1 /* $NetBSD: subr_pool.c,v 1.65 2001/11/20 06:57:04 enami Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.65 2001/11/20 06:57:04 enami Exp $"); 42 43 #include "opt_pool.h" 44 #include "opt_poollog.h" 45 #include "opt_lockdebug.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/errno.h> 51 #include <sys/kernel.h> 52 #include <sys/malloc.h> 53 #include <sys/lock.h> 54 #include <sys/pool.h> 55 #include <sys/syslog.h> 56 57 #include <uvm/uvm.h> 58 59 /* 60 * Pool resource management utility. 61 * 62 * Memory is allocated in pages which are split into pieces according 63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist' 64 * in the pool structure and the individual pool items are on a linked list 65 * headed by `ph_itemlist' in each page header. The memory for building 66 * the page list is either taken from the allocated pages themselves (for 67 * small pool items) or taken from an internal pool of page headers (`phpool'). 68 */ 69 70 /* List of all pools */ 71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 72 73 /* Private pool for page header structures */ 74 static struct pool phpool; 75 76 #ifdef POOL_SUBPAGE 77 /* Pool of subpages for use by normal pools. */ 78 static struct pool psppool; 79 #endif 80 81 /* # of seconds to retain page after last use */ 82 int pool_inactive_time = 10; 83 84 /* Next candidate for drainage (see pool_drain()) */ 85 static struct pool *drainpp; 86 87 /* This spin lock protects both pool_head and drainpp. */ 88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 89 90 struct pool_item_header { 91 /* Page headers */ 92 TAILQ_ENTRY(pool_item_header) 93 ph_pagelist; /* pool page list */ 94 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 95 LIST_ENTRY(pool_item_header) 96 ph_hashlist; /* Off-page page headers */ 97 int ph_nmissing; /* # of chunks in use */ 98 caddr_t ph_page; /* this page's address */ 99 struct timeval ph_time; /* last referenced */ 100 }; 101 TAILQ_HEAD(pool_pagelist,pool_item_header); 102 103 struct pool_item { 104 #ifdef DIAGNOSTIC 105 int pi_magic; 106 #endif 107 #define PI_MAGIC 0xdeadbeef 108 /* Other entries use only this list entry */ 109 TAILQ_ENTRY(pool_item) pi_list; 110 }; 111 112 #define PR_HASH_INDEX(pp,addr) \ 113 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1)) 114 115 #define POOL_NEEDS_CATCHUP(pp) \ 116 ((pp)->pr_nitems < (pp)->pr_minitems) 117 118 /* 119 * Pool cache management. 120 * 121 * Pool caches provide a way for constructed objects to be cached by the 122 * pool subsystem. This can lead to performance improvements by avoiding 123 * needless object construction/destruction; it is deferred until absolutely 124 * necessary. 125 * 126 * Caches are grouped into cache groups. Each cache group references 127 * up to 16 constructed objects. When a cache allocates an object 128 * from the pool, it calls the object's constructor and places it into 129 * a cache group. When a cache group frees an object back to the pool, 130 * it first calls the object's destructor. This allows the object to 131 * persist in constructed form while freed to the cache. 132 * 133 * Multiple caches may exist for each pool. This allows a single 134 * object type to have multiple constructed forms. The pool references 135 * each cache, so that when a pool is drained by the pagedaemon, it can 136 * drain each individual cache as well. Each time a cache is drained, 137 * the most idle cache group is freed to the pool in its entirety. 138 * 139 * Pool caches are layed on top of pools. By layering them, we can avoid 140 * the complexity of cache management for pools which would not benefit 141 * from it. 142 */ 143 144 /* The cache group pool. */ 145 static struct pool pcgpool; 146 147 /* The pool cache group. */ 148 #define PCG_NOBJECTS 16 149 struct pool_cache_group { 150 TAILQ_ENTRY(pool_cache_group) 151 pcg_list; /* link in the pool cache's group list */ 152 u_int pcg_avail; /* # available objects */ 153 /* pointers to the objects */ 154 void *pcg_objects[PCG_NOBJECTS]; 155 }; 156 157 static void pool_cache_reclaim(struct pool_cache *); 158 159 static int pool_catchup(struct pool *); 160 static void pool_prime_page(struct pool *, caddr_t, 161 struct pool_item_header *); 162 static void *pool_page_alloc(unsigned long, int, int); 163 static void pool_page_free(void *, unsigned long, int); 164 #ifdef POOL_SUBPAGE 165 static void *pool_subpage_alloc(unsigned long, int, int); 166 static void pool_subpage_free(void *, unsigned long, int); 167 #endif 168 169 static void pool_print1(struct pool *, const char *, 170 void (*)(const char *, ...)); 171 172 /* 173 * Pool log entry. An array of these is allocated in pool_init(). 174 */ 175 struct pool_log { 176 const char *pl_file; 177 long pl_line; 178 int pl_action; 179 #define PRLOG_GET 1 180 #define PRLOG_PUT 2 181 void *pl_addr; 182 }; 183 184 /* Number of entries in pool log buffers */ 185 #ifndef POOL_LOGSIZE 186 #define POOL_LOGSIZE 10 187 #endif 188 189 int pool_logsize = POOL_LOGSIZE; 190 191 #ifdef POOL_DIAGNOSTIC 192 static __inline void 193 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 194 { 195 int n = pp->pr_curlogentry; 196 struct pool_log *pl; 197 198 if ((pp->pr_roflags & PR_LOGGING) == 0) 199 return; 200 201 /* 202 * Fill in the current entry. Wrap around and overwrite 203 * the oldest entry if necessary. 204 */ 205 pl = &pp->pr_log[n]; 206 pl->pl_file = file; 207 pl->pl_line = line; 208 pl->pl_action = action; 209 pl->pl_addr = v; 210 if (++n >= pp->pr_logsize) 211 n = 0; 212 pp->pr_curlogentry = n; 213 } 214 215 static void 216 pr_printlog(struct pool *pp, struct pool_item *pi, 217 void (*pr)(const char *, ...)) 218 { 219 int i = pp->pr_logsize; 220 int n = pp->pr_curlogentry; 221 222 if ((pp->pr_roflags & PR_LOGGING) == 0) 223 return; 224 225 /* 226 * Print all entries in this pool's log. 227 */ 228 while (i-- > 0) { 229 struct pool_log *pl = &pp->pr_log[n]; 230 if (pl->pl_action != 0) { 231 if (pi == NULL || pi == pl->pl_addr) { 232 (*pr)("\tlog entry %d:\n", i); 233 (*pr)("\t\taction = %s, addr = %p\n", 234 pl->pl_action == PRLOG_GET ? "get" : "put", 235 pl->pl_addr); 236 (*pr)("\t\tfile: %s at line %lu\n", 237 pl->pl_file, pl->pl_line); 238 } 239 } 240 if (++n >= pp->pr_logsize) 241 n = 0; 242 } 243 } 244 245 static __inline void 246 pr_enter(struct pool *pp, const char *file, long line) 247 { 248 249 if (__predict_false(pp->pr_entered_file != NULL)) { 250 printf("pool %s: reentrancy at file %s line %ld\n", 251 pp->pr_wchan, file, line); 252 printf(" previous entry at file %s line %ld\n", 253 pp->pr_entered_file, pp->pr_entered_line); 254 panic("pr_enter"); 255 } 256 257 pp->pr_entered_file = file; 258 pp->pr_entered_line = line; 259 } 260 261 static __inline void 262 pr_leave(struct pool *pp) 263 { 264 265 if (__predict_false(pp->pr_entered_file == NULL)) { 266 printf("pool %s not entered?\n", pp->pr_wchan); 267 panic("pr_leave"); 268 } 269 270 pp->pr_entered_file = NULL; 271 pp->pr_entered_line = 0; 272 } 273 274 static __inline void 275 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 276 { 277 278 if (pp->pr_entered_file != NULL) 279 (*pr)("\n\tcurrently entered from file %s line %ld\n", 280 pp->pr_entered_file, pp->pr_entered_line); 281 } 282 #else 283 #define pr_log(pp, v, action, file, line) 284 #define pr_printlog(pp, pi, pr) 285 #define pr_enter(pp, file, line) 286 #define pr_leave(pp) 287 #define pr_enter_check(pp, pr) 288 #endif /* POOL_DIAGNOSTIC */ 289 290 /* 291 * Return the pool page header based on page address. 292 */ 293 static __inline struct pool_item_header * 294 pr_find_pagehead(struct pool *pp, caddr_t page) 295 { 296 struct pool_item_header *ph; 297 298 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 299 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 300 301 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]); 302 ph != NULL; 303 ph = LIST_NEXT(ph, ph_hashlist)) { 304 if (ph->ph_page == page) 305 return (ph); 306 } 307 return (NULL); 308 } 309 310 /* 311 * Remove a page from the pool. 312 */ 313 static __inline void 314 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 315 struct pool_pagelist *pq) 316 { 317 int s; 318 319 /* 320 * If the page was idle, decrement the idle page count. 321 */ 322 if (ph->ph_nmissing == 0) { 323 #ifdef DIAGNOSTIC 324 if (pp->pr_nidle == 0) 325 panic("pr_rmpage: nidle inconsistent"); 326 if (pp->pr_nitems < pp->pr_itemsperpage) 327 panic("pr_rmpage: nitems inconsistent"); 328 #endif 329 pp->pr_nidle--; 330 } 331 332 pp->pr_nitems -= pp->pr_itemsperpage; 333 334 /* 335 * Unlink a page from the pool and release it (or queue it for release). 336 */ 337 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 338 if (pq) { 339 TAILQ_INSERT_HEAD(pq, ph, ph_pagelist); 340 } else { 341 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype); 342 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 343 LIST_REMOVE(ph, ph_hashlist); 344 s = splhigh(); 345 pool_put(&phpool, ph); 346 splx(s); 347 } 348 } 349 pp->pr_npages--; 350 pp->pr_npagefree++; 351 352 if (pp->pr_curpage == ph) { 353 /* 354 * Find a new non-empty page header, if any. 355 * Start search from the page head, to increase the 356 * chance for "high water" pages to be freed. 357 */ 358 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) 359 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 360 break; 361 362 pp->pr_curpage = ph; 363 } 364 } 365 366 /* 367 * Initialize the given pool resource structure. 368 * 369 * We export this routine to allow other kernel parts to declare 370 * static pools that must be initialized before malloc() is available. 371 */ 372 void 373 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 374 const char *wchan, size_t pagesz, 375 void *(*alloc)(unsigned long, int, int), 376 void (*release)(void *, unsigned long, int), 377 int mtype) 378 { 379 int off, slack, i; 380 381 #ifdef POOL_DIAGNOSTIC 382 /* 383 * Always log if POOL_DIAGNOSTIC is defined. 384 */ 385 if (pool_logsize != 0) 386 flags |= PR_LOGGING; 387 #endif 388 389 /* 390 * Check arguments and construct default values. 391 */ 392 if (!powerof2(pagesz)) 393 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz); 394 395 if (alloc == NULL && release == NULL) { 396 #ifdef POOL_SUBPAGE 397 alloc = pool_subpage_alloc; 398 release = pool_subpage_free; 399 pagesz = POOL_SUBPAGE; 400 #else 401 alloc = pool_page_alloc; 402 release = pool_page_free; 403 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */ 404 #endif 405 } else if ((alloc != NULL && release != NULL) == 0) { 406 /* If you specifiy one, must specify both. */ 407 panic("pool_init: must specify alloc and release together"); 408 } 409 #ifdef POOL_SUBPAGE 410 else if (alloc == pool_page_alloc_nointr && 411 release == pool_page_free_nointr) 412 pagesz = POOL_SUBPAGE; 413 #endif 414 415 if (pagesz == 0) 416 pagesz = PAGE_SIZE; 417 418 if (align == 0) 419 align = ALIGN(1); 420 421 if (size < sizeof(struct pool_item)) 422 size = sizeof(struct pool_item); 423 424 size = ALIGN(size); 425 if (size > pagesz) 426 panic("pool_init: pool item size (%lu) too large", 427 (u_long)size); 428 429 /* 430 * Initialize the pool structure. 431 */ 432 TAILQ_INIT(&pp->pr_pagelist); 433 TAILQ_INIT(&pp->pr_cachelist); 434 pp->pr_curpage = NULL; 435 pp->pr_npages = 0; 436 pp->pr_minitems = 0; 437 pp->pr_minpages = 0; 438 pp->pr_maxpages = UINT_MAX; 439 pp->pr_roflags = flags; 440 pp->pr_flags = 0; 441 pp->pr_size = size; 442 pp->pr_align = align; 443 pp->pr_wchan = wchan; 444 pp->pr_mtype = mtype; 445 pp->pr_alloc = alloc; 446 pp->pr_free = release; 447 pp->pr_pagesz = pagesz; 448 pp->pr_pagemask = ~(pagesz - 1); 449 pp->pr_pageshift = ffs(pagesz) - 1; 450 pp->pr_nitems = 0; 451 pp->pr_nout = 0; 452 pp->pr_hardlimit = UINT_MAX; 453 pp->pr_hardlimit_warning = NULL; 454 pp->pr_hardlimit_ratecap.tv_sec = 0; 455 pp->pr_hardlimit_ratecap.tv_usec = 0; 456 pp->pr_hardlimit_warning_last.tv_sec = 0; 457 pp->pr_hardlimit_warning_last.tv_usec = 0; 458 459 /* 460 * Decide whether to put the page header off page to avoid 461 * wasting too large a part of the page. Off-page page headers 462 * go on a hash table, so we can match a returned item 463 * with its header based on the page address. 464 * We use 1/16 of the page size as the threshold (XXX: tune) 465 */ 466 if (pp->pr_size < pagesz/16) { 467 /* Use the end of the page for the page header */ 468 pp->pr_roflags |= PR_PHINPAGE; 469 pp->pr_phoffset = off = 470 pagesz - ALIGN(sizeof(struct pool_item_header)); 471 } else { 472 /* The page header will be taken from our page header pool */ 473 pp->pr_phoffset = 0; 474 off = pagesz; 475 for (i = 0; i < PR_HASHTABSIZE; i++) { 476 LIST_INIT(&pp->pr_hashtab[i]); 477 } 478 } 479 480 /* 481 * Alignment is to take place at `ioff' within the item. This means 482 * we must reserve up to `align - 1' bytes on the page to allow 483 * appropriate positioning of each item. 484 * 485 * Silently enforce `0 <= ioff < align'. 486 */ 487 pp->pr_itemoffset = ioff = ioff % align; 488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 489 KASSERT(pp->pr_itemsperpage != 0); 490 491 /* 492 * Use the slack between the chunks and the page header 493 * for "cache coloring". 494 */ 495 slack = off - pp->pr_itemsperpage * pp->pr_size; 496 pp->pr_maxcolor = (slack / align) * align; 497 pp->pr_curcolor = 0; 498 499 pp->pr_nget = 0; 500 pp->pr_nfail = 0; 501 pp->pr_nput = 0; 502 pp->pr_npagealloc = 0; 503 pp->pr_npagefree = 0; 504 pp->pr_hiwat = 0; 505 pp->pr_nidle = 0; 506 507 #ifdef POOL_DIAGNOSTIC 508 if (flags & PR_LOGGING) { 509 if (kmem_map == NULL || 510 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 511 M_TEMP, M_NOWAIT)) == NULL) 512 pp->pr_roflags &= ~PR_LOGGING; 513 pp->pr_curlogentry = 0; 514 pp->pr_logsize = pool_logsize; 515 } 516 #endif 517 518 pp->pr_entered_file = NULL; 519 pp->pr_entered_line = 0; 520 521 simple_lock_init(&pp->pr_slock); 522 523 /* 524 * Initialize private page header pool and cache magazine pool if we 525 * haven't done so yet. 526 * XXX LOCKING. 527 */ 528 if (phpool.pr_size == 0) { 529 #ifdef POOL_SUBPAGE 530 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0, 531 "phpool", PAGE_SIZE, pool_page_alloc, pool_page_free, 0); 532 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 533 PR_RECURSIVE, "psppool", PAGE_SIZE, 534 pool_page_alloc, pool_page_free, 0); 535 #else 536 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 537 0, "phpool", 0, 0, 0, 0); 538 #endif 539 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0, 540 0, "pcgpool", 0, 0, 0, 0); 541 } 542 543 /* Insert into the list of all pools. */ 544 simple_lock(&pool_head_slock); 545 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 546 simple_unlock(&pool_head_slock); 547 } 548 549 /* 550 * De-commision a pool resource. 551 */ 552 void 553 pool_destroy(struct pool *pp) 554 { 555 struct pool_item_header *ph; 556 struct pool_cache *pc; 557 558 /* Destroy all caches for this pool. */ 559 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL) 560 pool_cache_destroy(pc); 561 562 #ifdef DIAGNOSTIC 563 if (pp->pr_nout != 0) { 564 pr_printlog(pp, NULL, printf); 565 panic("pool_destroy: pool busy: still out: %u\n", 566 pp->pr_nout); 567 } 568 #endif 569 570 /* Remove all pages */ 571 if ((pp->pr_roflags & PR_STATIC) == 0) 572 while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 573 pr_rmpage(pp, ph, NULL); 574 575 /* Remove from global pool list */ 576 simple_lock(&pool_head_slock); 577 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 578 if (drainpp == pp) { 579 drainpp = NULL; 580 } 581 simple_unlock(&pool_head_slock); 582 583 #ifdef POOL_DIAGNOSTIC 584 if ((pp->pr_roflags & PR_LOGGING) != 0) 585 free(pp->pr_log, M_TEMP); 586 #endif 587 588 if (pp->pr_roflags & PR_FREEHEADER) 589 free(pp, M_POOL); 590 } 591 592 static __inline struct pool_item_header * 593 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags) 594 { 595 struct pool_item_header *ph; 596 int s; 597 598 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0); 599 600 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 601 ph = (struct pool_item_header *) (storage + pp->pr_phoffset); 602 else { 603 s = splhigh(); 604 ph = pool_get(&phpool, flags); 605 splx(s); 606 } 607 608 return (ph); 609 } 610 611 /* 612 * Grab an item from the pool; must be called at appropriate spl level 613 */ 614 void * 615 #ifdef POOL_DIAGNOSTIC 616 _pool_get(struct pool *pp, int flags, const char *file, long line) 617 #else 618 pool_get(struct pool *pp, int flags) 619 #endif 620 { 621 struct pool_item *pi; 622 struct pool_item_header *ph; 623 void *v; 624 625 #ifdef DIAGNOSTIC 626 if (__predict_false((pp->pr_roflags & PR_STATIC) && 627 (flags & PR_MALLOCOK))) { 628 pr_printlog(pp, NULL, printf); 629 panic("pool_get: static"); 630 } 631 632 if (__predict_false(curproc == NULL && doing_shutdown == 0 && 633 (flags & PR_WAITOK) != 0)) 634 panic("pool_get: must have NOWAIT"); 635 636 #ifdef LOCKDEBUG 637 if (flags & PR_WAITOK) 638 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)"); 639 #endif 640 #endif /* DIAGNOSTIC */ 641 642 simple_lock(&pp->pr_slock); 643 pr_enter(pp, file, line); 644 645 startover: 646 /* 647 * Check to see if we've reached the hard limit. If we have, 648 * and we can wait, then wait until an item has been returned to 649 * the pool. 650 */ 651 #ifdef DIAGNOSTIC 652 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 653 pr_leave(pp); 654 simple_unlock(&pp->pr_slock); 655 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 656 } 657 #endif 658 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 659 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 660 /* 661 * XXX: A warning isn't logged in this case. Should 662 * it be? 663 */ 664 pp->pr_flags |= PR_WANTED; 665 pr_leave(pp); 666 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 667 pr_enter(pp, file, line); 668 goto startover; 669 } 670 671 /* 672 * Log a message that the hard limit has been hit. 673 */ 674 if (pp->pr_hardlimit_warning != NULL && 675 ratecheck(&pp->pr_hardlimit_warning_last, 676 &pp->pr_hardlimit_ratecap)) 677 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 678 679 if (flags & PR_URGENT) 680 panic("pool_get: urgent"); 681 682 pp->pr_nfail++; 683 684 pr_leave(pp); 685 simple_unlock(&pp->pr_slock); 686 return (NULL); 687 } 688 689 /* 690 * The convention we use is that if `curpage' is not NULL, then 691 * it points at a non-empty bucket. In particular, `curpage' 692 * never points at a page header which has PR_PHINPAGE set and 693 * has no items in its bucket. 694 */ 695 if ((ph = pp->pr_curpage) == NULL) { 696 #ifdef DIAGNOSTIC 697 if (pp->pr_nitems != 0) { 698 simple_unlock(&pp->pr_slock); 699 printf("pool_get: %s: curpage NULL, nitems %u\n", 700 pp->pr_wchan, pp->pr_nitems); 701 panic("pool_get: nitems inconsistent\n"); 702 } 703 #endif 704 705 /* 706 * Call the back-end page allocator for more memory. 707 * Release the pool lock, as the back-end page allocator 708 * may block. 709 */ 710 pr_leave(pp); 711 simple_unlock(&pp->pr_slock); 712 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype); 713 if (__predict_true(v != NULL)) 714 ph = pool_alloc_item_header(pp, v, flags); 715 simple_lock(&pp->pr_slock); 716 pr_enter(pp, file, line); 717 718 if (__predict_false(v == NULL || ph == NULL)) { 719 if (v != NULL) 720 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype); 721 722 /* 723 * We were unable to allocate a page or item 724 * header, but we released the lock during 725 * allocation, so perhaps items were freed 726 * back to the pool. Check for this case. 727 */ 728 if (pp->pr_curpage != NULL) 729 goto startover; 730 731 if (flags & PR_URGENT) 732 panic("pool_get: urgent"); 733 734 if ((flags & PR_WAITOK) == 0) { 735 pp->pr_nfail++; 736 pr_leave(pp); 737 simple_unlock(&pp->pr_slock); 738 return (NULL); 739 } 740 741 /* 742 * Wait for items to be returned to this pool. 743 * 744 * XXX: we actually want to wait just until 745 * the page allocator has memory again. Depending 746 * on this pool's usage, we might get stuck here 747 * for a long time. 748 * 749 * XXX: maybe we should wake up once a second and 750 * try again? 751 */ 752 pp->pr_flags |= PR_WANTED; 753 pr_leave(pp); 754 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 755 pr_enter(pp, file, line); 756 goto startover; 757 } 758 759 /* We have more memory; add it to the pool */ 760 pool_prime_page(pp, v, ph); 761 pp->pr_npagealloc++; 762 763 /* Start the allocation process over. */ 764 goto startover; 765 } 766 767 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 768 pr_leave(pp); 769 simple_unlock(&pp->pr_slock); 770 panic("pool_get: %s: page empty", pp->pr_wchan); 771 } 772 #ifdef DIAGNOSTIC 773 if (__predict_false(pp->pr_nitems == 0)) { 774 pr_leave(pp); 775 simple_unlock(&pp->pr_slock); 776 printf("pool_get: %s: items on itemlist, nitems %u\n", 777 pp->pr_wchan, pp->pr_nitems); 778 panic("pool_get: nitems inconsistent\n"); 779 } 780 #endif 781 782 #ifdef POOL_DIAGNOSTIC 783 pr_log(pp, v, PRLOG_GET, file, line); 784 #endif 785 786 #ifdef DIAGNOSTIC 787 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 788 pr_printlog(pp, pi, printf); 789 panic("pool_get(%s): free list modified: magic=%x; page %p;" 790 " item addr %p\n", 791 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 792 } 793 #endif 794 795 /* 796 * Remove from item list. 797 */ 798 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 799 pp->pr_nitems--; 800 pp->pr_nout++; 801 if (ph->ph_nmissing == 0) { 802 #ifdef DIAGNOSTIC 803 if (__predict_false(pp->pr_nidle == 0)) 804 panic("pool_get: nidle inconsistent"); 805 #endif 806 pp->pr_nidle--; 807 } 808 ph->ph_nmissing++; 809 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) { 810 #ifdef DIAGNOSTIC 811 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 812 pr_leave(pp); 813 simple_unlock(&pp->pr_slock); 814 panic("pool_get: %s: nmissing inconsistent", 815 pp->pr_wchan); 816 } 817 #endif 818 /* 819 * Find a new non-empty page header, if any. 820 * Start search from the page head, to increase 821 * the chance for "high water" pages to be freed. 822 * 823 * Migrate empty pages to the end of the list. This 824 * will speed the update of curpage as pages become 825 * idle. Empty pages intermingled with idle pages 826 * is no big deal. As soon as a page becomes un-empty, 827 * it will move back to the head of the list. 828 */ 829 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 830 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 831 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) 832 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 833 break; 834 835 pp->pr_curpage = ph; 836 } 837 838 pp->pr_nget++; 839 840 /* 841 * If we have a low water mark and we are now below that low 842 * water mark, add more items to the pool. 843 */ 844 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 845 /* 846 * XXX: Should we log a warning? Should we set up a timeout 847 * to try again in a second or so? The latter could break 848 * a caller's assumptions about interrupt protection, etc. 849 */ 850 } 851 852 pr_leave(pp); 853 simple_unlock(&pp->pr_slock); 854 return (v); 855 } 856 857 /* 858 * Internal version of pool_put(). Pool is already locked/entered. 859 */ 860 static void 861 pool_do_put(struct pool *pp, void *v) 862 { 863 struct pool_item *pi = v; 864 struct pool_item_header *ph; 865 caddr_t page; 866 int s; 867 868 LOCK_ASSERT(simple_lock_held(&pp->pr_slock)); 869 870 page = (caddr_t)((u_long)v & pp->pr_pagemask); 871 872 #ifdef DIAGNOSTIC 873 if (__predict_false(pp->pr_nout == 0)) { 874 printf("pool %s: putting with none out\n", 875 pp->pr_wchan); 876 panic("pool_put"); 877 } 878 #endif 879 880 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 881 pr_printlog(pp, NULL, printf); 882 panic("pool_put: %s: page header missing", pp->pr_wchan); 883 } 884 885 #ifdef LOCKDEBUG 886 /* 887 * Check if we're freeing a locked simple lock. 888 */ 889 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 890 #endif 891 892 /* 893 * Return to item list. 894 */ 895 #ifdef DIAGNOSTIC 896 pi->pi_magic = PI_MAGIC; 897 #endif 898 #ifdef DEBUG 899 { 900 int i, *ip = v; 901 902 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 903 *ip++ = PI_MAGIC; 904 } 905 } 906 #endif 907 908 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 909 ph->ph_nmissing--; 910 pp->pr_nput++; 911 pp->pr_nitems++; 912 pp->pr_nout--; 913 914 /* Cancel "pool empty" condition if it exists */ 915 if (pp->pr_curpage == NULL) 916 pp->pr_curpage = ph; 917 918 if (pp->pr_flags & PR_WANTED) { 919 pp->pr_flags &= ~PR_WANTED; 920 if (ph->ph_nmissing == 0) 921 pp->pr_nidle++; 922 wakeup((caddr_t)pp); 923 return; 924 } 925 926 /* 927 * If this page is now complete, do one of two things: 928 * 929 * (1) If we have more pages than the page high water 930 * mark, free the page back to the system. 931 * 932 * (2) Move it to the end of the page list, so that 933 * we minimize our chances of fragmenting the 934 * pool. Idle pages migrate to the end (along with 935 * completely empty pages, so that we find un-empty 936 * pages more quickly when we update curpage) of the 937 * list so they can be more easily swept up by 938 * the pagedaemon when pages are scarce. 939 */ 940 if (ph->ph_nmissing == 0) { 941 pp->pr_nidle++; 942 if (pp->pr_npages > pp->pr_maxpages) { 943 pr_rmpage(pp, ph, NULL); 944 } else { 945 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 946 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 947 948 /* 949 * Update the timestamp on the page. A page must 950 * be idle for some period of time before it can 951 * be reclaimed by the pagedaemon. This minimizes 952 * ping-pong'ing for memory. 953 */ 954 s = splclock(); 955 ph->ph_time = mono_time; 956 splx(s); 957 958 /* 959 * Update the current page pointer. Just look for 960 * the first page with any free items. 961 * 962 * XXX: Maybe we want an option to look for the 963 * page with the fewest available items, to minimize 964 * fragmentation? 965 */ 966 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) 967 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 968 break; 969 970 pp->pr_curpage = ph; 971 } 972 } 973 /* 974 * If the page has just become un-empty, move it to the head of 975 * the list, and make it the current page. The next allocation 976 * will get the item from this page, instead of further fragmenting 977 * the pool. 978 */ 979 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 980 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 981 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 982 pp->pr_curpage = ph; 983 } 984 } 985 986 /* 987 * Return resource to the pool; must be called at appropriate spl level 988 */ 989 #ifdef POOL_DIAGNOSTIC 990 void 991 _pool_put(struct pool *pp, void *v, const char *file, long line) 992 { 993 994 simple_lock(&pp->pr_slock); 995 pr_enter(pp, file, line); 996 997 pr_log(pp, v, PRLOG_PUT, file, line); 998 999 pool_do_put(pp, v); 1000 1001 pr_leave(pp); 1002 simple_unlock(&pp->pr_slock); 1003 } 1004 #undef pool_put 1005 #endif /* POOL_DIAGNOSTIC */ 1006 1007 void 1008 pool_put(struct pool *pp, void *v) 1009 { 1010 1011 simple_lock(&pp->pr_slock); 1012 1013 pool_do_put(pp, v); 1014 1015 simple_unlock(&pp->pr_slock); 1016 } 1017 1018 #ifdef POOL_DIAGNOSTIC 1019 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1020 #endif 1021 1022 /* 1023 * Add N items to the pool. 1024 */ 1025 int 1026 pool_prime(struct pool *pp, int n) 1027 { 1028 struct pool_item_header *ph; 1029 caddr_t cp; 1030 int newpages, error = 0; 1031 1032 simple_lock(&pp->pr_slock); 1033 1034 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1035 1036 while (newpages-- > 0) { 1037 simple_unlock(&pp->pr_slock); 1038 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype); 1039 if (__predict_true(cp != NULL)) 1040 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1041 simple_lock(&pp->pr_slock); 1042 1043 if (__predict_false(cp == NULL || ph == NULL)) { 1044 error = ENOMEM; 1045 if (cp != NULL) 1046 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype); 1047 break; 1048 } 1049 1050 pool_prime_page(pp, cp, ph); 1051 pp->pr_npagealloc++; 1052 pp->pr_minpages++; 1053 } 1054 1055 if (pp->pr_minpages >= pp->pr_maxpages) 1056 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1057 1058 simple_unlock(&pp->pr_slock); 1059 return (0); 1060 } 1061 1062 /* 1063 * Add a page worth of items to the pool. 1064 * 1065 * Note, we must be called with the pool descriptor LOCKED. 1066 */ 1067 static void 1068 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph) 1069 { 1070 struct pool_item *pi; 1071 caddr_t cp = storage; 1072 unsigned int align = pp->pr_align; 1073 unsigned int ioff = pp->pr_itemoffset; 1074 int n; 1075 1076 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0) 1077 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1078 1079 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1080 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)], 1081 ph, ph_hashlist); 1082 1083 /* 1084 * Insert page header. 1085 */ 1086 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1087 TAILQ_INIT(&ph->ph_itemlist); 1088 ph->ph_page = storage; 1089 ph->ph_nmissing = 0; 1090 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1091 1092 pp->pr_nidle++; 1093 1094 /* 1095 * Color this page. 1096 */ 1097 cp = (caddr_t)(cp + pp->pr_curcolor); 1098 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1099 pp->pr_curcolor = 0; 1100 1101 /* 1102 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1103 */ 1104 if (ioff != 0) 1105 cp = (caddr_t)(cp + (align - ioff)); 1106 1107 /* 1108 * Insert remaining chunks on the bucket list. 1109 */ 1110 n = pp->pr_itemsperpage; 1111 pp->pr_nitems += n; 1112 1113 while (n--) { 1114 pi = (struct pool_item *)cp; 1115 1116 /* Insert on page list */ 1117 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1118 #ifdef DIAGNOSTIC 1119 pi->pi_magic = PI_MAGIC; 1120 #endif 1121 cp = (caddr_t)(cp + pp->pr_size); 1122 } 1123 1124 /* 1125 * If the pool was depleted, point at the new page. 1126 */ 1127 if (pp->pr_curpage == NULL) 1128 pp->pr_curpage = ph; 1129 1130 if (++pp->pr_npages > pp->pr_hiwat) 1131 pp->pr_hiwat = pp->pr_npages; 1132 } 1133 1134 /* 1135 * Used by pool_get() when nitems drops below the low water mark. This 1136 * is used to catch up nitmes with the low water mark. 1137 * 1138 * Note 1, we never wait for memory here, we let the caller decide what to do. 1139 * 1140 * Note 2, this doesn't work with static pools. 1141 * 1142 * Note 3, we must be called with the pool already locked, and we return 1143 * with it locked. 1144 */ 1145 static int 1146 pool_catchup(struct pool *pp) 1147 { 1148 struct pool_item_header *ph; 1149 caddr_t cp; 1150 int error = 0; 1151 1152 if (pp->pr_roflags & PR_STATIC) { 1153 /* 1154 * We dropped below the low water mark, and this is not a 1155 * good thing. Log a warning. 1156 * 1157 * XXX: rate-limit this? 1158 */ 1159 printf("WARNING: static pool `%s' dropped below low water " 1160 "mark\n", pp->pr_wchan); 1161 return (0); 1162 } 1163 1164 while (POOL_NEEDS_CATCHUP(pp)) { 1165 /* 1166 * Call the page back-end allocator for more memory. 1167 * 1168 * XXX: We never wait, so should we bother unlocking 1169 * the pool descriptor? 1170 */ 1171 simple_unlock(&pp->pr_slock); 1172 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype); 1173 if (__predict_true(cp != NULL)) 1174 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1175 simple_lock(&pp->pr_slock); 1176 if (__predict_false(cp == NULL || ph == NULL)) { 1177 if (cp != NULL) 1178 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype); 1179 error = ENOMEM; 1180 break; 1181 } 1182 pool_prime_page(pp, cp, ph); 1183 pp->pr_npagealloc++; 1184 } 1185 1186 return (error); 1187 } 1188 1189 void 1190 pool_setlowat(struct pool *pp, int n) 1191 { 1192 int error; 1193 1194 simple_lock(&pp->pr_slock); 1195 1196 pp->pr_minitems = n; 1197 pp->pr_minpages = (n == 0) 1198 ? 0 1199 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1200 1201 /* Make sure we're caught up with the newly-set low water mark. */ 1202 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) { 1203 /* 1204 * XXX: Should we log a warning? Should we set up a timeout 1205 * to try again in a second or so? The latter could break 1206 * a caller's assumptions about interrupt protection, etc. 1207 */ 1208 } 1209 1210 simple_unlock(&pp->pr_slock); 1211 } 1212 1213 void 1214 pool_sethiwat(struct pool *pp, int n) 1215 { 1216 1217 simple_lock(&pp->pr_slock); 1218 1219 pp->pr_maxpages = (n == 0) 1220 ? 0 1221 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1222 1223 simple_unlock(&pp->pr_slock); 1224 } 1225 1226 void 1227 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1228 { 1229 1230 simple_lock(&pp->pr_slock); 1231 1232 pp->pr_hardlimit = n; 1233 pp->pr_hardlimit_warning = warnmess; 1234 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1235 pp->pr_hardlimit_warning_last.tv_sec = 0; 1236 pp->pr_hardlimit_warning_last.tv_usec = 0; 1237 1238 /* 1239 * In-line version of pool_sethiwat(), because we don't want to 1240 * release the lock. 1241 */ 1242 pp->pr_maxpages = (n == 0) 1243 ? 0 1244 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1245 1246 simple_unlock(&pp->pr_slock); 1247 } 1248 1249 /* 1250 * Default page allocator. 1251 */ 1252 static void * 1253 pool_page_alloc(unsigned long sz, int flags, int mtype) 1254 { 1255 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1256 1257 return ((void *)uvm_km_alloc_poolpage(waitok)); 1258 } 1259 1260 static void 1261 pool_page_free(void *v, unsigned long sz, int mtype) 1262 { 1263 1264 uvm_km_free_poolpage((vaddr_t)v); 1265 } 1266 1267 #ifdef POOL_SUBPAGE 1268 /* 1269 * Sub-page allocator, for machines with large hardware pages. 1270 */ 1271 static void * 1272 pool_subpage_alloc(unsigned long sz, int flags, int mtype) 1273 { 1274 1275 return pool_get(&psppool, flags); 1276 } 1277 1278 static void 1279 pool_subpage_free(void *v, unsigned long sz, int mtype) 1280 { 1281 1282 pool_put(&psppool, v); 1283 } 1284 #endif 1285 1286 #ifdef POOL_SUBPAGE 1287 /* We don't provide a real nointr allocator. Maybe later. */ 1288 void * 1289 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype) 1290 { 1291 1292 return pool_subpage_alloc(sz, flags, mtype); 1293 } 1294 1295 void 1296 pool_page_free_nointr(void *v, unsigned long sz, int mtype) 1297 { 1298 1299 pool_subpage_free(v, sz, mtype); 1300 } 1301 #else 1302 /* 1303 * Alternate pool page allocator for pools that know they will 1304 * never be accessed in interrupt context. 1305 */ 1306 void * 1307 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype) 1308 { 1309 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1310 1311 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object, 1312 waitok)); 1313 } 1314 1315 void 1316 pool_page_free_nointr(void *v, unsigned long sz, int mtype) 1317 { 1318 1319 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v); 1320 } 1321 #endif 1322 1323 1324 /* 1325 * Release all complete pages that have not been used recently. 1326 */ 1327 void 1328 #ifdef POOL_DIAGNOSTIC 1329 _pool_reclaim(struct pool *pp, const char *file, long line) 1330 #else 1331 pool_reclaim(struct pool *pp) 1332 #endif 1333 { 1334 struct pool_item_header *ph, *phnext; 1335 struct pool_cache *pc; 1336 struct timeval curtime; 1337 struct pool_pagelist pq; 1338 int s; 1339 1340 if (pp->pr_roflags & PR_STATIC) 1341 return; 1342 1343 if (simple_lock_try(&pp->pr_slock) == 0) 1344 return; 1345 pr_enter(pp, file, line); 1346 TAILQ_INIT(&pq); 1347 1348 /* 1349 * Reclaim items from the pool's caches. 1350 */ 1351 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) 1352 pool_cache_reclaim(pc); 1353 1354 s = splclock(); 1355 curtime = mono_time; 1356 splx(s); 1357 1358 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) { 1359 phnext = TAILQ_NEXT(ph, ph_pagelist); 1360 1361 /* Check our minimum page claim */ 1362 if (pp->pr_npages <= pp->pr_minpages) 1363 break; 1364 1365 if (ph->ph_nmissing == 0) { 1366 struct timeval diff; 1367 timersub(&curtime, &ph->ph_time, &diff); 1368 if (diff.tv_sec < pool_inactive_time) 1369 continue; 1370 1371 /* 1372 * If freeing this page would put us below 1373 * the low water mark, stop now. 1374 */ 1375 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1376 pp->pr_minitems) 1377 break; 1378 1379 pr_rmpage(pp, ph, &pq); 1380 } 1381 } 1382 1383 pr_leave(pp); 1384 simple_unlock(&pp->pr_slock); 1385 if (TAILQ_EMPTY(&pq)) { 1386 return; 1387 } 1388 while ((ph = TAILQ_FIRST(&pq)) != NULL) { 1389 TAILQ_REMOVE(&pq, ph, ph_pagelist); 1390 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype); 1391 if (pp->pr_roflags & PR_PHINPAGE) { 1392 continue; 1393 } 1394 LIST_REMOVE(ph, ph_hashlist); 1395 s = splhigh(); 1396 pool_put(&phpool, ph); 1397 splx(s); 1398 } 1399 } 1400 1401 1402 /* 1403 * Drain pools, one at a time. 1404 * 1405 * Note, we must never be called from an interrupt context. 1406 */ 1407 void 1408 pool_drain(void *arg) 1409 { 1410 struct pool *pp; 1411 int s; 1412 1413 pp = NULL; 1414 s = splvm(); 1415 simple_lock(&pool_head_slock); 1416 if (drainpp == NULL) { 1417 drainpp = TAILQ_FIRST(&pool_head); 1418 } 1419 if (drainpp) { 1420 pp = drainpp; 1421 drainpp = TAILQ_NEXT(pp, pr_poollist); 1422 } 1423 simple_unlock(&pool_head_slock); 1424 pool_reclaim(pp); 1425 splx(s); 1426 } 1427 1428 1429 /* 1430 * Diagnostic helpers. 1431 */ 1432 void 1433 pool_print(struct pool *pp, const char *modif) 1434 { 1435 int s; 1436 1437 s = splvm(); 1438 if (simple_lock_try(&pp->pr_slock) == 0) { 1439 printf("pool %s is locked; try again later\n", 1440 pp->pr_wchan); 1441 splx(s); 1442 return; 1443 } 1444 pool_print1(pp, modif, printf); 1445 simple_unlock(&pp->pr_slock); 1446 splx(s); 1447 } 1448 1449 void 1450 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1451 { 1452 int didlock = 0; 1453 1454 if (pp == NULL) { 1455 (*pr)("Must specify a pool to print.\n"); 1456 return; 1457 } 1458 1459 /* 1460 * Called from DDB; interrupts should be blocked, and all 1461 * other processors should be paused. We can skip locking 1462 * the pool in this case. 1463 * 1464 * We do a simple_lock_try() just to print the lock 1465 * status, however. 1466 */ 1467 1468 if (simple_lock_try(&pp->pr_slock) == 0) 1469 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1470 else 1471 didlock = 1; 1472 1473 pool_print1(pp, modif, pr); 1474 1475 if (didlock) 1476 simple_unlock(&pp->pr_slock); 1477 } 1478 1479 static void 1480 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1481 { 1482 struct pool_item_header *ph; 1483 struct pool_cache *pc; 1484 struct pool_cache_group *pcg; 1485 #ifdef DIAGNOSTIC 1486 struct pool_item *pi; 1487 #endif 1488 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1489 char c; 1490 1491 while ((c = *modif++) != '\0') { 1492 if (c == 'l') 1493 print_log = 1; 1494 if (c == 'p') 1495 print_pagelist = 1; 1496 if (c == 'c') 1497 print_cache = 1; 1498 modif++; 1499 } 1500 1501 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1502 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1503 pp->pr_roflags); 1504 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype); 1505 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free); 1506 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1507 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1508 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1509 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1510 1511 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1512 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1513 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1514 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1515 1516 if (print_pagelist == 0) 1517 goto skip_pagelist; 1518 1519 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 1520 (*pr)("\n\tpage list:\n"); 1521 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) { 1522 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1523 ph->ph_page, ph->ph_nmissing, 1524 (u_long)ph->ph_time.tv_sec, 1525 (u_long)ph->ph_time.tv_usec); 1526 #ifdef DIAGNOSTIC 1527 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1528 if (pi->pi_magic != PI_MAGIC) { 1529 (*pr)("\t\t\titem %p, magic 0x%x\n", 1530 pi, pi->pi_magic); 1531 } 1532 } 1533 #endif 1534 } 1535 if (pp->pr_curpage == NULL) 1536 (*pr)("\tno current page\n"); 1537 else 1538 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1539 1540 skip_pagelist: 1541 1542 if (print_log == 0) 1543 goto skip_log; 1544 1545 (*pr)("\n"); 1546 if ((pp->pr_roflags & PR_LOGGING) == 0) 1547 (*pr)("\tno log\n"); 1548 else 1549 pr_printlog(pp, NULL, pr); 1550 1551 skip_log: 1552 1553 if (print_cache == 0) 1554 goto skip_cache; 1555 1556 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) { 1557 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc, 1558 pc->pc_allocfrom, pc->pc_freeto); 1559 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n", 1560 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems); 1561 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1562 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); 1563 for (i = 0; i < PCG_NOBJECTS; i++) 1564 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]); 1565 } 1566 } 1567 1568 skip_cache: 1569 1570 pr_enter_check(pp, pr); 1571 } 1572 1573 int 1574 pool_chk(struct pool *pp, const char *label) 1575 { 1576 struct pool_item_header *ph; 1577 int r = 0; 1578 1579 simple_lock(&pp->pr_slock); 1580 1581 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) { 1582 struct pool_item *pi; 1583 int n; 1584 caddr_t page; 1585 1586 page = (caddr_t)((u_long)ph & pp->pr_pagemask); 1587 if (page != ph->ph_page && 1588 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1589 if (label != NULL) 1590 printf("%s: ", label); 1591 printf("pool(%p:%s): page inconsistency: page %p;" 1592 " at page head addr %p (p %p)\n", pp, 1593 pp->pr_wchan, ph->ph_page, 1594 ph, page); 1595 r++; 1596 goto out; 1597 } 1598 1599 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1600 pi != NULL; 1601 pi = TAILQ_NEXT(pi,pi_list), n++) { 1602 1603 #ifdef DIAGNOSTIC 1604 if (pi->pi_magic != PI_MAGIC) { 1605 if (label != NULL) 1606 printf("%s: ", label); 1607 printf("pool(%s): free list modified: magic=%x;" 1608 " page %p; item ordinal %d;" 1609 " addr %p (p %p)\n", 1610 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1611 n, pi, page); 1612 panic("pool"); 1613 } 1614 #endif 1615 page = (caddr_t)((u_long)pi & pp->pr_pagemask); 1616 if (page == ph->ph_page) 1617 continue; 1618 1619 if (label != NULL) 1620 printf("%s: ", label); 1621 printf("pool(%p:%s): page inconsistency: page %p;" 1622 " item ordinal %d; addr %p (p %p)\n", pp, 1623 pp->pr_wchan, ph->ph_page, 1624 n, pi, page); 1625 r++; 1626 goto out; 1627 } 1628 } 1629 out: 1630 simple_unlock(&pp->pr_slock); 1631 return (r); 1632 } 1633 1634 /* 1635 * pool_cache_init: 1636 * 1637 * Initialize a pool cache. 1638 * 1639 * NOTE: If the pool must be protected from interrupts, we expect 1640 * to be called at the appropriate interrupt priority level. 1641 */ 1642 void 1643 pool_cache_init(struct pool_cache *pc, struct pool *pp, 1644 int (*ctor)(void *, void *, int), 1645 void (*dtor)(void *, void *), 1646 void *arg) 1647 { 1648 1649 TAILQ_INIT(&pc->pc_grouplist); 1650 simple_lock_init(&pc->pc_slock); 1651 1652 pc->pc_allocfrom = NULL; 1653 pc->pc_freeto = NULL; 1654 pc->pc_pool = pp; 1655 1656 pc->pc_ctor = ctor; 1657 pc->pc_dtor = dtor; 1658 pc->pc_arg = arg; 1659 1660 pc->pc_hits = 0; 1661 pc->pc_misses = 0; 1662 1663 pc->pc_ngroups = 0; 1664 1665 pc->pc_nitems = 0; 1666 1667 simple_lock(&pp->pr_slock); 1668 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist); 1669 simple_unlock(&pp->pr_slock); 1670 } 1671 1672 /* 1673 * pool_cache_destroy: 1674 * 1675 * Destroy a pool cache. 1676 */ 1677 void 1678 pool_cache_destroy(struct pool_cache *pc) 1679 { 1680 struct pool *pp = pc->pc_pool; 1681 1682 /* First, invalidate the entire cache. */ 1683 pool_cache_invalidate(pc); 1684 1685 /* ...and remove it from the pool's cache list. */ 1686 simple_lock(&pp->pr_slock); 1687 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist); 1688 simple_unlock(&pp->pr_slock); 1689 } 1690 1691 static __inline void * 1692 pcg_get(struct pool_cache_group *pcg) 1693 { 1694 void *object; 1695 u_int idx; 1696 1697 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 1698 KASSERT(pcg->pcg_avail != 0); 1699 idx = --pcg->pcg_avail; 1700 1701 KASSERT(pcg->pcg_objects[idx] != NULL); 1702 object = pcg->pcg_objects[idx]; 1703 pcg->pcg_objects[idx] = NULL; 1704 1705 return (object); 1706 } 1707 1708 static __inline void 1709 pcg_put(struct pool_cache_group *pcg, void *object) 1710 { 1711 u_int idx; 1712 1713 KASSERT(pcg->pcg_avail < PCG_NOBJECTS); 1714 idx = pcg->pcg_avail++; 1715 1716 KASSERT(pcg->pcg_objects[idx] == NULL); 1717 pcg->pcg_objects[idx] = object; 1718 } 1719 1720 /* 1721 * pool_cache_get: 1722 * 1723 * Get an object from a pool cache. 1724 */ 1725 void * 1726 pool_cache_get(struct pool_cache *pc, int flags) 1727 { 1728 struct pool_cache_group *pcg; 1729 void *object; 1730 1731 #ifdef LOCKDEBUG 1732 if (flags & PR_WAITOK) 1733 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)"); 1734 #endif 1735 1736 simple_lock(&pc->pc_slock); 1737 1738 if ((pcg = pc->pc_allocfrom) == NULL) { 1739 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1740 if (pcg->pcg_avail != 0) { 1741 pc->pc_allocfrom = pcg; 1742 goto have_group; 1743 } 1744 } 1745 1746 /* 1747 * No groups with any available objects. Allocate 1748 * a new object, construct it, and return it to 1749 * the caller. We will allocate a group, if necessary, 1750 * when the object is freed back to the cache. 1751 */ 1752 pc->pc_misses++; 1753 simple_unlock(&pc->pc_slock); 1754 object = pool_get(pc->pc_pool, flags); 1755 if (object != NULL && pc->pc_ctor != NULL) { 1756 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 1757 pool_put(pc->pc_pool, object); 1758 return (NULL); 1759 } 1760 } 1761 return (object); 1762 } 1763 1764 have_group: 1765 pc->pc_hits++; 1766 pc->pc_nitems--; 1767 object = pcg_get(pcg); 1768 1769 if (pcg->pcg_avail == 0) 1770 pc->pc_allocfrom = NULL; 1771 1772 simple_unlock(&pc->pc_slock); 1773 1774 return (object); 1775 } 1776 1777 /* 1778 * pool_cache_put: 1779 * 1780 * Put an object back to the pool cache. 1781 */ 1782 void 1783 pool_cache_put(struct pool_cache *pc, void *object) 1784 { 1785 struct pool_cache_group *pcg; 1786 int s; 1787 1788 simple_lock(&pc->pc_slock); 1789 1790 if ((pcg = pc->pc_freeto) == NULL) { 1791 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1792 if (pcg->pcg_avail != PCG_NOBJECTS) { 1793 pc->pc_freeto = pcg; 1794 goto have_group; 1795 } 1796 } 1797 1798 /* 1799 * No empty groups to free the object to. Attempt to 1800 * allocate one. 1801 */ 1802 simple_unlock(&pc->pc_slock); 1803 s = splvm(); 1804 pcg = pool_get(&pcgpool, PR_NOWAIT); 1805 splx(s); 1806 if (pcg != NULL) { 1807 memset(pcg, 0, sizeof(*pcg)); 1808 simple_lock(&pc->pc_slock); 1809 pc->pc_ngroups++; 1810 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list); 1811 if (pc->pc_freeto == NULL) 1812 pc->pc_freeto = pcg; 1813 goto have_group; 1814 } 1815 1816 /* 1817 * Unable to allocate a cache group; destruct the object 1818 * and free it back to the pool. 1819 */ 1820 pool_cache_destruct_object(pc, object); 1821 return; 1822 } 1823 1824 have_group: 1825 pc->pc_nitems++; 1826 pcg_put(pcg, object); 1827 1828 if (pcg->pcg_avail == PCG_NOBJECTS) 1829 pc->pc_freeto = NULL; 1830 1831 simple_unlock(&pc->pc_slock); 1832 } 1833 1834 /* 1835 * pool_cache_destruct_object: 1836 * 1837 * Force destruction of an object and its release back into 1838 * the pool. 1839 */ 1840 void 1841 pool_cache_destruct_object(struct pool_cache *pc, void *object) 1842 { 1843 1844 if (pc->pc_dtor != NULL) 1845 (*pc->pc_dtor)(pc->pc_arg, object); 1846 pool_put(pc->pc_pool, object); 1847 } 1848 1849 /* 1850 * pool_cache_do_invalidate: 1851 * 1852 * This internal function implements pool_cache_invalidate() and 1853 * pool_cache_reclaim(). 1854 */ 1855 static void 1856 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups, 1857 void (*putit)(struct pool *, void *)) 1858 { 1859 struct pool_cache_group *pcg, *npcg; 1860 void *object; 1861 int s; 1862 1863 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1864 pcg = npcg) { 1865 npcg = TAILQ_NEXT(pcg, pcg_list); 1866 while (pcg->pcg_avail != 0) { 1867 pc->pc_nitems--; 1868 object = pcg_get(pcg); 1869 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg) 1870 pc->pc_allocfrom = NULL; 1871 if (pc->pc_dtor != NULL) 1872 (*pc->pc_dtor)(pc->pc_arg, object); 1873 (*putit)(pc->pc_pool, object); 1874 } 1875 if (free_groups) { 1876 pc->pc_ngroups--; 1877 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list); 1878 if (pc->pc_freeto == pcg) 1879 pc->pc_freeto = NULL; 1880 s = splvm(); 1881 pool_put(&pcgpool, pcg); 1882 splx(s); 1883 } 1884 } 1885 } 1886 1887 /* 1888 * pool_cache_invalidate: 1889 * 1890 * Invalidate a pool cache (destruct and release all of the 1891 * cached objects). 1892 */ 1893 void 1894 pool_cache_invalidate(struct pool_cache *pc) 1895 { 1896 1897 simple_lock(&pc->pc_slock); 1898 pool_cache_do_invalidate(pc, 0, pool_put); 1899 simple_unlock(&pc->pc_slock); 1900 } 1901 1902 /* 1903 * pool_cache_reclaim: 1904 * 1905 * Reclaim a pool cache for pool_reclaim(). 1906 */ 1907 static void 1908 pool_cache_reclaim(struct pool_cache *pc) 1909 { 1910 1911 simple_lock(&pc->pc_slock); 1912 pool_cache_do_invalidate(pc, 1, pool_do_put); 1913 simple_unlock(&pc->pc_slock); 1914 } 1915