the 894 * list so they can be more easily swept up by 895 * the pagedaemon when pages are scarce. 896 */ 897 if (ph->ph_nmissing == 0) { 898 pp->pr_nidle++; 899 if (pp->pr_npages > pp->pr_maxpages) { 900 pr_rmpage(pp, ph); 901 } else { 902 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 903 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 904 905 /* 906 * Update the timestamp on the page. A page must 907 * be idle for some period of time before it can 908 * be reclaimed by the pagedaemon. This minimizes 909 * ping-pong'ing for memory. 910 */ 911 s = splclock(); 912 ph->ph_time = mono_time; 913 splx(s); 914 915 /* 916 * Update the current page pointer. Just look for 917 * the first page with any free items. 918 * 919 * XXX: Maybe we want an option to look for the 920 * page with the fewest available items, to minimize 921 * fragmentation? 922 */ 923 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 924 ph = TAILQ_NEXT(ph, ph_pagelist)) 925 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 926 break; 927 928 pp->pr_curpage = ph; 929 } 930 } 931 /* 932 * If the page has just become un-empty, move it to the head of 933 * the list, and make it the current page. The next allocation 934 * will get the item from this page, instead of further fragmenting 935 * the pool. 936 */ 937 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 938 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 939 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 940 pp->pr_curpage = ph; 941 } 942 943 pr_leave(pp); 944 simple_unlock(&pp->pr_slock); 945 946 } 947 948 /* 949 * Add N items to the pool. 950 */ 951 int 952 pool_prime(pp, n, storage) 953 struct pool *pp; 954 int n; 955 caddr_t storage; 956 { 957 caddr_t cp; 958 int newnitems, newpages; 959 960 #ifdef DIAGNOSTIC 961 if (storage && !(pp->pr_roflags & PR_STATIC)) 962 panic("pool_prime: static"); 963 /* !storage && static caught below */ 964 #endif 965 966 simple_lock(&pp->pr_slock); 967 968 newnitems = pp->pr_minitems + n; 969 newpages = 970 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage 971 - pp->pr_minpages; 972 973 while (newpages-- > 0) { 974 if (pp->pr_roflags & PR_STATIC) { 975 cp = storage; 976 storage += pp->pr_pagesz; 977 } else { 978 simple_unlock(&pp->pr_slock); 979 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 980 simple_lock(&pp->pr_slock); 981 } 982 983 if (cp == NULL) { 984 simple_unlock(&pp->pr_slock); 985 return (ENOMEM); 986 } 987 988 pp->pr_npagealloc++; 989 pool_prime_page(pp, cp); 990 pp->pr_minpages++; 991 } 992 993 pp->pr_minitems = newnitems; 994 995 if (pp->pr_minpages >= pp->pr_maxpages) 996 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 997 998 simple_unlock(&pp->pr_slock); 999 return (0); 1000 } 1001 1002 /* 1003 * Add a page worth of items to the pool. 1004 * 1005 * Note, we must be called with the pool descriptor LOCKED. 1006 */ 1007 static void 1008 pool_prime_page(pp, storage) 1009 struct pool *pp; 1010 caddr_t storage; 1011 { 1012 struct pool_item *pi; 1013 struct pool_item_header *ph; 1014 caddr_t cp = storage; 1015 unsigned int align = pp->pr_align; 1016 unsigned int ioff = pp->pr_itemoffset; 1017 int s, n; 1018 1019 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 1020 ph = (struct pool_item_header *)(cp + pp->pr_phoffset); 1021 } else { 1022 s = splhigh(); 1023 ph = pool_get(&phpool, PR_URGENT); 1024 splx(s); 1025 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)], 1026 ph, ph_hashlist); 1027 } 1028 1029 /* 1030 * Insert page header. 1031 */ 1032 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1033 TAILQ_INIT(&ph->ph_itemlist); 1034 ph->ph_page = storage; 1035 ph->ph_nmissing = 0; 1036 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1037 1038 pp->pr_nidle++; 1039 1040 /* 1041 * Color this page. 1042 */ 1043 cp = (caddr_t)(cp + pp->pr_curcolor); 1044 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1045 pp->pr_curcolor = 0; 1046 1047 /* 1048 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1049 */ 1050 if (ioff != 0) 1051 cp = (caddr_t)(cp + (align - ioff)); 1052 1053 /* 1054 * Insert remaining chunks on the bucket list. 1055 */ 1056 n = pp->pr_itemsperpage; 1057 pp->pr_nitems += n; 1058 1059 while (n--) { 1060 pi = (struct pool_item *)cp; 1061 1062 /* Insert on page list */ 1063 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1064 #ifdef DIAGNOSTIC 1065 pi->pi_magic = PI_MAGIC; 1066 #endif 1067 cp = (caddr_t)(cp + pp->pr_size); 1068 } 1069 1070 /* 1071 * If the pool was depleted, point at the new page. 1072 */ 1073 if (pp->pr_curpage == NULL) 1074 pp->pr_curpage = ph; 1075 1076 if (++pp->pr_npages > pp->pr_hiwat) 1077 pp->pr_hiwat = pp->pr_npages; 1078 } 1079 1080 /* 1081 * Like pool_prime(), except this is used by pool_get() when nitems 1082 * drops below the low water mark. This is used to catch up nitmes 1083 * with the low water mark. 1084 * 1085 * Note 1, we never wait for memory here, we let the caller decide what to do. 1086 * 1087 * Note 2, this doesn't work with static pools. 1088 * 1089 * Note 3, we must be called with the pool already locked, and we return 1090 * with it locked. 1091 */ 1092 static int 1093 pool_catchup(pp) 1094 struct pool *pp; 1095 { 1096 caddr_t cp; 1097 int error = 0; 1098 1099 if (pp->pr_roflags & PR_STATIC) { 1100 /* 1101 * We dropped below the low water mark, and this is not a 1102 * good thing. Log a warning. 1103 * 1104 * XXX: rate-limit this? 1105 */ 1106 printf("WARNING: static pool `%s' dropped below low water " 1107 "mark\n", pp->pr_wchan); 1108 return (0); 1109 } 1110 1111 while (pp->pr_nitems < pp->pr_minitems) { 1112 /* 1113 * Call the page back-end allocator for more memory. 1114 * 1115 * XXX: We never wait, so should we bother unlocking 1116 * the pool descriptor? 1117 */ 1118 simple_unlock(&pp->pr_slock); 1119 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 1120 simple_lock(&pp->pr_slock); 1121 if (cp == NULL) { 1122 error = ENOMEM; 1123 break; 1124 } 1125 pp->pr_npagealloc++; 1126 pool_prime_page(pp, cp); 1127 } 1128 1129 return (error); 1130 } 1131 1132 void 1133 pool_setlowat(pp, n) 1134 pool_handle_t pp; 1135 int n; 1136 { 1137 int error; 1138 1139 simple_lock(&pp->pr_slock); 1140 1141 pp->pr_minitems = n; 1142 pp->pr_minpages = (n == 0) 1143 ? 0 1144 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1145 1146 /* Make sure we're caught up with the newly-set low water mark. */ 1147 if ((error = pool_catchup(pp)) != 0) { 1148 /* 1149 * XXX: Should we log a warning? Should we set up a timeout 1150 * to try again in a second or so? The latter could break 1151 * a caller's assumptions about interrupt protection, etc. 1152 */ 1153 } 1154 1155 simple_unlock(&pp->pr_slock); 1156 } 1157 1158 void 1159 pool_sethiwat(pp, n) 1160 pool_handle_t pp; 1161 int n; 1162 { 1163 1164 simple_lock(&pp->pr_slock); 1165 1166 pp->pr_maxpages = (n == 0) 1167 ? 0 1168 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1169 1170 simple_unlock(&pp->pr_slock); 1171 } 1172 1173 void 1174 pool_sethardlimit(pp, n, warnmess, ratecap) 1175 pool_handle_t pp; 1176 int n; 1177 const char *warnmess; 1178 int ratecap; 1179 { 1180 1181 simple_lock(&pp->pr_slock); 1182 1183 pp->pr_hardlimit = n; 1184 pp->pr_hardlimit_warning = warnmess; 1185 pp->pr_hardlimit_ratecap = ratecap; 1186 memset(&pp->pr_hardlimit_warning_last, 0, 1187 sizeof(pp->pr_hardlimit_warning_last)); 1188 1189 /* 1190 * In-line version of pool_sethiwat(), because we don't want to 1191 * release the lock. 1192 */ 1193 pp->pr_maxpages = (n == 0) 1194 ? 0 1195 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1196 1197 simple_unlock(&pp->pr_slock); 1198 } 1199 1200 /* 1201 * Default page allocator. 1202 */ 1203 static void * 1204 pool_page_alloc(sz, flags, mtype) 1205 unsigned long sz; 1206 int flags; 1207 int mtype; 1208 { 1209 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1210 1211 return ((void *)uvm_km_alloc_poolpage(waitok)); 1212 } 1213 1214 static void 1215 pool_page_free(v, sz, mtype) 1216 void *v; 1217 unsigned long sz; 1218 int mtype; 1219 { 1220 1221 uvm_km_free_poolpage((vaddr_t)v); 1222 } 1223 1224 /* 1225 * Alternate pool page allocator for pools that know they will 1226 * never be accessed in interrupt context. 1227 */ 1228 void * 1229 pool_page_alloc_nointr(sz, flags, mtype) 1230 unsigned long sz; 1231 int flags; 1232 int mtype; 1233 { 1234 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1235 1236 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object, 1237 waitok)); 1238 } 1239 1240 void 1241 pool_page_free_nointr(v, sz, mtype) 1242 void *v; 1243 unsigned long sz; 1244 int mtype; 1245 { 1246 1247 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v); 1248 } 1249 1250 1251 /* 1252 * Release all complete pages that have not been used recently. 1253 */ 1254 void 1255 _pool_reclaim(pp, file, line) 1256 pool_handle_t pp; 1257 const char *file; 1258 long line; 1259 { 1260 struct pool_item_header *ph, *phnext; 1261 struct timeval curtime; 1262 int s; 1263 1264 if (pp->pr_roflags & PR_STATIC) 1265 return; 1266 1267 if (simple_lock_try(&pp->pr_slock) == 0) 1268 return; 1269 pr_enter(pp, file, line); 1270 1271 s = splclock(); 1272 curtime = mono_time; 1273 splx(s); 1274 1275 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) { 1276 phnext = TAILQ_NEXT(ph, ph_pagelist); 1277 1278 /* Check our minimum page claim */ 1279 if (pp->pr_npages <= pp->pr_minpages) 1280 break; 1281 1282 if (ph->ph_nmissing == 0) { 1283 struct timeval diff; 1284 timersub(&curtime, &ph->ph_time, &diff); 1285 if (diff.tv_sec < pool_inactive_time) 1286 continue; 1287 1288 /* 1289 * If freeing this page would put us below 1290 * the low water mark, stop now. 1291 */ 1292 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1293 pp->pr_minitems) 1294 break; 1295 1296 pr_rmpage(pp, ph); 1297 } 1298 } 1299 1300 pr_leave(pp); 1301 simple_unlock(&pp->pr_slock); 1302 } 1303 1304 1305 /* 1306 * Drain pools, one at a time. 1307 * 1308 * Note, we must never be called from an interrupt context. 1309 */ 1310 void 1311 pool_drain(arg) 1312 void *arg; 1313 { 1314 struct pool *pp; 1315 int s; 1316 1317 s = splimp(); 1318 simple_lock(&pool_head_slock); 1319 1320 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL) 1321 goto out; 1322 1323 pp = drainpp; 1324 drainpp = TAILQ_NEXT(pp, pr_poollist); 1325 1326 pool_reclaim(pp); 1327 1328 out: 1329 simple_unlock(&pool_head_slock); 1330 splx(s); 1331 } 1332 1333 1334 /* 1335 * Diagnostic helpers. 1336 */ 1337 void 1338 pool_print(pp, modif) 1339 struct pool *pp; 1340 const char *modif; 1341 { 1342 int s; 1343 1344 s = splimp(); 1345 if (simple_lock_try(&pp->pr_slock) == 0) { 1346 printf("pool %s is locked; try again later\n", 1347 pp->pr_wchan); 1348 splx(s); 1349 return; 1350 } 1351 pool_print1(pp, modif, printf); 1352 simple_unlock(&pp->pr_slock); 1353 splx(s); 1354 } 1355 1356 void 1357 pool_printit(pp, modif, pr) 1358 struct pool *pp; 1359 const char *modif; 1360 void (*pr) __P((const char *, ...)); 1361 { 1362 int didlock = 0; 1363 1364 if (pp == NULL) { 1365 (*pr)("Must specify a pool to print.\n"); 1366 return; 1367 } 1368 1369 /* 1370 * Called from DDB; interrupts should be blocked, and all 1371 * other processors should be paused. We can skip locking 1372 * the pool in this case. 1373 * 1374 * We do a simple_lock_try() just to print the lock 1375 * status, however. 1376 */ 1377 1378 if (simple_lock_try(&pp->pr_slock) == 0) 1379 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1380 else 1381 didlock = 1; 1382 1383 pool_print1(pp, modif, pr); 1384 1385 if (didlock) 1386 simple_unlock(&pp->pr_slock); 1387 } 1388 1389 static void 1390 pool_print1(pp, modif, pr) 1391 struct pool *pp; 1392 const char *modif; 1393 void (*pr) __P((const char *, ...)); 1394 { 1395 struct pool_item_header *ph; 1396 #ifdef DIAGNOSTIC 1397 struct pool_item *pi; 1398 #endif 1399 int print_log = 0, print_pagelist = 0; 1400 char c; 1401 1402 while ((c = *modif++) != '\0') { 1403 if (c == 'l') 1404 print_log = 1; 1405 if (c == 'p') 1406 print_pagelist = 1; 1407 modif++; 1408 } 1409 1410 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1411 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1412 pp->pr_roflags); 1413 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype); 1414 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free); 1415 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1416 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1417 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1418 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1419 1420 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1421 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1422 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1423 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1424 1425 if (print_pagelist == 0) 1426 goto skip_pagelist; 1427 1428 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 1429 (*pr)("\n\tpage list:\n"); 1430 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) { 1431 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1432 ph->ph_page, ph->ph_nmissing, 1433 (u_long)ph->ph_time.tv_sec, 1434 (u_long)ph->ph_time.tv_usec); 1435 #ifdef DIAGNOSTIC 1436 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL; 1437 pi = TAILQ_NEXT(pi, pi_list)) { 1438 if (pi->pi_magic != PI_MAGIC) { 1439 (*pr)("\t\t\titem %p, magic 0x%x\n", 1440 pi, pi->pi_magic); 1441 } 1442 } 1443 #endif 1444 } 1445 if (pp->pr_curpage == NULL) 1446 (*pr)("\tno current page\n"); 1447 else 1448 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1449 1450 skip_pagelist: 1451 1452 if (print_log == 0) 1453 goto skip_log; 1454 1455 (*pr)("\n"); 1456 if ((pp->pr_roflags & PR_LOGGING) == 0) 1457 (*pr)("\tno log\n"); 1458 else 1459 pr_printlog(pp, NULL, pr); 1460 1461 skip_log: 1462 1463 pr_enter_check(pp, pr); 1464 } 1465 1466 int 1467 pool_chk(pp, label) 1468 struct pool *pp; 1469 char *label; 1470 { 1471 struct pool_item_header *ph; 1472 int r = 0; 1473 1474 simple_lock(&pp->pr_slock); 1475 1476 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 1477 ph = TAILQ_NEXT(ph, ph_pagelist)) { 1478 1479 struct pool_item *pi; 1480 int n; 1481 caddr_t page; 1482 1483 page = (caddr_t)((u_long)ph & pp->pr_pagemask); 1484 if (page != ph->ph_page && 1485 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1486 if (label != NULL) 1487 printf("%s: ", label); 1488 printf("pool(%p:%s): page inconsistency: page %p;" 1489 " at page head addr %p (p %p)\n", pp, 1490 pp->pr_wchan, ph->ph_page, 1491 ph, page); 1492 r++; 1493 goto out; 1494 } 1495 1496 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1497 pi != NULL; 1498 pi = TAILQ_NEXT(pi,pi_list), n++) { 1499 1500 #ifdef DIAGNOSTIC 1501 if (pi->pi_magic != PI_MAGIC) { 1502 if (label != NULL) 1503 printf("%s: ", label); 1504 printf("pool(%s): free list modified: magic=%x;" 1505 " page %p; item ordinal %d;" 1506 " addr %p (p %p)\n", 1507 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1508 n, pi, page); 1509 panic("pool"); 1510 } 1511 #endif 1512 page = (caddr_t)((u_long)pi & pp->pr_pagemask); 1513 if (page == ph->ph_page) 1514 continue; 1515 1516 if (label != NULL) 1517 printf("%s: ", label); 1518 printf("pool(%p:%s): page inconsistency: page %p;" 1519 " item ordinal %d; addr %p (p %p)\n", pp, 1520 pp->pr_wchan, ph->ph_page, 1521 n, pi, page); 1522 r++; 1523 goto out; 1524 } 1525 } 1526 out: 1527 simple_unlock(&pp->pr_slock); 1528 return (r); 1529 } 1530