xref: /netbsd-src/sys/kern/subr_pool.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: subr_pool.c,v 1.96 2004/06/20 18:19:27 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.96 2004/06/20 18:19:27 thorpej Exp $");
42 
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according to
63  * the pool item size. Each page is kept on one of three lists in the
64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65  * for empty, full and partially-full pages respectively. The individual
66  * pool items are on a linked list headed by `ph_itemlist' in each page
67  * header. The memory for building the page list is either taken from
68  * the allocated pages themselves (for small pool items) or taken from
69  * an internal pool of page headers (`phpool').
70  */
71 
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74 
75 /* Private pool for page header structures */
76 static struct pool phpool;
77 
78 #ifdef POOL_SUBPAGE
79 /* Pool of subpages for use by normal pools. */
80 static struct pool psppool;
81 #endif
82 
83 /* # of seconds to retain page after last use */
84 int pool_inactive_time = 10;
85 
86 /* Next candidate for drainage (see pool_drain()) */
87 static struct pool	*drainpp;
88 
89 /* This spin lock protects both pool_head and drainpp. */
90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
91 
92 struct pool_item_header {
93 	/* Page headers */
94 	LIST_ENTRY(pool_item_header)
95 				ph_pagelist;	/* pool page list */
96 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
97 	SPLAY_ENTRY(pool_item_header)
98 				ph_node;	/* Off-page page headers */
99 	unsigned int		ph_nmissing;	/* # of chunks in use */
100 	caddr_t			ph_page;	/* this page's address */
101 	struct timeval		ph_time;	/* last referenced */
102 };
103 
104 struct pool_item {
105 #ifdef DIAGNOSTIC
106 	u_int pi_magic;
107 #endif
108 #define	PI_MAGIC 0xdeadbeefU
109 	/* Other entries use only this list entry */
110 	TAILQ_ENTRY(pool_item)	pi_list;
111 };
112 
113 #define	POOL_NEEDS_CATCHUP(pp)						\
114 	((pp)->pr_nitems < (pp)->pr_minitems)
115 
116 /*
117  * Pool cache management.
118  *
119  * Pool caches provide a way for constructed objects to be cached by the
120  * pool subsystem.  This can lead to performance improvements by avoiding
121  * needless object construction/destruction; it is deferred until absolutely
122  * necessary.
123  *
124  * Caches are grouped into cache groups.  Each cache group references
125  * up to 16 constructed objects.  When a cache allocates an object
126  * from the pool, it calls the object's constructor and places it into
127  * a cache group.  When a cache group frees an object back to the pool,
128  * it first calls the object's destructor.  This allows the object to
129  * persist in constructed form while freed to the cache.
130  *
131  * Multiple caches may exist for each pool.  This allows a single
132  * object type to have multiple constructed forms.  The pool references
133  * each cache, so that when a pool is drained by the pagedaemon, it can
134  * drain each individual cache as well.  Each time a cache is drained,
135  * the most idle cache group is freed to the pool in its entirety.
136  *
137  * Pool caches are layed on top of pools.  By layering them, we can avoid
138  * the complexity of cache management for pools which would not benefit
139  * from it.
140  */
141 
142 /* The cache group pool. */
143 static struct pool pcgpool;
144 
145 static void	pool_cache_reclaim(struct pool_cache *);
146 
147 static int	pool_catchup(struct pool *);
148 static void	pool_prime_page(struct pool *, caddr_t,
149 		    struct pool_item_header *);
150 static void	pool_update_curpage(struct pool *);
151 
152 void		*pool_allocator_alloc(struct pool *, int);
153 void		pool_allocator_free(struct pool *, void *);
154 
155 static void pool_print_pagelist(struct pool_pagelist *,
156 	void (*)(const char *, ...));
157 static void pool_print1(struct pool *, const char *,
158 	void (*)(const char *, ...));
159 
160 static int pool_chk_page(struct pool *, const char *,
161 			 struct pool_item_header *);
162 
163 /*
164  * Pool log entry. An array of these is allocated in pool_init().
165  */
166 struct pool_log {
167 	const char	*pl_file;
168 	long		pl_line;
169 	int		pl_action;
170 #define	PRLOG_GET	1
171 #define	PRLOG_PUT	2
172 	void		*pl_addr;
173 };
174 
175 #ifdef POOL_DIAGNOSTIC
176 /* Number of entries in pool log buffers */
177 #ifndef POOL_LOGSIZE
178 #define	POOL_LOGSIZE	10
179 #endif
180 
181 int pool_logsize = POOL_LOGSIZE;
182 
183 static __inline void
184 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
185 {
186 	int n = pp->pr_curlogentry;
187 	struct pool_log *pl;
188 
189 	if ((pp->pr_roflags & PR_LOGGING) == 0)
190 		return;
191 
192 	/*
193 	 * Fill in the current entry. Wrap around and overwrite
194 	 * the oldest entry if necessary.
195 	 */
196 	pl = &pp->pr_log[n];
197 	pl->pl_file = file;
198 	pl->pl_line = line;
199 	pl->pl_action = action;
200 	pl->pl_addr = v;
201 	if (++n >= pp->pr_logsize)
202 		n = 0;
203 	pp->pr_curlogentry = n;
204 }
205 
206 static void
207 pr_printlog(struct pool *pp, struct pool_item *pi,
208     void (*pr)(const char *, ...))
209 {
210 	int i = pp->pr_logsize;
211 	int n = pp->pr_curlogentry;
212 
213 	if ((pp->pr_roflags & PR_LOGGING) == 0)
214 		return;
215 
216 	/*
217 	 * Print all entries in this pool's log.
218 	 */
219 	while (i-- > 0) {
220 		struct pool_log *pl = &pp->pr_log[n];
221 		if (pl->pl_action != 0) {
222 			if (pi == NULL || pi == pl->pl_addr) {
223 				(*pr)("\tlog entry %d:\n", i);
224 				(*pr)("\t\taction = %s, addr = %p\n",
225 				    pl->pl_action == PRLOG_GET ? "get" : "put",
226 				    pl->pl_addr);
227 				(*pr)("\t\tfile: %s at line %lu\n",
228 				    pl->pl_file, pl->pl_line);
229 			}
230 		}
231 		if (++n >= pp->pr_logsize)
232 			n = 0;
233 	}
234 }
235 
236 static __inline void
237 pr_enter(struct pool *pp, const char *file, long line)
238 {
239 
240 	if (__predict_false(pp->pr_entered_file != NULL)) {
241 		printf("pool %s: reentrancy at file %s line %ld\n",
242 		    pp->pr_wchan, file, line);
243 		printf("         previous entry at file %s line %ld\n",
244 		    pp->pr_entered_file, pp->pr_entered_line);
245 		panic("pr_enter");
246 	}
247 
248 	pp->pr_entered_file = file;
249 	pp->pr_entered_line = line;
250 }
251 
252 static __inline void
253 pr_leave(struct pool *pp)
254 {
255 
256 	if (__predict_false(pp->pr_entered_file == NULL)) {
257 		printf("pool %s not entered?\n", pp->pr_wchan);
258 		panic("pr_leave");
259 	}
260 
261 	pp->pr_entered_file = NULL;
262 	pp->pr_entered_line = 0;
263 }
264 
265 static __inline void
266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
267 {
268 
269 	if (pp->pr_entered_file != NULL)
270 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
271 		    pp->pr_entered_file, pp->pr_entered_line);
272 }
273 #else
274 #define	pr_log(pp, v, action, file, line)
275 #define	pr_printlog(pp, pi, pr)
276 #define	pr_enter(pp, file, line)
277 #define	pr_leave(pp)
278 #define	pr_enter_check(pp, pr)
279 #endif /* POOL_DIAGNOSTIC */
280 
281 static __inline int
282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
283 {
284 	if (a->ph_page < b->ph_page)
285 		return (-1);
286 	else if (a->ph_page > b->ph_page)
287 		return (1);
288 	else
289 		return (0);
290 }
291 
292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
294 
295 /*
296  * Return the pool page header based on page address.
297  */
298 static __inline struct pool_item_header *
299 pr_find_pagehead(struct pool *pp, caddr_t page)
300 {
301 	struct pool_item_header *ph, tmp;
302 
303 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
304 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
305 
306 	tmp.ph_page = page;
307 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
308 	return ph;
309 }
310 
311 /*
312  * Remove a page from the pool.
313  */
314 static __inline void
315 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
316      struct pool_pagelist *pq)
317 {
318 	int s;
319 
320 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock) || pq != NULL);
321 
322 	/*
323 	 * If the page was idle, decrement the idle page count.
324 	 */
325 	if (ph->ph_nmissing == 0) {
326 #ifdef DIAGNOSTIC
327 		if (pp->pr_nidle == 0)
328 			panic("pr_rmpage: nidle inconsistent");
329 		if (pp->pr_nitems < pp->pr_itemsperpage)
330 			panic("pr_rmpage: nitems inconsistent");
331 #endif
332 		pp->pr_nidle--;
333 	}
334 
335 	pp->pr_nitems -= pp->pr_itemsperpage;
336 
337 	/*
338 	 * Unlink a page from the pool and release it (or queue it for release).
339 	 */
340 	LIST_REMOVE(ph, ph_pagelist);
341 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
342 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
343 	if (pq) {
344 		LIST_INSERT_HEAD(pq, ph, ph_pagelist);
345 	} else {
346 		pool_allocator_free(pp, ph->ph_page);
347 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
348 			s = splvm();
349 			pool_put(&phpool, ph);
350 			splx(s);
351 		}
352 	}
353 	pp->pr_npages--;
354 	pp->pr_npagefree++;
355 
356 	pool_update_curpage(pp);
357 }
358 
359 /*
360  * Initialize all the pools listed in the "pools" link set.
361  */
362 void
363 link_pool_init(void)
364 {
365 	__link_set_decl(pools, struct link_pool_init);
366 	struct link_pool_init * const *pi;
367 
368 	__link_set_foreach(pi, pools)
369 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
370 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
371 		    (*pi)->palloc);
372 }
373 
374 /*
375  * Initialize the given pool resource structure.
376  *
377  * We export this routine to allow other kernel parts to declare
378  * static pools that must be initialized before malloc() is available.
379  */
380 void
381 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
382     const char *wchan, struct pool_allocator *palloc)
383 {
384 	int off, slack;
385 	size_t trysize, phsize;
386 	int s;
387 
388 #ifdef POOL_DIAGNOSTIC
389 	/*
390 	 * Always log if POOL_DIAGNOSTIC is defined.
391 	 */
392 	if (pool_logsize != 0)
393 		flags |= PR_LOGGING;
394 #endif
395 
396 #ifdef POOL_SUBPAGE
397 	/*
398 	 * XXX We don't provide a real `nointr' back-end
399 	 * yet; all sub-pages come from a kmem back-end.
400 	 * maybe some day...
401 	 */
402 	if (palloc == NULL) {
403 		extern struct pool_allocator pool_allocator_kmem_subpage;
404 		palloc = &pool_allocator_kmem_subpage;
405 	}
406 	/*
407 	 * We'll assume any user-specified back-end allocator
408 	 * will deal with sub-pages, or simply don't care.
409 	 */
410 #else
411 	if (palloc == NULL)
412 		palloc = &pool_allocator_kmem;
413 #endif /* POOL_SUBPAGE */
414 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
415 		if (palloc->pa_pagesz == 0) {
416 #ifdef POOL_SUBPAGE
417 			if (palloc == &pool_allocator_kmem)
418 				palloc->pa_pagesz = PAGE_SIZE;
419 			else
420 				palloc->pa_pagesz = POOL_SUBPAGE;
421 #else
422 			palloc->pa_pagesz = PAGE_SIZE;
423 #endif /* POOL_SUBPAGE */
424 		}
425 
426 		TAILQ_INIT(&palloc->pa_list);
427 
428 		simple_lock_init(&palloc->pa_slock);
429 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
430 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
431 		palloc->pa_flags |= PA_INITIALIZED;
432 	}
433 
434 	if (align == 0)
435 		align = ALIGN(1);
436 
437 	if (size < sizeof(struct pool_item))
438 		size = sizeof(struct pool_item);
439 
440 	size = roundup(size, align);
441 #ifdef DIAGNOSTIC
442 	if (size > palloc->pa_pagesz)
443 		panic("pool_init: pool item size (%lu) too large",
444 		      (u_long)size);
445 #endif
446 
447 	/*
448 	 * Initialize the pool structure.
449 	 */
450 	LIST_INIT(&pp->pr_emptypages);
451 	LIST_INIT(&pp->pr_fullpages);
452 	LIST_INIT(&pp->pr_partpages);
453 	TAILQ_INIT(&pp->pr_cachelist);
454 	pp->pr_curpage = NULL;
455 	pp->pr_npages = 0;
456 	pp->pr_minitems = 0;
457 	pp->pr_minpages = 0;
458 	pp->pr_maxpages = UINT_MAX;
459 	pp->pr_roflags = flags;
460 	pp->pr_flags = 0;
461 	pp->pr_size = size;
462 	pp->pr_align = align;
463 	pp->pr_wchan = wchan;
464 	pp->pr_alloc = palloc;
465 	pp->pr_nitems = 0;
466 	pp->pr_nout = 0;
467 	pp->pr_hardlimit = UINT_MAX;
468 	pp->pr_hardlimit_warning = NULL;
469 	pp->pr_hardlimit_ratecap.tv_sec = 0;
470 	pp->pr_hardlimit_ratecap.tv_usec = 0;
471 	pp->pr_hardlimit_warning_last.tv_sec = 0;
472 	pp->pr_hardlimit_warning_last.tv_usec = 0;
473 	pp->pr_drain_hook = NULL;
474 	pp->pr_drain_hook_arg = NULL;
475 
476 	/*
477 	 * Decide whether to put the page header off page to avoid
478 	 * wasting too large a part of the page or too big item.
479 	 * Off-page page headers go on a hash table, so we can match
480 	 * a returned item with its header based on the page address.
481 	 * We use 1/16 of the page size and about 8 times of the item
482 	 * size as the threshold (XXX: tune)
483 	 *
484 	 * However, we'll put the header into the page if we can put
485 	 * it without wasting any items.
486 	 *
487 	 * Silently enforce `0 <= ioff < align'.
488 	 */
489 	pp->pr_itemoffset = ioff %= align;
490 	/* See the comment below about reserved bytes. */
491 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
492 	phsize = ALIGN(sizeof(struct pool_item_header));
493 	if (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
494 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size) {
495 		/* Use the end of the page for the page header */
496 		pp->pr_roflags |= PR_PHINPAGE;
497 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
498 	} else {
499 		/* The page header will be taken from our page header pool */
500 		pp->pr_phoffset = 0;
501 		off = palloc->pa_pagesz;
502 		SPLAY_INIT(&pp->pr_phtree);
503 	}
504 
505 	/*
506 	 * Alignment is to take place at `ioff' within the item. This means
507 	 * we must reserve up to `align - 1' bytes on the page to allow
508 	 * appropriate positioning of each item.
509 	 */
510 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
511 	KASSERT(pp->pr_itemsperpage != 0);
512 
513 	/*
514 	 * Use the slack between the chunks and the page header
515 	 * for "cache coloring".
516 	 */
517 	slack = off - pp->pr_itemsperpage * pp->pr_size;
518 	pp->pr_maxcolor = (slack / align) * align;
519 	pp->pr_curcolor = 0;
520 
521 	pp->pr_nget = 0;
522 	pp->pr_nfail = 0;
523 	pp->pr_nput = 0;
524 	pp->pr_npagealloc = 0;
525 	pp->pr_npagefree = 0;
526 	pp->pr_hiwat = 0;
527 	pp->pr_nidle = 0;
528 
529 #ifdef POOL_DIAGNOSTIC
530 	if (flags & PR_LOGGING) {
531 		if (kmem_map == NULL ||
532 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
533 		     M_TEMP, M_NOWAIT)) == NULL)
534 			pp->pr_roflags &= ~PR_LOGGING;
535 		pp->pr_curlogentry = 0;
536 		pp->pr_logsize = pool_logsize;
537 	}
538 #endif
539 
540 	pp->pr_entered_file = NULL;
541 	pp->pr_entered_line = 0;
542 
543 	simple_lock_init(&pp->pr_slock);
544 
545 	/*
546 	 * Initialize private page header pool and cache magazine pool if we
547 	 * haven't done so yet.
548 	 * XXX LOCKING.
549 	 */
550 	if (phpool.pr_size == 0) {
551 #ifdef POOL_SUBPAGE
552 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
553 		    "phpool", &pool_allocator_kmem);
554 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
555 		    PR_RECURSIVE, "psppool", &pool_allocator_kmem);
556 #else
557 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
558 		    0, "phpool", NULL);
559 #endif
560 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
561 		    0, "pcgpool", NULL);
562 	}
563 
564 	/* Insert into the list of all pools. */
565 	simple_lock(&pool_head_slock);
566 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
567 	simple_unlock(&pool_head_slock);
568 
569 	/* Insert this into the list of pools using this allocator. */
570 	s = splvm();
571 	simple_lock(&palloc->pa_slock);
572 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
573 	simple_unlock(&palloc->pa_slock);
574 	splx(s);
575 }
576 
577 /*
578  * De-commision a pool resource.
579  */
580 void
581 pool_destroy(struct pool *pp)
582 {
583 	struct pool_item_header *ph;
584 	struct pool_cache *pc;
585 	int s;
586 
587 	/* Locking order: pool_allocator -> pool */
588 	s = splvm();
589 	simple_lock(&pp->pr_alloc->pa_slock);
590 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
591 	simple_unlock(&pp->pr_alloc->pa_slock);
592 	splx(s);
593 
594 	/* Destroy all caches for this pool. */
595 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
596 		pool_cache_destroy(pc);
597 
598 #ifdef DIAGNOSTIC
599 	if (pp->pr_nout != 0) {
600 		pr_printlog(pp, NULL, printf);
601 		panic("pool_destroy: pool busy: still out: %u",
602 		    pp->pr_nout);
603 	}
604 #endif
605 
606 	/* Remove all pages */
607 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
608 		pr_rmpage(pp, ph, NULL);
609 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
610 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
611 
612 	/* Remove from global pool list */
613 	simple_lock(&pool_head_slock);
614 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
615 	if (drainpp == pp) {
616 		drainpp = NULL;
617 	}
618 	simple_unlock(&pool_head_slock);
619 
620 #ifdef POOL_DIAGNOSTIC
621 	if ((pp->pr_roflags & PR_LOGGING) != 0)
622 		free(pp->pr_log, M_TEMP);
623 #endif
624 }
625 
626 void
627 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
628 {
629 
630 	/* XXX no locking -- must be used just after pool_init() */
631 #ifdef DIAGNOSTIC
632 	if (pp->pr_drain_hook != NULL)
633 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
634 #endif
635 	pp->pr_drain_hook = fn;
636 	pp->pr_drain_hook_arg = arg;
637 }
638 
639 static struct pool_item_header *
640 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
641 {
642 	struct pool_item_header *ph;
643 	int s;
644 
645 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
646 
647 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
648 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
649 	else {
650 		s = splvm();
651 		ph = pool_get(&phpool, flags);
652 		splx(s);
653 	}
654 
655 	return (ph);
656 }
657 
658 /*
659  * Grab an item from the pool; must be called at appropriate spl level
660  */
661 void *
662 #ifdef POOL_DIAGNOSTIC
663 _pool_get(struct pool *pp, int flags, const char *file, long line)
664 #else
665 pool_get(struct pool *pp, int flags)
666 #endif
667 {
668 	struct pool_item *pi;
669 	struct pool_item_header *ph;
670 	void *v;
671 
672 #ifdef DIAGNOSTIC
673 	if (__predict_false(pp->pr_itemsperpage == 0))
674 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
675 		    "pool not initialized?", pp);
676 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
677 			    (flags & PR_WAITOK) != 0))
678 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
679 
680 #ifdef LOCKDEBUG
681 	if (flags & PR_WAITOK)
682 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
683 #endif
684 #endif /* DIAGNOSTIC */
685 
686 	simple_lock(&pp->pr_slock);
687 	pr_enter(pp, file, line);
688 
689  startover:
690 	/*
691 	 * Check to see if we've reached the hard limit.  If we have,
692 	 * and we can wait, then wait until an item has been returned to
693 	 * the pool.
694 	 */
695 #ifdef DIAGNOSTIC
696 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
697 		pr_leave(pp);
698 		simple_unlock(&pp->pr_slock);
699 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
700 	}
701 #endif
702 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
703 		if (pp->pr_drain_hook != NULL) {
704 			/*
705 			 * Since the drain hook is going to free things
706 			 * back to the pool, unlock, call the hook, re-lock,
707 			 * and check the hardlimit condition again.
708 			 */
709 			pr_leave(pp);
710 			simple_unlock(&pp->pr_slock);
711 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
712 			simple_lock(&pp->pr_slock);
713 			pr_enter(pp, file, line);
714 			if (pp->pr_nout < pp->pr_hardlimit)
715 				goto startover;
716 		}
717 
718 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
719 			/*
720 			 * XXX: A warning isn't logged in this case.  Should
721 			 * it be?
722 			 */
723 			pp->pr_flags |= PR_WANTED;
724 			pr_leave(pp);
725 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
726 			pr_enter(pp, file, line);
727 			goto startover;
728 		}
729 
730 		/*
731 		 * Log a message that the hard limit has been hit.
732 		 */
733 		if (pp->pr_hardlimit_warning != NULL &&
734 		    ratecheck(&pp->pr_hardlimit_warning_last,
735 			      &pp->pr_hardlimit_ratecap))
736 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
737 
738 		pp->pr_nfail++;
739 
740 		pr_leave(pp);
741 		simple_unlock(&pp->pr_slock);
742 		return (NULL);
743 	}
744 
745 	/*
746 	 * The convention we use is that if `curpage' is not NULL, then
747 	 * it points at a non-empty bucket. In particular, `curpage'
748 	 * never points at a page header which has PR_PHINPAGE set and
749 	 * has no items in its bucket.
750 	 */
751 	if ((ph = pp->pr_curpage) == NULL) {
752 #ifdef DIAGNOSTIC
753 		if (pp->pr_nitems != 0) {
754 			simple_unlock(&pp->pr_slock);
755 			printf("pool_get: %s: curpage NULL, nitems %u\n",
756 			    pp->pr_wchan, pp->pr_nitems);
757 			panic("pool_get: nitems inconsistent");
758 		}
759 #endif
760 
761 		/*
762 		 * Call the back-end page allocator for more memory.
763 		 * Release the pool lock, as the back-end page allocator
764 		 * may block.
765 		 */
766 		pr_leave(pp);
767 		simple_unlock(&pp->pr_slock);
768 		v = pool_allocator_alloc(pp, flags);
769 		if (__predict_true(v != NULL))
770 			ph = pool_alloc_item_header(pp, v, flags);
771 
772 		if (__predict_false(v == NULL || ph == NULL)) {
773 			if (v != NULL)
774 				pool_allocator_free(pp, v);
775 
776 			simple_lock(&pp->pr_slock);
777 			pr_enter(pp, file, line);
778 
779 			/*
780 			 * We were unable to allocate a page or item
781 			 * header, but we released the lock during
782 			 * allocation, so perhaps items were freed
783 			 * back to the pool.  Check for this case.
784 			 */
785 			if (pp->pr_curpage != NULL)
786 				goto startover;
787 
788 			if ((flags & PR_WAITOK) == 0) {
789 				pp->pr_nfail++;
790 				pr_leave(pp);
791 				simple_unlock(&pp->pr_slock);
792 				return (NULL);
793 			}
794 
795 			/*
796 			 * Wait for items to be returned to this pool.
797 			 *
798 			 * XXX: maybe we should wake up once a second and
799 			 * try again?
800 			 */
801 			pp->pr_flags |= PR_WANTED;
802 			/* PA_WANTED is already set on the allocator. */
803 			pr_leave(pp);
804 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
805 			pr_enter(pp, file, line);
806 			goto startover;
807 		}
808 
809 		/* We have more memory; add it to the pool */
810 		simple_lock(&pp->pr_slock);
811 		pr_enter(pp, file, line);
812 		pool_prime_page(pp, v, ph);
813 		pp->pr_npagealloc++;
814 
815 		/* Start the allocation process over. */
816 		goto startover;
817 	}
818 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
819 		pr_leave(pp);
820 		simple_unlock(&pp->pr_slock);
821 		panic("pool_get: %s: page empty", pp->pr_wchan);
822 	}
823 #ifdef DIAGNOSTIC
824 	if (__predict_false(pp->pr_nitems == 0)) {
825 		pr_leave(pp);
826 		simple_unlock(&pp->pr_slock);
827 		printf("pool_get: %s: items on itemlist, nitems %u\n",
828 		    pp->pr_wchan, pp->pr_nitems);
829 		panic("pool_get: nitems inconsistent");
830 	}
831 #endif
832 
833 #ifdef POOL_DIAGNOSTIC
834 	pr_log(pp, v, PRLOG_GET, file, line);
835 #endif
836 
837 #ifdef DIAGNOSTIC
838 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
839 		pr_printlog(pp, pi, printf);
840 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
841 		       " item addr %p\n",
842 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
843 	}
844 #endif
845 
846 	/*
847 	 * Remove from item list.
848 	 */
849 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
850 	pp->pr_nitems--;
851 	pp->pr_nout++;
852 	if (ph->ph_nmissing == 0) {
853 #ifdef DIAGNOSTIC
854 		if (__predict_false(pp->pr_nidle == 0))
855 			panic("pool_get: nidle inconsistent");
856 #endif
857 		pp->pr_nidle--;
858 
859 		/*
860 		 * This page was previously empty.  Move it to the list of
861 		 * partially-full pages.  This page is already curpage.
862 		 */
863 		LIST_REMOVE(ph, ph_pagelist);
864 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
865 	}
866 	ph->ph_nmissing++;
867 	if (TAILQ_EMPTY(&ph->ph_itemlist)) {
868 #ifdef DIAGNOSTIC
869 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
870 			pr_leave(pp);
871 			simple_unlock(&pp->pr_slock);
872 			panic("pool_get: %s: nmissing inconsistent",
873 			    pp->pr_wchan);
874 		}
875 #endif
876 		/*
877 		 * This page is now full.  Move it to the full list
878 		 * and select a new current page.
879 		 */
880 		LIST_REMOVE(ph, ph_pagelist);
881 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
882 		pool_update_curpage(pp);
883 	}
884 
885 	pp->pr_nget++;
886 
887 	/*
888 	 * If we have a low water mark and we are now below that low
889 	 * water mark, add more items to the pool.
890 	 */
891 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
892 		/*
893 		 * XXX: Should we log a warning?  Should we set up a timeout
894 		 * to try again in a second or so?  The latter could break
895 		 * a caller's assumptions about interrupt protection, etc.
896 		 */
897 	}
898 
899 	pr_leave(pp);
900 	simple_unlock(&pp->pr_slock);
901 	return (v);
902 }
903 
904 /*
905  * Internal version of pool_put().  Pool is already locked/entered.
906  */
907 static void
908 pool_do_put(struct pool *pp, void *v)
909 {
910 	struct pool_item *pi = v;
911 	struct pool_item_header *ph;
912 	caddr_t page;
913 	int s;
914 
915 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
916 
917 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
918 
919 #ifdef DIAGNOSTIC
920 	if (__predict_false(pp->pr_nout == 0)) {
921 		printf("pool %s: putting with none out\n",
922 		    pp->pr_wchan);
923 		panic("pool_put");
924 	}
925 #endif
926 
927 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
928 		pr_printlog(pp, NULL, printf);
929 		panic("pool_put: %s: page header missing", pp->pr_wchan);
930 	}
931 
932 #ifdef LOCKDEBUG
933 	/*
934 	 * Check if we're freeing a locked simple lock.
935 	 */
936 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
937 #endif
938 
939 	/*
940 	 * Return to item list.
941 	 */
942 #ifdef DIAGNOSTIC
943 	pi->pi_magic = PI_MAGIC;
944 #endif
945 #ifdef DEBUG
946 	{
947 		int i, *ip = v;
948 
949 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
950 			*ip++ = PI_MAGIC;
951 		}
952 	}
953 #endif
954 
955 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
956 	KDASSERT(ph->ph_nmissing != 0);
957 	ph->ph_nmissing--;
958 	pp->pr_nput++;
959 	pp->pr_nitems++;
960 	pp->pr_nout--;
961 
962 	/* Cancel "pool empty" condition if it exists */
963 	if (pp->pr_curpage == NULL)
964 		pp->pr_curpage = ph;
965 
966 	if (pp->pr_flags & PR_WANTED) {
967 		pp->pr_flags &= ~PR_WANTED;
968 		if (ph->ph_nmissing == 0)
969 			pp->pr_nidle++;
970 		wakeup((caddr_t)pp);
971 		return;
972 	}
973 
974 	/*
975 	 * If this page is now empty, do one of two things:
976 	 *
977 	 *	(1) If we have more pages than the page high water mark,
978 	 *	    free the page back to the system.  ONLY CONSIDER
979 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
980 	 *	    CLAIM.
981 	 *
982 	 *	(2) Otherwise, move the page to the empty page list.
983 	 *
984 	 * Either way, select a new current page (so we use a partially-full
985 	 * page if one is available).
986 	 */
987 	if (ph->ph_nmissing == 0) {
988 		pp->pr_nidle++;
989 		if (pp->pr_npages > pp->pr_minpages &&
990 		    (pp->pr_npages > pp->pr_maxpages ||
991 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
992 			simple_unlock(&pp->pr_slock);
993 			pr_rmpage(pp, ph, NULL);
994 			simple_lock(&pp->pr_slock);
995 		} else {
996 			LIST_REMOVE(ph, ph_pagelist);
997 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
998 
999 			/*
1000 			 * Update the timestamp on the page.  A page must
1001 			 * be idle for some period of time before it can
1002 			 * be reclaimed by the pagedaemon.  This minimizes
1003 			 * ping-pong'ing for memory.
1004 			 */
1005 			s = splclock();
1006 			ph->ph_time = mono_time;
1007 			splx(s);
1008 		}
1009 		pool_update_curpage(pp);
1010 	}
1011 
1012 	/*
1013 	 * If the page was previously completely full, move it to the
1014 	 * partially-full list and make it the current page.  The next
1015 	 * allocation will get the item from this page, instead of
1016 	 * further fragmenting the pool.
1017 	 */
1018 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1019 		LIST_REMOVE(ph, ph_pagelist);
1020 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1021 		pp->pr_curpage = ph;
1022 	}
1023 }
1024 
1025 /*
1026  * Return resource to the pool; must be called at appropriate spl level
1027  */
1028 #ifdef POOL_DIAGNOSTIC
1029 void
1030 _pool_put(struct pool *pp, void *v, const char *file, long line)
1031 {
1032 
1033 	simple_lock(&pp->pr_slock);
1034 	pr_enter(pp, file, line);
1035 
1036 	pr_log(pp, v, PRLOG_PUT, file, line);
1037 
1038 	pool_do_put(pp, v);
1039 
1040 	pr_leave(pp);
1041 	simple_unlock(&pp->pr_slock);
1042 }
1043 #undef pool_put
1044 #endif /* POOL_DIAGNOSTIC */
1045 
1046 void
1047 pool_put(struct pool *pp, void *v)
1048 {
1049 
1050 	simple_lock(&pp->pr_slock);
1051 
1052 	pool_do_put(pp, v);
1053 
1054 	simple_unlock(&pp->pr_slock);
1055 }
1056 
1057 #ifdef POOL_DIAGNOSTIC
1058 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1059 #endif
1060 
1061 /*
1062  * Add N items to the pool.
1063  */
1064 int
1065 pool_prime(struct pool *pp, int n)
1066 {
1067 	struct pool_item_header *ph = NULL;
1068 	caddr_t cp;
1069 	int newpages;
1070 
1071 	simple_lock(&pp->pr_slock);
1072 
1073 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1074 
1075 	while (newpages-- > 0) {
1076 		simple_unlock(&pp->pr_slock);
1077 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1078 		if (__predict_true(cp != NULL))
1079 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1080 
1081 		if (__predict_false(cp == NULL || ph == NULL)) {
1082 			if (cp != NULL)
1083 				pool_allocator_free(pp, cp);
1084 			simple_lock(&pp->pr_slock);
1085 			break;
1086 		}
1087 
1088 		simple_lock(&pp->pr_slock);
1089 		pool_prime_page(pp, cp, ph);
1090 		pp->pr_npagealloc++;
1091 		pp->pr_minpages++;
1092 	}
1093 
1094 	if (pp->pr_minpages >= pp->pr_maxpages)
1095 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1096 
1097 	simple_unlock(&pp->pr_slock);
1098 	return (0);
1099 }
1100 
1101 /*
1102  * Add a page worth of items to the pool.
1103  *
1104  * Note, we must be called with the pool descriptor LOCKED.
1105  */
1106 static void
1107 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1108 {
1109 	struct pool_item *pi;
1110 	caddr_t cp = storage;
1111 	unsigned int align = pp->pr_align;
1112 	unsigned int ioff = pp->pr_itemoffset;
1113 	int n;
1114 	int s;
1115 
1116 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1117 
1118 #ifdef DIAGNOSTIC
1119 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1120 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1121 #endif
1122 
1123 	/*
1124 	 * Insert page header.
1125 	 */
1126 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1127 	TAILQ_INIT(&ph->ph_itemlist);
1128 	ph->ph_page = storage;
1129 	ph->ph_nmissing = 0;
1130 	s = splclock();
1131 	ph->ph_time = mono_time;
1132 	splx(s);
1133 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1134 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1135 
1136 	pp->pr_nidle++;
1137 
1138 	/*
1139 	 * Color this page.
1140 	 */
1141 	cp = (caddr_t)(cp + pp->pr_curcolor);
1142 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1143 		pp->pr_curcolor = 0;
1144 
1145 	/*
1146 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1147 	 */
1148 	if (ioff != 0)
1149 		cp = (caddr_t)(cp + (align - ioff));
1150 
1151 	/*
1152 	 * Insert remaining chunks on the bucket list.
1153 	 */
1154 	n = pp->pr_itemsperpage;
1155 	pp->pr_nitems += n;
1156 
1157 	while (n--) {
1158 		pi = (struct pool_item *)cp;
1159 
1160 		KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1161 
1162 		/* Insert on page list */
1163 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1164 #ifdef DIAGNOSTIC
1165 		pi->pi_magic = PI_MAGIC;
1166 #endif
1167 		cp = (caddr_t)(cp + pp->pr_size);
1168 	}
1169 
1170 	/*
1171 	 * If the pool was depleted, point at the new page.
1172 	 */
1173 	if (pp->pr_curpage == NULL)
1174 		pp->pr_curpage = ph;
1175 
1176 	if (++pp->pr_npages > pp->pr_hiwat)
1177 		pp->pr_hiwat = pp->pr_npages;
1178 }
1179 
1180 /*
1181  * Used by pool_get() when nitems drops below the low water mark.  This
1182  * is used to catch up pr_nitems with the low water mark.
1183  *
1184  * Note 1, we never wait for memory here, we let the caller decide what to do.
1185  *
1186  * Note 2, we must be called with the pool already locked, and we return
1187  * with it locked.
1188  */
1189 static int
1190 pool_catchup(struct pool *pp)
1191 {
1192 	struct pool_item_header *ph = NULL;
1193 	caddr_t cp;
1194 	int error = 0;
1195 
1196 	while (POOL_NEEDS_CATCHUP(pp)) {
1197 		/*
1198 		 * Call the page back-end allocator for more memory.
1199 		 *
1200 		 * XXX: We never wait, so should we bother unlocking
1201 		 * the pool descriptor?
1202 		 */
1203 		simple_unlock(&pp->pr_slock);
1204 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1205 		if (__predict_true(cp != NULL))
1206 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1207 		if (__predict_false(cp == NULL || ph == NULL)) {
1208 			if (cp != NULL)
1209 				pool_allocator_free(pp, cp);
1210 			error = ENOMEM;
1211 			simple_lock(&pp->pr_slock);
1212 			break;
1213 		}
1214 		simple_lock(&pp->pr_slock);
1215 		pool_prime_page(pp, cp, ph);
1216 		pp->pr_npagealloc++;
1217 	}
1218 
1219 	return (error);
1220 }
1221 
1222 static void
1223 pool_update_curpage(struct pool *pp)
1224 {
1225 
1226 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1227 	if (pp->pr_curpage == NULL) {
1228 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1229 	}
1230 }
1231 
1232 void
1233 pool_setlowat(struct pool *pp, int n)
1234 {
1235 
1236 	simple_lock(&pp->pr_slock);
1237 
1238 	pp->pr_minitems = n;
1239 	pp->pr_minpages = (n == 0)
1240 		? 0
1241 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1242 
1243 	/* Make sure we're caught up with the newly-set low water mark. */
1244 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1245 		/*
1246 		 * XXX: Should we log a warning?  Should we set up a timeout
1247 		 * to try again in a second or so?  The latter could break
1248 		 * a caller's assumptions about interrupt protection, etc.
1249 		 */
1250 	}
1251 
1252 	simple_unlock(&pp->pr_slock);
1253 }
1254 
1255 void
1256 pool_sethiwat(struct pool *pp, int n)
1257 {
1258 
1259 	simple_lock(&pp->pr_slock);
1260 
1261 	pp->pr_maxpages = (n == 0)
1262 		? 0
1263 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1264 
1265 	simple_unlock(&pp->pr_slock);
1266 }
1267 
1268 void
1269 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1270 {
1271 
1272 	simple_lock(&pp->pr_slock);
1273 
1274 	pp->pr_hardlimit = n;
1275 	pp->pr_hardlimit_warning = warnmess;
1276 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1277 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1278 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1279 
1280 	/*
1281 	 * In-line version of pool_sethiwat(), because we don't want to
1282 	 * release the lock.
1283 	 */
1284 	pp->pr_maxpages = (n == 0)
1285 		? 0
1286 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1287 
1288 	simple_unlock(&pp->pr_slock);
1289 }
1290 
1291 /*
1292  * Release all complete pages that have not been used recently.
1293  */
1294 int
1295 #ifdef POOL_DIAGNOSTIC
1296 _pool_reclaim(struct pool *pp, const char *file, long line)
1297 #else
1298 pool_reclaim(struct pool *pp)
1299 #endif
1300 {
1301 	struct pool_item_header *ph, *phnext;
1302 	struct pool_cache *pc;
1303 	struct timeval curtime;
1304 	struct pool_pagelist pq;
1305 	struct timeval diff;
1306 	int s;
1307 
1308 	if (pp->pr_drain_hook != NULL) {
1309 		/*
1310 		 * The drain hook must be called with the pool unlocked.
1311 		 */
1312 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1313 	}
1314 
1315 	if (simple_lock_try(&pp->pr_slock) == 0)
1316 		return (0);
1317 	pr_enter(pp, file, line);
1318 
1319 	LIST_INIT(&pq);
1320 
1321 	/*
1322 	 * Reclaim items from the pool's caches.
1323 	 */
1324 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1325 		pool_cache_reclaim(pc);
1326 
1327 	s = splclock();
1328 	curtime = mono_time;
1329 	splx(s);
1330 
1331 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1332 		phnext = LIST_NEXT(ph, ph_pagelist);
1333 
1334 		/* Check our minimum page claim */
1335 		if (pp->pr_npages <= pp->pr_minpages)
1336 			break;
1337 
1338 		KASSERT(ph->ph_nmissing == 0);
1339 		timersub(&curtime, &ph->ph_time, &diff);
1340 		if (diff.tv_sec < pool_inactive_time)
1341 			continue;
1342 
1343 		/*
1344 		 * If freeing this page would put us below
1345 		 * the low water mark, stop now.
1346 		 */
1347 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1348 		    pp->pr_minitems)
1349 			break;
1350 
1351 		pr_rmpage(pp, ph, &pq);
1352 	}
1353 
1354 	pr_leave(pp);
1355 	simple_unlock(&pp->pr_slock);
1356 	if (LIST_EMPTY(&pq))
1357 		return (0);
1358 
1359 	while ((ph = LIST_FIRST(&pq)) != NULL) {
1360 		LIST_REMOVE(ph, ph_pagelist);
1361 		pool_allocator_free(pp, ph->ph_page);
1362 		if (pp->pr_roflags & PR_PHINPAGE) {
1363 			continue;
1364 		}
1365 		s = splvm();
1366 		pool_put(&phpool, ph);
1367 		splx(s);
1368 	}
1369 
1370 	return (1);
1371 }
1372 
1373 /*
1374  * Drain pools, one at a time.
1375  *
1376  * Note, we must never be called from an interrupt context.
1377  */
1378 void
1379 pool_drain(void *arg)
1380 {
1381 	struct pool *pp;
1382 	int s;
1383 
1384 	pp = NULL;
1385 	s = splvm();
1386 	simple_lock(&pool_head_slock);
1387 	if (drainpp == NULL) {
1388 		drainpp = TAILQ_FIRST(&pool_head);
1389 	}
1390 	if (drainpp) {
1391 		pp = drainpp;
1392 		drainpp = TAILQ_NEXT(pp, pr_poollist);
1393 	}
1394 	simple_unlock(&pool_head_slock);
1395 	pool_reclaim(pp);
1396 	splx(s);
1397 }
1398 
1399 /*
1400  * Diagnostic helpers.
1401  */
1402 void
1403 pool_print(struct pool *pp, const char *modif)
1404 {
1405 	int s;
1406 
1407 	s = splvm();
1408 	if (simple_lock_try(&pp->pr_slock) == 0) {
1409 		printf("pool %s is locked; try again later\n",
1410 		    pp->pr_wchan);
1411 		splx(s);
1412 		return;
1413 	}
1414 	pool_print1(pp, modif, printf);
1415 	simple_unlock(&pp->pr_slock);
1416 	splx(s);
1417 }
1418 
1419 void
1420 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1421 {
1422 	int didlock = 0;
1423 
1424 	if (pp == NULL) {
1425 		(*pr)("Must specify a pool to print.\n");
1426 		return;
1427 	}
1428 
1429 	/*
1430 	 * Called from DDB; interrupts should be blocked, and all
1431 	 * other processors should be paused.  We can skip locking
1432 	 * the pool in this case.
1433 	 *
1434 	 * We do a simple_lock_try() just to print the lock
1435 	 * status, however.
1436 	 */
1437 
1438 	if (simple_lock_try(&pp->pr_slock) == 0)
1439 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1440 	else
1441 		didlock = 1;
1442 
1443 	pool_print1(pp, modif, pr);
1444 
1445 	if (didlock)
1446 		simple_unlock(&pp->pr_slock);
1447 }
1448 
1449 static void
1450 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
1451 {
1452 	struct pool_item_header *ph;
1453 #ifdef DIAGNOSTIC
1454 	struct pool_item *pi;
1455 #endif
1456 
1457 	LIST_FOREACH(ph, pl, ph_pagelist) {
1458 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1459 		    ph->ph_page, ph->ph_nmissing,
1460 		    (u_long)ph->ph_time.tv_sec,
1461 		    (u_long)ph->ph_time.tv_usec);
1462 #ifdef DIAGNOSTIC
1463 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1464 			if (pi->pi_magic != PI_MAGIC) {
1465 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1466 				    pi, pi->pi_magic);
1467 			}
1468 		}
1469 #endif
1470 	}
1471 }
1472 
1473 static void
1474 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1475 {
1476 	struct pool_item_header *ph;
1477 	struct pool_cache *pc;
1478 	struct pool_cache_group *pcg;
1479 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1480 	char c;
1481 
1482 	while ((c = *modif++) != '\0') {
1483 		if (c == 'l')
1484 			print_log = 1;
1485 		if (c == 'p')
1486 			print_pagelist = 1;
1487 		if (c == 'c')
1488 			print_cache = 1;
1489 	}
1490 
1491 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1492 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1493 	    pp->pr_roflags);
1494 	(*pr)("\talloc %p\n", pp->pr_alloc);
1495 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1496 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1497 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1498 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1499 
1500 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1501 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1502 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1503 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1504 
1505 	if (print_pagelist == 0)
1506 		goto skip_pagelist;
1507 
1508 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1509 		(*pr)("\n\tempty page list:\n");
1510 	pool_print_pagelist(&pp->pr_emptypages, pr);
1511 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1512 		(*pr)("\n\tfull page list:\n");
1513 	pool_print_pagelist(&pp->pr_fullpages, pr);
1514 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1515 		(*pr)("\n\tpartial-page list:\n");
1516 	pool_print_pagelist(&pp->pr_partpages, pr);
1517 
1518 	if (pp->pr_curpage == NULL)
1519 		(*pr)("\tno current page\n");
1520 	else
1521 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1522 
1523  skip_pagelist:
1524 	if (print_log == 0)
1525 		goto skip_log;
1526 
1527 	(*pr)("\n");
1528 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1529 		(*pr)("\tno log\n");
1530 	else
1531 		pr_printlog(pp, NULL, pr);
1532 
1533  skip_log:
1534 	if (print_cache == 0)
1535 		goto skip_cache;
1536 
1537 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1538 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1539 		    pc->pc_allocfrom, pc->pc_freeto);
1540 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1541 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1542 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1543 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1544 			for (i = 0; i < PCG_NOBJECTS; i++) {
1545 				if (pcg->pcg_objects[i].pcgo_pa !=
1546 				    POOL_PADDR_INVALID) {
1547 					(*pr)("\t\t\t%p, 0x%llx\n",
1548 					    pcg->pcg_objects[i].pcgo_va,
1549 					    (unsigned long long)
1550 					    pcg->pcg_objects[i].pcgo_pa);
1551 				} else {
1552 					(*pr)("\t\t\t%p\n",
1553 					    pcg->pcg_objects[i].pcgo_va);
1554 				}
1555 			}
1556 		}
1557 	}
1558 
1559  skip_cache:
1560 	pr_enter_check(pp, pr);
1561 }
1562 
1563 static int
1564 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1565 {
1566 	struct pool_item *pi;
1567 	caddr_t page;
1568 	int n;
1569 
1570 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1571 	if (page != ph->ph_page &&
1572 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1573 		if (label != NULL)
1574 			printf("%s: ", label);
1575 		printf("pool(%p:%s): page inconsistency: page %p;"
1576 		       " at page head addr %p (p %p)\n", pp,
1577 			pp->pr_wchan, ph->ph_page,
1578 			ph, page);
1579 		return 1;
1580 	}
1581 
1582 	for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1583 	     pi != NULL;
1584 	     pi = TAILQ_NEXT(pi,pi_list), n++) {
1585 
1586 #ifdef DIAGNOSTIC
1587 		if (pi->pi_magic != PI_MAGIC) {
1588 			if (label != NULL)
1589 				printf("%s: ", label);
1590 			printf("pool(%s): free list modified: magic=%x;"
1591 			       " page %p; item ordinal %d;"
1592 			       " addr %p (p %p)\n",
1593 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1594 				n, pi, page);
1595 			panic("pool");
1596 		}
1597 #endif
1598 		page =
1599 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1600 		if (page == ph->ph_page)
1601 			continue;
1602 
1603 		if (label != NULL)
1604 			printf("%s: ", label);
1605 		printf("pool(%p:%s): page inconsistency: page %p;"
1606 		       " item ordinal %d; addr %p (p %p)\n", pp,
1607 			pp->pr_wchan, ph->ph_page,
1608 			n, pi, page);
1609 		return 1;
1610 	}
1611 	return 0;
1612 }
1613 
1614 
1615 int
1616 pool_chk(struct pool *pp, const char *label)
1617 {
1618 	struct pool_item_header *ph;
1619 	int r = 0;
1620 
1621 	simple_lock(&pp->pr_slock);
1622 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1623 		r = pool_chk_page(pp, label, ph);
1624 		if (r) {
1625 			goto out;
1626 		}
1627 	}
1628 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1629 		r = pool_chk_page(pp, label, ph);
1630 		if (r) {
1631 			goto out;
1632 		}
1633 	}
1634 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1635 		r = pool_chk_page(pp, label, ph);
1636 		if (r) {
1637 			goto out;
1638 		}
1639 	}
1640 
1641 out:
1642 	simple_unlock(&pp->pr_slock);
1643 	return (r);
1644 }
1645 
1646 /*
1647  * pool_cache_init:
1648  *
1649  *	Initialize a pool cache.
1650  *
1651  *	NOTE: If the pool must be protected from interrupts, we expect
1652  *	to be called at the appropriate interrupt priority level.
1653  */
1654 void
1655 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1656     int (*ctor)(void *, void *, int),
1657     void (*dtor)(void *, void *),
1658     void *arg)
1659 {
1660 
1661 	TAILQ_INIT(&pc->pc_grouplist);
1662 	simple_lock_init(&pc->pc_slock);
1663 
1664 	pc->pc_allocfrom = NULL;
1665 	pc->pc_freeto = NULL;
1666 	pc->pc_pool = pp;
1667 
1668 	pc->pc_ctor = ctor;
1669 	pc->pc_dtor = dtor;
1670 	pc->pc_arg  = arg;
1671 
1672 	pc->pc_hits   = 0;
1673 	pc->pc_misses = 0;
1674 
1675 	pc->pc_ngroups = 0;
1676 
1677 	pc->pc_nitems = 0;
1678 
1679 	simple_lock(&pp->pr_slock);
1680 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1681 	simple_unlock(&pp->pr_slock);
1682 }
1683 
1684 /*
1685  * pool_cache_destroy:
1686  *
1687  *	Destroy a pool cache.
1688  */
1689 void
1690 pool_cache_destroy(struct pool_cache *pc)
1691 {
1692 	struct pool *pp = pc->pc_pool;
1693 
1694 	/* First, invalidate the entire cache. */
1695 	pool_cache_invalidate(pc);
1696 
1697 	/* ...and remove it from the pool's cache list. */
1698 	simple_lock(&pp->pr_slock);
1699 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1700 	simple_unlock(&pp->pr_slock);
1701 }
1702 
1703 static __inline void *
1704 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1705 {
1706 	void *object;
1707 	u_int idx;
1708 
1709 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1710 	KASSERT(pcg->pcg_avail != 0);
1711 	idx = --pcg->pcg_avail;
1712 
1713 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1714 	object = pcg->pcg_objects[idx].pcgo_va;
1715 	if (pap != NULL)
1716 		*pap = pcg->pcg_objects[idx].pcgo_pa;
1717 	pcg->pcg_objects[idx].pcgo_va = NULL;
1718 
1719 	return (object);
1720 }
1721 
1722 static __inline void
1723 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1724 {
1725 	u_int idx;
1726 
1727 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1728 	idx = pcg->pcg_avail++;
1729 
1730 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1731 	pcg->pcg_objects[idx].pcgo_va = object;
1732 	pcg->pcg_objects[idx].pcgo_pa = pa;
1733 }
1734 
1735 /*
1736  * pool_cache_get{,_paddr}:
1737  *
1738  *	Get an object from a pool cache (optionally returning
1739  *	the physical address of the object).
1740  */
1741 void *
1742 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1743 {
1744 	struct pool_cache_group *pcg;
1745 	void *object;
1746 
1747 #ifdef LOCKDEBUG
1748 	if (flags & PR_WAITOK)
1749 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1750 #endif
1751 
1752 	simple_lock(&pc->pc_slock);
1753 
1754 	if ((pcg = pc->pc_allocfrom) == NULL) {
1755 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1756 			if (pcg->pcg_avail != 0) {
1757 				pc->pc_allocfrom = pcg;
1758 				goto have_group;
1759 			}
1760 		}
1761 
1762 		/*
1763 		 * No groups with any available objects.  Allocate
1764 		 * a new object, construct it, and return it to
1765 		 * the caller.  We will allocate a group, if necessary,
1766 		 * when the object is freed back to the cache.
1767 		 */
1768 		pc->pc_misses++;
1769 		simple_unlock(&pc->pc_slock);
1770 		object = pool_get(pc->pc_pool, flags);
1771 		if (object != NULL && pc->pc_ctor != NULL) {
1772 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1773 				pool_put(pc->pc_pool, object);
1774 				return (NULL);
1775 			}
1776 		}
1777 		if (object != NULL && pap != NULL) {
1778 #ifdef POOL_VTOPHYS
1779 			*pap = POOL_VTOPHYS(object);
1780 #else
1781 			*pap = POOL_PADDR_INVALID;
1782 #endif
1783 		}
1784 		return (object);
1785 	}
1786 
1787  have_group:
1788 	pc->pc_hits++;
1789 	pc->pc_nitems--;
1790 	object = pcg_get(pcg, pap);
1791 
1792 	if (pcg->pcg_avail == 0)
1793 		pc->pc_allocfrom = NULL;
1794 
1795 	simple_unlock(&pc->pc_slock);
1796 
1797 	return (object);
1798 }
1799 
1800 /*
1801  * pool_cache_put{,_paddr}:
1802  *
1803  *	Put an object back to the pool cache (optionally caching the
1804  *	physical address of the object).
1805  */
1806 void
1807 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1808 {
1809 	struct pool_cache_group *pcg;
1810 	int s;
1811 
1812 	simple_lock(&pc->pc_slock);
1813 
1814 	if ((pcg = pc->pc_freeto) == NULL) {
1815 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1816 			if (pcg->pcg_avail != PCG_NOBJECTS) {
1817 				pc->pc_freeto = pcg;
1818 				goto have_group;
1819 			}
1820 		}
1821 
1822 		/*
1823 		 * No empty groups to free the object to.  Attempt to
1824 		 * allocate one.
1825 		 */
1826 		simple_unlock(&pc->pc_slock);
1827 		s = splvm();
1828 		pcg = pool_get(&pcgpool, PR_NOWAIT);
1829 		splx(s);
1830 		if (pcg != NULL) {
1831 			memset(pcg, 0, sizeof(*pcg));
1832 			simple_lock(&pc->pc_slock);
1833 			pc->pc_ngroups++;
1834 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1835 			if (pc->pc_freeto == NULL)
1836 				pc->pc_freeto = pcg;
1837 			goto have_group;
1838 		}
1839 
1840 		/*
1841 		 * Unable to allocate a cache group; destruct the object
1842 		 * and free it back to the pool.
1843 		 */
1844 		pool_cache_destruct_object(pc, object);
1845 		return;
1846 	}
1847 
1848  have_group:
1849 	pc->pc_nitems++;
1850 	pcg_put(pcg, object, pa);
1851 
1852 	if (pcg->pcg_avail == PCG_NOBJECTS)
1853 		pc->pc_freeto = NULL;
1854 
1855 	simple_unlock(&pc->pc_slock);
1856 }
1857 
1858 /*
1859  * pool_cache_destruct_object:
1860  *
1861  *	Force destruction of an object and its release back into
1862  *	the pool.
1863  */
1864 void
1865 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1866 {
1867 
1868 	if (pc->pc_dtor != NULL)
1869 		(*pc->pc_dtor)(pc->pc_arg, object);
1870 	pool_put(pc->pc_pool, object);
1871 }
1872 
1873 /*
1874  * pool_cache_do_invalidate:
1875  *
1876  *	This internal function implements pool_cache_invalidate() and
1877  *	pool_cache_reclaim().
1878  */
1879 static void
1880 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1881     void (*putit)(struct pool *, void *))
1882 {
1883 	struct pool_cache_group *pcg, *npcg;
1884 	void *object;
1885 	int s;
1886 
1887 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1888 	     pcg = npcg) {
1889 		npcg = TAILQ_NEXT(pcg, pcg_list);
1890 		while (pcg->pcg_avail != 0) {
1891 			pc->pc_nitems--;
1892 			object = pcg_get(pcg, NULL);
1893 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1894 				pc->pc_allocfrom = NULL;
1895 			if (pc->pc_dtor != NULL)
1896 				(*pc->pc_dtor)(pc->pc_arg, object);
1897 			(*putit)(pc->pc_pool, object);
1898 		}
1899 		if (free_groups) {
1900 			pc->pc_ngroups--;
1901 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1902 			if (pc->pc_freeto == pcg)
1903 				pc->pc_freeto = NULL;
1904 			s = splvm();
1905 			pool_put(&pcgpool, pcg);
1906 			splx(s);
1907 		}
1908 	}
1909 }
1910 
1911 /*
1912  * pool_cache_invalidate:
1913  *
1914  *	Invalidate a pool cache (destruct and release all of the
1915  *	cached objects).
1916  */
1917 void
1918 pool_cache_invalidate(struct pool_cache *pc)
1919 {
1920 
1921 	simple_lock(&pc->pc_slock);
1922 	pool_cache_do_invalidate(pc, 0, pool_put);
1923 	simple_unlock(&pc->pc_slock);
1924 }
1925 
1926 /*
1927  * pool_cache_reclaim:
1928  *
1929  *	Reclaim a pool cache for pool_reclaim().
1930  */
1931 static void
1932 pool_cache_reclaim(struct pool_cache *pc)
1933 {
1934 
1935 	simple_lock(&pc->pc_slock);
1936 	pool_cache_do_invalidate(pc, 1, pool_do_put);
1937 	simple_unlock(&pc->pc_slock);
1938 }
1939 
1940 /*
1941  * Pool backend allocators.
1942  *
1943  * Each pool has a backend allocator that handles allocation, deallocation,
1944  * and any additional draining that might be needed.
1945  *
1946  * We provide two standard allocators:
1947  *
1948  *	pool_allocator_kmem - the default when no allocator is specified
1949  *
1950  *	pool_allocator_nointr - used for pools that will not be accessed
1951  *	in interrupt context.
1952  */
1953 void	*pool_page_alloc(struct pool *, int);
1954 void	pool_page_free(struct pool *, void *);
1955 
1956 struct pool_allocator pool_allocator_kmem = {
1957 	pool_page_alloc, pool_page_free, 0,
1958 };
1959 
1960 void	*pool_page_alloc_nointr(struct pool *, int);
1961 void	pool_page_free_nointr(struct pool *, void *);
1962 
1963 struct pool_allocator pool_allocator_nointr = {
1964 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
1965 };
1966 
1967 #ifdef POOL_SUBPAGE
1968 void	*pool_subpage_alloc(struct pool *, int);
1969 void	pool_subpage_free(struct pool *, void *);
1970 
1971 struct pool_allocator pool_allocator_kmem_subpage = {
1972 	pool_subpage_alloc, pool_subpage_free, 0,
1973 };
1974 #endif /* POOL_SUBPAGE */
1975 
1976 /*
1977  * We have at least three different resources for the same allocation and
1978  * each resource can be depleted.  First, we have the ready elements in the
1979  * pool.  Then we have the resource (typically a vm_map) for this allocator.
1980  * Finally, we have physical memory.  Waiting for any of these can be
1981  * unnecessary when any other is freed, but the kernel doesn't support
1982  * sleeping on multiple wait channels, so we have to employ another strategy.
1983  *
1984  * The caller sleeps on the pool (so that it can be awakened when an item
1985  * is returned to the pool), but we set PA_WANT on the allocator.  When a
1986  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1987  * will wake up all sleeping pools belonging to this allocator.
1988  *
1989  * XXX Thundering herd.
1990  */
1991 void *
1992 pool_allocator_alloc(struct pool *org, int flags)
1993 {
1994 	struct pool_allocator *pa = org->pr_alloc;
1995 	struct pool *pp, *start;
1996 	int s, freed;
1997 	void *res;
1998 
1999 	LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
2000 
2001 	do {
2002 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2003 			return (res);
2004 		if ((flags & PR_WAITOK) == 0) {
2005 			/*
2006 			 * We only run the drain hookhere if PR_NOWAIT.
2007 			 * In other cases, the hook will be run in
2008 			 * pool_reclaim().
2009 			 */
2010 			if (org->pr_drain_hook != NULL) {
2011 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
2012 				    flags);
2013 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2014 					return (res);
2015 			}
2016 			break;
2017 		}
2018 
2019 		/*
2020 		 * Drain all pools, except "org", that use this
2021 		 * allocator.  We do this to reclaim VA space.
2022 		 * pa_alloc is responsible for waiting for
2023 		 * physical memory.
2024 		 *
2025 		 * XXX We risk looping forever if start if someone
2026 		 * calls pool_destroy on "start".  But there is no
2027 		 * other way to have potentially sleeping pool_reclaim,
2028 		 * non-sleeping locks on pool_allocator, and some
2029 		 * stirring of drained pools in the allocator.
2030 		 *
2031 		 * XXX Maybe we should use pool_head_slock for locking
2032 		 * the allocators?
2033 		 */
2034 		freed = 0;
2035 
2036 		s = splvm();
2037 		simple_lock(&pa->pa_slock);
2038 		pp = start = TAILQ_FIRST(&pa->pa_list);
2039 		do {
2040 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2041 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2042 			if (pp == org)
2043 				continue;
2044 			simple_unlock(&pa->pa_slock);
2045 			freed = pool_reclaim(pp);
2046 			simple_lock(&pa->pa_slock);
2047 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2048 			 freed == 0);
2049 
2050 		if (freed == 0) {
2051 			/*
2052 			 * We set PA_WANT here, the caller will most likely
2053 			 * sleep waiting for pages (if not, this won't hurt
2054 			 * that much), and there is no way to set this in
2055 			 * the caller without violating locking order.
2056 			 */
2057 			pa->pa_flags |= PA_WANT;
2058 		}
2059 		simple_unlock(&pa->pa_slock);
2060 		splx(s);
2061 	} while (freed);
2062 	return (NULL);
2063 }
2064 
2065 void
2066 pool_allocator_free(struct pool *pp, void *v)
2067 {
2068 	struct pool_allocator *pa = pp->pr_alloc;
2069 	int s;
2070 
2071 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2072 
2073 	(*pa->pa_free)(pp, v);
2074 
2075 	s = splvm();
2076 	simple_lock(&pa->pa_slock);
2077 	if ((pa->pa_flags & PA_WANT) == 0) {
2078 		simple_unlock(&pa->pa_slock);
2079 		splx(s);
2080 		return;
2081 	}
2082 
2083 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2084 		simple_lock(&pp->pr_slock);
2085 		if ((pp->pr_flags & PR_WANTED) != 0) {
2086 			pp->pr_flags &= ~PR_WANTED;
2087 			wakeup(pp);
2088 		}
2089 		simple_unlock(&pp->pr_slock);
2090 	}
2091 	pa->pa_flags &= ~PA_WANT;
2092 	simple_unlock(&pa->pa_slock);
2093 	splx(s);
2094 }
2095 
2096 void *
2097 pool_page_alloc(struct pool *pp, int flags)
2098 {
2099 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2100 
2101 	return ((void *) uvm_km_alloc_poolpage(waitok));
2102 }
2103 
2104 void
2105 pool_page_free(struct pool *pp, void *v)
2106 {
2107 
2108 	uvm_km_free_poolpage((vaddr_t) v);
2109 }
2110 
2111 #ifdef POOL_SUBPAGE
2112 /* Sub-page allocator, for machines with large hardware pages. */
2113 void *
2114 pool_subpage_alloc(struct pool *pp, int flags)
2115 {
2116 	void *v;
2117 	int s;
2118 	s = splvm();
2119 	v = pool_get(&psppool, flags);
2120 	splx(s);
2121 	return v;
2122 }
2123 
2124 void
2125 pool_subpage_free(struct pool *pp, void *v)
2126 {
2127 	int s;
2128 	s = splvm();
2129 	pool_put(&psppool, v);
2130 	splx(s);
2131 }
2132 
2133 /* We don't provide a real nointr allocator.  Maybe later. */
2134 void *
2135 pool_page_alloc_nointr(struct pool *pp, int flags)
2136 {
2137 
2138 	return (pool_subpage_alloc(pp, flags));
2139 }
2140 
2141 void
2142 pool_page_free_nointr(struct pool *pp, void *v)
2143 {
2144 
2145 	pool_subpage_free(pp, v);
2146 }
2147 #else
2148 void *
2149 pool_page_alloc_nointr(struct pool *pp, int flags)
2150 {
2151 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2152 
2153 	return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2154 	    uvm.kernel_object, waitok));
2155 }
2156 
2157 void
2158 pool_page_free_nointr(struct pool *pp, void *v)
2159 {
2160 
2161 	uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2162 }
2163 #endif /* POOL_SUBPAGE */
2164