xref: /netbsd-src/sys/kern/subr_pool.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: subr_pool.c,v 1.151 2008/02/14 11:45:24 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.151 2008/02/14 11:45:24 yamt Exp $");
42 
43 #include "opt_ddb.h"
44 #include "opt_pool.h"
45 #include "opt_poollog.h"
46 #include "opt_lockdebug.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bitops.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/syslog.h>
57 #include <sys/debug.h>
58 #include <sys/lockdebug.h>
59 #include <sys/xcall.h>
60 #include <sys/cpu.h>
61 #include <sys/atomic.h>
62 
63 #include <uvm/uvm.h>
64 
65 /*
66  * Pool resource management utility.
67  *
68  * Memory is allocated in pages which are split into pieces according to
69  * the pool item size. Each page is kept on one of three lists in the
70  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
71  * for empty, full and partially-full pages respectively. The individual
72  * pool items are on a linked list headed by `ph_itemlist' in each page
73  * header. The memory for building the page list is either taken from
74  * the allocated pages themselves (for small pool items) or taken from
75  * an internal pool of page headers (`phpool').
76  */
77 
78 /* List of all pools */
79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
80 
81 /* Private pool for page header structures */
82 #define	PHPOOL_MAX	8
83 static struct pool phpool[PHPOOL_MAX];
84 #define	PHPOOL_FREELIST_NELEM(idx) \
85 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
86 
87 #ifdef POOL_SUBPAGE
88 /* Pool of subpages for use by normal pools. */
89 static struct pool psppool;
90 #endif
91 
92 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
93     SLIST_HEAD_INITIALIZER(pa_deferinitq);
94 
95 static void *pool_page_alloc_meta(struct pool *, int);
96 static void pool_page_free_meta(struct pool *, void *);
97 
98 /* allocator for pool metadata */
99 struct pool_allocator pool_allocator_meta = {
100 	pool_page_alloc_meta, pool_page_free_meta,
101 	.pa_backingmapptr = &kmem_map,
102 };
103 
104 /* # of seconds to retain page after last use */
105 int pool_inactive_time = 10;
106 
107 /* Next candidate for drainage (see pool_drain()) */
108 static struct pool	*drainpp;
109 
110 /* This lock protects both pool_head and drainpp. */
111 static kmutex_t pool_head_lock;
112 static kcondvar_t pool_busy;
113 
114 typedef uint32_t pool_item_bitmap_t;
115 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
116 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
117 
118 struct pool_item_header {
119 	/* Page headers */
120 	LIST_ENTRY(pool_item_header)
121 				ph_pagelist;	/* pool page list */
122 	SPLAY_ENTRY(pool_item_header)
123 				ph_node;	/* Off-page page headers */
124 	void *			ph_page;	/* this page's address */
125 	uint32_t		ph_time;	/* last referenced */
126 	uint16_t		ph_nmissing;	/* # of chunks in use */
127 	uint16_t		ph_off;		/* start offset in page */
128 	union {
129 		/* !PR_NOTOUCH */
130 		struct {
131 			LIST_HEAD(, pool_item)
132 				phu_itemlist;	/* chunk list for this page */
133 		} phu_normal;
134 		/* PR_NOTOUCH */
135 		struct {
136 			pool_item_bitmap_t phu_bitmap[1];
137 		} phu_notouch;
138 	} ph_u;
139 };
140 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
141 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
142 
143 struct pool_item {
144 #ifdef DIAGNOSTIC
145 	u_int pi_magic;
146 #endif
147 #define	PI_MAGIC 0xdeaddeadU
148 	/* Other entries use only this list entry */
149 	LIST_ENTRY(pool_item)	pi_list;
150 };
151 
152 #define	POOL_NEEDS_CATCHUP(pp)						\
153 	((pp)->pr_nitems < (pp)->pr_minitems)
154 
155 /*
156  * Pool cache management.
157  *
158  * Pool caches provide a way for constructed objects to be cached by the
159  * pool subsystem.  This can lead to performance improvements by avoiding
160  * needless object construction/destruction; it is deferred until absolutely
161  * necessary.
162  *
163  * Caches are grouped into cache groups.  Each cache group references up
164  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
165  * object from the pool, it calls the object's constructor and places it
166  * into a cache group.  When a cache group frees an object back to the
167  * pool, it first calls the object's destructor.  This allows the object
168  * to persist in constructed form while freed to the cache.
169  *
170  * The pool references each cache, so that when a pool is drained by the
171  * pagedaemon, it can drain each individual cache as well.  Each time a
172  * cache is drained, the most idle cache group is freed to the pool in
173  * its entirety.
174  *
175  * Pool caches are layed on top of pools.  By layering them, we can avoid
176  * the complexity of cache management for pools which would not benefit
177  * from it.
178  */
179 
180 static struct pool pcg_normal_pool;
181 static struct pool pcg_large_pool;
182 static struct pool cache_pool;
183 static struct pool cache_cpu_pool;
184 
185 /* List of all caches. */
186 TAILQ_HEAD(,pool_cache) pool_cache_head =
187     TAILQ_HEAD_INITIALIZER(pool_cache_head);
188 
189 int pool_cache_disable;
190 
191 
192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
193 					     void *, paddr_t);
194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
195 					     void **, paddr_t *, int);
196 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
197 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
198 static void	pool_cache_xcall(pool_cache_t);
199 
200 static int	pool_catchup(struct pool *);
201 static void	pool_prime_page(struct pool *, void *,
202 		    struct pool_item_header *);
203 static void	pool_update_curpage(struct pool *);
204 
205 static int	pool_grow(struct pool *, int);
206 static void	*pool_allocator_alloc(struct pool *, int);
207 static void	pool_allocator_free(struct pool *, void *);
208 
209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
210 	void (*)(const char *, ...));
211 static void pool_print1(struct pool *, const char *,
212 	void (*)(const char *, ...));
213 
214 static int pool_chk_page(struct pool *, const char *,
215 			 struct pool_item_header *);
216 
217 /*
218  * Pool log entry. An array of these is allocated in pool_init().
219  */
220 struct pool_log {
221 	const char	*pl_file;
222 	long		pl_line;
223 	int		pl_action;
224 #define	PRLOG_GET	1
225 #define	PRLOG_PUT	2
226 	void		*pl_addr;
227 };
228 
229 #ifdef POOL_DIAGNOSTIC
230 /* Number of entries in pool log buffers */
231 #ifndef POOL_LOGSIZE
232 #define	POOL_LOGSIZE	10
233 #endif
234 
235 int pool_logsize = POOL_LOGSIZE;
236 
237 static inline void
238 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
239 {
240 	int n = pp->pr_curlogentry;
241 	struct pool_log *pl;
242 
243 	if ((pp->pr_roflags & PR_LOGGING) == 0)
244 		return;
245 
246 	/*
247 	 * Fill in the current entry. Wrap around and overwrite
248 	 * the oldest entry if necessary.
249 	 */
250 	pl = &pp->pr_log[n];
251 	pl->pl_file = file;
252 	pl->pl_line = line;
253 	pl->pl_action = action;
254 	pl->pl_addr = v;
255 	if (++n >= pp->pr_logsize)
256 		n = 0;
257 	pp->pr_curlogentry = n;
258 }
259 
260 static void
261 pr_printlog(struct pool *pp, struct pool_item *pi,
262     void (*pr)(const char *, ...))
263 {
264 	int i = pp->pr_logsize;
265 	int n = pp->pr_curlogentry;
266 
267 	if ((pp->pr_roflags & PR_LOGGING) == 0)
268 		return;
269 
270 	/*
271 	 * Print all entries in this pool's log.
272 	 */
273 	while (i-- > 0) {
274 		struct pool_log *pl = &pp->pr_log[n];
275 		if (pl->pl_action != 0) {
276 			if (pi == NULL || pi == pl->pl_addr) {
277 				(*pr)("\tlog entry %d:\n", i);
278 				(*pr)("\t\taction = %s, addr = %p\n",
279 				    pl->pl_action == PRLOG_GET ? "get" : "put",
280 				    pl->pl_addr);
281 				(*pr)("\t\tfile: %s at line %lu\n",
282 				    pl->pl_file, pl->pl_line);
283 			}
284 		}
285 		if (++n >= pp->pr_logsize)
286 			n = 0;
287 	}
288 }
289 
290 static inline void
291 pr_enter(struct pool *pp, const char *file, long line)
292 {
293 
294 	if (__predict_false(pp->pr_entered_file != NULL)) {
295 		printf("pool %s: reentrancy at file %s line %ld\n",
296 		    pp->pr_wchan, file, line);
297 		printf("         previous entry at file %s line %ld\n",
298 		    pp->pr_entered_file, pp->pr_entered_line);
299 		panic("pr_enter");
300 	}
301 
302 	pp->pr_entered_file = file;
303 	pp->pr_entered_line = line;
304 }
305 
306 static inline void
307 pr_leave(struct pool *pp)
308 {
309 
310 	if (__predict_false(pp->pr_entered_file == NULL)) {
311 		printf("pool %s not entered?\n", pp->pr_wchan);
312 		panic("pr_leave");
313 	}
314 
315 	pp->pr_entered_file = NULL;
316 	pp->pr_entered_line = 0;
317 }
318 
319 static inline void
320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
321 {
322 
323 	if (pp->pr_entered_file != NULL)
324 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
325 		    pp->pr_entered_file, pp->pr_entered_line);
326 }
327 #else
328 #define	pr_log(pp, v, action, file, line)
329 #define	pr_printlog(pp, pi, pr)
330 #define	pr_enter(pp, file, line)
331 #define	pr_leave(pp)
332 #define	pr_enter_check(pp, pr)
333 #endif /* POOL_DIAGNOSTIC */
334 
335 static inline unsigned int
336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
337     const void *v)
338 {
339 	const char *cp = v;
340 	unsigned int idx;
341 
342 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
343 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
344 	KASSERT(idx < pp->pr_itemsperpage);
345 	return idx;
346 }
347 
348 static inline void
349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
350     void *obj)
351 {
352 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
353 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
354 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
355 
356 	KASSERT((*bitmap & mask) == 0);
357 	*bitmap |= mask;
358 }
359 
360 static inline void *
361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
362 {
363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
364 	unsigned int idx;
365 	int i;
366 
367 	for (i = 0; ; i++) {
368 		int bit;
369 
370 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
371 		bit = ffs32(bitmap[i]);
372 		if (bit) {
373 			pool_item_bitmap_t mask;
374 
375 			bit--;
376 			idx = (i * BITMAP_SIZE) + bit;
377 			mask = 1 << bit;
378 			KASSERT((bitmap[i] & mask) != 0);
379 			bitmap[i] &= ~mask;
380 			break;
381 		}
382 	}
383 	KASSERT(idx < pp->pr_itemsperpage);
384 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
385 }
386 
387 static inline void
388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
389 {
390 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
391 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
392 	int i;
393 
394 	for (i = 0; i < n; i++) {
395 		bitmap[i] = (pool_item_bitmap_t)-1;
396 	}
397 }
398 
399 static inline int
400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
401 {
402 
403 	/*
404 	 * we consider pool_item_header with smaller ph_page bigger.
405 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
406 	 */
407 
408 	if (a->ph_page < b->ph_page)
409 		return (1);
410 	else if (a->ph_page > b->ph_page)
411 		return (-1);
412 	else
413 		return (0);
414 }
415 
416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
418 
419 static inline struct pool_item_header *
420 pr_find_pagehead_noalign(struct pool *pp, void *v)
421 {
422 	struct pool_item_header *ph, tmp;
423 
424 	tmp.ph_page = (void *)(uintptr_t)v;
425 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
426 	if (ph == NULL) {
427 		ph = SPLAY_ROOT(&pp->pr_phtree);
428 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
429 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
430 		}
431 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
432 	}
433 
434 	return ph;
435 }
436 
437 /*
438  * Return the pool page header based on item address.
439  */
440 static inline struct pool_item_header *
441 pr_find_pagehead(struct pool *pp, void *v)
442 {
443 	struct pool_item_header *ph, tmp;
444 
445 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
446 		ph = pr_find_pagehead_noalign(pp, v);
447 	} else {
448 		void *page =
449 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
450 
451 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
452 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
453 		} else {
454 			tmp.ph_page = page;
455 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
456 		}
457 	}
458 
459 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
460 	    ((char *)ph->ph_page <= (char *)v &&
461 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
462 	return ph;
463 }
464 
465 static void
466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
467 {
468 	struct pool_item_header *ph;
469 
470 	while ((ph = LIST_FIRST(pq)) != NULL) {
471 		LIST_REMOVE(ph, ph_pagelist);
472 		pool_allocator_free(pp, ph->ph_page);
473 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
474 			pool_put(pp->pr_phpool, ph);
475 	}
476 }
477 
478 /*
479  * Remove a page from the pool.
480  */
481 static inline void
482 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
483      struct pool_pagelist *pq)
484 {
485 
486 	KASSERT(mutex_owned(&pp->pr_lock));
487 
488 	/*
489 	 * If the page was idle, decrement the idle page count.
490 	 */
491 	if (ph->ph_nmissing == 0) {
492 #ifdef DIAGNOSTIC
493 		if (pp->pr_nidle == 0)
494 			panic("pr_rmpage: nidle inconsistent");
495 		if (pp->pr_nitems < pp->pr_itemsperpage)
496 			panic("pr_rmpage: nitems inconsistent");
497 #endif
498 		pp->pr_nidle--;
499 	}
500 
501 	pp->pr_nitems -= pp->pr_itemsperpage;
502 
503 	/*
504 	 * Unlink the page from the pool and queue it for release.
505 	 */
506 	LIST_REMOVE(ph, ph_pagelist);
507 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
508 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
509 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
510 
511 	pp->pr_npages--;
512 	pp->pr_npagefree++;
513 
514 	pool_update_curpage(pp);
515 }
516 
517 static bool
518 pa_starved_p(struct pool_allocator *pa)
519 {
520 
521 	if (pa->pa_backingmap != NULL) {
522 		return vm_map_starved_p(pa->pa_backingmap);
523 	}
524 	return false;
525 }
526 
527 static int
528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
529 {
530 	struct pool *pp = obj;
531 	struct pool_allocator *pa = pp->pr_alloc;
532 
533 	KASSERT(&pp->pr_reclaimerentry == ce);
534 	pool_reclaim(pp);
535 	if (!pa_starved_p(pa)) {
536 		return CALLBACK_CHAIN_ABORT;
537 	}
538 	return CALLBACK_CHAIN_CONTINUE;
539 }
540 
541 static void
542 pool_reclaim_register(struct pool *pp)
543 {
544 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
545 	int s;
546 
547 	if (map == NULL) {
548 		return;
549 	}
550 
551 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
552 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
553 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
554 	splx(s);
555 }
556 
557 static void
558 pool_reclaim_unregister(struct pool *pp)
559 {
560 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
561 	int s;
562 
563 	if (map == NULL) {
564 		return;
565 	}
566 
567 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
568 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
569 	    &pp->pr_reclaimerentry);
570 	splx(s);
571 }
572 
573 static void
574 pa_reclaim_register(struct pool_allocator *pa)
575 {
576 	struct vm_map *map = *pa->pa_backingmapptr;
577 	struct pool *pp;
578 
579 	KASSERT(pa->pa_backingmap == NULL);
580 	if (map == NULL) {
581 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
582 		return;
583 	}
584 	pa->pa_backingmap = map;
585 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
586 		pool_reclaim_register(pp);
587 	}
588 }
589 
590 /*
591  * Initialize all the pools listed in the "pools" link set.
592  */
593 void
594 pool_subsystem_init(void)
595 {
596 	struct pool_allocator *pa;
597 	__link_set_decl(pools, struct link_pool_init);
598 	struct link_pool_init * const *pi;
599 
600 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
601 	cv_init(&pool_busy, "poolbusy");
602 
603 	__link_set_foreach(pi, pools)
604 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
605 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
606 		    (*pi)->palloc, (*pi)->ipl);
607 
608 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
609 		KASSERT(pa->pa_backingmapptr != NULL);
610 		KASSERT(*pa->pa_backingmapptr != NULL);
611 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
612 		pa_reclaim_register(pa);
613 	}
614 
615 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
616 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
617 
618 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
619 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
620 }
621 
622 /*
623  * Initialize the given pool resource structure.
624  *
625  * We export this routine to allow other kernel parts to declare
626  * static pools that must be initialized before malloc() is available.
627  */
628 void
629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
630     const char *wchan, struct pool_allocator *palloc, int ipl)
631 {
632 	struct pool *pp1;
633 	size_t trysize, phsize;
634 	int off, slack;
635 
636 #ifdef DEBUG
637 	/*
638 	 * Check that the pool hasn't already been initialised and
639 	 * added to the list of all pools.
640 	 */
641 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
642 		if (pp == pp1)
643 			panic("pool_init: pool %s already initialised",
644 			    wchan);
645 	}
646 #endif
647 
648 #ifdef POOL_DIAGNOSTIC
649 	/*
650 	 * Always log if POOL_DIAGNOSTIC is defined.
651 	 */
652 	if (pool_logsize != 0)
653 		flags |= PR_LOGGING;
654 #endif
655 
656 	if (palloc == NULL)
657 		palloc = &pool_allocator_kmem;
658 #ifdef POOL_SUBPAGE
659 	if (size > palloc->pa_pagesz) {
660 		if (palloc == &pool_allocator_kmem)
661 			palloc = &pool_allocator_kmem_fullpage;
662 		else if (palloc == &pool_allocator_nointr)
663 			palloc = &pool_allocator_nointr_fullpage;
664 	}
665 #endif /* POOL_SUBPAGE */
666 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
667 		if (palloc->pa_pagesz == 0)
668 			palloc->pa_pagesz = PAGE_SIZE;
669 
670 		TAILQ_INIT(&palloc->pa_list);
671 
672 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
673 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
674 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
675 
676 		if (palloc->pa_backingmapptr != NULL) {
677 			pa_reclaim_register(palloc);
678 		}
679 		palloc->pa_flags |= PA_INITIALIZED;
680 	}
681 
682 	if (align == 0)
683 		align = ALIGN(1);
684 
685 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
686 		size = sizeof(struct pool_item);
687 
688 	size = roundup(size, align);
689 #ifdef DIAGNOSTIC
690 	if (size > palloc->pa_pagesz)
691 		panic("pool_init: pool item size (%zu) too large", size);
692 #endif
693 
694 	/*
695 	 * Initialize the pool structure.
696 	 */
697 	LIST_INIT(&pp->pr_emptypages);
698 	LIST_INIT(&pp->pr_fullpages);
699 	LIST_INIT(&pp->pr_partpages);
700 	pp->pr_cache = NULL;
701 	pp->pr_curpage = NULL;
702 	pp->pr_npages = 0;
703 	pp->pr_minitems = 0;
704 	pp->pr_minpages = 0;
705 	pp->pr_maxpages = UINT_MAX;
706 	pp->pr_roflags = flags;
707 	pp->pr_flags = 0;
708 	pp->pr_size = size;
709 	pp->pr_align = align;
710 	pp->pr_wchan = wchan;
711 	pp->pr_alloc = palloc;
712 	pp->pr_nitems = 0;
713 	pp->pr_nout = 0;
714 	pp->pr_hardlimit = UINT_MAX;
715 	pp->pr_hardlimit_warning = NULL;
716 	pp->pr_hardlimit_ratecap.tv_sec = 0;
717 	pp->pr_hardlimit_ratecap.tv_usec = 0;
718 	pp->pr_hardlimit_warning_last.tv_sec = 0;
719 	pp->pr_hardlimit_warning_last.tv_usec = 0;
720 	pp->pr_drain_hook = NULL;
721 	pp->pr_drain_hook_arg = NULL;
722 	pp->pr_freecheck = NULL;
723 
724 	/*
725 	 * Decide whether to put the page header off page to avoid
726 	 * wasting too large a part of the page or too big item.
727 	 * Off-page page headers go on a hash table, so we can match
728 	 * a returned item with its header based on the page address.
729 	 * We use 1/16 of the page size and about 8 times of the item
730 	 * size as the threshold (XXX: tune)
731 	 *
732 	 * However, we'll put the header into the page if we can put
733 	 * it without wasting any items.
734 	 *
735 	 * Silently enforce `0 <= ioff < align'.
736 	 */
737 	pp->pr_itemoffset = ioff %= align;
738 	/* See the comment below about reserved bytes. */
739 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
740 	phsize = ALIGN(sizeof(struct pool_item_header));
741 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
742 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
743 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
744 		/* Use the end of the page for the page header */
745 		pp->pr_roflags |= PR_PHINPAGE;
746 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
747 	} else {
748 		/* The page header will be taken from our page header pool */
749 		pp->pr_phoffset = 0;
750 		off = palloc->pa_pagesz;
751 		SPLAY_INIT(&pp->pr_phtree);
752 	}
753 
754 	/*
755 	 * Alignment is to take place at `ioff' within the item. This means
756 	 * we must reserve up to `align - 1' bytes on the page to allow
757 	 * appropriate positioning of each item.
758 	 */
759 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
760 	KASSERT(pp->pr_itemsperpage != 0);
761 	if ((pp->pr_roflags & PR_NOTOUCH)) {
762 		int idx;
763 
764 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
765 		    idx++) {
766 			/* nothing */
767 		}
768 		if (idx >= PHPOOL_MAX) {
769 			/*
770 			 * if you see this panic, consider to tweak
771 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
772 			 */
773 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
774 			    pp->pr_wchan, pp->pr_itemsperpage);
775 		}
776 		pp->pr_phpool = &phpool[idx];
777 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
778 		pp->pr_phpool = &phpool[0];
779 	}
780 #if defined(DIAGNOSTIC)
781 	else {
782 		pp->pr_phpool = NULL;
783 	}
784 #endif
785 
786 	/*
787 	 * Use the slack between the chunks and the page header
788 	 * for "cache coloring".
789 	 */
790 	slack = off - pp->pr_itemsperpage * pp->pr_size;
791 	pp->pr_maxcolor = (slack / align) * align;
792 	pp->pr_curcolor = 0;
793 
794 	pp->pr_nget = 0;
795 	pp->pr_nfail = 0;
796 	pp->pr_nput = 0;
797 	pp->pr_npagealloc = 0;
798 	pp->pr_npagefree = 0;
799 	pp->pr_hiwat = 0;
800 	pp->pr_nidle = 0;
801 	pp->pr_refcnt = 0;
802 
803 #ifdef POOL_DIAGNOSTIC
804 	if (flags & PR_LOGGING) {
805 		if (kmem_map == NULL ||
806 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
807 		     M_TEMP, M_NOWAIT)) == NULL)
808 			pp->pr_roflags &= ~PR_LOGGING;
809 		pp->pr_curlogentry = 0;
810 		pp->pr_logsize = pool_logsize;
811 	}
812 #endif
813 
814 	pp->pr_entered_file = NULL;
815 	pp->pr_entered_line = 0;
816 
817 	/*
818 	 * XXXAD hack to prevent IP input processing from blocking.
819 	 */
820 	if (ipl == IPL_SOFTNET) {
821 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
822 	} else {
823 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
824 	}
825 	cv_init(&pp->pr_cv, wchan);
826 	pp->pr_ipl = ipl;
827 
828 	/*
829 	 * Initialize private page header pool and cache magazine pool if we
830 	 * haven't done so yet.
831 	 * XXX LOCKING.
832 	 */
833 	if (phpool[0].pr_size == 0) {
834 		int idx;
835 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
836 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
837 			int nelem;
838 			size_t sz;
839 
840 			nelem = PHPOOL_FREELIST_NELEM(idx);
841 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
842 			    "phpool-%d", nelem);
843 			sz = sizeof(struct pool_item_header);
844 			if (nelem) {
845 				sz = offsetof(struct pool_item_header,
846 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
847 			}
848 			pool_init(&phpool[idx], sz, 0, 0, 0,
849 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
850 		}
851 #ifdef POOL_SUBPAGE
852 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
853 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
854 #endif
855 
856 		size = sizeof(pcg_t) +
857 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
858 		pool_init(&pcg_normal_pool, size, CACHE_LINE_SIZE, 0, 0,
859 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
860 
861 		size = sizeof(pcg_t) +
862 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
863 		pool_init(&pcg_large_pool, size, CACHE_LINE_SIZE, 0, 0,
864 		    "pcglarge", &pool_allocator_meta, IPL_VM);
865 	}
866 
867 	/* Insert into the list of all pools. */
868 	if (__predict_true(!cold))
869 		mutex_enter(&pool_head_lock);
870 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
871 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
872 			break;
873 	}
874 	if (pp1 == NULL)
875 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
876 	else
877 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
878 	if (__predict_true(!cold))
879 		mutex_exit(&pool_head_lock);
880 
881 		/* Insert this into the list of pools using this allocator. */
882 	if (__predict_true(!cold))
883 		mutex_enter(&palloc->pa_lock);
884 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
885 	if (__predict_true(!cold))
886 		mutex_exit(&palloc->pa_lock);
887 
888 	pool_reclaim_register(pp);
889 }
890 
891 /*
892  * De-commision a pool resource.
893  */
894 void
895 pool_destroy(struct pool *pp)
896 {
897 	struct pool_pagelist pq;
898 	struct pool_item_header *ph;
899 
900 	/* Remove from global pool list */
901 	mutex_enter(&pool_head_lock);
902 	while (pp->pr_refcnt != 0)
903 		cv_wait(&pool_busy, &pool_head_lock);
904 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
905 	if (drainpp == pp)
906 		drainpp = NULL;
907 	mutex_exit(&pool_head_lock);
908 
909 	/* Remove this pool from its allocator's list of pools. */
910 	pool_reclaim_unregister(pp);
911 	mutex_enter(&pp->pr_alloc->pa_lock);
912 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
913 	mutex_exit(&pp->pr_alloc->pa_lock);
914 
915 	mutex_enter(&pp->pr_lock);
916 
917 	KASSERT(pp->pr_cache == NULL);
918 
919 #ifdef DIAGNOSTIC
920 	if (pp->pr_nout != 0) {
921 		pr_printlog(pp, NULL, printf);
922 		panic("pool_destroy: pool busy: still out: %u",
923 		    pp->pr_nout);
924 	}
925 #endif
926 
927 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
928 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
929 
930 	/* Remove all pages */
931 	LIST_INIT(&pq);
932 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
933 		pr_rmpage(pp, ph, &pq);
934 
935 	mutex_exit(&pp->pr_lock);
936 
937 	pr_pagelist_free(pp, &pq);
938 
939 #ifdef POOL_DIAGNOSTIC
940 	if ((pp->pr_roflags & PR_LOGGING) != 0)
941 		free(pp->pr_log, M_TEMP);
942 #endif
943 
944 	cv_destroy(&pp->pr_cv);
945 	mutex_destroy(&pp->pr_lock);
946 }
947 
948 void
949 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
950 {
951 
952 	/* XXX no locking -- must be used just after pool_init() */
953 #ifdef DIAGNOSTIC
954 	if (pp->pr_drain_hook != NULL)
955 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
956 #endif
957 	pp->pr_drain_hook = fn;
958 	pp->pr_drain_hook_arg = arg;
959 }
960 
961 static struct pool_item_header *
962 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
963 {
964 	struct pool_item_header *ph;
965 
966 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
967 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
968 	else
969 		ph = pool_get(pp->pr_phpool, flags);
970 
971 	return (ph);
972 }
973 
974 /*
975  * Grab an item from the pool.
976  */
977 void *
978 #ifdef POOL_DIAGNOSTIC
979 _pool_get(struct pool *pp, int flags, const char *file, long line)
980 #else
981 pool_get(struct pool *pp, int flags)
982 #endif
983 {
984 	struct pool_item *pi;
985 	struct pool_item_header *ph;
986 	void *v;
987 
988 #ifdef DIAGNOSTIC
989 	if (__predict_false(pp->pr_itemsperpage == 0))
990 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
991 		    "pool not initialized?", pp);
992 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
993 			    (flags & PR_WAITOK) != 0))
994 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
995 
996 #endif /* DIAGNOSTIC */
997 #ifdef LOCKDEBUG
998 	if (flags & PR_WAITOK)
999 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
1000 #endif
1001 
1002 	mutex_enter(&pp->pr_lock);
1003 	pr_enter(pp, file, line);
1004 
1005  startover:
1006 	/*
1007 	 * Check to see if we've reached the hard limit.  If we have,
1008 	 * and we can wait, then wait until an item has been returned to
1009 	 * the pool.
1010 	 */
1011 #ifdef DIAGNOSTIC
1012 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1013 		pr_leave(pp);
1014 		mutex_exit(&pp->pr_lock);
1015 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1016 	}
1017 #endif
1018 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1019 		if (pp->pr_drain_hook != NULL) {
1020 			/*
1021 			 * Since the drain hook is going to free things
1022 			 * back to the pool, unlock, call the hook, re-lock,
1023 			 * and check the hardlimit condition again.
1024 			 */
1025 			pr_leave(pp);
1026 			mutex_exit(&pp->pr_lock);
1027 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1028 			mutex_enter(&pp->pr_lock);
1029 			pr_enter(pp, file, line);
1030 			if (pp->pr_nout < pp->pr_hardlimit)
1031 				goto startover;
1032 		}
1033 
1034 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1035 			/*
1036 			 * XXX: A warning isn't logged in this case.  Should
1037 			 * it be?
1038 			 */
1039 			pp->pr_flags |= PR_WANTED;
1040 			pr_leave(pp);
1041 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1042 			pr_enter(pp, file, line);
1043 			goto startover;
1044 		}
1045 
1046 		/*
1047 		 * Log a message that the hard limit has been hit.
1048 		 */
1049 		if (pp->pr_hardlimit_warning != NULL &&
1050 		    ratecheck(&pp->pr_hardlimit_warning_last,
1051 			      &pp->pr_hardlimit_ratecap))
1052 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1053 
1054 		pp->pr_nfail++;
1055 
1056 		pr_leave(pp);
1057 		mutex_exit(&pp->pr_lock);
1058 		return (NULL);
1059 	}
1060 
1061 	/*
1062 	 * The convention we use is that if `curpage' is not NULL, then
1063 	 * it points at a non-empty bucket. In particular, `curpage'
1064 	 * never points at a page header which has PR_PHINPAGE set and
1065 	 * has no items in its bucket.
1066 	 */
1067 	if ((ph = pp->pr_curpage) == NULL) {
1068 		int error;
1069 
1070 #ifdef DIAGNOSTIC
1071 		if (pp->pr_nitems != 0) {
1072 			mutex_exit(&pp->pr_lock);
1073 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1074 			    pp->pr_wchan, pp->pr_nitems);
1075 			panic("pool_get: nitems inconsistent");
1076 		}
1077 #endif
1078 
1079 		/*
1080 		 * Call the back-end page allocator for more memory.
1081 		 * Release the pool lock, as the back-end page allocator
1082 		 * may block.
1083 		 */
1084 		pr_leave(pp);
1085 		error = pool_grow(pp, flags);
1086 		pr_enter(pp, file, line);
1087 		if (error != 0) {
1088 			/*
1089 			 * We were unable to allocate a page or item
1090 			 * header, but we released the lock during
1091 			 * allocation, so perhaps items were freed
1092 			 * back to the pool.  Check for this case.
1093 			 */
1094 			if (pp->pr_curpage != NULL)
1095 				goto startover;
1096 
1097 			pp->pr_nfail++;
1098 			pr_leave(pp);
1099 			mutex_exit(&pp->pr_lock);
1100 			return (NULL);
1101 		}
1102 
1103 		/* Start the allocation process over. */
1104 		goto startover;
1105 	}
1106 	if (pp->pr_roflags & PR_NOTOUCH) {
1107 #ifdef DIAGNOSTIC
1108 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1109 			pr_leave(pp);
1110 			mutex_exit(&pp->pr_lock);
1111 			panic("pool_get: %s: page empty", pp->pr_wchan);
1112 		}
1113 #endif
1114 		v = pr_item_notouch_get(pp, ph);
1115 #ifdef POOL_DIAGNOSTIC
1116 		pr_log(pp, v, PRLOG_GET, file, line);
1117 #endif
1118 	} else {
1119 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1120 		if (__predict_false(v == NULL)) {
1121 			pr_leave(pp);
1122 			mutex_exit(&pp->pr_lock);
1123 			panic("pool_get: %s: page empty", pp->pr_wchan);
1124 		}
1125 #ifdef DIAGNOSTIC
1126 		if (__predict_false(pp->pr_nitems == 0)) {
1127 			pr_leave(pp);
1128 			mutex_exit(&pp->pr_lock);
1129 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1130 			    pp->pr_wchan, pp->pr_nitems);
1131 			panic("pool_get: nitems inconsistent");
1132 		}
1133 #endif
1134 
1135 #ifdef POOL_DIAGNOSTIC
1136 		pr_log(pp, v, PRLOG_GET, file, line);
1137 #endif
1138 
1139 #ifdef DIAGNOSTIC
1140 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1141 			pr_printlog(pp, pi, printf);
1142 			panic("pool_get(%s): free list modified: "
1143 			    "magic=%x; page %p; item addr %p\n",
1144 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1145 		}
1146 #endif
1147 
1148 		/*
1149 		 * Remove from item list.
1150 		 */
1151 		LIST_REMOVE(pi, pi_list);
1152 	}
1153 	pp->pr_nitems--;
1154 	pp->pr_nout++;
1155 	if (ph->ph_nmissing == 0) {
1156 #ifdef DIAGNOSTIC
1157 		if (__predict_false(pp->pr_nidle == 0))
1158 			panic("pool_get: nidle inconsistent");
1159 #endif
1160 		pp->pr_nidle--;
1161 
1162 		/*
1163 		 * This page was previously empty.  Move it to the list of
1164 		 * partially-full pages.  This page is already curpage.
1165 		 */
1166 		LIST_REMOVE(ph, ph_pagelist);
1167 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1168 	}
1169 	ph->ph_nmissing++;
1170 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1171 #ifdef DIAGNOSTIC
1172 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1173 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1174 			pr_leave(pp);
1175 			mutex_exit(&pp->pr_lock);
1176 			panic("pool_get: %s: nmissing inconsistent",
1177 			    pp->pr_wchan);
1178 		}
1179 #endif
1180 		/*
1181 		 * This page is now full.  Move it to the full list
1182 		 * and select a new current page.
1183 		 */
1184 		LIST_REMOVE(ph, ph_pagelist);
1185 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1186 		pool_update_curpage(pp);
1187 	}
1188 
1189 	pp->pr_nget++;
1190 	pr_leave(pp);
1191 
1192 	/*
1193 	 * If we have a low water mark and we are now below that low
1194 	 * water mark, add more items to the pool.
1195 	 */
1196 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1197 		/*
1198 		 * XXX: Should we log a warning?  Should we set up a timeout
1199 		 * to try again in a second or so?  The latter could break
1200 		 * a caller's assumptions about interrupt protection, etc.
1201 		 */
1202 	}
1203 
1204 	mutex_exit(&pp->pr_lock);
1205 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1206 	FREECHECK_OUT(&pp->pr_freecheck, v);
1207 	return (v);
1208 }
1209 
1210 /*
1211  * Internal version of pool_put().  Pool is already locked/entered.
1212  */
1213 static void
1214 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1215 {
1216 	struct pool_item *pi = v;
1217 	struct pool_item_header *ph;
1218 
1219 	KASSERT(mutex_owned(&pp->pr_lock));
1220 	FREECHECK_IN(&pp->pr_freecheck, v);
1221 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1222 
1223 #ifdef DIAGNOSTIC
1224 	if (__predict_false(pp->pr_nout == 0)) {
1225 		printf("pool %s: putting with none out\n",
1226 		    pp->pr_wchan);
1227 		panic("pool_put");
1228 	}
1229 #endif
1230 
1231 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1232 		pr_printlog(pp, NULL, printf);
1233 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1234 	}
1235 
1236 	/*
1237 	 * Return to item list.
1238 	 */
1239 	if (pp->pr_roflags & PR_NOTOUCH) {
1240 		pr_item_notouch_put(pp, ph, v);
1241 	} else {
1242 #ifdef DIAGNOSTIC
1243 		pi->pi_magic = PI_MAGIC;
1244 #endif
1245 #ifdef DEBUG
1246 		{
1247 			int i, *ip = v;
1248 
1249 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1250 				*ip++ = PI_MAGIC;
1251 			}
1252 		}
1253 #endif
1254 
1255 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1256 	}
1257 	KDASSERT(ph->ph_nmissing != 0);
1258 	ph->ph_nmissing--;
1259 	pp->pr_nput++;
1260 	pp->pr_nitems++;
1261 	pp->pr_nout--;
1262 
1263 	/* Cancel "pool empty" condition if it exists */
1264 	if (pp->pr_curpage == NULL)
1265 		pp->pr_curpage = ph;
1266 
1267 	if (pp->pr_flags & PR_WANTED) {
1268 		pp->pr_flags &= ~PR_WANTED;
1269 		if (ph->ph_nmissing == 0)
1270 			pp->pr_nidle++;
1271 		cv_broadcast(&pp->pr_cv);
1272 		return;
1273 	}
1274 
1275 	/*
1276 	 * If this page is now empty, do one of two things:
1277 	 *
1278 	 *	(1) If we have more pages than the page high water mark,
1279 	 *	    free the page back to the system.  ONLY CONSIDER
1280 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1281 	 *	    CLAIM.
1282 	 *
1283 	 *	(2) Otherwise, move the page to the empty page list.
1284 	 *
1285 	 * Either way, select a new current page (so we use a partially-full
1286 	 * page if one is available).
1287 	 */
1288 	if (ph->ph_nmissing == 0) {
1289 		pp->pr_nidle++;
1290 		if (pp->pr_npages > pp->pr_minpages &&
1291 		    (pp->pr_npages > pp->pr_maxpages ||
1292 		     pa_starved_p(pp->pr_alloc))) {
1293 			pr_rmpage(pp, ph, pq);
1294 		} else {
1295 			LIST_REMOVE(ph, ph_pagelist);
1296 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1297 
1298 			/*
1299 			 * Update the timestamp on the page.  A page must
1300 			 * be idle for some period of time before it can
1301 			 * be reclaimed by the pagedaemon.  This minimizes
1302 			 * ping-pong'ing for memory.
1303 			 *
1304 			 * note for 64-bit time_t: truncating to 32-bit is not
1305 			 * a problem for our usage.
1306 			 */
1307 			ph->ph_time = time_uptime;
1308 		}
1309 		pool_update_curpage(pp);
1310 	}
1311 
1312 	/*
1313 	 * If the page was previously completely full, move it to the
1314 	 * partially-full list and make it the current page.  The next
1315 	 * allocation will get the item from this page, instead of
1316 	 * further fragmenting the pool.
1317 	 */
1318 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1319 		LIST_REMOVE(ph, ph_pagelist);
1320 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1321 		pp->pr_curpage = ph;
1322 	}
1323 }
1324 
1325 /*
1326  * Return resource to the pool.
1327  */
1328 #ifdef POOL_DIAGNOSTIC
1329 void
1330 _pool_put(struct pool *pp, void *v, const char *file, long line)
1331 {
1332 	struct pool_pagelist pq;
1333 
1334 	LIST_INIT(&pq);
1335 
1336 	mutex_enter(&pp->pr_lock);
1337 	pr_enter(pp, file, line);
1338 
1339 	pr_log(pp, v, PRLOG_PUT, file, line);
1340 
1341 	pool_do_put(pp, v, &pq);
1342 
1343 	pr_leave(pp);
1344 	mutex_exit(&pp->pr_lock);
1345 
1346 	pr_pagelist_free(pp, &pq);
1347 }
1348 #undef pool_put
1349 #endif /* POOL_DIAGNOSTIC */
1350 
1351 void
1352 pool_put(struct pool *pp, void *v)
1353 {
1354 	struct pool_pagelist pq;
1355 
1356 	LIST_INIT(&pq);
1357 
1358 	mutex_enter(&pp->pr_lock);
1359 	pool_do_put(pp, v, &pq);
1360 	mutex_exit(&pp->pr_lock);
1361 
1362 	pr_pagelist_free(pp, &pq);
1363 }
1364 
1365 #ifdef POOL_DIAGNOSTIC
1366 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1367 #endif
1368 
1369 /*
1370  * pool_grow: grow a pool by a page.
1371  *
1372  * => called with pool locked.
1373  * => unlock and relock the pool.
1374  * => return with pool locked.
1375  */
1376 
1377 static int
1378 pool_grow(struct pool *pp, int flags)
1379 {
1380 	struct pool_item_header *ph = NULL;
1381 	char *cp;
1382 
1383 	mutex_exit(&pp->pr_lock);
1384 	cp = pool_allocator_alloc(pp, flags);
1385 	if (__predict_true(cp != NULL)) {
1386 		ph = pool_alloc_item_header(pp, cp, flags);
1387 	}
1388 	if (__predict_false(cp == NULL || ph == NULL)) {
1389 		if (cp != NULL) {
1390 			pool_allocator_free(pp, cp);
1391 		}
1392 		mutex_enter(&pp->pr_lock);
1393 		return ENOMEM;
1394 	}
1395 
1396 	mutex_enter(&pp->pr_lock);
1397 	pool_prime_page(pp, cp, ph);
1398 	pp->pr_npagealloc++;
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Add N items to the pool.
1404  */
1405 int
1406 pool_prime(struct pool *pp, int n)
1407 {
1408 	int newpages;
1409 	int error = 0;
1410 
1411 	mutex_enter(&pp->pr_lock);
1412 
1413 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1414 
1415 	while (newpages-- > 0) {
1416 		error = pool_grow(pp, PR_NOWAIT);
1417 		if (error) {
1418 			break;
1419 		}
1420 		pp->pr_minpages++;
1421 	}
1422 
1423 	if (pp->pr_minpages >= pp->pr_maxpages)
1424 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1425 
1426 	mutex_exit(&pp->pr_lock);
1427 	return error;
1428 }
1429 
1430 /*
1431  * Add a page worth of items to the pool.
1432  *
1433  * Note, we must be called with the pool descriptor LOCKED.
1434  */
1435 static void
1436 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1437 {
1438 	struct pool_item *pi;
1439 	void *cp = storage;
1440 	const unsigned int align = pp->pr_align;
1441 	const unsigned int ioff = pp->pr_itemoffset;
1442 	int n;
1443 
1444 	KASSERT(mutex_owned(&pp->pr_lock));
1445 
1446 #ifdef DIAGNOSTIC
1447 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1448 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1449 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1450 #endif
1451 
1452 	/*
1453 	 * Insert page header.
1454 	 */
1455 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1456 	LIST_INIT(&ph->ph_itemlist);
1457 	ph->ph_page = storage;
1458 	ph->ph_nmissing = 0;
1459 	ph->ph_time = time_uptime;
1460 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1461 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1462 
1463 	pp->pr_nidle++;
1464 
1465 	/*
1466 	 * Color this page.
1467 	 */
1468 	ph->ph_off = pp->pr_curcolor;
1469 	cp = (char *)cp + ph->ph_off;
1470 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1471 		pp->pr_curcolor = 0;
1472 
1473 	/*
1474 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1475 	 */
1476 	if (ioff != 0)
1477 		cp = (char *)cp + align - ioff;
1478 
1479 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1480 
1481 	/*
1482 	 * Insert remaining chunks on the bucket list.
1483 	 */
1484 	n = pp->pr_itemsperpage;
1485 	pp->pr_nitems += n;
1486 
1487 	if (pp->pr_roflags & PR_NOTOUCH) {
1488 		pr_item_notouch_init(pp, ph);
1489 	} else {
1490 		while (n--) {
1491 			pi = (struct pool_item *)cp;
1492 
1493 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1494 
1495 			/* Insert on page list */
1496 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1497 #ifdef DIAGNOSTIC
1498 			pi->pi_magic = PI_MAGIC;
1499 #endif
1500 			cp = (char *)cp + pp->pr_size;
1501 
1502 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * If the pool was depleted, point at the new page.
1508 	 */
1509 	if (pp->pr_curpage == NULL)
1510 		pp->pr_curpage = ph;
1511 
1512 	if (++pp->pr_npages > pp->pr_hiwat)
1513 		pp->pr_hiwat = pp->pr_npages;
1514 }
1515 
1516 /*
1517  * Used by pool_get() when nitems drops below the low water mark.  This
1518  * is used to catch up pr_nitems with the low water mark.
1519  *
1520  * Note 1, we never wait for memory here, we let the caller decide what to do.
1521  *
1522  * Note 2, we must be called with the pool already locked, and we return
1523  * with it locked.
1524  */
1525 static int
1526 pool_catchup(struct pool *pp)
1527 {
1528 	int error = 0;
1529 
1530 	while (POOL_NEEDS_CATCHUP(pp)) {
1531 		error = pool_grow(pp, PR_NOWAIT);
1532 		if (error) {
1533 			break;
1534 		}
1535 	}
1536 	return error;
1537 }
1538 
1539 static void
1540 pool_update_curpage(struct pool *pp)
1541 {
1542 
1543 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1544 	if (pp->pr_curpage == NULL) {
1545 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1546 	}
1547 }
1548 
1549 void
1550 pool_setlowat(struct pool *pp, int n)
1551 {
1552 
1553 	mutex_enter(&pp->pr_lock);
1554 
1555 	pp->pr_minitems = n;
1556 	pp->pr_minpages = (n == 0)
1557 		? 0
1558 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1559 
1560 	/* Make sure we're caught up with the newly-set low water mark. */
1561 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1562 		/*
1563 		 * XXX: Should we log a warning?  Should we set up a timeout
1564 		 * to try again in a second or so?  The latter could break
1565 		 * a caller's assumptions about interrupt protection, etc.
1566 		 */
1567 	}
1568 
1569 	mutex_exit(&pp->pr_lock);
1570 }
1571 
1572 void
1573 pool_sethiwat(struct pool *pp, int n)
1574 {
1575 
1576 	mutex_enter(&pp->pr_lock);
1577 
1578 	pp->pr_maxpages = (n == 0)
1579 		? 0
1580 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1581 
1582 	mutex_exit(&pp->pr_lock);
1583 }
1584 
1585 void
1586 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1587 {
1588 
1589 	mutex_enter(&pp->pr_lock);
1590 
1591 	pp->pr_hardlimit = n;
1592 	pp->pr_hardlimit_warning = warnmess;
1593 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1594 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1595 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1596 
1597 	/*
1598 	 * In-line version of pool_sethiwat(), because we don't want to
1599 	 * release the lock.
1600 	 */
1601 	pp->pr_maxpages = (n == 0)
1602 		? 0
1603 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1604 
1605 	mutex_exit(&pp->pr_lock);
1606 }
1607 
1608 /*
1609  * Release all complete pages that have not been used recently.
1610  */
1611 int
1612 #ifdef POOL_DIAGNOSTIC
1613 _pool_reclaim(struct pool *pp, const char *file, long line)
1614 #else
1615 pool_reclaim(struct pool *pp)
1616 #endif
1617 {
1618 	struct pool_item_header *ph, *phnext;
1619 	struct pool_pagelist pq;
1620 	uint32_t curtime;
1621 	bool klock;
1622 	int rv;
1623 
1624 	if (pp->pr_drain_hook != NULL) {
1625 		/*
1626 		 * The drain hook must be called with the pool unlocked.
1627 		 */
1628 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1629 	}
1630 
1631 	/*
1632 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1633 	 * and we are called from the pagedaemon without kernel_lock.
1634 	 * Does not apply to IPL_SOFTBIO.
1635 	 */
1636 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1637 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1638 		KERNEL_LOCK(1, NULL);
1639 		klock = true;
1640 	} else
1641 		klock = false;
1642 
1643 	/* Reclaim items from the pool's cache (if any). */
1644 	if (pp->pr_cache != NULL)
1645 		pool_cache_invalidate(pp->pr_cache);
1646 
1647 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1648 		if (klock) {
1649 			KERNEL_UNLOCK_ONE(NULL);
1650 		}
1651 		return (0);
1652 	}
1653 	pr_enter(pp, file, line);
1654 
1655 	LIST_INIT(&pq);
1656 
1657 	curtime = time_uptime;
1658 
1659 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1660 		phnext = LIST_NEXT(ph, ph_pagelist);
1661 
1662 		/* Check our minimum page claim */
1663 		if (pp->pr_npages <= pp->pr_minpages)
1664 			break;
1665 
1666 		KASSERT(ph->ph_nmissing == 0);
1667 		if (curtime - ph->ph_time < pool_inactive_time
1668 		    && !pa_starved_p(pp->pr_alloc))
1669 			continue;
1670 
1671 		/*
1672 		 * If freeing this page would put us below
1673 		 * the low water mark, stop now.
1674 		 */
1675 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1676 		    pp->pr_minitems)
1677 			break;
1678 
1679 		pr_rmpage(pp, ph, &pq);
1680 	}
1681 
1682 	pr_leave(pp);
1683 	mutex_exit(&pp->pr_lock);
1684 
1685 	if (LIST_EMPTY(&pq))
1686 		rv = 0;
1687 	else {
1688 		pr_pagelist_free(pp, &pq);
1689 		rv = 1;
1690 	}
1691 
1692 	if (klock) {
1693 		KERNEL_UNLOCK_ONE(NULL);
1694 	}
1695 
1696 	return (rv);
1697 }
1698 
1699 /*
1700  * Drain pools, one at a time.  This is a two stage process;
1701  * drain_start kicks off a cross call to drain CPU-level caches
1702  * if the pool has an associated pool_cache.  drain_end waits
1703  * for those cross calls to finish, and then drains the cache
1704  * (if any) and pool.
1705  *
1706  * Note, must never be called from interrupt context.
1707  */
1708 void
1709 pool_drain_start(struct pool **ppp, uint64_t *wp)
1710 {
1711 	struct pool *pp;
1712 
1713 	KASSERT(!TAILQ_EMPTY(&pool_head));
1714 
1715 	pp = NULL;
1716 
1717 	/* Find next pool to drain, and add a reference. */
1718 	mutex_enter(&pool_head_lock);
1719 	do {
1720 		if (drainpp == NULL) {
1721 			drainpp = TAILQ_FIRST(&pool_head);
1722 		}
1723 		if (drainpp != NULL) {
1724 			pp = drainpp;
1725 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1726 		}
1727 		/*
1728 		 * Skip completely idle pools.  We depend on at least
1729 		 * one pool in the system being active.
1730 		 */
1731 	} while (pp == NULL || pp->pr_npages == 0);
1732 	pp->pr_refcnt++;
1733 	mutex_exit(&pool_head_lock);
1734 
1735 	/* If there is a pool_cache, drain CPU level caches. */
1736 	*ppp = pp;
1737 	if (pp->pr_cache != NULL) {
1738 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1739 		    pp->pr_cache, NULL);
1740 	}
1741 }
1742 
1743 void
1744 pool_drain_end(struct pool *pp, uint64_t where)
1745 {
1746 
1747 	if (pp == NULL)
1748 		return;
1749 
1750 	KASSERT(pp->pr_refcnt > 0);
1751 
1752 	/* Wait for remote draining to complete. */
1753 	if (pp->pr_cache != NULL)
1754 		xc_wait(where);
1755 
1756 	/* Drain the cache (if any) and pool.. */
1757 	pool_reclaim(pp);
1758 
1759 	/* Finally, unlock the pool. */
1760 	mutex_enter(&pool_head_lock);
1761 	pp->pr_refcnt--;
1762 	cv_broadcast(&pool_busy);
1763 	mutex_exit(&pool_head_lock);
1764 }
1765 
1766 /*
1767  * Diagnostic helpers.
1768  */
1769 void
1770 pool_print(struct pool *pp, const char *modif)
1771 {
1772 
1773 	pool_print1(pp, modif, printf);
1774 }
1775 
1776 void
1777 pool_printall(const char *modif, void (*pr)(const char *, ...))
1778 {
1779 	struct pool *pp;
1780 
1781 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1782 		pool_printit(pp, modif, pr);
1783 	}
1784 }
1785 
1786 void
1787 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1788 {
1789 
1790 	if (pp == NULL) {
1791 		(*pr)("Must specify a pool to print.\n");
1792 		return;
1793 	}
1794 
1795 	pool_print1(pp, modif, pr);
1796 }
1797 
1798 static void
1799 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1800     void (*pr)(const char *, ...))
1801 {
1802 	struct pool_item_header *ph;
1803 #ifdef DIAGNOSTIC
1804 	struct pool_item *pi;
1805 #endif
1806 
1807 	LIST_FOREACH(ph, pl, ph_pagelist) {
1808 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1809 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1810 #ifdef DIAGNOSTIC
1811 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1812 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1813 				if (pi->pi_magic != PI_MAGIC) {
1814 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1815 					    pi, pi->pi_magic);
1816 				}
1817 			}
1818 		}
1819 #endif
1820 	}
1821 }
1822 
1823 static void
1824 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1825 {
1826 	struct pool_item_header *ph;
1827 	pool_cache_t pc;
1828 	pcg_t *pcg;
1829 	pool_cache_cpu_t *cc;
1830 	uint64_t cpuhit, cpumiss;
1831 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1832 	char c;
1833 
1834 	while ((c = *modif++) != '\0') {
1835 		if (c == 'l')
1836 			print_log = 1;
1837 		if (c == 'p')
1838 			print_pagelist = 1;
1839 		if (c == 'c')
1840 			print_cache = 1;
1841 	}
1842 
1843 	if ((pc = pp->pr_cache) != NULL) {
1844 		(*pr)("POOL CACHE");
1845 	} else {
1846 		(*pr)("POOL");
1847 	}
1848 
1849 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1850 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1851 	    pp->pr_roflags);
1852 	(*pr)("\talloc %p\n", pp->pr_alloc);
1853 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1854 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1855 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1856 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1857 
1858 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1859 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1860 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1861 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1862 
1863 	if (print_pagelist == 0)
1864 		goto skip_pagelist;
1865 
1866 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1867 		(*pr)("\n\tempty page list:\n");
1868 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1869 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1870 		(*pr)("\n\tfull page list:\n");
1871 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1872 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1873 		(*pr)("\n\tpartial-page list:\n");
1874 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1875 
1876 	if (pp->pr_curpage == NULL)
1877 		(*pr)("\tno current page\n");
1878 	else
1879 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1880 
1881  skip_pagelist:
1882 	if (print_log == 0)
1883 		goto skip_log;
1884 
1885 	(*pr)("\n");
1886 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1887 		(*pr)("\tno log\n");
1888 	else {
1889 		pr_printlog(pp, NULL, pr);
1890 	}
1891 
1892  skip_log:
1893 
1894 #define PR_GROUPLIST(pcg)						\
1895 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1896 	for (i = 0; i < pcg->pcg_size; i++) {				\
1897 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1898 		    POOL_PADDR_INVALID) {				\
1899 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1900 			    pcg->pcg_objects[i].pcgo_va,		\
1901 			    (unsigned long long)			\
1902 			    pcg->pcg_objects[i].pcgo_pa);		\
1903 		} else {						\
1904 			(*pr)("\t\t\t%p\n",				\
1905 			    pcg->pcg_objects[i].pcgo_va);		\
1906 		}							\
1907 	}
1908 
1909 	if (pc != NULL) {
1910 		cpuhit = 0;
1911 		cpumiss = 0;
1912 		for (i = 0; i < MAXCPUS; i++) {
1913 			if ((cc = pc->pc_cpus[i]) == NULL)
1914 				continue;
1915 			cpuhit += cc->cc_hits;
1916 			cpumiss += cc->cc_misses;
1917 		}
1918 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1919 		(*pr)("\tcache layer hits %llu misses %llu\n",
1920 		    pc->pc_hits, pc->pc_misses);
1921 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1922 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1923 		    pc->pc_contended);
1924 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1925 		    pc->pc_nempty, pc->pc_nfull);
1926 		if (print_cache) {
1927 			(*pr)("\tfull cache groups:\n");
1928 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1929 			    pcg = pcg->pcg_next) {
1930 				PR_GROUPLIST(pcg);
1931 			}
1932 			(*pr)("\tempty cache groups:\n");
1933 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1934 			    pcg = pcg->pcg_next) {
1935 				PR_GROUPLIST(pcg);
1936 			}
1937 		}
1938 	}
1939 #undef PR_GROUPLIST
1940 
1941 	pr_enter_check(pp, pr);
1942 }
1943 
1944 static int
1945 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1946 {
1947 	struct pool_item *pi;
1948 	void *page;
1949 	int n;
1950 
1951 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1952 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1953 		if (page != ph->ph_page &&
1954 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1955 			if (label != NULL)
1956 				printf("%s: ", label);
1957 			printf("pool(%p:%s): page inconsistency: page %p;"
1958 			       " at page head addr %p (p %p)\n", pp,
1959 				pp->pr_wchan, ph->ph_page,
1960 				ph, page);
1961 			return 1;
1962 		}
1963 	}
1964 
1965 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1966 		return 0;
1967 
1968 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1969 	     pi != NULL;
1970 	     pi = LIST_NEXT(pi,pi_list), n++) {
1971 
1972 #ifdef DIAGNOSTIC
1973 		if (pi->pi_magic != PI_MAGIC) {
1974 			if (label != NULL)
1975 				printf("%s: ", label);
1976 			printf("pool(%s): free list modified: magic=%x;"
1977 			       " page %p; item ordinal %d; addr %p\n",
1978 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1979 				n, pi);
1980 			panic("pool");
1981 		}
1982 #endif
1983 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1984 			continue;
1985 		}
1986 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1987 		if (page == ph->ph_page)
1988 			continue;
1989 
1990 		if (label != NULL)
1991 			printf("%s: ", label);
1992 		printf("pool(%p:%s): page inconsistency: page %p;"
1993 		       " item ordinal %d; addr %p (p %p)\n", pp,
1994 			pp->pr_wchan, ph->ph_page,
1995 			n, pi, page);
1996 		return 1;
1997 	}
1998 	return 0;
1999 }
2000 
2001 
2002 int
2003 pool_chk(struct pool *pp, const char *label)
2004 {
2005 	struct pool_item_header *ph;
2006 	int r = 0;
2007 
2008 	mutex_enter(&pp->pr_lock);
2009 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2010 		r = pool_chk_page(pp, label, ph);
2011 		if (r) {
2012 			goto out;
2013 		}
2014 	}
2015 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2016 		r = pool_chk_page(pp, label, ph);
2017 		if (r) {
2018 			goto out;
2019 		}
2020 	}
2021 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2022 		r = pool_chk_page(pp, label, ph);
2023 		if (r) {
2024 			goto out;
2025 		}
2026 	}
2027 
2028 out:
2029 	mutex_exit(&pp->pr_lock);
2030 	return (r);
2031 }
2032 
2033 /*
2034  * pool_cache_init:
2035  *
2036  *	Initialize a pool cache.
2037  */
2038 pool_cache_t
2039 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2040     const char *wchan, struct pool_allocator *palloc, int ipl,
2041     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2042 {
2043 	pool_cache_t pc;
2044 
2045 	pc = pool_get(&cache_pool, PR_WAITOK);
2046 	if (pc == NULL)
2047 		return NULL;
2048 
2049 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2050 	   palloc, ipl, ctor, dtor, arg);
2051 
2052 	return pc;
2053 }
2054 
2055 /*
2056  * pool_cache_bootstrap:
2057  *
2058  *	Kernel-private version of pool_cache_init().  The caller
2059  *	provides initial storage.
2060  */
2061 void
2062 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2063     u_int align_offset, u_int flags, const char *wchan,
2064     struct pool_allocator *palloc, int ipl,
2065     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2066     void *arg)
2067 {
2068 	CPU_INFO_ITERATOR cii;
2069 	pool_cache_t pc1;
2070 	struct cpu_info *ci;
2071 	struct pool *pp;
2072 
2073 	pp = &pc->pc_pool;
2074 	if (palloc == NULL && ipl == IPL_NONE)
2075 		palloc = &pool_allocator_nointr;
2076 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2077 
2078 	/*
2079 	 * XXXAD hack to prevent IP input processing from blocking.
2080 	 */
2081 	if (ipl == IPL_SOFTNET) {
2082 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
2083 	} else {
2084 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2085 	}
2086 
2087 	if (ctor == NULL) {
2088 		ctor = (int (*)(void *, void *, int))nullop;
2089 	}
2090 	if (dtor == NULL) {
2091 		dtor = (void (*)(void *, void *))nullop;
2092 	}
2093 
2094 	pc->pc_emptygroups = NULL;
2095 	pc->pc_fullgroups = NULL;
2096 	pc->pc_partgroups = NULL;
2097 	pc->pc_ctor = ctor;
2098 	pc->pc_dtor = dtor;
2099 	pc->pc_arg  = arg;
2100 	pc->pc_hits  = 0;
2101 	pc->pc_misses = 0;
2102 	pc->pc_nempty = 0;
2103 	pc->pc_npart = 0;
2104 	pc->pc_nfull = 0;
2105 	pc->pc_contended = 0;
2106 	pc->pc_refcnt = 0;
2107 	pc->pc_freecheck = NULL;
2108 
2109 	if ((flags & PR_LARGECACHE) != 0) {
2110 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2111 	} else {
2112 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2113 	}
2114 
2115 	/* Allocate per-CPU caches. */
2116 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2117 	pc->pc_ncpu = 0;
2118 	if (ncpu < 2) {
2119 		/* XXX For sparc: boot CPU is not attached yet. */
2120 		pool_cache_cpu_init1(curcpu(), pc);
2121 	} else {
2122 		for (CPU_INFO_FOREACH(cii, ci)) {
2123 			pool_cache_cpu_init1(ci, pc);
2124 		}
2125 	}
2126 
2127 	/* Add to list of all pools. */
2128 	if (__predict_true(!cold))
2129 		mutex_enter(&pool_head_lock);
2130 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2131 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2132 			break;
2133 	}
2134 	if (pc1 == NULL)
2135 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2136 	else
2137 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2138 	if (__predict_true(!cold))
2139 		mutex_exit(&pool_head_lock);
2140 
2141 	membar_sync();
2142 	pp->pr_cache = pc;
2143 }
2144 
2145 /*
2146  * pool_cache_destroy:
2147  *
2148  *	Destroy a pool cache.
2149  */
2150 void
2151 pool_cache_destroy(pool_cache_t pc)
2152 {
2153 	struct pool *pp = &pc->pc_pool;
2154 	pool_cache_cpu_t *cc;
2155 	pcg_t *pcg;
2156 	int i;
2157 
2158 	/* Remove it from the global list. */
2159 	mutex_enter(&pool_head_lock);
2160 	while (pc->pc_refcnt != 0)
2161 		cv_wait(&pool_busy, &pool_head_lock);
2162 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2163 	mutex_exit(&pool_head_lock);
2164 
2165 	/* First, invalidate the entire cache. */
2166 	pool_cache_invalidate(pc);
2167 
2168 	/* Disassociate it from the pool. */
2169 	mutex_enter(&pp->pr_lock);
2170 	pp->pr_cache = NULL;
2171 	mutex_exit(&pp->pr_lock);
2172 
2173 	/* Destroy per-CPU data */
2174 	for (i = 0; i < MAXCPUS; i++) {
2175 		if ((cc = pc->pc_cpus[i]) == NULL)
2176 			continue;
2177 		if ((pcg = cc->cc_current) != NULL) {
2178 			pcg->pcg_next = NULL;
2179 			pool_cache_invalidate_groups(pc, pcg);
2180 		}
2181 		if ((pcg = cc->cc_previous) != NULL) {
2182 			pcg->pcg_next = NULL;
2183 			pool_cache_invalidate_groups(pc, pcg);
2184 		}
2185 		if (cc != &pc->pc_cpu0)
2186 			pool_put(&cache_cpu_pool, cc);
2187 	}
2188 
2189 	/* Finally, destroy it. */
2190 	mutex_destroy(&pc->pc_lock);
2191 	pool_destroy(pp);
2192 	pool_put(&cache_pool, pc);
2193 }
2194 
2195 /*
2196  * pool_cache_cpu_init1:
2197  *
2198  *	Called for each pool_cache whenever a new CPU is attached.
2199  */
2200 static void
2201 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2202 {
2203 	pool_cache_cpu_t *cc;
2204 	int index;
2205 
2206 	index = ci->ci_index;
2207 
2208 	KASSERT(index < MAXCPUS);
2209 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2210 
2211 	if ((cc = pc->pc_cpus[index]) != NULL) {
2212 		KASSERT(cc->cc_cpuindex == index);
2213 		return;
2214 	}
2215 
2216 	/*
2217 	 * The first CPU is 'free'.  This needs to be the case for
2218 	 * bootstrap - we may not be able to allocate yet.
2219 	 */
2220 	if (pc->pc_ncpu == 0) {
2221 		cc = &pc->pc_cpu0;
2222 		pc->pc_ncpu = 1;
2223 	} else {
2224 		mutex_enter(&pc->pc_lock);
2225 		pc->pc_ncpu++;
2226 		mutex_exit(&pc->pc_lock);
2227 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2228 	}
2229 
2230 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2231 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2232 	cc->cc_cache = pc;
2233 	cc->cc_cpuindex = index;
2234 	cc->cc_hits = 0;
2235 	cc->cc_misses = 0;
2236 	cc->cc_current = NULL;
2237 	cc->cc_previous = NULL;
2238 
2239 	pc->pc_cpus[index] = cc;
2240 }
2241 
2242 /*
2243  * pool_cache_cpu_init:
2244  *
2245  *	Called whenever a new CPU is attached.
2246  */
2247 void
2248 pool_cache_cpu_init(struct cpu_info *ci)
2249 {
2250 	pool_cache_t pc;
2251 
2252 	mutex_enter(&pool_head_lock);
2253 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2254 		pc->pc_refcnt++;
2255 		mutex_exit(&pool_head_lock);
2256 
2257 		pool_cache_cpu_init1(ci, pc);
2258 
2259 		mutex_enter(&pool_head_lock);
2260 		pc->pc_refcnt--;
2261 		cv_broadcast(&pool_busy);
2262 	}
2263 	mutex_exit(&pool_head_lock);
2264 }
2265 
2266 /*
2267  * pool_cache_reclaim:
2268  *
2269  *	Reclaim memory from a pool cache.
2270  */
2271 bool
2272 pool_cache_reclaim(pool_cache_t pc)
2273 {
2274 
2275 	return pool_reclaim(&pc->pc_pool);
2276 }
2277 
2278 static void
2279 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2280 {
2281 
2282 	(*pc->pc_dtor)(pc->pc_arg, object);
2283 	pool_put(&pc->pc_pool, object);
2284 }
2285 
2286 /*
2287  * pool_cache_destruct_object:
2288  *
2289  *	Force destruction of an object and its release back into
2290  *	the pool.
2291  */
2292 void
2293 pool_cache_destruct_object(pool_cache_t pc, void *object)
2294 {
2295 
2296 	FREECHECK_IN(&pc->pc_freecheck, object);
2297 
2298 	pool_cache_destruct_object1(pc, object);
2299 }
2300 
2301 /*
2302  * pool_cache_invalidate_groups:
2303  *
2304  *	Invalidate a chain of groups and destruct all objects.
2305  */
2306 static void
2307 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2308 {
2309 	void *object;
2310 	pcg_t *next;
2311 	int i;
2312 
2313 	for (; pcg != NULL; pcg = next) {
2314 		next = pcg->pcg_next;
2315 
2316 		for (i = 0; i < pcg->pcg_avail; i++) {
2317 			object = pcg->pcg_objects[i].pcgo_va;
2318 			pool_cache_destruct_object1(pc, object);
2319 		}
2320 
2321 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2322 			pool_put(&pcg_large_pool, pcg);
2323 		} else {
2324 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2325 			pool_put(&pcg_normal_pool, pcg);
2326 		}
2327 	}
2328 }
2329 
2330 /*
2331  * pool_cache_invalidate:
2332  *
2333  *	Invalidate a pool cache (destruct and release all of the
2334  *	cached objects).  Does not reclaim objects from the pool.
2335  */
2336 void
2337 pool_cache_invalidate(pool_cache_t pc)
2338 {
2339 	pcg_t *full, *empty, *part;
2340 
2341 	mutex_enter(&pc->pc_lock);
2342 	full = pc->pc_fullgroups;
2343 	empty = pc->pc_emptygroups;
2344 	part = pc->pc_partgroups;
2345 	pc->pc_fullgroups = NULL;
2346 	pc->pc_emptygroups = NULL;
2347 	pc->pc_partgroups = NULL;
2348 	pc->pc_nfull = 0;
2349 	pc->pc_nempty = 0;
2350 	pc->pc_npart = 0;
2351 	mutex_exit(&pc->pc_lock);
2352 
2353 	pool_cache_invalidate_groups(pc, full);
2354 	pool_cache_invalidate_groups(pc, empty);
2355 	pool_cache_invalidate_groups(pc, part);
2356 }
2357 
2358 void
2359 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2360 {
2361 
2362 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2363 }
2364 
2365 void
2366 pool_cache_setlowat(pool_cache_t pc, int n)
2367 {
2368 
2369 	pool_setlowat(&pc->pc_pool, n);
2370 }
2371 
2372 void
2373 pool_cache_sethiwat(pool_cache_t pc, int n)
2374 {
2375 
2376 	pool_sethiwat(&pc->pc_pool, n);
2377 }
2378 
2379 void
2380 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2381 {
2382 
2383 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2384 }
2385 
2386 static inline pool_cache_cpu_t *
2387 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2388 {
2389 	pool_cache_cpu_t *cc;
2390 
2391 	/*
2392 	 * Prevent other users of the cache from accessing our
2393 	 * CPU-local data.  To avoid touching shared state, we
2394 	 * pull the neccessary information from CPU local data.
2395 	 */
2396 	crit_enter();
2397 	cc = pc->pc_cpus[curcpu()->ci_index];
2398 	KASSERT(cc->cc_cache == pc);
2399 	if (cc->cc_ipl != IPL_NONE) {
2400 		*s = splraiseipl(cc->cc_iplcookie);
2401 	}
2402 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2403 
2404 	return cc;
2405 }
2406 
2407 static inline void
2408 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2409 {
2410 
2411 	/* No longer need exclusive access to the per-CPU data. */
2412 	if (cc->cc_ipl != IPL_NONE) {
2413 		splx(*s);
2414 	}
2415 	crit_exit();
2416 }
2417 
2418 #if __GNUC_PREREQ__(3, 0)
2419 __attribute ((noinline))
2420 #endif
2421 pool_cache_cpu_t *
2422 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2423 		    paddr_t *pap, int flags)
2424 {
2425 	pcg_t *pcg, *cur;
2426 	uint64_t ncsw;
2427 	pool_cache_t pc;
2428 	void *object;
2429 
2430 	pc = cc->cc_cache;
2431 	cc->cc_misses++;
2432 
2433 	/*
2434 	 * Nothing was available locally.  Try and grab a group
2435 	 * from the cache.
2436 	 */
2437 	if (!mutex_tryenter(&pc->pc_lock)) {
2438 		ncsw = curlwp->l_ncsw;
2439 		mutex_enter(&pc->pc_lock);
2440 		pc->pc_contended++;
2441 
2442 		/*
2443 		 * If we context switched while locking, then
2444 		 * our view of the per-CPU data is invalid:
2445 		 * retry.
2446 		 */
2447 		if (curlwp->l_ncsw != ncsw) {
2448 			mutex_exit(&pc->pc_lock);
2449 			pool_cache_cpu_exit(cc, s);
2450 			return pool_cache_cpu_enter(pc, s);
2451 		}
2452 	}
2453 
2454 	if ((pcg = pc->pc_fullgroups) != NULL) {
2455 		/*
2456 		 * If there's a full group, release our empty
2457 		 * group back to the cache.  Install the full
2458 		 * group as cc_current and return.
2459 		 */
2460 		if ((cur = cc->cc_current) != NULL) {
2461 			KASSERT(cur->pcg_avail == 0);
2462 			cur->pcg_next = pc->pc_emptygroups;
2463 			pc->pc_emptygroups = cur;
2464 			pc->pc_nempty++;
2465 		}
2466 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2467 		cc->cc_current = pcg;
2468 		pc->pc_fullgroups = pcg->pcg_next;
2469 		pc->pc_hits++;
2470 		pc->pc_nfull--;
2471 		mutex_exit(&pc->pc_lock);
2472 		return cc;
2473 	}
2474 
2475 	/*
2476 	 * Nothing available locally or in cache.  Take the slow
2477 	 * path: fetch a new object from the pool and construct
2478 	 * it.
2479 	 */
2480 	pc->pc_misses++;
2481 	mutex_exit(&pc->pc_lock);
2482 	pool_cache_cpu_exit(cc, s);
2483 
2484 	object = pool_get(&pc->pc_pool, flags);
2485 	*objectp = object;
2486 	if (object == NULL)
2487 		return NULL;
2488 
2489 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2490 		pool_put(&pc->pc_pool, object);
2491 		*objectp = NULL;
2492 		return NULL;
2493 	}
2494 
2495 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2496 	    (pc->pc_pool.pr_align - 1)) == 0);
2497 
2498 	if (pap != NULL) {
2499 #ifdef POOL_VTOPHYS
2500 		*pap = POOL_VTOPHYS(object);
2501 #else
2502 		*pap = POOL_PADDR_INVALID;
2503 #endif
2504 	}
2505 
2506 	FREECHECK_OUT(&pc->pc_freecheck, object);
2507 	return NULL;
2508 }
2509 
2510 /*
2511  * pool_cache_get{,_paddr}:
2512  *
2513  *	Get an object from a pool cache (optionally returning
2514  *	the physical address of the object).
2515  */
2516 void *
2517 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2518 {
2519 	pool_cache_cpu_t *cc;
2520 	pcg_t *pcg;
2521 	void *object;
2522 	int s;
2523 
2524 #ifdef LOCKDEBUG
2525 	if (flags & PR_WAITOK)
2526 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2527 #endif
2528 
2529 	cc = pool_cache_cpu_enter(pc, &s);
2530 	do {
2531 		/* Try and allocate an object from the current group. */
2532 	 	pcg = cc->cc_current;
2533 		if (pcg != NULL && pcg->pcg_avail > 0) {
2534 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2535 			if (pap != NULL)
2536 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2537 #if defined(DIAGNOSTIC)
2538 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2539 #endif /* defined(DIAGNOSTIC) */
2540 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
2541 			KASSERT(object != NULL);
2542 			cc->cc_hits++;
2543 			pool_cache_cpu_exit(cc, &s);
2544 			FREECHECK_OUT(&pc->pc_freecheck, object);
2545 			return object;
2546 		}
2547 
2548 		/*
2549 		 * That failed.  If the previous group isn't empty, swap
2550 		 * it with the current group and allocate from there.
2551 		 */
2552 		pcg = cc->cc_previous;
2553 		if (pcg != NULL && pcg->pcg_avail > 0) {
2554 			cc->cc_previous = cc->cc_current;
2555 			cc->cc_current = pcg;
2556 			continue;
2557 		}
2558 
2559 		/*
2560 		 * Can't allocate from either group: try the slow path.
2561 		 * If get_slow() allocated an object for us, or if
2562 		 * no more objects are available, it will return NULL.
2563 		 * Otherwise, we need to retry.
2564 		 */
2565 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2566 	} while (cc != NULL);
2567 
2568 	return object;
2569 }
2570 
2571 #if __GNUC_PREREQ__(3, 0)
2572 __attribute ((noinline))
2573 #endif
2574 pool_cache_cpu_t *
2575 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2576 {
2577 	pcg_t *pcg, *cur;
2578 	uint64_t ncsw;
2579 	pool_cache_t pc;
2580 	u_int nobj;
2581 
2582 	pc = cc->cc_cache;
2583 	cc->cc_misses++;
2584 
2585 	/*
2586 	 * No free slots locally.  Try to grab an empty, unused
2587 	 * group from the cache.
2588 	 */
2589 	if (!mutex_tryenter(&pc->pc_lock)) {
2590 		ncsw = curlwp->l_ncsw;
2591 		mutex_enter(&pc->pc_lock);
2592 		pc->pc_contended++;
2593 
2594 		/*
2595 		 * If we context switched while locking, then
2596 		 * our view of the per-CPU data is invalid:
2597 		 * retry.
2598 		 */
2599 		if (curlwp->l_ncsw != ncsw) {
2600 			mutex_exit(&pc->pc_lock);
2601 			pool_cache_cpu_exit(cc, s);
2602 			return pool_cache_cpu_enter(pc, s);
2603 		}
2604 	}
2605 
2606 	if ((pcg = pc->pc_emptygroups) != NULL) {
2607 		/*
2608 		 * If there's a empty group, release our full
2609 		 * group back to the cache.  Install the empty
2610 		 * group and return.
2611 		 */
2612 		KASSERT(pcg->pcg_avail == 0);
2613 		pc->pc_emptygroups = pcg->pcg_next;
2614 		if (cc->cc_previous == NULL) {
2615 			cc->cc_previous = pcg;
2616 		} else {
2617 			if ((cur = cc->cc_current) != NULL) {
2618 				KASSERT(cur->pcg_avail == pcg->pcg_size);
2619 				cur->pcg_next = pc->pc_fullgroups;
2620 				pc->pc_fullgroups = cur;
2621 				pc->pc_nfull++;
2622 			}
2623 			cc->cc_current = pcg;
2624 		}
2625 		pc->pc_hits++;
2626 		pc->pc_nempty--;
2627 		mutex_exit(&pc->pc_lock);
2628 		return cc;
2629 	}
2630 
2631 	/*
2632 	 * Nothing available locally or in cache.  Take the
2633 	 * slow path and try to allocate a new group that we
2634 	 * can release to.
2635 	 */
2636 	pc->pc_misses++;
2637 	mutex_exit(&pc->pc_lock);
2638 	pool_cache_cpu_exit(cc, s);
2639 
2640 	/*
2641 	 * If we can't allocate a new group, just throw the
2642 	 * object away.
2643 	 */
2644 	nobj = pc->pc_pcgsize;
2645 	if (pool_cache_disable) {
2646 		pcg = NULL;
2647 	} else if (nobj == PCG_NOBJECTS_LARGE) {
2648 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
2649 	} else {
2650 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
2651 	}
2652 	if (pcg == NULL) {
2653 		pool_cache_destruct_object(pc, object);
2654 		return NULL;
2655 	}
2656 	pcg->pcg_avail = 0;
2657 	pcg->pcg_size = nobj;
2658 
2659 	/*
2660 	 * Add the empty group to the cache and try again.
2661 	 */
2662 	mutex_enter(&pc->pc_lock);
2663 	pcg->pcg_next = pc->pc_emptygroups;
2664 	pc->pc_emptygroups = pcg;
2665 	pc->pc_nempty++;
2666 	mutex_exit(&pc->pc_lock);
2667 
2668 	return pool_cache_cpu_enter(pc, s);
2669 }
2670 
2671 /*
2672  * pool_cache_put{,_paddr}:
2673  *
2674  *	Put an object back to the pool cache (optionally caching the
2675  *	physical address of the object).
2676  */
2677 void
2678 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2679 {
2680 	pool_cache_cpu_t *cc;
2681 	pcg_t *pcg;
2682 	int s;
2683 
2684 	FREECHECK_IN(&pc->pc_freecheck, object);
2685 
2686 	cc = pool_cache_cpu_enter(pc, &s);
2687 	do {
2688 		/* If the current group isn't full, release it there. */
2689 	 	pcg = cc->cc_current;
2690 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
2691 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2692 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2693 			pcg->pcg_avail++;
2694 			cc->cc_hits++;
2695 			pool_cache_cpu_exit(cc, &s);
2696 			return;
2697 		}
2698 
2699 		/*
2700 		 * That failed.  If the previous group is empty, swap
2701 		 * it with the current group and try again.
2702 		 */
2703 		pcg = cc->cc_previous;
2704 		if (pcg != NULL && pcg->pcg_avail == 0) {
2705 			cc->cc_previous = cc->cc_current;
2706 			cc->cc_current = pcg;
2707 			continue;
2708 		}
2709 
2710 		/*
2711 		 * Can't free to either group: try the slow path.
2712 		 * If put_slow() releases the object for us, it
2713 		 * will return NULL.  Otherwise we need to retry.
2714 		 */
2715 		cc = pool_cache_put_slow(cc, &s, object, pa);
2716 	} while (cc != NULL);
2717 }
2718 
2719 /*
2720  * pool_cache_xcall:
2721  *
2722  *	Transfer objects from the per-CPU cache to the global cache.
2723  *	Run within a cross-call thread.
2724  */
2725 static void
2726 pool_cache_xcall(pool_cache_t pc)
2727 {
2728 	pool_cache_cpu_t *cc;
2729 	pcg_t *prev, *cur, **list;
2730 	int s = 0; /* XXXgcc */
2731 
2732 	cc = pool_cache_cpu_enter(pc, &s);
2733 	cur = cc->cc_current;
2734 	cc->cc_current = NULL;
2735 	prev = cc->cc_previous;
2736 	cc->cc_previous = NULL;
2737 	pool_cache_cpu_exit(cc, &s);
2738 
2739 	/*
2740 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2741 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
2742 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
2743 	 * kernel_lock.
2744 	 */
2745 	s = splvm();
2746 	mutex_enter(&pc->pc_lock);
2747 	if (cur != NULL) {
2748 		if (cur->pcg_avail == cur->pcg_size) {
2749 			list = &pc->pc_fullgroups;
2750 			pc->pc_nfull++;
2751 		} else if (cur->pcg_avail == 0) {
2752 			list = &pc->pc_emptygroups;
2753 			pc->pc_nempty++;
2754 		} else {
2755 			list = &pc->pc_partgroups;
2756 			pc->pc_npart++;
2757 		}
2758 		cur->pcg_next = *list;
2759 		*list = cur;
2760 	}
2761 	if (prev != NULL) {
2762 		if (prev->pcg_avail == prev->pcg_size) {
2763 			list = &pc->pc_fullgroups;
2764 			pc->pc_nfull++;
2765 		} else if (prev->pcg_avail == 0) {
2766 			list = &pc->pc_emptygroups;
2767 			pc->pc_nempty++;
2768 		} else {
2769 			list = &pc->pc_partgroups;
2770 			pc->pc_npart++;
2771 		}
2772 		prev->pcg_next = *list;
2773 		*list = prev;
2774 	}
2775 	mutex_exit(&pc->pc_lock);
2776 	splx(s);
2777 }
2778 
2779 /*
2780  * Pool backend allocators.
2781  *
2782  * Each pool has a backend allocator that handles allocation, deallocation,
2783  * and any additional draining that might be needed.
2784  *
2785  * We provide two standard allocators:
2786  *
2787  *	pool_allocator_kmem - the default when no allocator is specified
2788  *
2789  *	pool_allocator_nointr - used for pools that will not be accessed
2790  *	in interrupt context.
2791  */
2792 void	*pool_page_alloc(struct pool *, int);
2793 void	pool_page_free(struct pool *, void *);
2794 
2795 #ifdef POOL_SUBPAGE
2796 struct pool_allocator pool_allocator_kmem_fullpage = {
2797 	pool_page_alloc, pool_page_free, 0,
2798 	.pa_backingmapptr = &kmem_map,
2799 };
2800 #else
2801 struct pool_allocator pool_allocator_kmem = {
2802 	pool_page_alloc, pool_page_free, 0,
2803 	.pa_backingmapptr = &kmem_map,
2804 };
2805 #endif
2806 
2807 void	*pool_page_alloc_nointr(struct pool *, int);
2808 void	pool_page_free_nointr(struct pool *, void *);
2809 
2810 #ifdef POOL_SUBPAGE
2811 struct pool_allocator pool_allocator_nointr_fullpage = {
2812 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2813 	.pa_backingmapptr = &kernel_map,
2814 };
2815 #else
2816 struct pool_allocator pool_allocator_nointr = {
2817 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2818 	.pa_backingmapptr = &kernel_map,
2819 };
2820 #endif
2821 
2822 #ifdef POOL_SUBPAGE
2823 void	*pool_subpage_alloc(struct pool *, int);
2824 void	pool_subpage_free(struct pool *, void *);
2825 
2826 struct pool_allocator pool_allocator_kmem = {
2827 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2828 	.pa_backingmapptr = &kmem_map,
2829 };
2830 
2831 void	*pool_subpage_alloc_nointr(struct pool *, int);
2832 void	pool_subpage_free_nointr(struct pool *, void *);
2833 
2834 struct pool_allocator pool_allocator_nointr = {
2835 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2836 	.pa_backingmapptr = &kmem_map,
2837 };
2838 #endif /* POOL_SUBPAGE */
2839 
2840 static void *
2841 pool_allocator_alloc(struct pool *pp, int flags)
2842 {
2843 	struct pool_allocator *pa = pp->pr_alloc;
2844 	void *res;
2845 
2846 	res = (*pa->pa_alloc)(pp, flags);
2847 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2848 		/*
2849 		 * We only run the drain hook here if PR_NOWAIT.
2850 		 * In other cases, the hook will be run in
2851 		 * pool_reclaim().
2852 		 */
2853 		if (pp->pr_drain_hook != NULL) {
2854 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2855 			res = (*pa->pa_alloc)(pp, flags);
2856 		}
2857 	}
2858 	return res;
2859 }
2860 
2861 static void
2862 pool_allocator_free(struct pool *pp, void *v)
2863 {
2864 	struct pool_allocator *pa = pp->pr_alloc;
2865 
2866 	(*pa->pa_free)(pp, v);
2867 }
2868 
2869 void *
2870 pool_page_alloc(struct pool *pp, int flags)
2871 {
2872 	bool waitok = (flags & PR_WAITOK) ? true : false;
2873 
2874 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2875 }
2876 
2877 void
2878 pool_page_free(struct pool *pp, void *v)
2879 {
2880 
2881 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2882 }
2883 
2884 static void *
2885 pool_page_alloc_meta(struct pool *pp, int flags)
2886 {
2887 	bool waitok = (flags & PR_WAITOK) ? true : false;
2888 
2889 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2890 }
2891 
2892 static void
2893 pool_page_free_meta(struct pool *pp, void *v)
2894 {
2895 
2896 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2897 }
2898 
2899 #ifdef POOL_SUBPAGE
2900 /* Sub-page allocator, for machines with large hardware pages. */
2901 void *
2902 pool_subpage_alloc(struct pool *pp, int flags)
2903 {
2904 	return pool_get(&psppool, flags);
2905 }
2906 
2907 void
2908 pool_subpage_free(struct pool *pp, void *v)
2909 {
2910 	pool_put(&psppool, v);
2911 }
2912 
2913 /* We don't provide a real nointr allocator.  Maybe later. */
2914 void *
2915 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2916 {
2917 
2918 	return (pool_subpage_alloc(pp, flags));
2919 }
2920 
2921 void
2922 pool_subpage_free_nointr(struct pool *pp, void *v)
2923 {
2924 
2925 	pool_subpage_free(pp, v);
2926 }
2927 #endif /* POOL_SUBPAGE */
2928 void *
2929 pool_page_alloc_nointr(struct pool *pp, int flags)
2930 {
2931 	bool waitok = (flags & PR_WAITOK) ? true : false;
2932 
2933 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2934 }
2935 
2936 void
2937 pool_page_free_nointr(struct pool *pp, void *v)
2938 {
2939 
2940 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2941 }
2942 
2943 #if defined(DDB)
2944 static bool
2945 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2946 {
2947 
2948 	return (uintptr_t)ph->ph_page <= addr &&
2949 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2950 }
2951 
2952 static bool
2953 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2954 {
2955 
2956 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2957 }
2958 
2959 static bool
2960 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2961 {
2962 	int i;
2963 
2964 	if (pcg == NULL) {
2965 		return false;
2966 	}
2967 	for (i = 0; i < pcg->pcg_avail; i++) {
2968 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2969 			return true;
2970 		}
2971 	}
2972 	return false;
2973 }
2974 
2975 static bool
2976 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2977 {
2978 
2979 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2980 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2981 		pool_item_bitmap_t *bitmap =
2982 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2983 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2984 
2985 		return (*bitmap & mask) == 0;
2986 	} else {
2987 		struct pool_item *pi;
2988 
2989 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2990 			if (pool_in_item(pp, pi, addr)) {
2991 				return false;
2992 			}
2993 		}
2994 		return true;
2995 	}
2996 }
2997 
2998 void
2999 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3000 {
3001 	struct pool *pp;
3002 
3003 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3004 		struct pool_item_header *ph;
3005 		uintptr_t item;
3006 		bool allocated = true;
3007 		bool incache = false;
3008 		bool incpucache = false;
3009 		char cpucachestr[32];
3010 
3011 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3012 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3013 				if (pool_in_page(pp, ph, addr)) {
3014 					goto found;
3015 				}
3016 			}
3017 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3018 				if (pool_in_page(pp, ph, addr)) {
3019 					allocated =
3020 					    pool_allocated(pp, ph, addr);
3021 					goto found;
3022 				}
3023 			}
3024 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3025 				if (pool_in_page(pp, ph, addr)) {
3026 					allocated = false;
3027 					goto found;
3028 				}
3029 			}
3030 			continue;
3031 		} else {
3032 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3033 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3034 				continue;
3035 			}
3036 			allocated = pool_allocated(pp, ph, addr);
3037 		}
3038 found:
3039 		if (allocated && pp->pr_cache) {
3040 			pool_cache_t pc = pp->pr_cache;
3041 			struct pool_cache_group *pcg;
3042 			int i;
3043 
3044 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3045 			    pcg = pcg->pcg_next) {
3046 				if (pool_in_cg(pp, pcg, addr)) {
3047 					incache = true;
3048 					goto print;
3049 				}
3050 			}
3051 			for (i = 0; i < MAXCPUS; i++) {
3052 				pool_cache_cpu_t *cc;
3053 
3054 				if ((cc = pc->pc_cpus[i]) == NULL) {
3055 					continue;
3056 				}
3057 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3058 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3059 					struct cpu_info *ci =
3060 					    cpu_lookup_byindex(i);
3061 
3062 					incpucache = true;
3063 					snprintf(cpucachestr,
3064 					    sizeof(cpucachestr),
3065 					    "cached by CPU %u",
3066 					    (u_int)ci->ci_cpuid);
3067 					goto print;
3068 				}
3069 			}
3070 		}
3071 print:
3072 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3073 		item = item + rounddown(addr - item, pp->pr_size);
3074 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3075 		    (void *)addr, item, (size_t)(addr - item),
3076 		    pp->pr_wchan,
3077 		    incpucache ? cpucachestr :
3078 		    incache ? "cached" : allocated ? "allocated" : "free");
3079 	}
3080 }
3081 #endif /* defined(DDB) */
3082