1 /* $NetBSD: subr_pool.c,v 1.273 2020/06/19 13:49:38 jdolecek Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018, 5 * 2020 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 11 * Maxime Villard. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.273 2020/06/19 13:49:38 jdolecek Exp $"); 37 38 #ifdef _KERNEL_OPT 39 #include "opt_ddb.h" 40 #include "opt_lockdebug.h" 41 #include "opt_pool.h" 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/bitops.h> 48 #include <sys/proc.h> 49 #include <sys/errno.h> 50 #include <sys/kernel.h> 51 #include <sys/vmem.h> 52 #include <sys/pool.h> 53 #include <sys/syslog.h> 54 #include <sys/debug.h> 55 #include <sys/lock.h> 56 #include <sys/lockdebug.h> 57 #include <sys/xcall.h> 58 #include <sys/cpu.h> 59 #include <sys/atomic.h> 60 #include <sys/asan.h> 61 #include <sys/msan.h> 62 #include <sys/fault.h> 63 64 #include <uvm/uvm_extern.h> 65 66 /* 67 * Pool resource management utility. 68 * 69 * Memory is allocated in pages which are split into pieces according to 70 * the pool item size. Each page is kept on one of three lists in the 71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 72 * for empty, full and partially-full pages respectively. The individual 73 * pool items are on a linked list headed by `ph_itemlist' in each page 74 * header. The memory for building the page list is either taken from 75 * the allocated pages themselves (for small pool items) or taken from 76 * an internal pool of page headers (`phpool'). 77 */ 78 79 /* List of all pools. Non static as needed by 'vmstat -m' */ 80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 81 82 /* Private pool for page header structures */ 83 #define PHPOOL_MAX 8 84 static struct pool phpool[PHPOOL_MAX]; 85 #define PHPOOL_FREELIST_NELEM(idx) \ 86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx))) 87 88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN)) 89 #define POOL_REDZONE 90 #endif 91 92 #if defined(POOL_QUARANTINE) 93 #define POOL_NOCACHE 94 #endif 95 96 #ifdef POOL_REDZONE 97 # ifdef KASAN 98 # define POOL_REDZONE_SIZE 8 99 # else 100 # define POOL_REDZONE_SIZE 2 101 # endif 102 static void pool_redzone_init(struct pool *, size_t); 103 static void pool_redzone_fill(struct pool *, void *); 104 static void pool_redzone_check(struct pool *, void *); 105 static void pool_cache_redzone_check(pool_cache_t, void *); 106 #else 107 # define pool_redzone_init(pp, sz) __nothing 108 # define pool_redzone_fill(pp, ptr) __nothing 109 # define pool_redzone_check(pp, ptr) __nothing 110 # define pool_cache_redzone_check(pc, ptr) __nothing 111 #endif 112 113 #ifdef KMSAN 114 static inline void pool_get_kmsan(struct pool *, void *); 115 static inline void pool_put_kmsan(struct pool *, void *); 116 static inline void pool_cache_get_kmsan(pool_cache_t, void *); 117 static inline void pool_cache_put_kmsan(pool_cache_t, void *); 118 #else 119 #define pool_get_kmsan(pp, ptr) __nothing 120 #define pool_put_kmsan(pp, ptr) __nothing 121 #define pool_cache_get_kmsan(pc, ptr) __nothing 122 #define pool_cache_put_kmsan(pc, ptr) __nothing 123 #endif 124 125 #ifdef POOL_QUARANTINE 126 static void pool_quarantine_init(struct pool *); 127 static void pool_quarantine_flush(struct pool *); 128 static bool pool_put_quarantine(struct pool *, void *, 129 struct pool_pagelist *); 130 #else 131 #define pool_quarantine_init(a) __nothing 132 #define pool_quarantine_flush(a) __nothing 133 #define pool_put_quarantine(a, b, c) false 134 #endif 135 136 #ifdef POOL_NOCACHE 137 static bool pool_cache_put_nocache(pool_cache_t, void *); 138 #else 139 #define pool_cache_put_nocache(a, b) false 140 #endif 141 142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop) 143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop) 144 145 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR) 146 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR) 147 148 /* 149 * Pool backend allocators. 150 * 151 * Each pool has a backend allocator that handles allocation, deallocation, 152 * and any additional draining that might be needed. 153 * 154 * We provide two standard allocators: 155 * 156 * pool_allocator_kmem - the default when no allocator is specified 157 * 158 * pool_allocator_nointr - used for pools that will not be accessed 159 * in interrupt context. 160 */ 161 void *pool_page_alloc(struct pool *, int); 162 void pool_page_free(struct pool *, void *); 163 164 static void *pool_page_alloc_meta(struct pool *, int); 165 static void pool_page_free_meta(struct pool *, void *); 166 167 struct pool_allocator pool_allocator_kmem = { 168 .pa_alloc = pool_page_alloc, 169 .pa_free = pool_page_free, 170 .pa_pagesz = 0 171 }; 172 173 struct pool_allocator pool_allocator_nointr = { 174 .pa_alloc = pool_page_alloc, 175 .pa_free = pool_page_free, 176 .pa_pagesz = 0 177 }; 178 179 struct pool_allocator pool_allocator_meta = { 180 .pa_alloc = pool_page_alloc_meta, 181 .pa_free = pool_page_free_meta, 182 .pa_pagesz = 0 183 }; 184 185 #define POOL_ALLOCATOR_BIG_BASE 13 186 static struct pool_allocator pool_allocator_big[] = { 187 { 188 .pa_alloc = pool_page_alloc, 189 .pa_free = pool_page_free, 190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0), 191 }, 192 { 193 .pa_alloc = pool_page_alloc, 194 .pa_free = pool_page_free, 195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1), 196 }, 197 { 198 .pa_alloc = pool_page_alloc, 199 .pa_free = pool_page_free, 200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2), 201 }, 202 { 203 .pa_alloc = pool_page_alloc, 204 .pa_free = pool_page_free, 205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3), 206 }, 207 { 208 .pa_alloc = pool_page_alloc, 209 .pa_free = pool_page_free, 210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4), 211 }, 212 { 213 .pa_alloc = pool_page_alloc, 214 .pa_free = pool_page_free, 215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5), 216 }, 217 { 218 .pa_alloc = pool_page_alloc, 219 .pa_free = pool_page_free, 220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6), 221 }, 222 { 223 .pa_alloc = pool_page_alloc, 224 .pa_free = pool_page_free, 225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7), 226 }, 227 { 228 .pa_alloc = pool_page_alloc, 229 .pa_free = pool_page_free, 230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8), 231 }, 232 { 233 .pa_alloc = pool_page_alloc, 234 .pa_free = pool_page_free, 235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9), 236 }, 237 { 238 .pa_alloc = pool_page_alloc, 239 .pa_free = pool_page_free, 240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10), 241 }, 242 { 243 .pa_alloc = pool_page_alloc, 244 .pa_free = pool_page_free, 245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11), 246 } 247 }; 248 249 static int pool_bigidx(size_t); 250 251 /* # of seconds to retain page after last use */ 252 int pool_inactive_time = 10; 253 254 /* Next candidate for drainage (see pool_drain()) */ 255 static struct pool *drainpp; 256 257 /* This lock protects both pool_head and drainpp. */ 258 static kmutex_t pool_head_lock; 259 static kcondvar_t pool_busy; 260 261 /* This lock protects initialization of a potentially shared pool allocator */ 262 static kmutex_t pool_allocator_lock; 263 264 static unsigned int poolid_counter = 0; 265 266 typedef uint32_t pool_item_bitmap_t; 267 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 268 #define BITMAP_MASK (BITMAP_SIZE - 1) 269 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2)) 270 271 struct pool_item_header { 272 /* Page headers */ 273 LIST_ENTRY(pool_item_header) 274 ph_pagelist; /* pool page list */ 275 union { 276 /* !PR_PHINPAGE */ 277 struct { 278 SPLAY_ENTRY(pool_item_header) 279 phu_node; /* off-page page headers */ 280 } phu_offpage; 281 /* PR_PHINPAGE */ 282 struct { 283 unsigned int phu_poolid; 284 } phu_onpage; 285 } ph_u1; 286 void * ph_page; /* this page's address */ 287 uint32_t ph_time; /* last referenced */ 288 uint16_t ph_nmissing; /* # of chunks in use */ 289 uint16_t ph_off; /* start offset in page */ 290 union { 291 /* !PR_USEBMAP */ 292 struct { 293 LIST_HEAD(, pool_item) 294 phu_itemlist; /* chunk list for this page */ 295 } phu_normal; 296 /* PR_USEBMAP */ 297 struct { 298 pool_item_bitmap_t phu_bitmap[1]; 299 } phu_notouch; 300 } ph_u2; 301 }; 302 #define ph_node ph_u1.phu_offpage.phu_node 303 #define ph_poolid ph_u1.phu_onpage.phu_poolid 304 #define ph_itemlist ph_u2.phu_normal.phu_itemlist 305 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap 306 307 #define PHSIZE ALIGN(sizeof(struct pool_item_header)) 308 309 CTASSERT(offsetof(struct pool_item_header, ph_u2) + 310 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header)); 311 312 #if defined(DIAGNOSTIC) && !defined(KASAN) 313 #define POOL_CHECK_MAGIC 314 #endif 315 316 struct pool_item { 317 #ifdef POOL_CHECK_MAGIC 318 u_int pi_magic; 319 #endif 320 #define PI_MAGIC 0xdeaddeadU 321 /* Other entries use only this list entry */ 322 LIST_ENTRY(pool_item) pi_list; 323 }; 324 325 #define POOL_NEEDS_CATCHUP(pp) \ 326 ((pp)->pr_nitems < (pp)->pr_minitems || \ 327 (pp)->pr_npages < (pp)->pr_minpages) 328 #define POOL_OBJ_TO_PAGE(pp, v) \ 329 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask) 330 331 /* 332 * Pool cache management. 333 * 334 * Pool caches provide a way for constructed objects to be cached by the 335 * pool subsystem. This can lead to performance improvements by avoiding 336 * needless object construction/destruction; it is deferred until absolutely 337 * necessary. 338 * 339 * Caches are grouped into cache groups. Each cache group references up 340 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 341 * object from the pool, it calls the object's constructor and places it 342 * into a cache group. When a cache group frees an object back to the 343 * pool, it first calls the object's destructor. This allows the object 344 * to persist in constructed form while freed to the cache. 345 * 346 * The pool references each cache, so that when a pool is drained by the 347 * pagedaemon, it can drain each individual cache as well. Each time a 348 * cache is drained, the most idle cache group is freed to the pool in 349 * its entirety. 350 * 351 * Pool caches are layed on top of pools. By layering them, we can avoid 352 * the complexity of cache management for pools which would not benefit 353 * from it. 354 */ 355 356 static struct pool pcg_normal_pool; 357 static struct pool pcg_large_pool; 358 static struct pool cache_pool; 359 static struct pool cache_cpu_pool; 360 361 static pcg_t *volatile pcg_large_cache __cacheline_aligned; 362 static pcg_t *volatile pcg_normal_cache __cacheline_aligned; 363 364 /* List of all caches. */ 365 TAILQ_HEAD(,pool_cache) pool_cache_head = 366 TAILQ_HEAD_INITIALIZER(pool_cache_head); 367 368 int pool_cache_disable; /* global disable for caching */ 369 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 370 371 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int, 372 void *); 373 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int, 374 void **, paddr_t *, int); 375 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 376 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 377 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 378 static void pool_cache_transfer(pool_cache_t); 379 static int pool_pcg_get(pcg_t *volatile *, pcg_t **); 380 static int pool_pcg_put(pcg_t *volatile *, pcg_t *); 381 static pcg_t * pool_pcg_trunc(pcg_t *volatile *); 382 383 static int pool_catchup(struct pool *); 384 static void pool_prime_page(struct pool *, void *, 385 struct pool_item_header *); 386 static void pool_update_curpage(struct pool *); 387 388 static int pool_grow(struct pool *, int); 389 static void *pool_allocator_alloc(struct pool *, int); 390 static void pool_allocator_free(struct pool *, void *); 391 392 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 393 void (*)(const char *, ...) __printflike(1, 2)); 394 static void pool_print1(struct pool *, const char *, 395 void (*)(const char *, ...) __printflike(1, 2)); 396 397 static int pool_chk_page(struct pool *, const char *, 398 struct pool_item_header *); 399 400 /* -------------------------------------------------------------------------- */ 401 402 static inline unsigned int 403 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph, 404 const void *v) 405 { 406 const char *cp = v; 407 unsigned int idx; 408 409 KASSERT(pp->pr_roflags & PR_USEBMAP); 410 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 411 412 if (__predict_false(idx >= pp->pr_itemsperpage)) { 413 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx, 414 pp->pr_itemsperpage); 415 } 416 417 return idx; 418 } 419 420 static inline void 421 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph, 422 void *obj) 423 { 424 unsigned int idx = pr_item_bitmap_index(pp, ph, obj); 425 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 426 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK); 427 428 if (__predict_false((*bitmap & mask) != 0)) { 429 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj); 430 } 431 432 *bitmap |= mask; 433 } 434 435 static inline void * 436 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph) 437 { 438 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 439 unsigned int idx; 440 int i; 441 442 for (i = 0; ; i++) { 443 int bit; 444 445 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 446 bit = ffs32(bitmap[i]); 447 if (bit) { 448 pool_item_bitmap_t mask; 449 450 bit--; 451 idx = (i * BITMAP_SIZE) + bit; 452 mask = 1U << bit; 453 KASSERT((bitmap[i] & mask) != 0); 454 bitmap[i] &= ~mask; 455 break; 456 } 457 } 458 KASSERT(idx < pp->pr_itemsperpage); 459 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 460 } 461 462 static inline void 463 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph) 464 { 465 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 466 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 467 int i; 468 469 for (i = 0; i < n; i++) { 470 bitmap[i] = (pool_item_bitmap_t)-1; 471 } 472 } 473 474 /* -------------------------------------------------------------------------- */ 475 476 static inline void 477 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph, 478 void *obj) 479 { 480 struct pool_item *pi = obj; 481 482 #ifdef POOL_CHECK_MAGIC 483 pi->pi_magic = PI_MAGIC; 484 #endif 485 486 if (pp->pr_redzone) { 487 /* 488 * Mark the pool_item as valid. The rest is already 489 * invalid. 490 */ 491 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0); 492 } 493 494 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 495 } 496 497 static inline void * 498 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph) 499 { 500 struct pool_item *pi; 501 void *v; 502 503 v = pi = LIST_FIRST(&ph->ph_itemlist); 504 if (__predict_false(v == NULL)) { 505 mutex_exit(&pp->pr_lock); 506 panic("%s: [%s] page empty", __func__, pp->pr_wchan); 507 } 508 KASSERTMSG((pp->pr_nitems > 0), 509 "%s: [%s] nitems %u inconsistent on itemlist", 510 __func__, pp->pr_wchan, pp->pr_nitems); 511 #ifdef POOL_CHECK_MAGIC 512 KASSERTMSG((pi->pi_magic == PI_MAGIC), 513 "%s: [%s] free list modified: " 514 "magic=%x; page %p; item addr %p", __func__, 515 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 516 #endif 517 518 /* 519 * Remove from item list. 520 */ 521 LIST_REMOVE(pi, pi_list); 522 523 return v; 524 } 525 526 /* -------------------------------------------------------------------------- */ 527 528 static inline void 529 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page, 530 void *object) 531 { 532 if (__predict_false((void *)ph->ph_page != page)) { 533 panic("%s: [%s] item %p not part of pool", __func__, 534 pp->pr_wchan, object); 535 } 536 if (__predict_false((char *)object < (char *)page + ph->ph_off)) { 537 panic("%s: [%s] item %p below item space", __func__, 538 pp->pr_wchan, object); 539 } 540 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 541 panic("%s: [%s] item %p poolid %u != %u", __func__, 542 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid); 543 } 544 } 545 546 static inline void 547 pc_phinpage_check(pool_cache_t pc, void *object) 548 { 549 struct pool_item_header *ph; 550 struct pool *pp; 551 void *page; 552 553 pp = &pc->pc_pool; 554 page = POOL_OBJ_TO_PAGE(pp, object); 555 ph = (struct pool_item_header *)page; 556 557 pr_phinpage_check(pp, ph, page, object); 558 } 559 560 /* -------------------------------------------------------------------------- */ 561 562 static inline int 563 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 564 { 565 566 /* 567 * We consider pool_item_header with smaller ph_page bigger. This 568 * unnatural ordering is for the benefit of pr_find_pagehead. 569 */ 570 if (a->ph_page < b->ph_page) 571 return 1; 572 else if (a->ph_page > b->ph_page) 573 return -1; 574 else 575 return 0; 576 } 577 578 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 579 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 580 581 static inline struct pool_item_header * 582 pr_find_pagehead_noalign(struct pool *pp, void *v) 583 { 584 struct pool_item_header *ph, tmp; 585 586 tmp.ph_page = (void *)(uintptr_t)v; 587 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 588 if (ph == NULL) { 589 ph = SPLAY_ROOT(&pp->pr_phtree); 590 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 591 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 592 } 593 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 594 } 595 596 return ph; 597 } 598 599 /* 600 * Return the pool page header based on item address. 601 */ 602 static inline struct pool_item_header * 603 pr_find_pagehead(struct pool *pp, void *v) 604 { 605 struct pool_item_header *ph, tmp; 606 607 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 608 ph = pr_find_pagehead_noalign(pp, v); 609 } else { 610 void *page = POOL_OBJ_TO_PAGE(pp, v); 611 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 612 ph = (struct pool_item_header *)page; 613 pr_phinpage_check(pp, ph, page, v); 614 } else { 615 tmp.ph_page = page; 616 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 617 } 618 } 619 620 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 621 ((char *)ph->ph_page <= (char *)v && 622 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 623 return ph; 624 } 625 626 static void 627 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 628 { 629 struct pool_item_header *ph; 630 631 while ((ph = LIST_FIRST(pq)) != NULL) { 632 LIST_REMOVE(ph, ph_pagelist); 633 pool_allocator_free(pp, ph->ph_page); 634 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 635 pool_put(pp->pr_phpool, ph); 636 } 637 } 638 639 /* 640 * Remove a page from the pool. 641 */ 642 static inline void 643 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 644 struct pool_pagelist *pq) 645 { 646 647 KASSERT(mutex_owned(&pp->pr_lock)); 648 649 /* 650 * If the page was idle, decrement the idle page count. 651 */ 652 if (ph->ph_nmissing == 0) { 653 KASSERT(pp->pr_nidle != 0); 654 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 655 "%s: [%s] nitems=%u < itemsperpage=%u", __func__, 656 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage); 657 pp->pr_nidle--; 658 } 659 660 pp->pr_nitems -= pp->pr_itemsperpage; 661 662 /* 663 * Unlink the page from the pool and queue it for release. 664 */ 665 LIST_REMOVE(ph, ph_pagelist); 666 if (pp->pr_roflags & PR_PHINPAGE) { 667 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 668 panic("%s: [%s] ph %p poolid %u != %u", 669 __func__, pp->pr_wchan, ph, ph->ph_poolid, 670 pp->pr_poolid); 671 } 672 } else { 673 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 674 } 675 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 676 677 pp->pr_npages--; 678 pp->pr_npagefree++; 679 680 pool_update_curpage(pp); 681 } 682 683 /* 684 * Initialize all the pools listed in the "pools" link set. 685 */ 686 void 687 pool_subsystem_init(void) 688 { 689 size_t size; 690 int idx; 691 692 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 693 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 694 cv_init(&pool_busy, "poolbusy"); 695 696 /* 697 * Initialize private page header pool and cache magazine pool if we 698 * haven't done so yet. 699 */ 700 for (idx = 0; idx < PHPOOL_MAX; idx++) { 701 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 702 int nelem; 703 size_t sz; 704 705 nelem = PHPOOL_FREELIST_NELEM(idx); 706 KASSERT(nelem != 0); 707 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 708 "phpool-%d", nelem); 709 sz = offsetof(struct pool_item_header, 710 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 711 pool_init(&phpool[idx], sz, 0, 0, 0, 712 phpool_names[idx], &pool_allocator_meta, IPL_VM); 713 } 714 715 size = sizeof(pcg_t) + 716 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 717 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 718 "pcgnormal", &pool_allocator_meta, IPL_VM); 719 720 size = sizeof(pcg_t) + 721 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 722 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 723 "pcglarge", &pool_allocator_meta, IPL_VM); 724 725 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 726 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 727 728 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 729 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 730 } 731 732 static inline bool 733 pool_init_is_phinpage(const struct pool *pp) 734 { 735 size_t pagesize; 736 737 if (pp->pr_roflags & PR_PHINPAGE) { 738 return true; 739 } 740 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) { 741 return false; 742 } 743 744 pagesize = pp->pr_alloc->pa_pagesz; 745 746 /* 747 * Threshold: the item size is below 1/16 of a page size, and below 748 * 8 times the page header size. The latter ensures we go off-page 749 * if the page header would make us waste a rather big item. 750 */ 751 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) { 752 return true; 753 } 754 755 /* Put the header into the page if it doesn't waste any items. */ 756 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) { 757 return true; 758 } 759 760 return false; 761 } 762 763 static inline bool 764 pool_init_is_usebmap(const struct pool *pp) 765 { 766 size_t bmapsize; 767 768 if (pp->pr_roflags & PR_NOTOUCH) { 769 return true; 770 } 771 772 /* 773 * If we're off-page, go with a bitmap. 774 */ 775 if (!(pp->pr_roflags & PR_PHINPAGE)) { 776 return true; 777 } 778 779 /* 780 * If we're on-page, and the page header can already contain a bitmap 781 * big enough to cover all the items of the page, go with a bitmap. 782 */ 783 bmapsize = roundup(PHSIZE, pp->pr_align) - 784 offsetof(struct pool_item_header, ph_bitmap[0]); 785 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0); 786 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) { 787 return true; 788 } 789 790 return false; 791 } 792 793 /* 794 * Initialize the given pool resource structure. 795 * 796 * We export this routine to allow other kernel parts to declare 797 * static pools that must be initialized before kmem(9) is available. 798 */ 799 void 800 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 801 const char *wchan, struct pool_allocator *palloc, int ipl) 802 { 803 struct pool *pp1; 804 size_t prsize; 805 int itemspace, slack; 806 807 /* XXX ioff will be removed. */ 808 KASSERT(ioff == 0); 809 810 #ifdef DEBUG 811 if (__predict_true(!cold)) 812 mutex_enter(&pool_head_lock); 813 /* 814 * Check that the pool hasn't already been initialised and 815 * added to the list of all pools. 816 */ 817 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 818 if (pp == pp1) 819 panic("%s: [%s] already initialised", __func__, 820 wchan); 821 } 822 if (__predict_true(!cold)) 823 mutex_exit(&pool_head_lock); 824 #endif 825 826 if (palloc == NULL) 827 palloc = &pool_allocator_kmem; 828 829 if (!cold) 830 mutex_enter(&pool_allocator_lock); 831 if (palloc->pa_refcnt++ == 0) { 832 if (palloc->pa_pagesz == 0) 833 palloc->pa_pagesz = PAGE_SIZE; 834 835 TAILQ_INIT(&palloc->pa_list); 836 837 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 838 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 839 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 840 } 841 if (!cold) 842 mutex_exit(&pool_allocator_lock); 843 844 if (align == 0) 845 align = ALIGN(1); 846 847 prsize = size; 848 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 849 prsize = sizeof(struct pool_item); 850 851 prsize = roundup(prsize, align); 852 KASSERTMSG((prsize <= palloc->pa_pagesz), 853 "%s: [%s] pool item size (%zu) larger than page size (%u)", 854 __func__, wchan, prsize, palloc->pa_pagesz); 855 856 /* 857 * Initialize the pool structure. 858 */ 859 LIST_INIT(&pp->pr_emptypages); 860 LIST_INIT(&pp->pr_fullpages); 861 LIST_INIT(&pp->pr_partpages); 862 pp->pr_cache = NULL; 863 pp->pr_curpage = NULL; 864 pp->pr_npages = 0; 865 pp->pr_minitems = 0; 866 pp->pr_minpages = 0; 867 pp->pr_maxpages = UINT_MAX; 868 pp->pr_roflags = flags; 869 pp->pr_flags = 0; 870 pp->pr_size = prsize; 871 pp->pr_reqsize = size; 872 pp->pr_align = align; 873 pp->pr_wchan = wchan; 874 pp->pr_alloc = palloc; 875 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter); 876 pp->pr_nitems = 0; 877 pp->pr_nout = 0; 878 pp->pr_hardlimit = UINT_MAX; 879 pp->pr_hardlimit_warning = NULL; 880 pp->pr_hardlimit_ratecap.tv_sec = 0; 881 pp->pr_hardlimit_ratecap.tv_usec = 0; 882 pp->pr_hardlimit_warning_last.tv_sec = 0; 883 pp->pr_hardlimit_warning_last.tv_usec = 0; 884 pp->pr_drain_hook = NULL; 885 pp->pr_drain_hook_arg = NULL; 886 pp->pr_freecheck = NULL; 887 pp->pr_redzone = false; 888 pool_redzone_init(pp, size); 889 pool_quarantine_init(pp); 890 891 /* 892 * Decide whether to put the page header off-page to avoid wasting too 893 * large a part of the page or too big an item. Off-page page headers 894 * go on a hash table, so we can match a returned item with its header 895 * based on the page address. 896 */ 897 if (pool_init_is_phinpage(pp)) { 898 /* Use the beginning of the page for the page header */ 899 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align); 900 pp->pr_itemoffset = roundup(PHSIZE, align); 901 pp->pr_roflags |= PR_PHINPAGE; 902 } else { 903 /* The page header will be taken from our page header pool */ 904 itemspace = palloc->pa_pagesz; 905 pp->pr_itemoffset = 0; 906 SPLAY_INIT(&pp->pr_phtree); 907 } 908 909 pp->pr_itemsperpage = itemspace / pp->pr_size; 910 KASSERT(pp->pr_itemsperpage != 0); 911 912 /* 913 * Decide whether to use a bitmap or a linked list to manage freed 914 * items. 915 */ 916 if (pool_init_is_usebmap(pp)) { 917 pp->pr_roflags |= PR_USEBMAP; 918 } 919 920 /* 921 * If we're off-page, then we're using a bitmap; choose the appropriate 922 * pool to allocate page headers, whose size varies depending on the 923 * bitmap. If we're on-page, nothing to do. 924 */ 925 if (!(pp->pr_roflags & PR_PHINPAGE)) { 926 int idx; 927 928 KASSERT(pp->pr_roflags & PR_USEBMAP); 929 930 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 931 idx++) { 932 /* nothing */ 933 } 934 if (idx >= PHPOOL_MAX) { 935 /* 936 * if you see this panic, consider to tweak 937 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 938 */ 939 panic("%s: [%s] too large itemsperpage(%d) for " 940 "PR_USEBMAP", __func__, 941 pp->pr_wchan, pp->pr_itemsperpage); 942 } 943 pp->pr_phpool = &phpool[idx]; 944 } else { 945 pp->pr_phpool = NULL; 946 } 947 948 /* 949 * Use the slack between the chunks and the page header 950 * for "cache coloring". 951 */ 952 slack = itemspace - pp->pr_itemsperpage * pp->pr_size; 953 pp->pr_maxcolor = rounddown(slack, align); 954 pp->pr_curcolor = 0; 955 956 pp->pr_nget = 0; 957 pp->pr_nfail = 0; 958 pp->pr_nput = 0; 959 pp->pr_npagealloc = 0; 960 pp->pr_npagefree = 0; 961 pp->pr_hiwat = 0; 962 pp->pr_nidle = 0; 963 pp->pr_refcnt = 0; 964 965 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 966 cv_init(&pp->pr_cv, wchan); 967 pp->pr_ipl = ipl; 968 969 /* Insert into the list of all pools. */ 970 if (!cold) 971 mutex_enter(&pool_head_lock); 972 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 973 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 974 break; 975 } 976 if (pp1 == NULL) 977 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 978 else 979 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 980 if (!cold) 981 mutex_exit(&pool_head_lock); 982 983 /* Insert this into the list of pools using this allocator. */ 984 if (!cold) 985 mutex_enter(&palloc->pa_lock); 986 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 987 if (!cold) 988 mutex_exit(&palloc->pa_lock); 989 } 990 991 /* 992 * De-commision a pool resource. 993 */ 994 void 995 pool_destroy(struct pool *pp) 996 { 997 struct pool_pagelist pq; 998 struct pool_item_header *ph; 999 1000 pool_quarantine_flush(pp); 1001 1002 /* Remove from global pool list */ 1003 mutex_enter(&pool_head_lock); 1004 while (pp->pr_refcnt != 0) 1005 cv_wait(&pool_busy, &pool_head_lock); 1006 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 1007 if (drainpp == pp) 1008 drainpp = NULL; 1009 mutex_exit(&pool_head_lock); 1010 1011 /* Remove this pool from its allocator's list of pools. */ 1012 mutex_enter(&pp->pr_alloc->pa_lock); 1013 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 1014 mutex_exit(&pp->pr_alloc->pa_lock); 1015 1016 mutex_enter(&pool_allocator_lock); 1017 if (--pp->pr_alloc->pa_refcnt == 0) 1018 mutex_destroy(&pp->pr_alloc->pa_lock); 1019 mutex_exit(&pool_allocator_lock); 1020 1021 mutex_enter(&pp->pr_lock); 1022 1023 KASSERT(pp->pr_cache == NULL); 1024 KASSERTMSG((pp->pr_nout == 0), 1025 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan, 1026 pp->pr_nout); 1027 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 1028 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 1029 1030 /* Remove all pages */ 1031 LIST_INIT(&pq); 1032 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1033 pr_rmpage(pp, ph, &pq); 1034 1035 mutex_exit(&pp->pr_lock); 1036 1037 pr_pagelist_free(pp, &pq); 1038 cv_destroy(&pp->pr_cv); 1039 mutex_destroy(&pp->pr_lock); 1040 } 1041 1042 void 1043 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 1044 { 1045 1046 /* XXX no locking -- must be used just after pool_init() */ 1047 KASSERTMSG((pp->pr_drain_hook == NULL), 1048 "%s: [%s] already set", __func__, pp->pr_wchan); 1049 pp->pr_drain_hook = fn; 1050 pp->pr_drain_hook_arg = arg; 1051 } 1052 1053 static struct pool_item_header * 1054 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 1055 { 1056 struct pool_item_header *ph; 1057 1058 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 1059 ph = storage; 1060 else 1061 ph = pool_get(pp->pr_phpool, flags); 1062 1063 return ph; 1064 } 1065 1066 /* 1067 * Grab an item from the pool. 1068 */ 1069 void * 1070 pool_get(struct pool *pp, int flags) 1071 { 1072 struct pool_item_header *ph; 1073 void *v; 1074 1075 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 1076 KASSERTMSG((pp->pr_itemsperpage != 0), 1077 "%s: [%s] pr_itemsperpage is zero, " 1078 "pool not initialized?", __func__, pp->pr_wchan); 1079 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 1080 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 1081 "%s: [%s] is IPL_NONE, but called from interrupt context", 1082 __func__, pp->pr_wchan); 1083 if (flags & PR_WAITOK) { 1084 ASSERT_SLEEPABLE(); 1085 } 1086 1087 if (flags & PR_NOWAIT) { 1088 if (fault_inject()) 1089 return NULL; 1090 } 1091 1092 mutex_enter(&pp->pr_lock); 1093 startover: 1094 /* 1095 * Check to see if we've reached the hard limit. If we have, 1096 * and we can wait, then wait until an item has been returned to 1097 * the pool. 1098 */ 1099 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 1100 "%s: %s: crossed hard limit", __func__, pp->pr_wchan); 1101 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1102 if (pp->pr_drain_hook != NULL) { 1103 /* 1104 * Since the drain hook is going to free things 1105 * back to the pool, unlock, call the hook, re-lock, 1106 * and check the hardlimit condition again. 1107 */ 1108 mutex_exit(&pp->pr_lock); 1109 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1110 mutex_enter(&pp->pr_lock); 1111 if (pp->pr_nout < pp->pr_hardlimit) 1112 goto startover; 1113 } 1114 1115 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1116 /* 1117 * XXX: A warning isn't logged in this case. Should 1118 * it be? 1119 */ 1120 pp->pr_flags |= PR_WANTED; 1121 do { 1122 cv_wait(&pp->pr_cv, &pp->pr_lock); 1123 } while (pp->pr_flags & PR_WANTED); 1124 goto startover; 1125 } 1126 1127 /* 1128 * Log a message that the hard limit has been hit. 1129 */ 1130 if (pp->pr_hardlimit_warning != NULL && 1131 ratecheck(&pp->pr_hardlimit_warning_last, 1132 &pp->pr_hardlimit_ratecap)) 1133 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1134 1135 pp->pr_nfail++; 1136 1137 mutex_exit(&pp->pr_lock); 1138 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1139 return NULL; 1140 } 1141 1142 /* 1143 * The convention we use is that if `curpage' is not NULL, then 1144 * it points at a non-empty bucket. In particular, `curpage' 1145 * never points at a page header which has PR_PHINPAGE set and 1146 * has no items in its bucket. 1147 */ 1148 if ((ph = pp->pr_curpage) == NULL) { 1149 int error; 1150 1151 KASSERTMSG((pp->pr_nitems == 0), 1152 "%s: [%s] curpage NULL, inconsistent nitems %u", 1153 __func__, pp->pr_wchan, pp->pr_nitems); 1154 1155 /* 1156 * Call the back-end page allocator for more memory. 1157 * Release the pool lock, as the back-end page allocator 1158 * may block. 1159 */ 1160 error = pool_grow(pp, flags); 1161 if (error != 0) { 1162 /* 1163 * pool_grow aborts when another thread 1164 * is allocating a new page. Retry if it 1165 * waited for it. 1166 */ 1167 if (error == ERESTART) 1168 goto startover; 1169 1170 /* 1171 * We were unable to allocate a page or item 1172 * header, but we released the lock during 1173 * allocation, so perhaps items were freed 1174 * back to the pool. Check for this case. 1175 */ 1176 if (pp->pr_curpage != NULL) 1177 goto startover; 1178 1179 pp->pr_nfail++; 1180 mutex_exit(&pp->pr_lock); 1181 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1182 return NULL; 1183 } 1184 1185 /* Start the allocation process over. */ 1186 goto startover; 1187 } 1188 if (pp->pr_roflags & PR_USEBMAP) { 1189 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 1190 "%s: [%s] pool page empty", __func__, pp->pr_wchan); 1191 v = pr_item_bitmap_get(pp, ph); 1192 } else { 1193 v = pr_item_linkedlist_get(pp, ph); 1194 } 1195 pp->pr_nitems--; 1196 pp->pr_nout++; 1197 if (ph->ph_nmissing == 0) { 1198 KASSERT(pp->pr_nidle > 0); 1199 pp->pr_nidle--; 1200 1201 /* 1202 * This page was previously empty. Move it to the list of 1203 * partially-full pages. This page is already curpage. 1204 */ 1205 LIST_REMOVE(ph, ph_pagelist); 1206 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1207 } 1208 ph->ph_nmissing++; 1209 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1210 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) || 1211 LIST_EMPTY(&ph->ph_itemlist)), 1212 "%s: [%s] nmissing (%u) inconsistent", __func__, 1213 pp->pr_wchan, ph->ph_nmissing); 1214 /* 1215 * This page is now full. Move it to the full list 1216 * and select a new current page. 1217 */ 1218 LIST_REMOVE(ph, ph_pagelist); 1219 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1220 pool_update_curpage(pp); 1221 } 1222 1223 pp->pr_nget++; 1224 1225 /* 1226 * If we have a low water mark and we are now below that low 1227 * water mark, add more items to the pool. 1228 */ 1229 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1230 /* 1231 * XXX: Should we log a warning? Should we set up a timeout 1232 * to try again in a second or so? The latter could break 1233 * a caller's assumptions about interrupt protection, etc. 1234 */ 1235 } 1236 1237 mutex_exit(&pp->pr_lock); 1238 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0); 1239 FREECHECK_OUT(&pp->pr_freecheck, v); 1240 pool_redzone_fill(pp, v); 1241 pool_get_kmsan(pp, v); 1242 if (flags & PR_ZERO) 1243 memset(v, 0, pp->pr_reqsize); 1244 return v; 1245 } 1246 1247 /* 1248 * Internal version of pool_put(). Pool is already locked/entered. 1249 */ 1250 static void 1251 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1252 { 1253 struct pool_item_header *ph; 1254 1255 KASSERT(mutex_owned(&pp->pr_lock)); 1256 pool_redzone_check(pp, v); 1257 pool_put_kmsan(pp, v); 1258 FREECHECK_IN(&pp->pr_freecheck, v); 1259 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1260 1261 KASSERTMSG((pp->pr_nout > 0), 1262 "%s: [%s] putting with none out", __func__, pp->pr_wchan); 1263 1264 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1265 panic("%s: [%s] page header missing", __func__, pp->pr_wchan); 1266 } 1267 1268 /* 1269 * Return to item list. 1270 */ 1271 if (pp->pr_roflags & PR_USEBMAP) { 1272 pr_item_bitmap_put(pp, ph, v); 1273 } else { 1274 pr_item_linkedlist_put(pp, ph, v); 1275 } 1276 KDASSERT(ph->ph_nmissing != 0); 1277 ph->ph_nmissing--; 1278 pp->pr_nput++; 1279 pp->pr_nitems++; 1280 pp->pr_nout--; 1281 1282 /* Cancel "pool empty" condition if it exists */ 1283 if (pp->pr_curpage == NULL) 1284 pp->pr_curpage = ph; 1285 1286 if (pp->pr_flags & PR_WANTED) { 1287 pp->pr_flags &= ~PR_WANTED; 1288 cv_broadcast(&pp->pr_cv); 1289 } 1290 1291 /* 1292 * If this page is now empty, do one of two things: 1293 * 1294 * (1) If we have more pages than the page high water mark, 1295 * free the page back to the system. ONLY CONSIDER 1296 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1297 * CLAIM. 1298 * 1299 * (2) Otherwise, move the page to the empty page list. 1300 * 1301 * Either way, select a new current page (so we use a partially-full 1302 * page if one is available). 1303 */ 1304 if (ph->ph_nmissing == 0) { 1305 pp->pr_nidle++; 1306 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems && 1307 pp->pr_npages > pp->pr_minpages && 1308 pp->pr_npages > pp->pr_maxpages) { 1309 pr_rmpage(pp, ph, pq); 1310 } else { 1311 LIST_REMOVE(ph, ph_pagelist); 1312 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1313 1314 /* 1315 * Update the timestamp on the page. A page must 1316 * be idle for some period of time before it can 1317 * be reclaimed by the pagedaemon. This minimizes 1318 * ping-pong'ing for memory. 1319 * 1320 * note for 64-bit time_t: truncating to 32-bit is not 1321 * a problem for our usage. 1322 */ 1323 ph->ph_time = time_uptime; 1324 } 1325 pool_update_curpage(pp); 1326 } 1327 1328 /* 1329 * If the page was previously completely full, move it to the 1330 * partially-full list and make it the current page. The next 1331 * allocation will get the item from this page, instead of 1332 * further fragmenting the pool. 1333 */ 1334 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1335 LIST_REMOVE(ph, ph_pagelist); 1336 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1337 pp->pr_curpage = ph; 1338 } 1339 } 1340 1341 void 1342 pool_put(struct pool *pp, void *v) 1343 { 1344 struct pool_pagelist pq; 1345 1346 LIST_INIT(&pq); 1347 1348 mutex_enter(&pp->pr_lock); 1349 if (!pool_put_quarantine(pp, v, &pq)) { 1350 pool_do_put(pp, v, &pq); 1351 } 1352 mutex_exit(&pp->pr_lock); 1353 1354 pr_pagelist_free(pp, &pq); 1355 } 1356 1357 /* 1358 * pool_grow: grow a pool by a page. 1359 * 1360 * => called with pool locked. 1361 * => unlock and relock the pool. 1362 * => return with pool locked. 1363 */ 1364 1365 static int 1366 pool_grow(struct pool *pp, int flags) 1367 { 1368 struct pool_item_header *ph; 1369 char *storage; 1370 1371 /* 1372 * If there's a pool_grow in progress, wait for it to complete 1373 * and try again from the top. 1374 */ 1375 if (pp->pr_flags & PR_GROWING) { 1376 if (flags & PR_WAITOK) { 1377 do { 1378 cv_wait(&pp->pr_cv, &pp->pr_lock); 1379 } while (pp->pr_flags & PR_GROWING); 1380 return ERESTART; 1381 } else { 1382 if (pp->pr_flags & PR_GROWINGNOWAIT) { 1383 /* 1384 * This needs an unlock/relock dance so 1385 * that the other caller has a chance to 1386 * run and actually do the thing. Note 1387 * that this is effectively a busy-wait. 1388 */ 1389 mutex_exit(&pp->pr_lock); 1390 mutex_enter(&pp->pr_lock); 1391 return ERESTART; 1392 } 1393 return EWOULDBLOCK; 1394 } 1395 } 1396 pp->pr_flags |= PR_GROWING; 1397 if (flags & PR_WAITOK) 1398 mutex_exit(&pp->pr_lock); 1399 else 1400 pp->pr_flags |= PR_GROWINGNOWAIT; 1401 1402 storage = pool_allocator_alloc(pp, flags); 1403 if (__predict_false(storage == NULL)) 1404 goto out; 1405 1406 ph = pool_alloc_item_header(pp, storage, flags); 1407 if (__predict_false(ph == NULL)) { 1408 pool_allocator_free(pp, storage); 1409 goto out; 1410 } 1411 1412 if (flags & PR_WAITOK) 1413 mutex_enter(&pp->pr_lock); 1414 pool_prime_page(pp, storage, ph); 1415 pp->pr_npagealloc++; 1416 KASSERT(pp->pr_flags & PR_GROWING); 1417 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1418 /* 1419 * If anyone was waiting for pool_grow, notify them that we 1420 * may have just done it. 1421 */ 1422 cv_broadcast(&pp->pr_cv); 1423 return 0; 1424 out: 1425 if (flags & PR_WAITOK) 1426 mutex_enter(&pp->pr_lock); 1427 KASSERT(pp->pr_flags & PR_GROWING); 1428 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1429 return ENOMEM; 1430 } 1431 1432 void 1433 pool_prime(struct pool *pp, int n) 1434 { 1435 1436 mutex_enter(&pp->pr_lock); 1437 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1438 if (pp->pr_maxpages <= pp->pr_minpages) 1439 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1440 while (pp->pr_npages < pp->pr_minpages) 1441 (void) pool_grow(pp, PR_WAITOK); 1442 mutex_exit(&pp->pr_lock); 1443 } 1444 1445 /* 1446 * Add a page worth of items to the pool. 1447 * 1448 * Note, we must be called with the pool descriptor LOCKED. 1449 */ 1450 static void 1451 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1452 { 1453 const unsigned int align = pp->pr_align; 1454 struct pool_item *pi; 1455 void *cp = storage; 1456 int n; 1457 1458 KASSERT(mutex_owned(&pp->pr_lock)); 1459 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1460 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1461 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp); 1462 1463 /* 1464 * Insert page header. 1465 */ 1466 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1467 LIST_INIT(&ph->ph_itemlist); 1468 ph->ph_page = storage; 1469 ph->ph_nmissing = 0; 1470 ph->ph_time = time_uptime; 1471 if (pp->pr_roflags & PR_PHINPAGE) 1472 ph->ph_poolid = pp->pr_poolid; 1473 else 1474 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1475 1476 pp->pr_nidle++; 1477 1478 /* 1479 * The item space starts after the on-page header, if any. 1480 */ 1481 ph->ph_off = pp->pr_itemoffset; 1482 1483 /* 1484 * Color this page. 1485 */ 1486 ph->ph_off += pp->pr_curcolor; 1487 cp = (char *)cp + ph->ph_off; 1488 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1489 pp->pr_curcolor = 0; 1490 1491 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1492 1493 /* 1494 * Insert remaining chunks on the bucket list. 1495 */ 1496 n = pp->pr_itemsperpage; 1497 pp->pr_nitems += n; 1498 1499 if (pp->pr_roflags & PR_USEBMAP) { 1500 pr_item_bitmap_init(pp, ph); 1501 } else { 1502 while (n--) { 1503 pi = (struct pool_item *)cp; 1504 1505 KASSERT((((vaddr_t)pi) & (align - 1)) == 0); 1506 1507 /* Insert on page list */ 1508 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1509 #ifdef POOL_CHECK_MAGIC 1510 pi->pi_magic = PI_MAGIC; 1511 #endif 1512 cp = (char *)cp + pp->pr_size; 1513 1514 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1515 } 1516 } 1517 1518 /* 1519 * If the pool was depleted, point at the new page. 1520 */ 1521 if (pp->pr_curpage == NULL) 1522 pp->pr_curpage = ph; 1523 1524 if (++pp->pr_npages > pp->pr_hiwat) 1525 pp->pr_hiwat = pp->pr_npages; 1526 } 1527 1528 /* 1529 * Used by pool_get() when nitems drops below the low water mark. This 1530 * is used to catch up pr_nitems with the low water mark. 1531 * 1532 * Note 1, we never wait for memory here, we let the caller decide what to do. 1533 * 1534 * Note 2, we must be called with the pool already locked, and we return 1535 * with it locked. 1536 */ 1537 static int 1538 pool_catchup(struct pool *pp) 1539 { 1540 int error = 0; 1541 1542 while (POOL_NEEDS_CATCHUP(pp)) { 1543 error = pool_grow(pp, PR_NOWAIT); 1544 if (error) { 1545 if (error == ERESTART) 1546 continue; 1547 break; 1548 } 1549 } 1550 return error; 1551 } 1552 1553 static void 1554 pool_update_curpage(struct pool *pp) 1555 { 1556 1557 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1558 if (pp->pr_curpage == NULL) { 1559 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1560 } 1561 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1562 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1563 } 1564 1565 void 1566 pool_setlowat(struct pool *pp, int n) 1567 { 1568 1569 mutex_enter(&pp->pr_lock); 1570 pp->pr_minitems = n; 1571 1572 /* Make sure we're caught up with the newly-set low water mark. */ 1573 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1574 /* 1575 * XXX: Should we log a warning? Should we set up a timeout 1576 * to try again in a second or so? The latter could break 1577 * a caller's assumptions about interrupt protection, etc. 1578 */ 1579 } 1580 1581 mutex_exit(&pp->pr_lock); 1582 } 1583 1584 void 1585 pool_sethiwat(struct pool *pp, int n) 1586 { 1587 1588 mutex_enter(&pp->pr_lock); 1589 1590 pp->pr_maxitems = n; 1591 1592 mutex_exit(&pp->pr_lock); 1593 } 1594 1595 void 1596 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1597 { 1598 1599 mutex_enter(&pp->pr_lock); 1600 1601 pp->pr_hardlimit = n; 1602 pp->pr_hardlimit_warning = warnmess; 1603 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1604 pp->pr_hardlimit_warning_last.tv_sec = 0; 1605 pp->pr_hardlimit_warning_last.tv_usec = 0; 1606 1607 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1608 1609 mutex_exit(&pp->pr_lock); 1610 } 1611 1612 /* 1613 * Release all complete pages that have not been used recently. 1614 * 1615 * Must not be called from interrupt context. 1616 */ 1617 int 1618 pool_reclaim(struct pool *pp) 1619 { 1620 struct pool_item_header *ph, *phnext; 1621 struct pool_pagelist pq; 1622 uint32_t curtime; 1623 bool klock; 1624 int rv; 1625 1626 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1627 1628 if (pp->pr_drain_hook != NULL) { 1629 /* 1630 * The drain hook must be called with the pool unlocked. 1631 */ 1632 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1633 } 1634 1635 /* 1636 * XXXSMP Because we do not want to cause non-MPSAFE code 1637 * to block. 1638 */ 1639 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1640 pp->pr_ipl == IPL_SOFTSERIAL) { 1641 KERNEL_LOCK(1, NULL); 1642 klock = true; 1643 } else 1644 klock = false; 1645 1646 /* Reclaim items from the pool's cache (if any). */ 1647 if (pp->pr_cache != NULL) 1648 pool_cache_invalidate(pp->pr_cache); 1649 1650 if (mutex_tryenter(&pp->pr_lock) == 0) { 1651 if (klock) { 1652 KERNEL_UNLOCK_ONE(NULL); 1653 } 1654 return 0; 1655 } 1656 1657 LIST_INIT(&pq); 1658 1659 curtime = time_uptime; 1660 1661 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1662 phnext = LIST_NEXT(ph, ph_pagelist); 1663 1664 /* Check our minimum page claim */ 1665 if (pp->pr_npages <= pp->pr_minpages) 1666 break; 1667 1668 KASSERT(ph->ph_nmissing == 0); 1669 if (curtime - ph->ph_time < pool_inactive_time) 1670 continue; 1671 1672 /* 1673 * If freeing this page would put us below the minimum free items 1674 * or the minimum pages, stop now. 1675 */ 1676 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems || 1677 pp->pr_npages - 1 < pp->pr_minpages) 1678 break; 1679 1680 pr_rmpage(pp, ph, &pq); 1681 } 1682 1683 mutex_exit(&pp->pr_lock); 1684 1685 if (LIST_EMPTY(&pq)) 1686 rv = 0; 1687 else { 1688 pr_pagelist_free(pp, &pq); 1689 rv = 1; 1690 } 1691 1692 if (klock) { 1693 KERNEL_UNLOCK_ONE(NULL); 1694 } 1695 1696 return rv; 1697 } 1698 1699 /* 1700 * Drain pools, one at a time. The drained pool is returned within ppp. 1701 * 1702 * Note, must never be called from interrupt context. 1703 */ 1704 bool 1705 pool_drain(struct pool **ppp) 1706 { 1707 bool reclaimed; 1708 struct pool *pp; 1709 1710 KASSERT(!TAILQ_EMPTY(&pool_head)); 1711 1712 pp = NULL; 1713 1714 /* Find next pool to drain, and add a reference. */ 1715 mutex_enter(&pool_head_lock); 1716 do { 1717 if (drainpp == NULL) { 1718 drainpp = TAILQ_FIRST(&pool_head); 1719 } 1720 if (drainpp != NULL) { 1721 pp = drainpp; 1722 drainpp = TAILQ_NEXT(pp, pr_poollist); 1723 } 1724 /* 1725 * Skip completely idle pools. We depend on at least 1726 * one pool in the system being active. 1727 */ 1728 } while (pp == NULL || pp->pr_npages == 0); 1729 pp->pr_refcnt++; 1730 mutex_exit(&pool_head_lock); 1731 1732 /* Drain the cache (if any) and pool.. */ 1733 reclaimed = pool_reclaim(pp); 1734 1735 /* Finally, unlock the pool. */ 1736 mutex_enter(&pool_head_lock); 1737 pp->pr_refcnt--; 1738 cv_broadcast(&pool_busy); 1739 mutex_exit(&pool_head_lock); 1740 1741 if (ppp != NULL) 1742 *ppp = pp; 1743 1744 return reclaimed; 1745 } 1746 1747 /* 1748 * Calculate the total number of pages consumed by pools. 1749 */ 1750 int 1751 pool_totalpages(void) 1752 { 1753 1754 mutex_enter(&pool_head_lock); 1755 int pages = pool_totalpages_locked(); 1756 mutex_exit(&pool_head_lock); 1757 1758 return pages; 1759 } 1760 1761 int 1762 pool_totalpages_locked(void) 1763 { 1764 struct pool *pp; 1765 uint64_t total = 0; 1766 1767 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1768 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz; 1769 1770 if ((pp->pr_roflags & PR_RECURSIVE) != 0) 1771 bytes -= (pp->pr_nout * pp->pr_size); 1772 total += bytes; 1773 } 1774 1775 return atop(total); 1776 } 1777 1778 /* 1779 * Diagnostic helpers. 1780 */ 1781 1782 void 1783 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1784 { 1785 struct pool *pp; 1786 1787 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1788 pool_printit(pp, modif, pr); 1789 } 1790 } 1791 1792 void 1793 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1794 { 1795 1796 if (pp == NULL) { 1797 (*pr)("Must specify a pool to print.\n"); 1798 return; 1799 } 1800 1801 pool_print1(pp, modif, pr); 1802 } 1803 1804 static void 1805 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1806 void (*pr)(const char *, ...)) 1807 { 1808 struct pool_item_header *ph; 1809 1810 LIST_FOREACH(ph, pl, ph_pagelist) { 1811 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1812 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1813 #ifdef POOL_CHECK_MAGIC 1814 struct pool_item *pi; 1815 if (!(pp->pr_roflags & PR_USEBMAP)) { 1816 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1817 if (pi->pi_magic != PI_MAGIC) { 1818 (*pr)("\t\t\titem %p, magic 0x%x\n", 1819 pi, pi->pi_magic); 1820 } 1821 } 1822 } 1823 #endif 1824 } 1825 } 1826 1827 static void 1828 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1829 { 1830 struct pool_item_header *ph; 1831 pool_cache_t pc; 1832 pcg_t *pcg; 1833 pool_cache_cpu_t *cc; 1834 uint64_t cpuhit, cpumiss, pchit, pcmiss; 1835 uint32_t nfull; 1836 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1837 char c; 1838 1839 while ((c = *modif++) != '\0') { 1840 if (c == 'l') 1841 print_log = 1; 1842 if (c == 'p') 1843 print_pagelist = 1; 1844 if (c == 'c') 1845 print_cache = 1; 1846 } 1847 1848 if ((pc = pp->pr_cache) != NULL) { 1849 (*pr)("POOL CACHE"); 1850 } else { 1851 (*pr)("POOL"); 1852 } 1853 1854 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1855 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1856 pp->pr_roflags); 1857 (*pr)("\talloc %p\n", pp->pr_alloc); 1858 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1859 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1860 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1861 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1862 1863 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1864 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1865 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1866 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1867 1868 if (print_pagelist == 0) 1869 goto skip_pagelist; 1870 1871 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1872 (*pr)("\n\tempty page list:\n"); 1873 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1874 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1875 (*pr)("\n\tfull page list:\n"); 1876 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1877 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1878 (*pr)("\n\tpartial-page list:\n"); 1879 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1880 1881 if (pp->pr_curpage == NULL) 1882 (*pr)("\tno current page\n"); 1883 else 1884 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1885 1886 skip_pagelist: 1887 if (print_log == 0) 1888 goto skip_log; 1889 1890 (*pr)("\n"); 1891 1892 skip_log: 1893 1894 #define PR_GROUPLIST(pcg) \ 1895 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1896 for (i = 0; i < pcg->pcg_size; i++) { \ 1897 if (pcg->pcg_objects[i].pcgo_pa != \ 1898 POOL_PADDR_INVALID) { \ 1899 (*pr)("\t\t\t%p, 0x%llx\n", \ 1900 pcg->pcg_objects[i].pcgo_va, \ 1901 (unsigned long long) \ 1902 pcg->pcg_objects[i].pcgo_pa); \ 1903 } else { \ 1904 (*pr)("\t\t\t%p\n", \ 1905 pcg->pcg_objects[i].pcgo_va); \ 1906 } \ 1907 } 1908 1909 if (pc != NULL) { 1910 cpuhit = 0; 1911 cpumiss = 0; 1912 pcmiss = 0; 1913 nfull = 0; 1914 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1915 if ((cc = pc->pc_cpus[i]) == NULL) 1916 continue; 1917 cpuhit += cc->cc_hits; 1918 cpumiss += cc->cc_misses; 1919 pcmiss += cc->cc_pcmisses; 1920 nfull += cc->cc_nfull; 1921 } 1922 pchit = cpumiss - pcmiss; 1923 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1924 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss); 1925 (*pr)("\tcache layer full groups %u\n", nfull); 1926 if (print_cache) { 1927 (*pr)("\tfull cache groups:\n"); 1928 for (pcg = pc->pc_fullgroups; pcg != NULL; 1929 pcg = pcg->pcg_next) { 1930 PR_GROUPLIST(pcg); 1931 } 1932 } 1933 } 1934 #undef PR_GROUPLIST 1935 } 1936 1937 static int 1938 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1939 { 1940 struct pool_item *pi; 1941 void *page; 1942 int n; 1943 1944 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1945 page = POOL_OBJ_TO_PAGE(pp, ph); 1946 if (page != ph->ph_page && 1947 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1948 if (label != NULL) 1949 printf("%s: ", label); 1950 printf("pool(%p:%s): page inconsistency: page %p;" 1951 " at page head addr %p (p %p)\n", pp, 1952 pp->pr_wchan, ph->ph_page, 1953 ph, page); 1954 return 1; 1955 } 1956 } 1957 1958 if ((pp->pr_roflags & PR_USEBMAP) != 0) 1959 return 0; 1960 1961 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1962 pi != NULL; 1963 pi = LIST_NEXT(pi,pi_list), n++) { 1964 1965 #ifdef POOL_CHECK_MAGIC 1966 if (pi->pi_magic != PI_MAGIC) { 1967 if (label != NULL) 1968 printf("%s: ", label); 1969 printf("pool(%s): free list modified: magic=%x;" 1970 " page %p; item ordinal %d; addr %p\n", 1971 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1972 n, pi); 1973 panic("pool"); 1974 } 1975 #endif 1976 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1977 continue; 1978 } 1979 page = POOL_OBJ_TO_PAGE(pp, pi); 1980 if (page == ph->ph_page) 1981 continue; 1982 1983 if (label != NULL) 1984 printf("%s: ", label); 1985 printf("pool(%p:%s): page inconsistency: page %p;" 1986 " item ordinal %d; addr %p (p %p)\n", pp, 1987 pp->pr_wchan, ph->ph_page, 1988 n, pi, page); 1989 return 1; 1990 } 1991 return 0; 1992 } 1993 1994 1995 int 1996 pool_chk(struct pool *pp, const char *label) 1997 { 1998 struct pool_item_header *ph; 1999 int r = 0; 2000 2001 mutex_enter(&pp->pr_lock); 2002 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2003 r = pool_chk_page(pp, label, ph); 2004 if (r) { 2005 goto out; 2006 } 2007 } 2008 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2009 r = pool_chk_page(pp, label, ph); 2010 if (r) { 2011 goto out; 2012 } 2013 } 2014 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2015 r = pool_chk_page(pp, label, ph); 2016 if (r) { 2017 goto out; 2018 } 2019 } 2020 2021 out: 2022 mutex_exit(&pp->pr_lock); 2023 return r; 2024 } 2025 2026 /* 2027 * pool_cache_init: 2028 * 2029 * Initialize a pool cache. 2030 */ 2031 pool_cache_t 2032 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2033 const char *wchan, struct pool_allocator *palloc, int ipl, 2034 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2035 { 2036 pool_cache_t pc; 2037 2038 pc = pool_get(&cache_pool, PR_WAITOK); 2039 if (pc == NULL) 2040 return NULL; 2041 2042 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2043 palloc, ipl, ctor, dtor, arg); 2044 2045 return pc; 2046 } 2047 2048 /* 2049 * pool_cache_bootstrap: 2050 * 2051 * Kernel-private version of pool_cache_init(). The caller 2052 * provides initial storage. 2053 */ 2054 void 2055 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2056 u_int align_offset, u_int flags, const char *wchan, 2057 struct pool_allocator *palloc, int ipl, 2058 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2059 void *arg) 2060 { 2061 CPU_INFO_ITERATOR cii; 2062 pool_cache_t pc1; 2063 struct cpu_info *ci; 2064 struct pool *pp; 2065 2066 pp = &pc->pc_pool; 2067 if (palloc == NULL && ipl == IPL_NONE) { 2068 if (size > PAGE_SIZE) { 2069 int bigidx = pool_bigidx(size); 2070 2071 palloc = &pool_allocator_big[bigidx]; 2072 flags |= PR_NOALIGN; 2073 } else 2074 palloc = &pool_allocator_nointr; 2075 } 2076 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2077 2078 if (ctor == NULL) { 2079 ctor = NO_CTOR; 2080 } 2081 if (dtor == NULL) { 2082 dtor = NO_DTOR; 2083 } 2084 2085 pc->pc_fullgroups = NULL; 2086 pc->pc_partgroups = NULL; 2087 pc->pc_ctor = ctor; 2088 pc->pc_dtor = dtor; 2089 pc->pc_arg = arg; 2090 pc->pc_refcnt = 0; 2091 pc->pc_freecheck = NULL; 2092 2093 if ((flags & PR_LARGECACHE) != 0) { 2094 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2095 pc->pc_pcgpool = &pcg_large_pool; 2096 pc->pc_pcgcache = &pcg_large_cache; 2097 } else { 2098 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2099 pc->pc_pcgpool = &pcg_normal_pool; 2100 pc->pc_pcgcache = &pcg_normal_cache; 2101 } 2102 2103 /* Allocate per-CPU caches. */ 2104 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2105 pc->pc_ncpu = 0; 2106 if (ncpu < 2) { 2107 /* XXX For sparc: boot CPU is not attached yet. */ 2108 pool_cache_cpu_init1(curcpu(), pc); 2109 } else { 2110 for (CPU_INFO_FOREACH(cii, ci)) { 2111 pool_cache_cpu_init1(ci, pc); 2112 } 2113 } 2114 2115 /* Add to list of all pools. */ 2116 if (__predict_true(!cold)) 2117 mutex_enter(&pool_head_lock); 2118 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2119 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2120 break; 2121 } 2122 if (pc1 == NULL) 2123 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2124 else 2125 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2126 if (__predict_true(!cold)) 2127 mutex_exit(&pool_head_lock); 2128 2129 membar_sync(); 2130 pp->pr_cache = pc; 2131 } 2132 2133 /* 2134 * pool_cache_destroy: 2135 * 2136 * Destroy a pool cache. 2137 */ 2138 void 2139 pool_cache_destroy(pool_cache_t pc) 2140 { 2141 2142 pool_cache_bootstrap_destroy(pc); 2143 pool_put(&cache_pool, pc); 2144 } 2145 2146 /* 2147 * pool_cache_bootstrap_destroy: 2148 * 2149 * Destroy a pool cache. 2150 */ 2151 void 2152 pool_cache_bootstrap_destroy(pool_cache_t pc) 2153 { 2154 struct pool *pp = &pc->pc_pool; 2155 u_int i; 2156 2157 /* Remove it from the global list. */ 2158 mutex_enter(&pool_head_lock); 2159 while (pc->pc_refcnt != 0) 2160 cv_wait(&pool_busy, &pool_head_lock); 2161 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2162 mutex_exit(&pool_head_lock); 2163 2164 /* First, invalidate the entire cache. */ 2165 pool_cache_invalidate(pc); 2166 2167 /* Disassociate it from the pool. */ 2168 mutex_enter(&pp->pr_lock); 2169 pp->pr_cache = NULL; 2170 mutex_exit(&pp->pr_lock); 2171 2172 /* Destroy per-CPU data */ 2173 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 2174 pool_cache_invalidate_cpu(pc, i); 2175 2176 /* Finally, destroy it. */ 2177 pool_destroy(pp); 2178 } 2179 2180 /* 2181 * pool_cache_cpu_init1: 2182 * 2183 * Called for each pool_cache whenever a new CPU is attached. 2184 */ 2185 static void 2186 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2187 { 2188 pool_cache_cpu_t *cc; 2189 int index; 2190 2191 index = ci->ci_index; 2192 2193 KASSERT(index < __arraycount(pc->pc_cpus)); 2194 2195 if ((cc = pc->pc_cpus[index]) != NULL) { 2196 return; 2197 } 2198 2199 /* 2200 * The first CPU is 'free'. This needs to be the case for 2201 * bootstrap - we may not be able to allocate yet. 2202 */ 2203 if (pc->pc_ncpu == 0) { 2204 cc = &pc->pc_cpu0; 2205 pc->pc_ncpu = 1; 2206 } else { 2207 pc->pc_ncpu++; 2208 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2209 } 2210 2211 cc->cc_current = __UNCONST(&pcg_dummy); 2212 cc->cc_previous = __UNCONST(&pcg_dummy); 2213 cc->cc_pcgcache = pc->pc_pcgcache; 2214 cc->cc_hits = 0; 2215 cc->cc_misses = 0; 2216 cc->cc_pcmisses = 0; 2217 cc->cc_contended = 0; 2218 cc->cc_nfull = 0; 2219 cc->cc_npart = 0; 2220 2221 pc->pc_cpus[index] = cc; 2222 } 2223 2224 /* 2225 * pool_cache_cpu_init: 2226 * 2227 * Called whenever a new CPU is attached. 2228 */ 2229 void 2230 pool_cache_cpu_init(struct cpu_info *ci) 2231 { 2232 pool_cache_t pc; 2233 2234 mutex_enter(&pool_head_lock); 2235 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2236 pc->pc_refcnt++; 2237 mutex_exit(&pool_head_lock); 2238 2239 pool_cache_cpu_init1(ci, pc); 2240 2241 mutex_enter(&pool_head_lock); 2242 pc->pc_refcnt--; 2243 cv_broadcast(&pool_busy); 2244 } 2245 mutex_exit(&pool_head_lock); 2246 } 2247 2248 /* 2249 * pool_cache_reclaim: 2250 * 2251 * Reclaim memory from a pool cache. 2252 */ 2253 bool 2254 pool_cache_reclaim(pool_cache_t pc) 2255 { 2256 2257 return pool_reclaim(&pc->pc_pool); 2258 } 2259 2260 static void 2261 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2262 { 2263 (*pc->pc_dtor)(pc->pc_arg, object); 2264 pool_put(&pc->pc_pool, object); 2265 } 2266 2267 /* 2268 * pool_cache_destruct_object: 2269 * 2270 * Force destruction of an object and its release back into 2271 * the pool. 2272 */ 2273 void 2274 pool_cache_destruct_object(pool_cache_t pc, void *object) 2275 { 2276 2277 FREECHECK_IN(&pc->pc_freecheck, object); 2278 2279 pool_cache_destruct_object1(pc, object); 2280 } 2281 2282 /* 2283 * pool_cache_invalidate_groups: 2284 * 2285 * Invalidate a chain of groups and destruct all objects. Return the 2286 * number of groups that were invalidated. 2287 */ 2288 static int 2289 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2290 { 2291 void *object; 2292 pcg_t *next; 2293 int i, n; 2294 2295 for (n = 0; pcg != NULL; pcg = next, n++) { 2296 next = pcg->pcg_next; 2297 2298 for (i = 0; i < pcg->pcg_avail; i++) { 2299 object = pcg->pcg_objects[i].pcgo_va; 2300 pool_cache_destruct_object1(pc, object); 2301 } 2302 2303 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2304 pool_put(&pcg_large_pool, pcg); 2305 } else { 2306 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2307 pool_put(&pcg_normal_pool, pcg); 2308 } 2309 } 2310 return n; 2311 } 2312 2313 /* 2314 * pool_cache_invalidate: 2315 * 2316 * Invalidate a pool cache (destruct and release all of the 2317 * cached objects). Does not reclaim objects from the pool. 2318 * 2319 * Note: For pool caches that provide constructed objects, there 2320 * is an assumption that another level of synchronization is occurring 2321 * between the input to the constructor and the cache invalidation. 2322 * 2323 * Invalidation is a costly process and should not be called from 2324 * interrupt context. 2325 */ 2326 void 2327 pool_cache_invalidate(pool_cache_t pc) 2328 { 2329 uint64_t where; 2330 pcg_t *pcg; 2331 int n, s; 2332 2333 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 2334 2335 if (ncpu < 2 || !mp_online) { 2336 /* 2337 * We might be called early enough in the boot process 2338 * for the CPU data structures to not be fully initialized. 2339 * In this case, transfer the content of the local CPU's 2340 * cache back into global cache as only this CPU is currently 2341 * running. 2342 */ 2343 pool_cache_transfer(pc); 2344 } else { 2345 /* 2346 * Signal all CPUs that they must transfer their local 2347 * cache back to the global pool then wait for the xcall to 2348 * complete. 2349 */ 2350 where = xc_broadcast(0, 2351 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL); 2352 xc_wait(where); 2353 } 2354 2355 /* Now dequeue and invalidate everything. */ 2356 pcg = pool_pcg_trunc(&pcg_normal_cache); 2357 (void)pool_cache_invalidate_groups(pc, pcg); 2358 2359 pcg = pool_pcg_trunc(&pcg_large_cache); 2360 (void)pool_cache_invalidate_groups(pc, pcg); 2361 2362 pcg = pool_pcg_trunc(&pc->pc_fullgroups); 2363 n = pool_cache_invalidate_groups(pc, pcg); 2364 s = splvm(); 2365 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n; 2366 splx(s); 2367 2368 pcg = pool_pcg_trunc(&pc->pc_partgroups); 2369 n = pool_cache_invalidate_groups(pc, pcg); 2370 s = splvm(); 2371 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n; 2372 splx(s); 2373 } 2374 2375 /* 2376 * pool_cache_invalidate_cpu: 2377 * 2378 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2379 * identified by its associated index. 2380 * It is caller's responsibility to ensure that no operation is 2381 * taking place on this pool cache while doing this invalidation. 2382 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2383 * pool cached objects from a CPU different from the one currently running 2384 * may result in an undefined behaviour. 2385 */ 2386 static void 2387 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2388 { 2389 pool_cache_cpu_t *cc; 2390 pcg_t *pcg; 2391 2392 if ((cc = pc->pc_cpus[index]) == NULL) 2393 return; 2394 2395 if ((pcg = cc->cc_current) != &pcg_dummy) { 2396 pcg->pcg_next = NULL; 2397 pool_cache_invalidate_groups(pc, pcg); 2398 } 2399 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2400 pcg->pcg_next = NULL; 2401 pool_cache_invalidate_groups(pc, pcg); 2402 } 2403 if (cc != &pc->pc_cpu0) 2404 pool_put(&cache_cpu_pool, cc); 2405 2406 } 2407 2408 void 2409 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2410 { 2411 2412 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2413 } 2414 2415 void 2416 pool_cache_setlowat(pool_cache_t pc, int n) 2417 { 2418 2419 pool_setlowat(&pc->pc_pool, n); 2420 } 2421 2422 void 2423 pool_cache_sethiwat(pool_cache_t pc, int n) 2424 { 2425 2426 pool_sethiwat(&pc->pc_pool, n); 2427 } 2428 2429 void 2430 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2431 { 2432 2433 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2434 } 2435 2436 void 2437 pool_cache_prime(pool_cache_t pc, int n) 2438 { 2439 2440 pool_prime(&pc->pc_pool, n); 2441 } 2442 2443 /* 2444 * pool_pcg_get: 2445 * 2446 * Get a cache group from the specified list. Return true if 2447 * contention was encountered. Must be called at IPL_VM because 2448 * of spin wait vs. kernel_lock. 2449 */ 2450 static int 2451 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp) 2452 { 2453 int count = SPINLOCK_BACKOFF_MIN; 2454 pcg_t *o, *n; 2455 2456 for (o = atomic_load_relaxed(head);; o = n) { 2457 if (__predict_false(o == &pcg_dummy)) { 2458 /* Wait for concurrent get to complete. */ 2459 SPINLOCK_BACKOFF(count); 2460 n = atomic_load_relaxed(head); 2461 continue; 2462 } 2463 if (__predict_false(o == NULL)) { 2464 break; 2465 } 2466 /* Lock out concurrent get/put. */ 2467 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy)); 2468 if (o == n) { 2469 /* Fetch pointer to next item and then unlock. */ 2470 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2471 membar_datadep_consumer(); /* alpha */ 2472 #endif 2473 n = atomic_load_relaxed(&o->pcg_next); 2474 atomic_store_release(head, n); 2475 break; 2476 } 2477 } 2478 *pcgp = o; 2479 return count != SPINLOCK_BACKOFF_MIN; 2480 } 2481 2482 /* 2483 * pool_pcg_trunc: 2484 * 2485 * Chop out entire list of pool cache groups. 2486 */ 2487 static pcg_t * 2488 pool_pcg_trunc(pcg_t *volatile *head) 2489 { 2490 int count = SPINLOCK_BACKOFF_MIN, s; 2491 pcg_t *o, *n; 2492 2493 s = splvm(); 2494 for (o = atomic_load_relaxed(head);; o = n) { 2495 if (__predict_false(o == &pcg_dummy)) { 2496 /* Wait for concurrent get to complete. */ 2497 SPINLOCK_BACKOFF(count); 2498 n = atomic_load_relaxed(head); 2499 continue; 2500 } 2501 n = atomic_cas_ptr(head, o, NULL); 2502 if (o == n) { 2503 splx(s); 2504 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2505 membar_datadep_consumer(); /* alpha */ 2506 #endif 2507 return o; 2508 } 2509 } 2510 } 2511 2512 /* 2513 * pool_pcg_put: 2514 * 2515 * Put a pool cache group to the specified list. Return true if 2516 * contention was encountered. Must be called at IPL_VM because of 2517 * spin wait vs. kernel_lock. 2518 */ 2519 static int 2520 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg) 2521 { 2522 int count = SPINLOCK_BACKOFF_MIN; 2523 pcg_t *o, *n; 2524 2525 for (o = atomic_load_relaxed(head);; o = n) { 2526 if (__predict_false(o == &pcg_dummy)) { 2527 /* Wait for concurrent get to complete. */ 2528 SPINLOCK_BACKOFF(count); 2529 n = atomic_load_relaxed(head); 2530 continue; 2531 } 2532 pcg->pcg_next = o; 2533 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2534 membar_exit(); 2535 #endif 2536 n = atomic_cas_ptr(head, o, pcg); 2537 if (o == n) { 2538 return count != SPINLOCK_BACKOFF_MIN; 2539 } 2540 } 2541 } 2542 2543 static bool __noinline 2544 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, 2545 void **objectp, paddr_t *pap, int flags) 2546 { 2547 pcg_t *pcg, *cur; 2548 void *object; 2549 2550 KASSERT(cc->cc_current->pcg_avail == 0); 2551 KASSERT(cc->cc_previous->pcg_avail == 0); 2552 2553 cc->cc_misses++; 2554 2555 /* 2556 * If there's a full group, release our empty group back to the 2557 * cache. Install the full group as cc_current and return. 2558 */ 2559 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg); 2560 if (__predict_true(pcg != NULL)) { 2561 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2562 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2563 KASSERT(cur->pcg_avail == 0); 2564 (void)pool_pcg_put(cc->cc_pcgcache, cur); 2565 } 2566 cc->cc_nfull--; 2567 cc->cc_current = pcg; 2568 return true; 2569 } 2570 2571 /* 2572 * Nothing available locally or in cache. Take the slow 2573 * path: fetch a new object from the pool and construct 2574 * it. 2575 */ 2576 cc->cc_pcmisses++; 2577 splx(s); 2578 2579 object = pool_get(&pc->pc_pool, flags); 2580 *objectp = object; 2581 if (__predict_false(object == NULL)) { 2582 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 2583 return false; 2584 } 2585 2586 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2587 pool_put(&pc->pc_pool, object); 2588 *objectp = NULL; 2589 return false; 2590 } 2591 2592 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0); 2593 2594 if (pap != NULL) { 2595 #ifdef POOL_VTOPHYS 2596 *pap = POOL_VTOPHYS(object); 2597 #else 2598 *pap = POOL_PADDR_INVALID; 2599 #endif 2600 } 2601 2602 FREECHECK_OUT(&pc->pc_freecheck, object); 2603 return false; 2604 } 2605 2606 /* 2607 * pool_cache_get{,_paddr}: 2608 * 2609 * Get an object from a pool cache (optionally returning 2610 * the physical address of the object). 2611 */ 2612 void * 2613 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2614 { 2615 pool_cache_cpu_t *cc; 2616 pcg_t *pcg; 2617 void *object; 2618 int s; 2619 2620 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 2621 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2622 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2623 "%s: [%s] is IPL_NONE, but called from interrupt context", 2624 __func__, pc->pc_pool.pr_wchan); 2625 2626 if (flags & PR_WAITOK) { 2627 ASSERT_SLEEPABLE(); 2628 } 2629 2630 if (flags & PR_NOWAIT) { 2631 if (fault_inject()) 2632 return NULL; 2633 } 2634 2635 /* Lock out interrupts and disable preemption. */ 2636 s = splvm(); 2637 while (/* CONSTCOND */ true) { 2638 /* Try and allocate an object from the current group. */ 2639 cc = pc->pc_cpus[curcpu()->ci_index]; 2640 pcg = cc->cc_current; 2641 if (__predict_true(pcg->pcg_avail > 0)) { 2642 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2643 if (__predict_false(pap != NULL)) 2644 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2645 #if defined(DIAGNOSTIC) 2646 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2647 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2648 KASSERT(object != NULL); 2649 #endif 2650 cc->cc_hits++; 2651 splx(s); 2652 FREECHECK_OUT(&pc->pc_freecheck, object); 2653 pool_redzone_fill(&pc->pc_pool, object); 2654 pool_cache_get_kmsan(pc, object); 2655 return object; 2656 } 2657 2658 /* 2659 * That failed. If the previous group isn't empty, swap 2660 * it with the current group and allocate from there. 2661 */ 2662 pcg = cc->cc_previous; 2663 if (__predict_true(pcg->pcg_avail > 0)) { 2664 cc->cc_previous = cc->cc_current; 2665 cc->cc_current = pcg; 2666 continue; 2667 } 2668 2669 /* 2670 * Can't allocate from either group: try the slow path. 2671 * If get_slow() allocated an object for us, or if 2672 * no more objects are available, it will return false. 2673 * Otherwise, we need to retry. 2674 */ 2675 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) { 2676 if (object != NULL) { 2677 kmsan_orig(object, pc->pc_pool.pr_size, 2678 KMSAN_TYPE_POOL, __RET_ADDR); 2679 } 2680 break; 2681 } 2682 } 2683 2684 /* 2685 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but 2686 * pool_cache_get can fail even in the PR_WAITOK case, if the 2687 * constructor fails. 2688 */ 2689 return object; 2690 } 2691 2692 static bool __noinline 2693 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object) 2694 { 2695 pcg_t *pcg, *cur; 2696 2697 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2698 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2699 2700 cc->cc_misses++; 2701 2702 /* 2703 * Try to get an empty group from the cache. If there are no empty 2704 * groups in the cache then allocate one. 2705 */ 2706 (void)pool_pcg_get(cc->cc_pcgcache, &pcg); 2707 if (__predict_false(pcg == NULL)) { 2708 if (__predict_true(!pool_cache_disable)) { 2709 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2710 } 2711 if (__predict_true(pcg != NULL)) { 2712 pcg->pcg_avail = 0; 2713 pcg->pcg_size = pc->pc_pcgsize; 2714 } 2715 } 2716 2717 /* 2718 * If there's a empty group, release our full group back to the 2719 * cache. Install the empty group to the local CPU and return. 2720 */ 2721 if (pcg != NULL) { 2722 KASSERT(pcg->pcg_avail == 0); 2723 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2724 cc->cc_previous = pcg; 2725 } else { 2726 cur = cc->cc_current; 2727 if (__predict_true(cur != &pcg_dummy)) { 2728 KASSERT(cur->pcg_avail == cur->pcg_size); 2729 cc->cc_contended += 2730 pool_pcg_put(&pc->pc_fullgroups, cur); 2731 cc->cc_nfull++; 2732 } 2733 cc->cc_current = pcg; 2734 } 2735 return true; 2736 } 2737 2738 /* 2739 * Nothing available locally or in cache, and we didn't 2740 * allocate an empty group. Take the slow path and destroy 2741 * the object here and now. 2742 */ 2743 cc->cc_pcmisses++; 2744 splx(s); 2745 pool_cache_destruct_object(pc, object); 2746 2747 return false; 2748 } 2749 2750 /* 2751 * pool_cache_put{,_paddr}: 2752 * 2753 * Put an object back to the pool cache (optionally caching the 2754 * physical address of the object). 2755 */ 2756 void 2757 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2758 { 2759 pool_cache_cpu_t *cc; 2760 pcg_t *pcg; 2761 int s; 2762 2763 KASSERT(object != NULL); 2764 pool_cache_put_kmsan(pc, object); 2765 pool_cache_redzone_check(pc, object); 2766 FREECHECK_IN(&pc->pc_freecheck, object); 2767 2768 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) { 2769 pc_phinpage_check(pc, object); 2770 } 2771 2772 if (pool_cache_put_nocache(pc, object)) { 2773 return; 2774 } 2775 2776 /* Lock out interrupts and disable preemption. */ 2777 s = splvm(); 2778 while (/* CONSTCOND */ true) { 2779 /* If the current group isn't full, release it there. */ 2780 cc = pc->pc_cpus[curcpu()->ci_index]; 2781 pcg = cc->cc_current; 2782 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2783 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2784 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2785 pcg->pcg_avail++; 2786 cc->cc_hits++; 2787 splx(s); 2788 return; 2789 } 2790 2791 /* 2792 * That failed. If the previous group isn't full, swap 2793 * it with the current group and try again. 2794 */ 2795 pcg = cc->cc_previous; 2796 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2797 cc->cc_previous = cc->cc_current; 2798 cc->cc_current = pcg; 2799 continue; 2800 } 2801 2802 /* 2803 * Can't free to either group: try the slow path. 2804 * If put_slow() releases the object for us, it 2805 * will return false. Otherwise we need to retry. 2806 */ 2807 if (!pool_cache_put_slow(pc, cc, s, object)) 2808 break; 2809 } 2810 } 2811 2812 /* 2813 * pool_cache_transfer: 2814 * 2815 * Transfer objects from the per-CPU cache to the global cache. 2816 * Run within a cross-call thread. 2817 */ 2818 static void 2819 pool_cache_transfer(pool_cache_t pc) 2820 { 2821 pool_cache_cpu_t *cc; 2822 pcg_t *prev, *cur; 2823 int s; 2824 2825 s = splvm(); 2826 cc = pc->pc_cpus[curcpu()->ci_index]; 2827 cur = cc->cc_current; 2828 cc->cc_current = __UNCONST(&pcg_dummy); 2829 prev = cc->cc_previous; 2830 cc->cc_previous = __UNCONST(&pcg_dummy); 2831 if (cur != &pcg_dummy) { 2832 if (cur->pcg_avail == cur->pcg_size) { 2833 (void)pool_pcg_put(&pc->pc_fullgroups, cur); 2834 cc->cc_nfull++; 2835 } else if (cur->pcg_avail == 0) { 2836 (void)pool_pcg_put(pc->pc_pcgcache, cur); 2837 } else { 2838 (void)pool_pcg_put(&pc->pc_partgroups, cur); 2839 cc->cc_npart++; 2840 } 2841 } 2842 if (prev != &pcg_dummy) { 2843 if (prev->pcg_avail == prev->pcg_size) { 2844 (void)pool_pcg_put(&pc->pc_fullgroups, prev); 2845 cc->cc_nfull++; 2846 } else if (prev->pcg_avail == 0) { 2847 (void)pool_pcg_put(pc->pc_pcgcache, prev); 2848 } else { 2849 (void)pool_pcg_put(&pc->pc_partgroups, prev); 2850 cc->cc_npart++; 2851 } 2852 } 2853 splx(s); 2854 } 2855 2856 static int 2857 pool_bigidx(size_t size) 2858 { 2859 int i; 2860 2861 for (i = 0; i < __arraycount(pool_allocator_big); i++) { 2862 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size) 2863 return i; 2864 } 2865 panic("pool item size %zu too large, use a custom allocator", size); 2866 } 2867 2868 static void * 2869 pool_allocator_alloc(struct pool *pp, int flags) 2870 { 2871 struct pool_allocator *pa = pp->pr_alloc; 2872 void *res; 2873 2874 res = (*pa->pa_alloc)(pp, flags); 2875 if (res == NULL && (flags & PR_WAITOK) == 0) { 2876 /* 2877 * We only run the drain hook here if PR_NOWAIT. 2878 * In other cases, the hook will be run in 2879 * pool_reclaim(). 2880 */ 2881 if (pp->pr_drain_hook != NULL) { 2882 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2883 res = (*pa->pa_alloc)(pp, flags); 2884 } 2885 } 2886 return res; 2887 } 2888 2889 static void 2890 pool_allocator_free(struct pool *pp, void *v) 2891 { 2892 struct pool_allocator *pa = pp->pr_alloc; 2893 2894 if (pp->pr_redzone) { 2895 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0); 2896 } 2897 (*pa->pa_free)(pp, v); 2898 } 2899 2900 void * 2901 pool_page_alloc(struct pool *pp, int flags) 2902 { 2903 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2904 vmem_addr_t va; 2905 int ret; 2906 2907 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2908 vflags | VM_INSTANTFIT, &va); 2909 2910 return ret ? NULL : (void *)va; 2911 } 2912 2913 void 2914 pool_page_free(struct pool *pp, void *v) 2915 { 2916 2917 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2918 } 2919 2920 static void * 2921 pool_page_alloc_meta(struct pool *pp, int flags) 2922 { 2923 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2924 vmem_addr_t va; 2925 int ret; 2926 2927 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2928 vflags | VM_INSTANTFIT, &va); 2929 2930 return ret ? NULL : (void *)va; 2931 } 2932 2933 static void 2934 pool_page_free_meta(struct pool *pp, void *v) 2935 { 2936 2937 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2938 } 2939 2940 #ifdef KMSAN 2941 static inline void 2942 pool_get_kmsan(struct pool *pp, void *p) 2943 { 2944 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR); 2945 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT); 2946 } 2947 2948 static inline void 2949 pool_put_kmsan(struct pool *pp, void *p) 2950 { 2951 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED); 2952 } 2953 2954 static inline void 2955 pool_cache_get_kmsan(pool_cache_t pc, void *p) 2956 { 2957 if (__predict_false(pc_has_ctor(pc))) { 2958 return; 2959 } 2960 pool_get_kmsan(&pc->pc_pool, p); 2961 } 2962 2963 static inline void 2964 pool_cache_put_kmsan(pool_cache_t pc, void *p) 2965 { 2966 pool_put_kmsan(&pc->pc_pool, p); 2967 } 2968 #endif 2969 2970 #ifdef POOL_QUARANTINE 2971 static void 2972 pool_quarantine_init(struct pool *pp) 2973 { 2974 pp->pr_quar.rotor = 0; 2975 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar)); 2976 } 2977 2978 static void 2979 pool_quarantine_flush(struct pool *pp) 2980 { 2981 pool_quar_t *quar = &pp->pr_quar; 2982 struct pool_pagelist pq; 2983 size_t i; 2984 2985 LIST_INIT(&pq); 2986 2987 mutex_enter(&pp->pr_lock); 2988 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) { 2989 if (quar->list[i] == 0) 2990 continue; 2991 pool_do_put(pp, (void *)quar->list[i], &pq); 2992 } 2993 mutex_exit(&pp->pr_lock); 2994 2995 pr_pagelist_free(pp, &pq); 2996 } 2997 2998 static bool 2999 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq) 3000 { 3001 pool_quar_t *quar = &pp->pr_quar; 3002 uintptr_t old; 3003 3004 if (pp->pr_roflags & PR_NOTOUCH) { 3005 return false; 3006 } 3007 3008 pool_redzone_check(pp, v); 3009 3010 old = quar->list[quar->rotor]; 3011 quar->list[quar->rotor] = (uintptr_t)v; 3012 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH; 3013 if (old != 0) { 3014 pool_do_put(pp, (void *)old, pq); 3015 } 3016 3017 return true; 3018 } 3019 #endif 3020 3021 #ifdef POOL_NOCACHE 3022 static bool 3023 pool_cache_put_nocache(pool_cache_t pc, void *p) 3024 { 3025 pool_cache_destruct_object(pc, p); 3026 return true; 3027 } 3028 #endif 3029 3030 #ifdef POOL_REDZONE 3031 #if defined(_LP64) 3032 # define PRIME 0x9e37fffffffc0000UL 3033 #else /* defined(_LP64) */ 3034 # define PRIME 0x9e3779b1 3035 #endif /* defined(_LP64) */ 3036 #define STATIC_BYTE 0xFE 3037 CTASSERT(POOL_REDZONE_SIZE > 1); 3038 3039 #ifndef KASAN 3040 static inline uint8_t 3041 pool_pattern_generate(const void *p) 3042 { 3043 return (uint8_t)(((uintptr_t)p) * PRIME 3044 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 3045 } 3046 #endif 3047 3048 static void 3049 pool_redzone_init(struct pool *pp, size_t requested_size) 3050 { 3051 size_t redzsz; 3052 size_t nsz; 3053 3054 #ifdef KASAN 3055 redzsz = requested_size; 3056 kasan_add_redzone(&redzsz); 3057 redzsz -= requested_size; 3058 #else 3059 redzsz = POOL_REDZONE_SIZE; 3060 #endif 3061 3062 if (pp->pr_roflags & PR_NOTOUCH) { 3063 pp->pr_redzone = false; 3064 return; 3065 } 3066 3067 /* 3068 * We may have extended the requested size earlier; check if 3069 * there's naturally space in the padding for a red zone. 3070 */ 3071 if (pp->pr_size - requested_size >= redzsz) { 3072 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3073 pp->pr_redzone = true; 3074 return; 3075 } 3076 3077 /* 3078 * No space in the natural padding; check if we can extend a 3079 * bit the size of the pool. 3080 */ 3081 nsz = roundup(pp->pr_size + redzsz, pp->pr_align); 3082 if (nsz <= pp->pr_alloc->pa_pagesz) { 3083 /* Ok, we can */ 3084 pp->pr_size = nsz; 3085 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3086 pp->pr_redzone = true; 3087 } else { 3088 /* No space for a red zone... snif :'( */ 3089 pp->pr_redzone = false; 3090 printf("pool redzone disabled for '%s'\n", pp->pr_wchan); 3091 } 3092 } 3093 3094 static void 3095 pool_redzone_fill(struct pool *pp, void *p) 3096 { 3097 if (!pp->pr_redzone) 3098 return; 3099 #ifdef KASAN 3100 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone, 3101 KASAN_POOL_REDZONE); 3102 #else 3103 uint8_t *cp, pat; 3104 const uint8_t *ep; 3105 3106 cp = (uint8_t *)p + pp->pr_reqsize; 3107 ep = cp + POOL_REDZONE_SIZE; 3108 3109 /* 3110 * We really don't want the first byte of the red zone to be '\0'; 3111 * an off-by-one in a string may not be properly detected. 3112 */ 3113 pat = pool_pattern_generate(cp); 3114 *cp = (pat == '\0') ? STATIC_BYTE: pat; 3115 cp++; 3116 3117 while (cp < ep) { 3118 *cp = pool_pattern_generate(cp); 3119 cp++; 3120 } 3121 #endif 3122 } 3123 3124 static void 3125 pool_redzone_check(struct pool *pp, void *p) 3126 { 3127 if (!pp->pr_redzone) 3128 return; 3129 #ifdef KASAN 3130 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED); 3131 #else 3132 uint8_t *cp, pat, expected; 3133 const uint8_t *ep; 3134 3135 cp = (uint8_t *)p + pp->pr_reqsize; 3136 ep = cp + POOL_REDZONE_SIZE; 3137 3138 pat = pool_pattern_generate(cp); 3139 expected = (pat == '\0') ? STATIC_BYTE: pat; 3140 if (__predict_false(*cp != expected)) { 3141 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3142 pp->pr_wchan, *cp, expected); 3143 } 3144 cp++; 3145 3146 while (cp < ep) { 3147 expected = pool_pattern_generate(cp); 3148 if (__predict_false(*cp != expected)) { 3149 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3150 pp->pr_wchan, *cp, expected); 3151 } 3152 cp++; 3153 } 3154 #endif 3155 } 3156 3157 static void 3158 pool_cache_redzone_check(pool_cache_t pc, void *p) 3159 { 3160 #ifdef KASAN 3161 /* If there is a ctor/dtor, leave the data as valid. */ 3162 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) { 3163 return; 3164 } 3165 #endif 3166 pool_redzone_check(&pc->pc_pool, p); 3167 } 3168 3169 #endif /* POOL_REDZONE */ 3170 3171 #if defined(DDB) 3172 static bool 3173 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3174 { 3175 3176 return (uintptr_t)ph->ph_page <= addr && 3177 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 3178 } 3179 3180 static bool 3181 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 3182 { 3183 3184 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 3185 } 3186 3187 static bool 3188 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 3189 { 3190 int i; 3191 3192 if (pcg == NULL) { 3193 return false; 3194 } 3195 for (i = 0; i < pcg->pcg_avail; i++) { 3196 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 3197 return true; 3198 } 3199 } 3200 return false; 3201 } 3202 3203 static bool 3204 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3205 { 3206 3207 if ((pp->pr_roflags & PR_USEBMAP) != 0) { 3208 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr); 3209 pool_item_bitmap_t *bitmap = 3210 ph->ph_bitmap + (idx / BITMAP_SIZE); 3211 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 3212 3213 return (*bitmap & mask) == 0; 3214 } else { 3215 struct pool_item *pi; 3216 3217 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 3218 if (pool_in_item(pp, pi, addr)) { 3219 return false; 3220 } 3221 } 3222 return true; 3223 } 3224 } 3225 3226 void 3227 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 3228 { 3229 struct pool *pp; 3230 3231 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3232 struct pool_item_header *ph; 3233 uintptr_t item; 3234 bool allocated = true; 3235 bool incache = false; 3236 bool incpucache = false; 3237 char cpucachestr[32]; 3238 3239 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3240 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3241 if (pool_in_page(pp, ph, addr)) { 3242 goto found; 3243 } 3244 } 3245 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3246 if (pool_in_page(pp, ph, addr)) { 3247 allocated = 3248 pool_allocated(pp, ph, addr); 3249 goto found; 3250 } 3251 } 3252 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3253 if (pool_in_page(pp, ph, addr)) { 3254 allocated = false; 3255 goto found; 3256 } 3257 } 3258 continue; 3259 } else { 3260 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3261 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3262 continue; 3263 } 3264 allocated = pool_allocated(pp, ph, addr); 3265 } 3266 found: 3267 if (allocated && pp->pr_cache) { 3268 pool_cache_t pc = pp->pr_cache; 3269 struct pool_cache_group *pcg; 3270 int i; 3271 3272 for (pcg = pc->pc_fullgroups; pcg != NULL; 3273 pcg = pcg->pcg_next) { 3274 if (pool_in_cg(pp, pcg, addr)) { 3275 incache = true; 3276 goto print; 3277 } 3278 } 3279 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 3280 pool_cache_cpu_t *cc; 3281 3282 if ((cc = pc->pc_cpus[i]) == NULL) { 3283 continue; 3284 } 3285 if (pool_in_cg(pp, cc->cc_current, addr) || 3286 pool_in_cg(pp, cc->cc_previous, addr)) { 3287 struct cpu_info *ci = 3288 cpu_lookup(i); 3289 3290 incpucache = true; 3291 snprintf(cpucachestr, 3292 sizeof(cpucachestr), 3293 "cached by CPU %u", 3294 ci->ci_index); 3295 goto print; 3296 } 3297 } 3298 } 3299 print: 3300 item = (uintptr_t)ph->ph_page + ph->ph_off; 3301 item = item + rounddown(addr - item, pp->pr_size); 3302 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3303 (void *)addr, item, (size_t)(addr - item), 3304 pp->pr_wchan, 3305 incpucache ? cpucachestr : 3306 incache ? "cached" : allocated ? "allocated" : "free"); 3307 } 3308 } 3309 #endif /* defined(DDB) */ 3310 3311 static int 3312 pool_sysctl(SYSCTLFN_ARGS) 3313 { 3314 struct pool_sysctl data; 3315 struct pool *pp; 3316 struct pool_cache *pc; 3317 pool_cache_cpu_t *cc; 3318 int error; 3319 size_t i, written; 3320 3321 if (oldp == NULL) { 3322 *oldlenp = 0; 3323 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 3324 *oldlenp += sizeof(data); 3325 return 0; 3326 } 3327 3328 memset(&data, 0, sizeof(data)); 3329 error = 0; 3330 written = 0; 3331 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3332 if (written + sizeof(data) > *oldlenp) 3333 break; 3334 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 3335 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 3336 data.pr_flags = pp->pr_roflags | pp->pr_flags; 3337 #define COPY(field) data.field = pp->field 3338 COPY(pr_size); 3339 3340 COPY(pr_itemsperpage); 3341 COPY(pr_nitems); 3342 COPY(pr_nout); 3343 COPY(pr_hardlimit); 3344 COPY(pr_npages); 3345 COPY(pr_minpages); 3346 COPY(pr_maxpages); 3347 3348 COPY(pr_nget); 3349 COPY(pr_nfail); 3350 COPY(pr_nput); 3351 COPY(pr_npagealloc); 3352 COPY(pr_npagefree); 3353 COPY(pr_hiwat); 3354 COPY(pr_nidle); 3355 #undef COPY 3356 3357 data.pr_cache_nmiss_pcpu = 0; 3358 data.pr_cache_nhit_pcpu = 0; 3359 data.pr_cache_nmiss_global = 0; 3360 data.pr_cache_nempty = 0; 3361 data.pr_cache_ncontended = 0; 3362 data.pr_cache_npartial = 0; 3363 if (pp->pr_cache) { 3364 uint32_t nfull = 0; 3365 pc = pp->pr_cache; 3366 data.pr_cache_meta_size = pc->pc_pcgsize; 3367 for (i = 0; i < pc->pc_ncpu; ++i) { 3368 cc = pc->pc_cpus[i]; 3369 if (cc == NULL) 3370 continue; 3371 data.pr_cache_ncontended += cc->cc_contended; 3372 data.pr_cache_nmiss_pcpu += cc->cc_misses; 3373 data.pr_cache_nhit_pcpu += cc->cc_hits; 3374 data.pr_cache_nmiss_global += cc->cc_pcmisses; 3375 nfull += cc->cc_nfull; /* 32-bit rollover! */ 3376 data.pr_cache_npartial += cc->cc_npart; 3377 } 3378 data.pr_cache_nfull = nfull; 3379 } else { 3380 data.pr_cache_meta_size = 0; 3381 data.pr_cache_nfull = 0; 3382 } 3383 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu - 3384 data.pr_cache_nmiss_global; 3385 3386 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 3387 if (error) 3388 break; 3389 written += sizeof(data); 3390 oldp = (char *)oldp + sizeof(data); 3391 } 3392 3393 *oldlenp = written; 3394 return error; 3395 } 3396 3397 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 3398 { 3399 const struct sysctlnode *rnode = NULL; 3400 3401 sysctl_createv(clog, 0, NULL, &rnode, 3402 CTLFLAG_PERMANENT, 3403 CTLTYPE_STRUCT, "pool", 3404 SYSCTL_DESCR("Get pool statistics"), 3405 pool_sysctl, 0, NULL, 0, 3406 CTL_KERN, CTL_CREATE, CTL_EOL); 3407 } 3408