xref: /netbsd-src/sys/kern/subr_pool.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: subr_pool.c,v 1.273 2020/06/19 13:49:38 jdolecek Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5  *     2020 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.273 2020/06/19 13:49:38 jdolecek Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63 
64 #include <uvm/uvm_extern.h>
65 
66 /*
67  * Pool resource management utility.
68  *
69  * Memory is allocated in pages which are split into pieces according to
70  * the pool item size. Each page is kept on one of three lists in the
71  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72  * for empty, full and partially-full pages respectively. The individual
73  * pool items are on a linked list headed by `ph_itemlist' in each page
74  * header. The memory for building the page list is either taken from
75  * the allocated pages themselves (for small pool items) or taken from
76  * an internal pool of page headers (`phpool').
77  */
78 
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81 
82 /* Private pool for page header structures */
83 #define	PHPOOL_MAX	8
84 static struct pool phpool[PHPOOL_MAX];
85 #define	PHPOOL_FREELIST_NELEM(idx) \
86 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87 
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91 
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95 
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 #  define POOL_REDZONE_SIZE 8
99 # else
100 #  define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz)		__nothing
108 # define pool_redzone_fill(pp, ptr)		__nothing
109 # define pool_redzone_check(pp, ptr)		__nothing
110 # define pool_cache_redzone_check(pc, ptr)	__nothing
111 #endif
112 
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr)		__nothing
120 #define pool_put_kmsan(pp, ptr)		__nothing
121 #define pool_cache_get_kmsan(pc, ptr)	__nothing
122 #define pool_cache_put_kmsan(pc, ptr)	__nothing
123 #endif
124 
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129     struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a)			__nothing
132 #define pool_quarantine_flush(a)		__nothing
133 #define pool_put_quarantine(a, b, c)		false
134 #endif
135 
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b)		false
140 #endif
141 
142 #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
144 
145 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
146 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
147 
148 /*
149  * Pool backend allocators.
150  *
151  * Each pool has a backend allocator that handles allocation, deallocation,
152  * and any additional draining that might be needed.
153  *
154  * We provide two standard allocators:
155  *
156  *	pool_allocator_kmem - the default when no allocator is specified
157  *
158  *	pool_allocator_nointr - used for pools that will not be accessed
159  *	in interrupt context.
160  */
161 void *pool_page_alloc(struct pool *, int);
162 void pool_page_free(struct pool *, void *);
163 
164 static void *pool_page_alloc_meta(struct pool *, int);
165 static void pool_page_free_meta(struct pool *, void *);
166 
167 struct pool_allocator pool_allocator_kmem = {
168 	.pa_alloc = pool_page_alloc,
169 	.pa_free = pool_page_free,
170 	.pa_pagesz = 0
171 };
172 
173 struct pool_allocator pool_allocator_nointr = {
174 	.pa_alloc = pool_page_alloc,
175 	.pa_free = pool_page_free,
176 	.pa_pagesz = 0
177 };
178 
179 struct pool_allocator pool_allocator_meta = {
180 	.pa_alloc = pool_page_alloc_meta,
181 	.pa_free = pool_page_free_meta,
182 	.pa_pagesz = 0
183 };
184 
185 #define POOL_ALLOCATOR_BIG_BASE 13
186 static struct pool_allocator pool_allocator_big[] = {
187 	{
188 		.pa_alloc = pool_page_alloc,
189 		.pa_free = pool_page_free,
190 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
191 	},
192 	{
193 		.pa_alloc = pool_page_alloc,
194 		.pa_free = pool_page_free,
195 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
196 	},
197 	{
198 		.pa_alloc = pool_page_alloc,
199 		.pa_free = pool_page_free,
200 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
201 	},
202 	{
203 		.pa_alloc = pool_page_alloc,
204 		.pa_free = pool_page_free,
205 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
206 	},
207 	{
208 		.pa_alloc = pool_page_alloc,
209 		.pa_free = pool_page_free,
210 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
211 	},
212 	{
213 		.pa_alloc = pool_page_alloc,
214 		.pa_free = pool_page_free,
215 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
216 	},
217 	{
218 		.pa_alloc = pool_page_alloc,
219 		.pa_free = pool_page_free,
220 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
221 	},
222 	{
223 		.pa_alloc = pool_page_alloc,
224 		.pa_free = pool_page_free,
225 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
226 	},
227 	{
228 		.pa_alloc = pool_page_alloc,
229 		.pa_free = pool_page_free,
230 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
231 	},
232 	{
233 		.pa_alloc = pool_page_alloc,
234 		.pa_free = pool_page_free,
235 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
236 	},
237 	{
238 		.pa_alloc = pool_page_alloc,
239 		.pa_free = pool_page_free,
240 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
241 	},
242 	{
243 		.pa_alloc = pool_page_alloc,
244 		.pa_free = pool_page_free,
245 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
246 	}
247 };
248 
249 static int pool_bigidx(size_t);
250 
251 /* # of seconds to retain page after last use */
252 int pool_inactive_time = 10;
253 
254 /* Next candidate for drainage (see pool_drain()) */
255 static struct pool *drainpp;
256 
257 /* This lock protects both pool_head and drainpp. */
258 static kmutex_t pool_head_lock;
259 static kcondvar_t pool_busy;
260 
261 /* This lock protects initialization of a potentially shared pool allocator */
262 static kmutex_t pool_allocator_lock;
263 
264 static unsigned int poolid_counter = 0;
265 
266 typedef uint32_t pool_item_bitmap_t;
267 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
268 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
269 #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
270 
271 struct pool_item_header {
272 	/* Page headers */
273 	LIST_ENTRY(pool_item_header)
274 				ph_pagelist;	/* pool page list */
275 	union {
276 		/* !PR_PHINPAGE */
277 		struct {
278 			SPLAY_ENTRY(pool_item_header)
279 				phu_node;	/* off-page page headers */
280 		} phu_offpage;
281 		/* PR_PHINPAGE */
282 		struct {
283 			unsigned int phu_poolid;
284 		} phu_onpage;
285 	} ph_u1;
286 	void *			ph_page;	/* this page's address */
287 	uint32_t		ph_time;	/* last referenced */
288 	uint16_t		ph_nmissing;	/* # of chunks in use */
289 	uint16_t		ph_off;		/* start offset in page */
290 	union {
291 		/* !PR_USEBMAP */
292 		struct {
293 			LIST_HEAD(, pool_item)
294 				phu_itemlist;	/* chunk list for this page */
295 		} phu_normal;
296 		/* PR_USEBMAP */
297 		struct {
298 			pool_item_bitmap_t phu_bitmap[1];
299 		} phu_notouch;
300 	} ph_u2;
301 };
302 #define ph_node		ph_u1.phu_offpage.phu_node
303 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
304 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
305 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
306 
307 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
308 
309 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
310     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
311 
312 #if defined(DIAGNOSTIC) && !defined(KASAN)
313 #define POOL_CHECK_MAGIC
314 #endif
315 
316 struct pool_item {
317 #ifdef POOL_CHECK_MAGIC
318 	u_int pi_magic;
319 #endif
320 #define	PI_MAGIC 0xdeaddeadU
321 	/* Other entries use only this list entry */
322 	LIST_ENTRY(pool_item)	pi_list;
323 };
324 
325 #define	POOL_NEEDS_CATCHUP(pp)						\
326 	((pp)->pr_nitems < (pp)->pr_minitems ||				\
327 	 (pp)->pr_npages < (pp)->pr_minpages)
328 #define	POOL_OBJ_TO_PAGE(pp, v)						\
329 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
330 
331 /*
332  * Pool cache management.
333  *
334  * Pool caches provide a way for constructed objects to be cached by the
335  * pool subsystem.  This can lead to performance improvements by avoiding
336  * needless object construction/destruction; it is deferred until absolutely
337  * necessary.
338  *
339  * Caches are grouped into cache groups.  Each cache group references up
340  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
341  * object from the pool, it calls the object's constructor and places it
342  * into a cache group.  When a cache group frees an object back to the
343  * pool, it first calls the object's destructor.  This allows the object
344  * to persist in constructed form while freed to the cache.
345  *
346  * The pool references each cache, so that when a pool is drained by the
347  * pagedaemon, it can drain each individual cache as well.  Each time a
348  * cache is drained, the most idle cache group is freed to the pool in
349  * its entirety.
350  *
351  * Pool caches are layed on top of pools.  By layering them, we can avoid
352  * the complexity of cache management for pools which would not benefit
353  * from it.
354  */
355 
356 static struct pool pcg_normal_pool;
357 static struct pool pcg_large_pool;
358 static struct pool cache_pool;
359 static struct pool cache_cpu_pool;
360 
361 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
362 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
363 
364 /* List of all caches. */
365 TAILQ_HEAD(,pool_cache) pool_cache_head =
366     TAILQ_HEAD_INITIALIZER(pool_cache_head);
367 
368 int pool_cache_disable;		/* global disable for caching */
369 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
370 
371 static bool	pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
372 				    void *);
373 static bool	pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
374 				    void **, paddr_t *, int);
375 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
376 static int	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
377 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
378 static void	pool_cache_transfer(pool_cache_t);
379 static int	pool_pcg_get(pcg_t *volatile *, pcg_t **);
380 static int	pool_pcg_put(pcg_t *volatile *, pcg_t *);
381 static pcg_t *	pool_pcg_trunc(pcg_t *volatile *);
382 
383 static int	pool_catchup(struct pool *);
384 static void	pool_prime_page(struct pool *, void *,
385 		    struct pool_item_header *);
386 static void	pool_update_curpage(struct pool *);
387 
388 static int	pool_grow(struct pool *, int);
389 static void	*pool_allocator_alloc(struct pool *, int);
390 static void	pool_allocator_free(struct pool *, void *);
391 
392 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
393 	void (*)(const char *, ...) __printflike(1, 2));
394 static void pool_print1(struct pool *, const char *,
395 	void (*)(const char *, ...) __printflike(1, 2));
396 
397 static int pool_chk_page(struct pool *, const char *,
398 			 struct pool_item_header *);
399 
400 /* -------------------------------------------------------------------------- */
401 
402 static inline unsigned int
403 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
404     const void *v)
405 {
406 	const char *cp = v;
407 	unsigned int idx;
408 
409 	KASSERT(pp->pr_roflags & PR_USEBMAP);
410 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
411 
412 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
413 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
414 		    pp->pr_itemsperpage);
415 	}
416 
417 	return idx;
418 }
419 
420 static inline void
421 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
422     void *obj)
423 {
424 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
425 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
426 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
427 
428 	if (__predict_false((*bitmap & mask) != 0)) {
429 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
430 	}
431 
432 	*bitmap |= mask;
433 }
434 
435 static inline void *
436 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
437 {
438 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
439 	unsigned int idx;
440 	int i;
441 
442 	for (i = 0; ; i++) {
443 		int bit;
444 
445 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
446 		bit = ffs32(bitmap[i]);
447 		if (bit) {
448 			pool_item_bitmap_t mask;
449 
450 			bit--;
451 			idx = (i * BITMAP_SIZE) + bit;
452 			mask = 1U << bit;
453 			KASSERT((bitmap[i] & mask) != 0);
454 			bitmap[i] &= ~mask;
455 			break;
456 		}
457 	}
458 	KASSERT(idx < pp->pr_itemsperpage);
459 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
460 }
461 
462 static inline void
463 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
464 {
465 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
466 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
467 	int i;
468 
469 	for (i = 0; i < n; i++) {
470 		bitmap[i] = (pool_item_bitmap_t)-1;
471 	}
472 }
473 
474 /* -------------------------------------------------------------------------- */
475 
476 static inline void
477 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
478     void *obj)
479 {
480 	struct pool_item *pi = obj;
481 
482 #ifdef POOL_CHECK_MAGIC
483 	pi->pi_magic = PI_MAGIC;
484 #endif
485 
486 	if (pp->pr_redzone) {
487 		/*
488 		 * Mark the pool_item as valid. The rest is already
489 		 * invalid.
490 		 */
491 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
492 	}
493 
494 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
495 }
496 
497 static inline void *
498 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
499 {
500 	struct pool_item *pi;
501 	void *v;
502 
503 	v = pi = LIST_FIRST(&ph->ph_itemlist);
504 	if (__predict_false(v == NULL)) {
505 		mutex_exit(&pp->pr_lock);
506 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
507 	}
508 	KASSERTMSG((pp->pr_nitems > 0),
509 	    "%s: [%s] nitems %u inconsistent on itemlist",
510 	    __func__, pp->pr_wchan, pp->pr_nitems);
511 #ifdef POOL_CHECK_MAGIC
512 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
513 	    "%s: [%s] free list modified: "
514 	    "magic=%x; page %p; item addr %p", __func__,
515 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
516 #endif
517 
518 	/*
519 	 * Remove from item list.
520 	 */
521 	LIST_REMOVE(pi, pi_list);
522 
523 	return v;
524 }
525 
526 /* -------------------------------------------------------------------------- */
527 
528 static inline void
529 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
530     void *object)
531 {
532 	if (__predict_false((void *)ph->ph_page != page)) {
533 		panic("%s: [%s] item %p not part of pool", __func__,
534 		    pp->pr_wchan, object);
535 	}
536 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
537 		panic("%s: [%s] item %p below item space", __func__,
538 		    pp->pr_wchan, object);
539 	}
540 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
541 		panic("%s: [%s] item %p poolid %u != %u", __func__,
542 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
543 	}
544 }
545 
546 static inline void
547 pc_phinpage_check(pool_cache_t pc, void *object)
548 {
549 	struct pool_item_header *ph;
550 	struct pool *pp;
551 	void *page;
552 
553 	pp = &pc->pc_pool;
554 	page = POOL_OBJ_TO_PAGE(pp, object);
555 	ph = (struct pool_item_header *)page;
556 
557 	pr_phinpage_check(pp, ph, page, object);
558 }
559 
560 /* -------------------------------------------------------------------------- */
561 
562 static inline int
563 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
564 {
565 
566 	/*
567 	 * We consider pool_item_header with smaller ph_page bigger. This
568 	 * unnatural ordering is for the benefit of pr_find_pagehead.
569 	 */
570 	if (a->ph_page < b->ph_page)
571 		return 1;
572 	else if (a->ph_page > b->ph_page)
573 		return -1;
574 	else
575 		return 0;
576 }
577 
578 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
579 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
580 
581 static inline struct pool_item_header *
582 pr_find_pagehead_noalign(struct pool *pp, void *v)
583 {
584 	struct pool_item_header *ph, tmp;
585 
586 	tmp.ph_page = (void *)(uintptr_t)v;
587 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
588 	if (ph == NULL) {
589 		ph = SPLAY_ROOT(&pp->pr_phtree);
590 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
591 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
592 		}
593 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
594 	}
595 
596 	return ph;
597 }
598 
599 /*
600  * Return the pool page header based on item address.
601  */
602 static inline struct pool_item_header *
603 pr_find_pagehead(struct pool *pp, void *v)
604 {
605 	struct pool_item_header *ph, tmp;
606 
607 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
608 		ph = pr_find_pagehead_noalign(pp, v);
609 	} else {
610 		void *page = POOL_OBJ_TO_PAGE(pp, v);
611 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
612 			ph = (struct pool_item_header *)page;
613 			pr_phinpage_check(pp, ph, page, v);
614 		} else {
615 			tmp.ph_page = page;
616 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
617 		}
618 	}
619 
620 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
621 	    ((char *)ph->ph_page <= (char *)v &&
622 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
623 	return ph;
624 }
625 
626 static void
627 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
628 {
629 	struct pool_item_header *ph;
630 
631 	while ((ph = LIST_FIRST(pq)) != NULL) {
632 		LIST_REMOVE(ph, ph_pagelist);
633 		pool_allocator_free(pp, ph->ph_page);
634 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
635 			pool_put(pp->pr_phpool, ph);
636 	}
637 }
638 
639 /*
640  * Remove a page from the pool.
641  */
642 static inline void
643 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
644      struct pool_pagelist *pq)
645 {
646 
647 	KASSERT(mutex_owned(&pp->pr_lock));
648 
649 	/*
650 	 * If the page was idle, decrement the idle page count.
651 	 */
652 	if (ph->ph_nmissing == 0) {
653 		KASSERT(pp->pr_nidle != 0);
654 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
655 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
656 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
657 		pp->pr_nidle--;
658 	}
659 
660 	pp->pr_nitems -= pp->pr_itemsperpage;
661 
662 	/*
663 	 * Unlink the page from the pool and queue it for release.
664 	 */
665 	LIST_REMOVE(ph, ph_pagelist);
666 	if (pp->pr_roflags & PR_PHINPAGE) {
667 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
668 			panic("%s: [%s] ph %p poolid %u != %u",
669 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
670 			    pp->pr_poolid);
671 		}
672 	} else {
673 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
674 	}
675 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
676 
677 	pp->pr_npages--;
678 	pp->pr_npagefree++;
679 
680 	pool_update_curpage(pp);
681 }
682 
683 /*
684  * Initialize all the pools listed in the "pools" link set.
685  */
686 void
687 pool_subsystem_init(void)
688 {
689 	size_t size;
690 	int idx;
691 
692 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
693 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
694 	cv_init(&pool_busy, "poolbusy");
695 
696 	/*
697 	 * Initialize private page header pool and cache magazine pool if we
698 	 * haven't done so yet.
699 	 */
700 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
701 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
702 		int nelem;
703 		size_t sz;
704 
705 		nelem = PHPOOL_FREELIST_NELEM(idx);
706 		KASSERT(nelem != 0);
707 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
708 		    "phpool-%d", nelem);
709 		sz = offsetof(struct pool_item_header,
710 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
711 		pool_init(&phpool[idx], sz, 0, 0, 0,
712 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
713 	}
714 
715 	size = sizeof(pcg_t) +
716 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
717 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
718 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
719 
720 	size = sizeof(pcg_t) +
721 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
722 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
723 	    "pcglarge", &pool_allocator_meta, IPL_VM);
724 
725 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
726 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
727 
728 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
729 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
730 }
731 
732 static inline bool
733 pool_init_is_phinpage(const struct pool *pp)
734 {
735 	size_t pagesize;
736 
737 	if (pp->pr_roflags & PR_PHINPAGE) {
738 		return true;
739 	}
740 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
741 		return false;
742 	}
743 
744 	pagesize = pp->pr_alloc->pa_pagesz;
745 
746 	/*
747 	 * Threshold: the item size is below 1/16 of a page size, and below
748 	 * 8 times the page header size. The latter ensures we go off-page
749 	 * if the page header would make us waste a rather big item.
750 	 */
751 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
752 		return true;
753 	}
754 
755 	/* Put the header into the page if it doesn't waste any items. */
756 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
757 		return true;
758 	}
759 
760 	return false;
761 }
762 
763 static inline bool
764 pool_init_is_usebmap(const struct pool *pp)
765 {
766 	size_t bmapsize;
767 
768 	if (pp->pr_roflags & PR_NOTOUCH) {
769 		return true;
770 	}
771 
772 	/*
773 	 * If we're off-page, go with a bitmap.
774 	 */
775 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
776 		return true;
777 	}
778 
779 	/*
780 	 * If we're on-page, and the page header can already contain a bitmap
781 	 * big enough to cover all the items of the page, go with a bitmap.
782 	 */
783 	bmapsize = roundup(PHSIZE, pp->pr_align) -
784 	    offsetof(struct pool_item_header, ph_bitmap[0]);
785 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
786 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
787 		return true;
788 	}
789 
790 	return false;
791 }
792 
793 /*
794  * Initialize the given pool resource structure.
795  *
796  * We export this routine to allow other kernel parts to declare
797  * static pools that must be initialized before kmem(9) is available.
798  */
799 void
800 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
801     const char *wchan, struct pool_allocator *palloc, int ipl)
802 {
803 	struct pool *pp1;
804 	size_t prsize;
805 	int itemspace, slack;
806 
807 	/* XXX ioff will be removed. */
808 	KASSERT(ioff == 0);
809 
810 #ifdef DEBUG
811 	if (__predict_true(!cold))
812 		mutex_enter(&pool_head_lock);
813 	/*
814 	 * Check that the pool hasn't already been initialised and
815 	 * added to the list of all pools.
816 	 */
817 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
818 		if (pp == pp1)
819 			panic("%s: [%s] already initialised", __func__,
820 			    wchan);
821 	}
822 	if (__predict_true(!cold))
823 		mutex_exit(&pool_head_lock);
824 #endif
825 
826 	if (palloc == NULL)
827 		palloc = &pool_allocator_kmem;
828 
829 	if (!cold)
830 		mutex_enter(&pool_allocator_lock);
831 	if (palloc->pa_refcnt++ == 0) {
832 		if (palloc->pa_pagesz == 0)
833 			palloc->pa_pagesz = PAGE_SIZE;
834 
835 		TAILQ_INIT(&palloc->pa_list);
836 
837 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
838 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
839 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
840 	}
841 	if (!cold)
842 		mutex_exit(&pool_allocator_lock);
843 
844 	if (align == 0)
845 		align = ALIGN(1);
846 
847 	prsize = size;
848 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
849 		prsize = sizeof(struct pool_item);
850 
851 	prsize = roundup(prsize, align);
852 	KASSERTMSG((prsize <= palloc->pa_pagesz),
853 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
854 	    __func__, wchan, prsize, palloc->pa_pagesz);
855 
856 	/*
857 	 * Initialize the pool structure.
858 	 */
859 	LIST_INIT(&pp->pr_emptypages);
860 	LIST_INIT(&pp->pr_fullpages);
861 	LIST_INIT(&pp->pr_partpages);
862 	pp->pr_cache = NULL;
863 	pp->pr_curpage = NULL;
864 	pp->pr_npages = 0;
865 	pp->pr_minitems = 0;
866 	pp->pr_minpages = 0;
867 	pp->pr_maxpages = UINT_MAX;
868 	pp->pr_roflags = flags;
869 	pp->pr_flags = 0;
870 	pp->pr_size = prsize;
871 	pp->pr_reqsize = size;
872 	pp->pr_align = align;
873 	pp->pr_wchan = wchan;
874 	pp->pr_alloc = palloc;
875 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
876 	pp->pr_nitems = 0;
877 	pp->pr_nout = 0;
878 	pp->pr_hardlimit = UINT_MAX;
879 	pp->pr_hardlimit_warning = NULL;
880 	pp->pr_hardlimit_ratecap.tv_sec = 0;
881 	pp->pr_hardlimit_ratecap.tv_usec = 0;
882 	pp->pr_hardlimit_warning_last.tv_sec = 0;
883 	pp->pr_hardlimit_warning_last.tv_usec = 0;
884 	pp->pr_drain_hook = NULL;
885 	pp->pr_drain_hook_arg = NULL;
886 	pp->pr_freecheck = NULL;
887 	pp->pr_redzone = false;
888 	pool_redzone_init(pp, size);
889 	pool_quarantine_init(pp);
890 
891 	/*
892 	 * Decide whether to put the page header off-page to avoid wasting too
893 	 * large a part of the page or too big an item. Off-page page headers
894 	 * go on a hash table, so we can match a returned item with its header
895 	 * based on the page address.
896 	 */
897 	if (pool_init_is_phinpage(pp)) {
898 		/* Use the beginning of the page for the page header */
899 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
900 		pp->pr_itemoffset = roundup(PHSIZE, align);
901 		pp->pr_roflags |= PR_PHINPAGE;
902 	} else {
903 		/* The page header will be taken from our page header pool */
904 		itemspace = palloc->pa_pagesz;
905 		pp->pr_itemoffset = 0;
906 		SPLAY_INIT(&pp->pr_phtree);
907 	}
908 
909 	pp->pr_itemsperpage = itemspace / pp->pr_size;
910 	KASSERT(pp->pr_itemsperpage != 0);
911 
912 	/*
913 	 * Decide whether to use a bitmap or a linked list to manage freed
914 	 * items.
915 	 */
916 	if (pool_init_is_usebmap(pp)) {
917 		pp->pr_roflags |= PR_USEBMAP;
918 	}
919 
920 	/*
921 	 * If we're off-page, then we're using a bitmap; choose the appropriate
922 	 * pool to allocate page headers, whose size varies depending on the
923 	 * bitmap. If we're on-page, nothing to do.
924 	 */
925 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
926 		int idx;
927 
928 		KASSERT(pp->pr_roflags & PR_USEBMAP);
929 
930 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
931 		    idx++) {
932 			/* nothing */
933 		}
934 		if (idx >= PHPOOL_MAX) {
935 			/*
936 			 * if you see this panic, consider to tweak
937 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
938 			 */
939 			panic("%s: [%s] too large itemsperpage(%d) for "
940 			    "PR_USEBMAP", __func__,
941 			    pp->pr_wchan, pp->pr_itemsperpage);
942 		}
943 		pp->pr_phpool = &phpool[idx];
944 	} else {
945 		pp->pr_phpool = NULL;
946 	}
947 
948 	/*
949 	 * Use the slack between the chunks and the page header
950 	 * for "cache coloring".
951 	 */
952 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
953 	pp->pr_maxcolor = rounddown(slack, align);
954 	pp->pr_curcolor = 0;
955 
956 	pp->pr_nget = 0;
957 	pp->pr_nfail = 0;
958 	pp->pr_nput = 0;
959 	pp->pr_npagealloc = 0;
960 	pp->pr_npagefree = 0;
961 	pp->pr_hiwat = 0;
962 	pp->pr_nidle = 0;
963 	pp->pr_refcnt = 0;
964 
965 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
966 	cv_init(&pp->pr_cv, wchan);
967 	pp->pr_ipl = ipl;
968 
969 	/* Insert into the list of all pools. */
970 	if (!cold)
971 		mutex_enter(&pool_head_lock);
972 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
973 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
974 			break;
975 	}
976 	if (pp1 == NULL)
977 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
978 	else
979 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
980 	if (!cold)
981 		mutex_exit(&pool_head_lock);
982 
983 	/* Insert this into the list of pools using this allocator. */
984 	if (!cold)
985 		mutex_enter(&palloc->pa_lock);
986 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
987 	if (!cold)
988 		mutex_exit(&palloc->pa_lock);
989 }
990 
991 /*
992  * De-commision a pool resource.
993  */
994 void
995 pool_destroy(struct pool *pp)
996 {
997 	struct pool_pagelist pq;
998 	struct pool_item_header *ph;
999 
1000 	pool_quarantine_flush(pp);
1001 
1002 	/* Remove from global pool list */
1003 	mutex_enter(&pool_head_lock);
1004 	while (pp->pr_refcnt != 0)
1005 		cv_wait(&pool_busy, &pool_head_lock);
1006 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1007 	if (drainpp == pp)
1008 		drainpp = NULL;
1009 	mutex_exit(&pool_head_lock);
1010 
1011 	/* Remove this pool from its allocator's list of pools. */
1012 	mutex_enter(&pp->pr_alloc->pa_lock);
1013 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1014 	mutex_exit(&pp->pr_alloc->pa_lock);
1015 
1016 	mutex_enter(&pool_allocator_lock);
1017 	if (--pp->pr_alloc->pa_refcnt == 0)
1018 		mutex_destroy(&pp->pr_alloc->pa_lock);
1019 	mutex_exit(&pool_allocator_lock);
1020 
1021 	mutex_enter(&pp->pr_lock);
1022 
1023 	KASSERT(pp->pr_cache == NULL);
1024 	KASSERTMSG((pp->pr_nout == 0),
1025 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1026 	    pp->pr_nout);
1027 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1028 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
1029 
1030 	/* Remove all pages */
1031 	LIST_INIT(&pq);
1032 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1033 		pr_rmpage(pp, ph, &pq);
1034 
1035 	mutex_exit(&pp->pr_lock);
1036 
1037 	pr_pagelist_free(pp, &pq);
1038 	cv_destroy(&pp->pr_cv);
1039 	mutex_destroy(&pp->pr_lock);
1040 }
1041 
1042 void
1043 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1044 {
1045 
1046 	/* XXX no locking -- must be used just after pool_init() */
1047 	KASSERTMSG((pp->pr_drain_hook == NULL),
1048 	    "%s: [%s] already set", __func__, pp->pr_wchan);
1049 	pp->pr_drain_hook = fn;
1050 	pp->pr_drain_hook_arg = arg;
1051 }
1052 
1053 static struct pool_item_header *
1054 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1055 {
1056 	struct pool_item_header *ph;
1057 
1058 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1059 		ph = storage;
1060 	else
1061 		ph = pool_get(pp->pr_phpool, flags);
1062 
1063 	return ph;
1064 }
1065 
1066 /*
1067  * Grab an item from the pool.
1068  */
1069 void *
1070 pool_get(struct pool *pp, int flags)
1071 {
1072 	struct pool_item_header *ph;
1073 	void *v;
1074 
1075 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1076 	KASSERTMSG((pp->pr_itemsperpage != 0),
1077 	    "%s: [%s] pr_itemsperpage is zero, "
1078 	    "pool not initialized?", __func__, pp->pr_wchan);
1079 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1080 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1081 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
1082 	    __func__, pp->pr_wchan);
1083 	if (flags & PR_WAITOK) {
1084 		ASSERT_SLEEPABLE();
1085 	}
1086 
1087 	if (flags & PR_NOWAIT) {
1088 		if (fault_inject())
1089 			return NULL;
1090 	}
1091 
1092 	mutex_enter(&pp->pr_lock);
1093  startover:
1094 	/*
1095 	 * Check to see if we've reached the hard limit.  If we have,
1096 	 * and we can wait, then wait until an item has been returned to
1097 	 * the pool.
1098 	 */
1099 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1100 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1101 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1102 		if (pp->pr_drain_hook != NULL) {
1103 			/*
1104 			 * Since the drain hook is going to free things
1105 			 * back to the pool, unlock, call the hook, re-lock,
1106 			 * and check the hardlimit condition again.
1107 			 */
1108 			mutex_exit(&pp->pr_lock);
1109 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1110 			mutex_enter(&pp->pr_lock);
1111 			if (pp->pr_nout < pp->pr_hardlimit)
1112 				goto startover;
1113 		}
1114 
1115 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1116 			/*
1117 			 * XXX: A warning isn't logged in this case.  Should
1118 			 * it be?
1119 			 */
1120 			pp->pr_flags |= PR_WANTED;
1121 			do {
1122 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1123 			} while (pp->pr_flags & PR_WANTED);
1124 			goto startover;
1125 		}
1126 
1127 		/*
1128 		 * Log a message that the hard limit has been hit.
1129 		 */
1130 		if (pp->pr_hardlimit_warning != NULL &&
1131 		    ratecheck(&pp->pr_hardlimit_warning_last,
1132 			      &pp->pr_hardlimit_ratecap))
1133 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1134 
1135 		pp->pr_nfail++;
1136 
1137 		mutex_exit(&pp->pr_lock);
1138 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1139 		return NULL;
1140 	}
1141 
1142 	/*
1143 	 * The convention we use is that if `curpage' is not NULL, then
1144 	 * it points at a non-empty bucket. In particular, `curpage'
1145 	 * never points at a page header which has PR_PHINPAGE set and
1146 	 * has no items in its bucket.
1147 	 */
1148 	if ((ph = pp->pr_curpage) == NULL) {
1149 		int error;
1150 
1151 		KASSERTMSG((pp->pr_nitems == 0),
1152 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
1153 		    __func__, pp->pr_wchan, pp->pr_nitems);
1154 
1155 		/*
1156 		 * Call the back-end page allocator for more memory.
1157 		 * Release the pool lock, as the back-end page allocator
1158 		 * may block.
1159 		 */
1160 		error = pool_grow(pp, flags);
1161 		if (error != 0) {
1162 			/*
1163 			 * pool_grow aborts when another thread
1164 			 * is allocating a new page. Retry if it
1165 			 * waited for it.
1166 			 */
1167 			if (error == ERESTART)
1168 				goto startover;
1169 
1170 			/*
1171 			 * We were unable to allocate a page or item
1172 			 * header, but we released the lock during
1173 			 * allocation, so perhaps items were freed
1174 			 * back to the pool.  Check for this case.
1175 			 */
1176 			if (pp->pr_curpage != NULL)
1177 				goto startover;
1178 
1179 			pp->pr_nfail++;
1180 			mutex_exit(&pp->pr_lock);
1181 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1182 			return NULL;
1183 		}
1184 
1185 		/* Start the allocation process over. */
1186 		goto startover;
1187 	}
1188 	if (pp->pr_roflags & PR_USEBMAP) {
1189 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1190 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1191 		v = pr_item_bitmap_get(pp, ph);
1192 	} else {
1193 		v = pr_item_linkedlist_get(pp, ph);
1194 	}
1195 	pp->pr_nitems--;
1196 	pp->pr_nout++;
1197 	if (ph->ph_nmissing == 0) {
1198 		KASSERT(pp->pr_nidle > 0);
1199 		pp->pr_nidle--;
1200 
1201 		/*
1202 		 * This page was previously empty.  Move it to the list of
1203 		 * partially-full pages.  This page is already curpage.
1204 		 */
1205 		LIST_REMOVE(ph, ph_pagelist);
1206 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1207 	}
1208 	ph->ph_nmissing++;
1209 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1210 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1211 			LIST_EMPTY(&ph->ph_itemlist)),
1212 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
1213 			pp->pr_wchan, ph->ph_nmissing);
1214 		/*
1215 		 * This page is now full.  Move it to the full list
1216 		 * and select a new current page.
1217 		 */
1218 		LIST_REMOVE(ph, ph_pagelist);
1219 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1220 		pool_update_curpage(pp);
1221 	}
1222 
1223 	pp->pr_nget++;
1224 
1225 	/*
1226 	 * If we have a low water mark and we are now below that low
1227 	 * water mark, add more items to the pool.
1228 	 */
1229 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1230 		/*
1231 		 * XXX: Should we log a warning?  Should we set up a timeout
1232 		 * to try again in a second or so?  The latter could break
1233 		 * a caller's assumptions about interrupt protection, etc.
1234 		 */
1235 	}
1236 
1237 	mutex_exit(&pp->pr_lock);
1238 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1239 	FREECHECK_OUT(&pp->pr_freecheck, v);
1240 	pool_redzone_fill(pp, v);
1241 	pool_get_kmsan(pp, v);
1242 	if (flags & PR_ZERO)
1243 		memset(v, 0, pp->pr_reqsize);
1244 	return v;
1245 }
1246 
1247 /*
1248  * Internal version of pool_put().  Pool is already locked/entered.
1249  */
1250 static void
1251 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1252 {
1253 	struct pool_item_header *ph;
1254 
1255 	KASSERT(mutex_owned(&pp->pr_lock));
1256 	pool_redzone_check(pp, v);
1257 	pool_put_kmsan(pp, v);
1258 	FREECHECK_IN(&pp->pr_freecheck, v);
1259 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1260 
1261 	KASSERTMSG((pp->pr_nout > 0),
1262 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1263 
1264 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1265 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
1266 	}
1267 
1268 	/*
1269 	 * Return to item list.
1270 	 */
1271 	if (pp->pr_roflags & PR_USEBMAP) {
1272 		pr_item_bitmap_put(pp, ph, v);
1273 	} else {
1274 		pr_item_linkedlist_put(pp, ph, v);
1275 	}
1276 	KDASSERT(ph->ph_nmissing != 0);
1277 	ph->ph_nmissing--;
1278 	pp->pr_nput++;
1279 	pp->pr_nitems++;
1280 	pp->pr_nout--;
1281 
1282 	/* Cancel "pool empty" condition if it exists */
1283 	if (pp->pr_curpage == NULL)
1284 		pp->pr_curpage = ph;
1285 
1286 	if (pp->pr_flags & PR_WANTED) {
1287 		pp->pr_flags &= ~PR_WANTED;
1288 		cv_broadcast(&pp->pr_cv);
1289 	}
1290 
1291 	/*
1292 	 * If this page is now empty, do one of two things:
1293 	 *
1294 	 *	(1) If we have more pages than the page high water mark,
1295 	 *	    free the page back to the system.  ONLY CONSIDER
1296 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1297 	 *	    CLAIM.
1298 	 *
1299 	 *	(2) Otherwise, move the page to the empty page list.
1300 	 *
1301 	 * Either way, select a new current page (so we use a partially-full
1302 	 * page if one is available).
1303 	 */
1304 	if (ph->ph_nmissing == 0) {
1305 		pp->pr_nidle++;
1306 		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1307 		    pp->pr_npages > pp->pr_minpages &&
1308 		    pp->pr_npages > pp->pr_maxpages) {
1309 			pr_rmpage(pp, ph, pq);
1310 		} else {
1311 			LIST_REMOVE(ph, ph_pagelist);
1312 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1313 
1314 			/*
1315 			 * Update the timestamp on the page.  A page must
1316 			 * be idle for some period of time before it can
1317 			 * be reclaimed by the pagedaemon.  This minimizes
1318 			 * ping-pong'ing for memory.
1319 			 *
1320 			 * note for 64-bit time_t: truncating to 32-bit is not
1321 			 * a problem for our usage.
1322 			 */
1323 			ph->ph_time = time_uptime;
1324 		}
1325 		pool_update_curpage(pp);
1326 	}
1327 
1328 	/*
1329 	 * If the page was previously completely full, move it to the
1330 	 * partially-full list and make it the current page.  The next
1331 	 * allocation will get the item from this page, instead of
1332 	 * further fragmenting the pool.
1333 	 */
1334 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1335 		LIST_REMOVE(ph, ph_pagelist);
1336 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1337 		pp->pr_curpage = ph;
1338 	}
1339 }
1340 
1341 void
1342 pool_put(struct pool *pp, void *v)
1343 {
1344 	struct pool_pagelist pq;
1345 
1346 	LIST_INIT(&pq);
1347 
1348 	mutex_enter(&pp->pr_lock);
1349 	if (!pool_put_quarantine(pp, v, &pq)) {
1350 		pool_do_put(pp, v, &pq);
1351 	}
1352 	mutex_exit(&pp->pr_lock);
1353 
1354 	pr_pagelist_free(pp, &pq);
1355 }
1356 
1357 /*
1358  * pool_grow: grow a pool by a page.
1359  *
1360  * => called with pool locked.
1361  * => unlock and relock the pool.
1362  * => return with pool locked.
1363  */
1364 
1365 static int
1366 pool_grow(struct pool *pp, int flags)
1367 {
1368 	struct pool_item_header *ph;
1369 	char *storage;
1370 
1371 	/*
1372 	 * If there's a pool_grow in progress, wait for it to complete
1373 	 * and try again from the top.
1374 	 */
1375 	if (pp->pr_flags & PR_GROWING) {
1376 		if (flags & PR_WAITOK) {
1377 			do {
1378 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1379 			} while (pp->pr_flags & PR_GROWING);
1380 			return ERESTART;
1381 		} else {
1382 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1383 				/*
1384 				 * This needs an unlock/relock dance so
1385 				 * that the other caller has a chance to
1386 				 * run and actually do the thing.  Note
1387 				 * that this is effectively a busy-wait.
1388 				 */
1389 				mutex_exit(&pp->pr_lock);
1390 				mutex_enter(&pp->pr_lock);
1391 				return ERESTART;
1392 			}
1393 			return EWOULDBLOCK;
1394 		}
1395 	}
1396 	pp->pr_flags |= PR_GROWING;
1397 	if (flags & PR_WAITOK)
1398 		mutex_exit(&pp->pr_lock);
1399 	else
1400 		pp->pr_flags |= PR_GROWINGNOWAIT;
1401 
1402 	storage = pool_allocator_alloc(pp, flags);
1403 	if (__predict_false(storage == NULL))
1404 		goto out;
1405 
1406 	ph = pool_alloc_item_header(pp, storage, flags);
1407 	if (__predict_false(ph == NULL)) {
1408 		pool_allocator_free(pp, storage);
1409 		goto out;
1410 	}
1411 
1412 	if (flags & PR_WAITOK)
1413 		mutex_enter(&pp->pr_lock);
1414 	pool_prime_page(pp, storage, ph);
1415 	pp->pr_npagealloc++;
1416 	KASSERT(pp->pr_flags & PR_GROWING);
1417 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1418 	/*
1419 	 * If anyone was waiting for pool_grow, notify them that we
1420 	 * may have just done it.
1421 	 */
1422 	cv_broadcast(&pp->pr_cv);
1423 	return 0;
1424 out:
1425 	if (flags & PR_WAITOK)
1426 		mutex_enter(&pp->pr_lock);
1427 	KASSERT(pp->pr_flags & PR_GROWING);
1428 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1429 	return ENOMEM;
1430 }
1431 
1432 void
1433 pool_prime(struct pool *pp, int n)
1434 {
1435 
1436 	mutex_enter(&pp->pr_lock);
1437 	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1438 	if (pp->pr_maxpages <= pp->pr_minpages)
1439 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1440 	while (pp->pr_npages < pp->pr_minpages)
1441 		(void) pool_grow(pp, PR_WAITOK);
1442 	mutex_exit(&pp->pr_lock);
1443 }
1444 
1445 /*
1446  * Add a page worth of items to the pool.
1447  *
1448  * Note, we must be called with the pool descriptor LOCKED.
1449  */
1450 static void
1451 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1452 {
1453 	const unsigned int align = pp->pr_align;
1454 	struct pool_item *pi;
1455 	void *cp = storage;
1456 	int n;
1457 
1458 	KASSERT(mutex_owned(&pp->pr_lock));
1459 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1460 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1461 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1462 
1463 	/*
1464 	 * Insert page header.
1465 	 */
1466 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1467 	LIST_INIT(&ph->ph_itemlist);
1468 	ph->ph_page = storage;
1469 	ph->ph_nmissing = 0;
1470 	ph->ph_time = time_uptime;
1471 	if (pp->pr_roflags & PR_PHINPAGE)
1472 		ph->ph_poolid = pp->pr_poolid;
1473 	else
1474 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1475 
1476 	pp->pr_nidle++;
1477 
1478 	/*
1479 	 * The item space starts after the on-page header, if any.
1480 	 */
1481 	ph->ph_off = pp->pr_itemoffset;
1482 
1483 	/*
1484 	 * Color this page.
1485 	 */
1486 	ph->ph_off += pp->pr_curcolor;
1487 	cp = (char *)cp + ph->ph_off;
1488 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1489 		pp->pr_curcolor = 0;
1490 
1491 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1492 
1493 	/*
1494 	 * Insert remaining chunks on the bucket list.
1495 	 */
1496 	n = pp->pr_itemsperpage;
1497 	pp->pr_nitems += n;
1498 
1499 	if (pp->pr_roflags & PR_USEBMAP) {
1500 		pr_item_bitmap_init(pp, ph);
1501 	} else {
1502 		while (n--) {
1503 			pi = (struct pool_item *)cp;
1504 
1505 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1506 
1507 			/* Insert on page list */
1508 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1509 #ifdef POOL_CHECK_MAGIC
1510 			pi->pi_magic = PI_MAGIC;
1511 #endif
1512 			cp = (char *)cp + pp->pr_size;
1513 
1514 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1515 		}
1516 	}
1517 
1518 	/*
1519 	 * If the pool was depleted, point at the new page.
1520 	 */
1521 	if (pp->pr_curpage == NULL)
1522 		pp->pr_curpage = ph;
1523 
1524 	if (++pp->pr_npages > pp->pr_hiwat)
1525 		pp->pr_hiwat = pp->pr_npages;
1526 }
1527 
1528 /*
1529  * Used by pool_get() when nitems drops below the low water mark.  This
1530  * is used to catch up pr_nitems with the low water mark.
1531  *
1532  * Note 1, we never wait for memory here, we let the caller decide what to do.
1533  *
1534  * Note 2, we must be called with the pool already locked, and we return
1535  * with it locked.
1536  */
1537 static int
1538 pool_catchup(struct pool *pp)
1539 {
1540 	int error = 0;
1541 
1542 	while (POOL_NEEDS_CATCHUP(pp)) {
1543 		error = pool_grow(pp, PR_NOWAIT);
1544 		if (error) {
1545 			if (error == ERESTART)
1546 				continue;
1547 			break;
1548 		}
1549 	}
1550 	return error;
1551 }
1552 
1553 static void
1554 pool_update_curpage(struct pool *pp)
1555 {
1556 
1557 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1558 	if (pp->pr_curpage == NULL) {
1559 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1560 	}
1561 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1562 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1563 }
1564 
1565 void
1566 pool_setlowat(struct pool *pp, int n)
1567 {
1568 
1569 	mutex_enter(&pp->pr_lock);
1570 	pp->pr_minitems = n;
1571 
1572 	/* Make sure we're caught up with the newly-set low water mark. */
1573 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1574 		/*
1575 		 * XXX: Should we log a warning?  Should we set up a timeout
1576 		 * to try again in a second or so?  The latter could break
1577 		 * a caller's assumptions about interrupt protection, etc.
1578 		 */
1579 	}
1580 
1581 	mutex_exit(&pp->pr_lock);
1582 }
1583 
1584 void
1585 pool_sethiwat(struct pool *pp, int n)
1586 {
1587 
1588 	mutex_enter(&pp->pr_lock);
1589 
1590 	pp->pr_maxitems = n;
1591 
1592 	mutex_exit(&pp->pr_lock);
1593 }
1594 
1595 void
1596 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1597 {
1598 
1599 	mutex_enter(&pp->pr_lock);
1600 
1601 	pp->pr_hardlimit = n;
1602 	pp->pr_hardlimit_warning = warnmess;
1603 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1604 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1605 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1606 
1607 	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1608 
1609 	mutex_exit(&pp->pr_lock);
1610 }
1611 
1612 /*
1613  * Release all complete pages that have not been used recently.
1614  *
1615  * Must not be called from interrupt context.
1616  */
1617 int
1618 pool_reclaim(struct pool *pp)
1619 {
1620 	struct pool_item_header *ph, *phnext;
1621 	struct pool_pagelist pq;
1622 	uint32_t curtime;
1623 	bool klock;
1624 	int rv;
1625 
1626 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1627 
1628 	if (pp->pr_drain_hook != NULL) {
1629 		/*
1630 		 * The drain hook must be called with the pool unlocked.
1631 		 */
1632 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1633 	}
1634 
1635 	/*
1636 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1637 	 * to block.
1638 	 */
1639 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1640 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1641 		KERNEL_LOCK(1, NULL);
1642 		klock = true;
1643 	} else
1644 		klock = false;
1645 
1646 	/* Reclaim items from the pool's cache (if any). */
1647 	if (pp->pr_cache != NULL)
1648 		pool_cache_invalidate(pp->pr_cache);
1649 
1650 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1651 		if (klock) {
1652 			KERNEL_UNLOCK_ONE(NULL);
1653 		}
1654 		return 0;
1655 	}
1656 
1657 	LIST_INIT(&pq);
1658 
1659 	curtime = time_uptime;
1660 
1661 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1662 		phnext = LIST_NEXT(ph, ph_pagelist);
1663 
1664 		/* Check our minimum page claim */
1665 		if (pp->pr_npages <= pp->pr_minpages)
1666 			break;
1667 
1668 		KASSERT(ph->ph_nmissing == 0);
1669 		if (curtime - ph->ph_time < pool_inactive_time)
1670 			continue;
1671 
1672 		/*
1673 		 * If freeing this page would put us below the minimum free items
1674 		 * or the minimum pages, stop now.
1675 		 */
1676 		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1677 		    pp->pr_npages - 1 < pp->pr_minpages)
1678 			break;
1679 
1680 		pr_rmpage(pp, ph, &pq);
1681 	}
1682 
1683 	mutex_exit(&pp->pr_lock);
1684 
1685 	if (LIST_EMPTY(&pq))
1686 		rv = 0;
1687 	else {
1688 		pr_pagelist_free(pp, &pq);
1689 		rv = 1;
1690 	}
1691 
1692 	if (klock) {
1693 		KERNEL_UNLOCK_ONE(NULL);
1694 	}
1695 
1696 	return rv;
1697 }
1698 
1699 /*
1700  * Drain pools, one at a time. The drained pool is returned within ppp.
1701  *
1702  * Note, must never be called from interrupt context.
1703  */
1704 bool
1705 pool_drain(struct pool **ppp)
1706 {
1707 	bool reclaimed;
1708 	struct pool *pp;
1709 
1710 	KASSERT(!TAILQ_EMPTY(&pool_head));
1711 
1712 	pp = NULL;
1713 
1714 	/* Find next pool to drain, and add a reference. */
1715 	mutex_enter(&pool_head_lock);
1716 	do {
1717 		if (drainpp == NULL) {
1718 			drainpp = TAILQ_FIRST(&pool_head);
1719 		}
1720 		if (drainpp != NULL) {
1721 			pp = drainpp;
1722 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1723 		}
1724 		/*
1725 		 * Skip completely idle pools.  We depend on at least
1726 		 * one pool in the system being active.
1727 		 */
1728 	} while (pp == NULL || pp->pr_npages == 0);
1729 	pp->pr_refcnt++;
1730 	mutex_exit(&pool_head_lock);
1731 
1732 	/* Drain the cache (if any) and pool.. */
1733 	reclaimed = pool_reclaim(pp);
1734 
1735 	/* Finally, unlock the pool. */
1736 	mutex_enter(&pool_head_lock);
1737 	pp->pr_refcnt--;
1738 	cv_broadcast(&pool_busy);
1739 	mutex_exit(&pool_head_lock);
1740 
1741 	if (ppp != NULL)
1742 		*ppp = pp;
1743 
1744 	return reclaimed;
1745 }
1746 
1747 /*
1748  * Calculate the total number of pages consumed by pools.
1749  */
1750 int
1751 pool_totalpages(void)
1752 {
1753 
1754 	mutex_enter(&pool_head_lock);
1755 	int pages = pool_totalpages_locked();
1756 	mutex_exit(&pool_head_lock);
1757 
1758 	return pages;
1759 }
1760 
1761 int
1762 pool_totalpages_locked(void)
1763 {
1764 	struct pool *pp;
1765 	uint64_t total = 0;
1766 
1767 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1768 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1769 
1770 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1771 			bytes -= (pp->pr_nout * pp->pr_size);
1772 		total += bytes;
1773 	}
1774 
1775 	return atop(total);
1776 }
1777 
1778 /*
1779  * Diagnostic helpers.
1780  */
1781 
1782 void
1783 pool_printall(const char *modif, void (*pr)(const char *, ...))
1784 {
1785 	struct pool *pp;
1786 
1787 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1788 		pool_printit(pp, modif, pr);
1789 	}
1790 }
1791 
1792 void
1793 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1794 {
1795 
1796 	if (pp == NULL) {
1797 		(*pr)("Must specify a pool to print.\n");
1798 		return;
1799 	}
1800 
1801 	pool_print1(pp, modif, pr);
1802 }
1803 
1804 static void
1805 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1806     void (*pr)(const char *, ...))
1807 {
1808 	struct pool_item_header *ph;
1809 
1810 	LIST_FOREACH(ph, pl, ph_pagelist) {
1811 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1812 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1813 #ifdef POOL_CHECK_MAGIC
1814 		struct pool_item *pi;
1815 		if (!(pp->pr_roflags & PR_USEBMAP)) {
1816 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1817 				if (pi->pi_magic != PI_MAGIC) {
1818 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1819 					    pi, pi->pi_magic);
1820 				}
1821 			}
1822 		}
1823 #endif
1824 	}
1825 }
1826 
1827 static void
1828 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1829 {
1830 	struct pool_item_header *ph;
1831 	pool_cache_t pc;
1832 	pcg_t *pcg;
1833 	pool_cache_cpu_t *cc;
1834 	uint64_t cpuhit, cpumiss, pchit, pcmiss;
1835 	uint32_t nfull;
1836 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1837 	char c;
1838 
1839 	while ((c = *modif++) != '\0') {
1840 		if (c == 'l')
1841 			print_log = 1;
1842 		if (c == 'p')
1843 			print_pagelist = 1;
1844 		if (c == 'c')
1845 			print_cache = 1;
1846 	}
1847 
1848 	if ((pc = pp->pr_cache) != NULL) {
1849 		(*pr)("POOL CACHE");
1850 	} else {
1851 		(*pr)("POOL");
1852 	}
1853 
1854 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1855 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1856 	    pp->pr_roflags);
1857 	(*pr)("\talloc %p\n", pp->pr_alloc);
1858 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1859 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1860 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1861 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1862 
1863 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1864 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1865 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1866 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1867 
1868 	if (print_pagelist == 0)
1869 		goto skip_pagelist;
1870 
1871 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1872 		(*pr)("\n\tempty page list:\n");
1873 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1874 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1875 		(*pr)("\n\tfull page list:\n");
1876 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1877 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1878 		(*pr)("\n\tpartial-page list:\n");
1879 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1880 
1881 	if (pp->pr_curpage == NULL)
1882 		(*pr)("\tno current page\n");
1883 	else
1884 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1885 
1886  skip_pagelist:
1887 	if (print_log == 0)
1888 		goto skip_log;
1889 
1890 	(*pr)("\n");
1891 
1892  skip_log:
1893 
1894 #define PR_GROUPLIST(pcg)						\
1895 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1896 	for (i = 0; i < pcg->pcg_size; i++) {				\
1897 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1898 		    POOL_PADDR_INVALID) {				\
1899 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1900 			    pcg->pcg_objects[i].pcgo_va,		\
1901 			    (unsigned long long)			\
1902 			    pcg->pcg_objects[i].pcgo_pa);		\
1903 		} else {						\
1904 			(*pr)("\t\t\t%p\n",				\
1905 			    pcg->pcg_objects[i].pcgo_va);		\
1906 		}							\
1907 	}
1908 
1909 	if (pc != NULL) {
1910 		cpuhit = 0;
1911 		cpumiss = 0;
1912 		pcmiss = 0;
1913 		nfull = 0;
1914 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1915 			if ((cc = pc->pc_cpus[i]) == NULL)
1916 				continue;
1917 			cpuhit += cc->cc_hits;
1918 			cpumiss += cc->cc_misses;
1919 			pcmiss += cc->cc_pcmisses;
1920 			nfull += cc->cc_nfull;
1921 		}
1922 		pchit = cpumiss - pcmiss;
1923 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1924 		(*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1925 		(*pr)("\tcache layer full groups %u\n", nfull);
1926 		if (print_cache) {
1927 			(*pr)("\tfull cache groups:\n");
1928 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1929 			    pcg = pcg->pcg_next) {
1930 				PR_GROUPLIST(pcg);
1931 			}
1932 		}
1933 	}
1934 #undef PR_GROUPLIST
1935 }
1936 
1937 static int
1938 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1939 {
1940 	struct pool_item *pi;
1941 	void *page;
1942 	int n;
1943 
1944 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1945 		page = POOL_OBJ_TO_PAGE(pp, ph);
1946 		if (page != ph->ph_page &&
1947 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1948 			if (label != NULL)
1949 				printf("%s: ", label);
1950 			printf("pool(%p:%s): page inconsistency: page %p;"
1951 			       " at page head addr %p (p %p)\n", pp,
1952 				pp->pr_wchan, ph->ph_page,
1953 				ph, page);
1954 			return 1;
1955 		}
1956 	}
1957 
1958 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
1959 		return 0;
1960 
1961 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1962 	     pi != NULL;
1963 	     pi = LIST_NEXT(pi,pi_list), n++) {
1964 
1965 #ifdef POOL_CHECK_MAGIC
1966 		if (pi->pi_magic != PI_MAGIC) {
1967 			if (label != NULL)
1968 				printf("%s: ", label);
1969 			printf("pool(%s): free list modified: magic=%x;"
1970 			       " page %p; item ordinal %d; addr %p\n",
1971 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1972 				n, pi);
1973 			panic("pool");
1974 		}
1975 #endif
1976 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1977 			continue;
1978 		}
1979 		page = POOL_OBJ_TO_PAGE(pp, pi);
1980 		if (page == ph->ph_page)
1981 			continue;
1982 
1983 		if (label != NULL)
1984 			printf("%s: ", label);
1985 		printf("pool(%p:%s): page inconsistency: page %p;"
1986 		       " item ordinal %d; addr %p (p %p)\n", pp,
1987 			pp->pr_wchan, ph->ph_page,
1988 			n, pi, page);
1989 		return 1;
1990 	}
1991 	return 0;
1992 }
1993 
1994 
1995 int
1996 pool_chk(struct pool *pp, const char *label)
1997 {
1998 	struct pool_item_header *ph;
1999 	int r = 0;
2000 
2001 	mutex_enter(&pp->pr_lock);
2002 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2003 		r = pool_chk_page(pp, label, ph);
2004 		if (r) {
2005 			goto out;
2006 		}
2007 	}
2008 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2009 		r = pool_chk_page(pp, label, ph);
2010 		if (r) {
2011 			goto out;
2012 		}
2013 	}
2014 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2015 		r = pool_chk_page(pp, label, ph);
2016 		if (r) {
2017 			goto out;
2018 		}
2019 	}
2020 
2021 out:
2022 	mutex_exit(&pp->pr_lock);
2023 	return r;
2024 }
2025 
2026 /*
2027  * pool_cache_init:
2028  *
2029  *	Initialize a pool cache.
2030  */
2031 pool_cache_t
2032 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2033     const char *wchan, struct pool_allocator *palloc, int ipl,
2034     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2035 {
2036 	pool_cache_t pc;
2037 
2038 	pc = pool_get(&cache_pool, PR_WAITOK);
2039 	if (pc == NULL)
2040 		return NULL;
2041 
2042 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2043 	   palloc, ipl, ctor, dtor, arg);
2044 
2045 	return pc;
2046 }
2047 
2048 /*
2049  * pool_cache_bootstrap:
2050  *
2051  *	Kernel-private version of pool_cache_init().  The caller
2052  *	provides initial storage.
2053  */
2054 void
2055 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2056     u_int align_offset, u_int flags, const char *wchan,
2057     struct pool_allocator *palloc, int ipl,
2058     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2059     void *arg)
2060 {
2061 	CPU_INFO_ITERATOR cii;
2062 	pool_cache_t pc1;
2063 	struct cpu_info *ci;
2064 	struct pool *pp;
2065 
2066 	pp = &pc->pc_pool;
2067 	if (palloc == NULL && ipl == IPL_NONE) {
2068 		if (size > PAGE_SIZE) {
2069 			int bigidx = pool_bigidx(size);
2070 
2071 			palloc = &pool_allocator_big[bigidx];
2072 			flags |= PR_NOALIGN;
2073 		} else
2074 			palloc = &pool_allocator_nointr;
2075 	}
2076 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2077 
2078 	if (ctor == NULL) {
2079 		ctor = NO_CTOR;
2080 	}
2081 	if (dtor == NULL) {
2082 		dtor = NO_DTOR;
2083 	}
2084 
2085 	pc->pc_fullgroups = NULL;
2086 	pc->pc_partgroups = NULL;
2087 	pc->pc_ctor = ctor;
2088 	pc->pc_dtor = dtor;
2089 	pc->pc_arg  = arg;
2090 	pc->pc_refcnt = 0;
2091 	pc->pc_freecheck = NULL;
2092 
2093 	if ((flags & PR_LARGECACHE) != 0) {
2094 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2095 		pc->pc_pcgpool = &pcg_large_pool;
2096 		pc->pc_pcgcache = &pcg_large_cache;
2097 	} else {
2098 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2099 		pc->pc_pcgpool = &pcg_normal_pool;
2100 		pc->pc_pcgcache = &pcg_normal_cache;
2101 	}
2102 
2103 	/* Allocate per-CPU caches. */
2104 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2105 	pc->pc_ncpu = 0;
2106 	if (ncpu < 2) {
2107 		/* XXX For sparc: boot CPU is not attached yet. */
2108 		pool_cache_cpu_init1(curcpu(), pc);
2109 	} else {
2110 		for (CPU_INFO_FOREACH(cii, ci)) {
2111 			pool_cache_cpu_init1(ci, pc);
2112 		}
2113 	}
2114 
2115 	/* Add to list of all pools. */
2116 	if (__predict_true(!cold))
2117 		mutex_enter(&pool_head_lock);
2118 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2119 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2120 			break;
2121 	}
2122 	if (pc1 == NULL)
2123 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2124 	else
2125 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2126 	if (__predict_true(!cold))
2127 		mutex_exit(&pool_head_lock);
2128 
2129 	membar_sync();
2130 	pp->pr_cache = pc;
2131 }
2132 
2133 /*
2134  * pool_cache_destroy:
2135  *
2136  *	Destroy a pool cache.
2137  */
2138 void
2139 pool_cache_destroy(pool_cache_t pc)
2140 {
2141 
2142 	pool_cache_bootstrap_destroy(pc);
2143 	pool_put(&cache_pool, pc);
2144 }
2145 
2146 /*
2147  * pool_cache_bootstrap_destroy:
2148  *
2149  *	Destroy a pool cache.
2150  */
2151 void
2152 pool_cache_bootstrap_destroy(pool_cache_t pc)
2153 {
2154 	struct pool *pp = &pc->pc_pool;
2155 	u_int i;
2156 
2157 	/* Remove it from the global list. */
2158 	mutex_enter(&pool_head_lock);
2159 	while (pc->pc_refcnt != 0)
2160 		cv_wait(&pool_busy, &pool_head_lock);
2161 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2162 	mutex_exit(&pool_head_lock);
2163 
2164 	/* First, invalidate the entire cache. */
2165 	pool_cache_invalidate(pc);
2166 
2167 	/* Disassociate it from the pool. */
2168 	mutex_enter(&pp->pr_lock);
2169 	pp->pr_cache = NULL;
2170 	mutex_exit(&pp->pr_lock);
2171 
2172 	/* Destroy per-CPU data */
2173 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2174 		pool_cache_invalidate_cpu(pc, i);
2175 
2176 	/* Finally, destroy it. */
2177 	pool_destroy(pp);
2178 }
2179 
2180 /*
2181  * pool_cache_cpu_init1:
2182  *
2183  *	Called for each pool_cache whenever a new CPU is attached.
2184  */
2185 static void
2186 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2187 {
2188 	pool_cache_cpu_t *cc;
2189 	int index;
2190 
2191 	index = ci->ci_index;
2192 
2193 	KASSERT(index < __arraycount(pc->pc_cpus));
2194 
2195 	if ((cc = pc->pc_cpus[index]) != NULL) {
2196 		return;
2197 	}
2198 
2199 	/*
2200 	 * The first CPU is 'free'.  This needs to be the case for
2201 	 * bootstrap - we may not be able to allocate yet.
2202 	 */
2203 	if (pc->pc_ncpu == 0) {
2204 		cc = &pc->pc_cpu0;
2205 		pc->pc_ncpu = 1;
2206 	} else {
2207 		pc->pc_ncpu++;
2208 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2209 	}
2210 
2211 	cc->cc_current = __UNCONST(&pcg_dummy);
2212 	cc->cc_previous = __UNCONST(&pcg_dummy);
2213 	cc->cc_pcgcache = pc->pc_pcgcache;
2214 	cc->cc_hits = 0;
2215 	cc->cc_misses = 0;
2216 	cc->cc_pcmisses = 0;
2217 	cc->cc_contended = 0;
2218 	cc->cc_nfull = 0;
2219 	cc->cc_npart = 0;
2220 
2221 	pc->pc_cpus[index] = cc;
2222 }
2223 
2224 /*
2225  * pool_cache_cpu_init:
2226  *
2227  *	Called whenever a new CPU is attached.
2228  */
2229 void
2230 pool_cache_cpu_init(struct cpu_info *ci)
2231 {
2232 	pool_cache_t pc;
2233 
2234 	mutex_enter(&pool_head_lock);
2235 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2236 		pc->pc_refcnt++;
2237 		mutex_exit(&pool_head_lock);
2238 
2239 		pool_cache_cpu_init1(ci, pc);
2240 
2241 		mutex_enter(&pool_head_lock);
2242 		pc->pc_refcnt--;
2243 		cv_broadcast(&pool_busy);
2244 	}
2245 	mutex_exit(&pool_head_lock);
2246 }
2247 
2248 /*
2249  * pool_cache_reclaim:
2250  *
2251  *	Reclaim memory from a pool cache.
2252  */
2253 bool
2254 pool_cache_reclaim(pool_cache_t pc)
2255 {
2256 
2257 	return pool_reclaim(&pc->pc_pool);
2258 }
2259 
2260 static void
2261 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2262 {
2263 	(*pc->pc_dtor)(pc->pc_arg, object);
2264 	pool_put(&pc->pc_pool, object);
2265 }
2266 
2267 /*
2268  * pool_cache_destruct_object:
2269  *
2270  *	Force destruction of an object and its release back into
2271  *	the pool.
2272  */
2273 void
2274 pool_cache_destruct_object(pool_cache_t pc, void *object)
2275 {
2276 
2277 	FREECHECK_IN(&pc->pc_freecheck, object);
2278 
2279 	pool_cache_destruct_object1(pc, object);
2280 }
2281 
2282 /*
2283  * pool_cache_invalidate_groups:
2284  *
2285  *	Invalidate a chain of groups and destruct all objects.  Return the
2286  *	number of groups that were invalidated.
2287  */
2288 static int
2289 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2290 {
2291 	void *object;
2292 	pcg_t *next;
2293 	int i, n;
2294 
2295 	for (n = 0; pcg != NULL; pcg = next, n++) {
2296 		next = pcg->pcg_next;
2297 
2298 		for (i = 0; i < pcg->pcg_avail; i++) {
2299 			object = pcg->pcg_objects[i].pcgo_va;
2300 			pool_cache_destruct_object1(pc, object);
2301 		}
2302 
2303 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2304 			pool_put(&pcg_large_pool, pcg);
2305 		} else {
2306 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2307 			pool_put(&pcg_normal_pool, pcg);
2308 		}
2309 	}
2310 	return n;
2311 }
2312 
2313 /*
2314  * pool_cache_invalidate:
2315  *
2316  *	Invalidate a pool cache (destruct and release all of the
2317  *	cached objects).  Does not reclaim objects from the pool.
2318  *
2319  *	Note: For pool caches that provide constructed objects, there
2320  *	is an assumption that another level of synchronization is occurring
2321  *	between the input to the constructor and the cache invalidation.
2322  *
2323  *	Invalidation is a costly process and should not be called from
2324  *	interrupt context.
2325  */
2326 void
2327 pool_cache_invalidate(pool_cache_t pc)
2328 {
2329 	uint64_t where;
2330 	pcg_t *pcg;
2331 	int n, s;
2332 
2333 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2334 
2335 	if (ncpu < 2 || !mp_online) {
2336 		/*
2337 		 * We might be called early enough in the boot process
2338 		 * for the CPU data structures to not be fully initialized.
2339 		 * In this case, transfer the content of the local CPU's
2340 		 * cache back into global cache as only this CPU is currently
2341 		 * running.
2342 		 */
2343 		pool_cache_transfer(pc);
2344 	} else {
2345 		/*
2346 		 * Signal all CPUs that they must transfer their local
2347 		 * cache back to the global pool then wait for the xcall to
2348 		 * complete.
2349 		 */
2350 		where = xc_broadcast(0,
2351 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2352 		xc_wait(where);
2353 	}
2354 
2355 	/* Now dequeue and invalidate everything. */
2356 	pcg = pool_pcg_trunc(&pcg_normal_cache);
2357 	(void)pool_cache_invalidate_groups(pc, pcg);
2358 
2359 	pcg = pool_pcg_trunc(&pcg_large_cache);
2360 	(void)pool_cache_invalidate_groups(pc, pcg);
2361 
2362 	pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2363 	n = pool_cache_invalidate_groups(pc, pcg);
2364 	s = splvm();
2365 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2366 	splx(s);
2367 
2368 	pcg = pool_pcg_trunc(&pc->pc_partgroups);
2369 	n = pool_cache_invalidate_groups(pc, pcg);
2370 	s = splvm();
2371 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2372 	splx(s);
2373 }
2374 
2375 /*
2376  * pool_cache_invalidate_cpu:
2377  *
2378  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2379  *	identified by its associated index.
2380  *	It is caller's responsibility to ensure that no operation is
2381  *	taking place on this pool cache while doing this invalidation.
2382  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2383  *	pool cached objects from a CPU different from the one currently running
2384  *	may result in an undefined behaviour.
2385  */
2386 static void
2387 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2388 {
2389 	pool_cache_cpu_t *cc;
2390 	pcg_t *pcg;
2391 
2392 	if ((cc = pc->pc_cpus[index]) == NULL)
2393 		return;
2394 
2395 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2396 		pcg->pcg_next = NULL;
2397 		pool_cache_invalidate_groups(pc, pcg);
2398 	}
2399 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2400 		pcg->pcg_next = NULL;
2401 		pool_cache_invalidate_groups(pc, pcg);
2402 	}
2403 	if (cc != &pc->pc_cpu0)
2404 		pool_put(&cache_cpu_pool, cc);
2405 
2406 }
2407 
2408 void
2409 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2410 {
2411 
2412 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2413 }
2414 
2415 void
2416 pool_cache_setlowat(pool_cache_t pc, int n)
2417 {
2418 
2419 	pool_setlowat(&pc->pc_pool, n);
2420 }
2421 
2422 void
2423 pool_cache_sethiwat(pool_cache_t pc, int n)
2424 {
2425 
2426 	pool_sethiwat(&pc->pc_pool, n);
2427 }
2428 
2429 void
2430 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2431 {
2432 
2433 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2434 }
2435 
2436 void
2437 pool_cache_prime(pool_cache_t pc, int n)
2438 {
2439 
2440 	pool_prime(&pc->pc_pool, n);
2441 }
2442 
2443 /*
2444  * pool_pcg_get:
2445  *
2446  *	Get a cache group from the specified list.  Return true if
2447  *	contention was encountered.  Must be called at IPL_VM because
2448  *	of spin wait vs. kernel_lock.
2449  */
2450 static int
2451 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2452 {
2453 	int count = SPINLOCK_BACKOFF_MIN;
2454 	pcg_t *o, *n;
2455 
2456 	for (o = atomic_load_relaxed(head);; o = n) {
2457 		if (__predict_false(o == &pcg_dummy)) {
2458 			/* Wait for concurrent get to complete. */
2459 			SPINLOCK_BACKOFF(count);
2460 			n = atomic_load_relaxed(head);
2461 			continue;
2462 		}
2463 		if (__predict_false(o == NULL)) {
2464 			break;
2465 		}
2466 		/* Lock out concurrent get/put. */
2467 		n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2468 		if (o == n) {
2469 			/* Fetch pointer to next item and then unlock. */
2470 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2471 			membar_datadep_consumer(); /* alpha */
2472 #endif
2473 			n = atomic_load_relaxed(&o->pcg_next);
2474 			atomic_store_release(head, n);
2475 			break;
2476 		}
2477 	}
2478 	*pcgp = o;
2479 	return count != SPINLOCK_BACKOFF_MIN;
2480 }
2481 
2482 /*
2483  * pool_pcg_trunc:
2484  *
2485  *	Chop out entire list of pool cache groups.
2486  */
2487 static pcg_t *
2488 pool_pcg_trunc(pcg_t *volatile *head)
2489 {
2490 	int count = SPINLOCK_BACKOFF_MIN, s;
2491 	pcg_t *o, *n;
2492 
2493 	s = splvm();
2494 	for (o = atomic_load_relaxed(head);; o = n) {
2495 		if (__predict_false(o == &pcg_dummy)) {
2496 			/* Wait for concurrent get to complete. */
2497 			SPINLOCK_BACKOFF(count);
2498 			n = atomic_load_relaxed(head);
2499 			continue;
2500 		}
2501 		n = atomic_cas_ptr(head, o, NULL);
2502 		if (o == n) {
2503 			splx(s);
2504 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2505 			membar_datadep_consumer(); /* alpha */
2506 #endif
2507 			return o;
2508 		}
2509 	}
2510 }
2511 
2512 /*
2513  * pool_pcg_put:
2514  *
2515  *	Put a pool cache group to the specified list.  Return true if
2516  *	contention was encountered.  Must be called at IPL_VM because of
2517  *	spin wait vs. kernel_lock.
2518  */
2519 static int
2520 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2521 {
2522 	int count = SPINLOCK_BACKOFF_MIN;
2523 	pcg_t *o, *n;
2524 
2525 	for (o = atomic_load_relaxed(head);; o = n) {
2526 		if (__predict_false(o == &pcg_dummy)) {
2527 			/* Wait for concurrent get to complete. */
2528 			SPINLOCK_BACKOFF(count);
2529 			n = atomic_load_relaxed(head);
2530 			continue;
2531 		}
2532 		pcg->pcg_next = o;
2533 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2534 		membar_exit();
2535 #endif
2536 		n = atomic_cas_ptr(head, o, pcg);
2537 		if (o == n) {
2538 			return count != SPINLOCK_BACKOFF_MIN;
2539 		}
2540 	}
2541 }
2542 
2543 static bool __noinline
2544 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2545     void **objectp, paddr_t *pap, int flags)
2546 {
2547 	pcg_t *pcg, *cur;
2548 	void *object;
2549 
2550 	KASSERT(cc->cc_current->pcg_avail == 0);
2551 	KASSERT(cc->cc_previous->pcg_avail == 0);
2552 
2553 	cc->cc_misses++;
2554 
2555 	/*
2556 	 * If there's a full group, release our empty group back to the
2557 	 * cache.  Install the full group as cc_current and return.
2558 	 */
2559 	cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2560 	if (__predict_true(pcg != NULL)) {
2561 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2562 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2563 			KASSERT(cur->pcg_avail == 0);
2564 			(void)pool_pcg_put(cc->cc_pcgcache, cur);
2565 		}
2566 		cc->cc_nfull--;
2567 		cc->cc_current = pcg;
2568 		return true;
2569 	}
2570 
2571 	/*
2572 	 * Nothing available locally or in cache.  Take the slow
2573 	 * path: fetch a new object from the pool and construct
2574 	 * it.
2575 	 */
2576 	cc->cc_pcmisses++;
2577 	splx(s);
2578 
2579 	object = pool_get(&pc->pc_pool, flags);
2580 	*objectp = object;
2581 	if (__predict_false(object == NULL)) {
2582 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2583 		return false;
2584 	}
2585 
2586 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2587 		pool_put(&pc->pc_pool, object);
2588 		*objectp = NULL;
2589 		return false;
2590 	}
2591 
2592 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2593 
2594 	if (pap != NULL) {
2595 #ifdef POOL_VTOPHYS
2596 		*pap = POOL_VTOPHYS(object);
2597 #else
2598 		*pap = POOL_PADDR_INVALID;
2599 #endif
2600 	}
2601 
2602 	FREECHECK_OUT(&pc->pc_freecheck, object);
2603 	return false;
2604 }
2605 
2606 /*
2607  * pool_cache_get{,_paddr}:
2608  *
2609  *	Get an object from a pool cache (optionally returning
2610  *	the physical address of the object).
2611  */
2612 void *
2613 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2614 {
2615 	pool_cache_cpu_t *cc;
2616 	pcg_t *pcg;
2617 	void *object;
2618 	int s;
2619 
2620 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2621 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2622 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2623 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
2624 	    __func__, pc->pc_pool.pr_wchan);
2625 
2626 	if (flags & PR_WAITOK) {
2627 		ASSERT_SLEEPABLE();
2628 	}
2629 
2630 	if (flags & PR_NOWAIT) {
2631 		if (fault_inject())
2632 			return NULL;
2633 	}
2634 
2635 	/* Lock out interrupts and disable preemption. */
2636 	s = splvm();
2637 	while (/* CONSTCOND */ true) {
2638 		/* Try and allocate an object from the current group. */
2639 		cc = pc->pc_cpus[curcpu()->ci_index];
2640 	 	pcg = cc->cc_current;
2641 		if (__predict_true(pcg->pcg_avail > 0)) {
2642 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2643 			if (__predict_false(pap != NULL))
2644 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2645 #if defined(DIAGNOSTIC)
2646 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2647 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2648 			KASSERT(object != NULL);
2649 #endif
2650 			cc->cc_hits++;
2651 			splx(s);
2652 			FREECHECK_OUT(&pc->pc_freecheck, object);
2653 			pool_redzone_fill(&pc->pc_pool, object);
2654 			pool_cache_get_kmsan(pc, object);
2655 			return object;
2656 		}
2657 
2658 		/*
2659 		 * That failed.  If the previous group isn't empty, swap
2660 		 * it with the current group and allocate from there.
2661 		 */
2662 		pcg = cc->cc_previous;
2663 		if (__predict_true(pcg->pcg_avail > 0)) {
2664 			cc->cc_previous = cc->cc_current;
2665 			cc->cc_current = pcg;
2666 			continue;
2667 		}
2668 
2669 		/*
2670 		 * Can't allocate from either group: try the slow path.
2671 		 * If get_slow() allocated an object for us, or if
2672 		 * no more objects are available, it will return false.
2673 		 * Otherwise, we need to retry.
2674 		 */
2675 		if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2676 			if (object != NULL) {
2677 				kmsan_orig(object, pc->pc_pool.pr_size,
2678 				    KMSAN_TYPE_POOL, __RET_ADDR);
2679 			}
2680 			break;
2681 		}
2682 	}
2683 
2684 	/*
2685 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2686 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2687 	 * constructor fails.
2688 	 */
2689 	return object;
2690 }
2691 
2692 static bool __noinline
2693 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2694 {
2695 	pcg_t *pcg, *cur;
2696 
2697 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2698 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2699 
2700 	cc->cc_misses++;
2701 
2702 	/*
2703 	 * Try to get an empty group from the cache.  If there are no empty
2704 	 * groups in the cache then allocate one.
2705 	 */
2706 	(void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2707 	if (__predict_false(pcg == NULL)) {
2708 		if (__predict_true(!pool_cache_disable)) {
2709 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2710 		}
2711 		if (__predict_true(pcg != NULL)) {
2712 			pcg->pcg_avail = 0;
2713 			pcg->pcg_size = pc->pc_pcgsize;
2714 		}
2715 	}
2716 
2717 	/*
2718 	 * If there's a empty group, release our full group back to the
2719 	 * cache.  Install the empty group to the local CPU and return.
2720 	 */
2721 	if (pcg != NULL) {
2722 		KASSERT(pcg->pcg_avail == 0);
2723 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2724 			cc->cc_previous = pcg;
2725 		} else {
2726 			cur = cc->cc_current;
2727 			if (__predict_true(cur != &pcg_dummy)) {
2728 				KASSERT(cur->pcg_avail == cur->pcg_size);
2729 				cc->cc_contended +=
2730 				    pool_pcg_put(&pc->pc_fullgroups, cur);
2731 				cc->cc_nfull++;
2732 			}
2733 			cc->cc_current = pcg;
2734 		}
2735 		return true;
2736 	}
2737 
2738 	/*
2739 	 * Nothing available locally or in cache, and we didn't
2740 	 * allocate an empty group.  Take the slow path and destroy
2741 	 * the object here and now.
2742 	 */
2743 	cc->cc_pcmisses++;
2744 	splx(s);
2745 	pool_cache_destruct_object(pc, object);
2746 
2747 	return false;
2748 }
2749 
2750 /*
2751  * pool_cache_put{,_paddr}:
2752  *
2753  *	Put an object back to the pool cache (optionally caching the
2754  *	physical address of the object).
2755  */
2756 void
2757 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2758 {
2759 	pool_cache_cpu_t *cc;
2760 	pcg_t *pcg;
2761 	int s;
2762 
2763 	KASSERT(object != NULL);
2764 	pool_cache_put_kmsan(pc, object);
2765 	pool_cache_redzone_check(pc, object);
2766 	FREECHECK_IN(&pc->pc_freecheck, object);
2767 
2768 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2769 		pc_phinpage_check(pc, object);
2770 	}
2771 
2772 	if (pool_cache_put_nocache(pc, object)) {
2773 		return;
2774 	}
2775 
2776 	/* Lock out interrupts and disable preemption. */
2777 	s = splvm();
2778 	while (/* CONSTCOND */ true) {
2779 		/* If the current group isn't full, release it there. */
2780 		cc = pc->pc_cpus[curcpu()->ci_index];
2781 	 	pcg = cc->cc_current;
2782 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2783 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2784 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2785 			pcg->pcg_avail++;
2786 			cc->cc_hits++;
2787 			splx(s);
2788 			return;
2789 		}
2790 
2791 		/*
2792 		 * That failed.  If the previous group isn't full, swap
2793 		 * it with the current group and try again.
2794 		 */
2795 		pcg = cc->cc_previous;
2796 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2797 			cc->cc_previous = cc->cc_current;
2798 			cc->cc_current = pcg;
2799 			continue;
2800 		}
2801 
2802 		/*
2803 		 * Can't free to either group: try the slow path.
2804 		 * If put_slow() releases the object for us, it
2805 		 * will return false.  Otherwise we need to retry.
2806 		 */
2807 		if (!pool_cache_put_slow(pc, cc, s, object))
2808 			break;
2809 	}
2810 }
2811 
2812 /*
2813  * pool_cache_transfer:
2814  *
2815  *	Transfer objects from the per-CPU cache to the global cache.
2816  *	Run within a cross-call thread.
2817  */
2818 static void
2819 pool_cache_transfer(pool_cache_t pc)
2820 {
2821 	pool_cache_cpu_t *cc;
2822 	pcg_t *prev, *cur;
2823 	int s;
2824 
2825 	s = splvm();
2826 	cc = pc->pc_cpus[curcpu()->ci_index];
2827 	cur = cc->cc_current;
2828 	cc->cc_current = __UNCONST(&pcg_dummy);
2829 	prev = cc->cc_previous;
2830 	cc->cc_previous = __UNCONST(&pcg_dummy);
2831 	if (cur != &pcg_dummy) {
2832 		if (cur->pcg_avail == cur->pcg_size) {
2833 			(void)pool_pcg_put(&pc->pc_fullgroups, cur);
2834 			cc->cc_nfull++;
2835 		} else if (cur->pcg_avail == 0) {
2836 			(void)pool_pcg_put(pc->pc_pcgcache, cur);
2837 		} else {
2838 			(void)pool_pcg_put(&pc->pc_partgroups, cur);
2839 			cc->cc_npart++;
2840 		}
2841 	}
2842 	if (prev != &pcg_dummy) {
2843 		if (prev->pcg_avail == prev->pcg_size) {
2844 			(void)pool_pcg_put(&pc->pc_fullgroups, prev);
2845 			cc->cc_nfull++;
2846 		} else if (prev->pcg_avail == 0) {
2847 			(void)pool_pcg_put(pc->pc_pcgcache, prev);
2848 		} else {
2849 			(void)pool_pcg_put(&pc->pc_partgroups, prev);
2850 			cc->cc_npart++;
2851 		}
2852 	}
2853 	splx(s);
2854 }
2855 
2856 static int
2857 pool_bigidx(size_t size)
2858 {
2859 	int i;
2860 
2861 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2862 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2863 			return i;
2864 	}
2865 	panic("pool item size %zu too large, use a custom allocator", size);
2866 }
2867 
2868 static void *
2869 pool_allocator_alloc(struct pool *pp, int flags)
2870 {
2871 	struct pool_allocator *pa = pp->pr_alloc;
2872 	void *res;
2873 
2874 	res = (*pa->pa_alloc)(pp, flags);
2875 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2876 		/*
2877 		 * We only run the drain hook here if PR_NOWAIT.
2878 		 * In other cases, the hook will be run in
2879 		 * pool_reclaim().
2880 		 */
2881 		if (pp->pr_drain_hook != NULL) {
2882 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2883 			res = (*pa->pa_alloc)(pp, flags);
2884 		}
2885 	}
2886 	return res;
2887 }
2888 
2889 static void
2890 pool_allocator_free(struct pool *pp, void *v)
2891 {
2892 	struct pool_allocator *pa = pp->pr_alloc;
2893 
2894 	if (pp->pr_redzone) {
2895 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2896 	}
2897 	(*pa->pa_free)(pp, v);
2898 }
2899 
2900 void *
2901 pool_page_alloc(struct pool *pp, int flags)
2902 {
2903 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2904 	vmem_addr_t va;
2905 	int ret;
2906 
2907 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2908 	    vflags | VM_INSTANTFIT, &va);
2909 
2910 	return ret ? NULL : (void *)va;
2911 }
2912 
2913 void
2914 pool_page_free(struct pool *pp, void *v)
2915 {
2916 
2917 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2918 }
2919 
2920 static void *
2921 pool_page_alloc_meta(struct pool *pp, int flags)
2922 {
2923 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2924 	vmem_addr_t va;
2925 	int ret;
2926 
2927 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2928 	    vflags | VM_INSTANTFIT, &va);
2929 
2930 	return ret ? NULL : (void *)va;
2931 }
2932 
2933 static void
2934 pool_page_free_meta(struct pool *pp, void *v)
2935 {
2936 
2937 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2938 }
2939 
2940 #ifdef KMSAN
2941 static inline void
2942 pool_get_kmsan(struct pool *pp, void *p)
2943 {
2944 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2945 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2946 }
2947 
2948 static inline void
2949 pool_put_kmsan(struct pool *pp, void *p)
2950 {
2951 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2952 }
2953 
2954 static inline void
2955 pool_cache_get_kmsan(pool_cache_t pc, void *p)
2956 {
2957 	if (__predict_false(pc_has_ctor(pc))) {
2958 		return;
2959 	}
2960 	pool_get_kmsan(&pc->pc_pool, p);
2961 }
2962 
2963 static inline void
2964 pool_cache_put_kmsan(pool_cache_t pc, void *p)
2965 {
2966 	pool_put_kmsan(&pc->pc_pool, p);
2967 }
2968 #endif
2969 
2970 #ifdef POOL_QUARANTINE
2971 static void
2972 pool_quarantine_init(struct pool *pp)
2973 {
2974 	pp->pr_quar.rotor = 0;
2975 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2976 }
2977 
2978 static void
2979 pool_quarantine_flush(struct pool *pp)
2980 {
2981 	pool_quar_t *quar = &pp->pr_quar;
2982 	struct pool_pagelist pq;
2983 	size_t i;
2984 
2985 	LIST_INIT(&pq);
2986 
2987 	mutex_enter(&pp->pr_lock);
2988 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2989 		if (quar->list[i] == 0)
2990 			continue;
2991 		pool_do_put(pp, (void *)quar->list[i], &pq);
2992 	}
2993 	mutex_exit(&pp->pr_lock);
2994 
2995 	pr_pagelist_free(pp, &pq);
2996 }
2997 
2998 static bool
2999 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3000 {
3001 	pool_quar_t *quar = &pp->pr_quar;
3002 	uintptr_t old;
3003 
3004 	if (pp->pr_roflags & PR_NOTOUCH) {
3005 		return false;
3006 	}
3007 
3008 	pool_redzone_check(pp, v);
3009 
3010 	old = quar->list[quar->rotor];
3011 	quar->list[quar->rotor] = (uintptr_t)v;
3012 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3013 	if (old != 0) {
3014 		pool_do_put(pp, (void *)old, pq);
3015 	}
3016 
3017 	return true;
3018 }
3019 #endif
3020 
3021 #ifdef POOL_NOCACHE
3022 static bool
3023 pool_cache_put_nocache(pool_cache_t pc, void *p)
3024 {
3025 	pool_cache_destruct_object(pc, p);
3026 	return true;
3027 }
3028 #endif
3029 
3030 #ifdef POOL_REDZONE
3031 #if defined(_LP64)
3032 # define PRIME 0x9e37fffffffc0000UL
3033 #else /* defined(_LP64) */
3034 # define PRIME 0x9e3779b1
3035 #endif /* defined(_LP64) */
3036 #define STATIC_BYTE	0xFE
3037 CTASSERT(POOL_REDZONE_SIZE > 1);
3038 
3039 #ifndef KASAN
3040 static inline uint8_t
3041 pool_pattern_generate(const void *p)
3042 {
3043 	return (uint8_t)(((uintptr_t)p) * PRIME
3044 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3045 }
3046 #endif
3047 
3048 static void
3049 pool_redzone_init(struct pool *pp, size_t requested_size)
3050 {
3051 	size_t redzsz;
3052 	size_t nsz;
3053 
3054 #ifdef KASAN
3055 	redzsz = requested_size;
3056 	kasan_add_redzone(&redzsz);
3057 	redzsz -= requested_size;
3058 #else
3059 	redzsz = POOL_REDZONE_SIZE;
3060 #endif
3061 
3062 	if (pp->pr_roflags & PR_NOTOUCH) {
3063 		pp->pr_redzone = false;
3064 		return;
3065 	}
3066 
3067 	/*
3068 	 * We may have extended the requested size earlier; check if
3069 	 * there's naturally space in the padding for a red zone.
3070 	 */
3071 	if (pp->pr_size - requested_size >= redzsz) {
3072 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3073 		pp->pr_redzone = true;
3074 		return;
3075 	}
3076 
3077 	/*
3078 	 * No space in the natural padding; check if we can extend a
3079 	 * bit the size of the pool.
3080 	 */
3081 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3082 	if (nsz <= pp->pr_alloc->pa_pagesz) {
3083 		/* Ok, we can */
3084 		pp->pr_size = nsz;
3085 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3086 		pp->pr_redzone = true;
3087 	} else {
3088 		/* No space for a red zone... snif :'( */
3089 		pp->pr_redzone = false;
3090 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3091 	}
3092 }
3093 
3094 static void
3095 pool_redzone_fill(struct pool *pp, void *p)
3096 {
3097 	if (!pp->pr_redzone)
3098 		return;
3099 #ifdef KASAN
3100 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3101 	    KASAN_POOL_REDZONE);
3102 #else
3103 	uint8_t *cp, pat;
3104 	const uint8_t *ep;
3105 
3106 	cp = (uint8_t *)p + pp->pr_reqsize;
3107 	ep = cp + POOL_REDZONE_SIZE;
3108 
3109 	/*
3110 	 * We really don't want the first byte of the red zone to be '\0';
3111 	 * an off-by-one in a string may not be properly detected.
3112 	 */
3113 	pat = pool_pattern_generate(cp);
3114 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
3115 	cp++;
3116 
3117 	while (cp < ep) {
3118 		*cp = pool_pattern_generate(cp);
3119 		cp++;
3120 	}
3121 #endif
3122 }
3123 
3124 static void
3125 pool_redzone_check(struct pool *pp, void *p)
3126 {
3127 	if (!pp->pr_redzone)
3128 		return;
3129 #ifdef KASAN
3130 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3131 #else
3132 	uint8_t *cp, pat, expected;
3133 	const uint8_t *ep;
3134 
3135 	cp = (uint8_t *)p + pp->pr_reqsize;
3136 	ep = cp + POOL_REDZONE_SIZE;
3137 
3138 	pat = pool_pattern_generate(cp);
3139 	expected = (pat == '\0') ? STATIC_BYTE: pat;
3140 	if (__predict_false(*cp != expected)) {
3141 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3142 		    pp->pr_wchan, *cp, expected);
3143 	}
3144 	cp++;
3145 
3146 	while (cp < ep) {
3147 		expected = pool_pattern_generate(cp);
3148 		if (__predict_false(*cp != expected)) {
3149 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3150 			    pp->pr_wchan, *cp, expected);
3151 		}
3152 		cp++;
3153 	}
3154 #endif
3155 }
3156 
3157 static void
3158 pool_cache_redzone_check(pool_cache_t pc, void *p)
3159 {
3160 #ifdef KASAN
3161 	/* If there is a ctor/dtor, leave the data as valid. */
3162 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3163 		return;
3164 	}
3165 #endif
3166 	pool_redzone_check(&pc->pc_pool, p);
3167 }
3168 
3169 #endif /* POOL_REDZONE */
3170 
3171 #if defined(DDB)
3172 static bool
3173 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3174 {
3175 
3176 	return (uintptr_t)ph->ph_page <= addr &&
3177 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3178 }
3179 
3180 static bool
3181 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3182 {
3183 
3184 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3185 }
3186 
3187 static bool
3188 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3189 {
3190 	int i;
3191 
3192 	if (pcg == NULL) {
3193 		return false;
3194 	}
3195 	for (i = 0; i < pcg->pcg_avail; i++) {
3196 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3197 			return true;
3198 		}
3199 	}
3200 	return false;
3201 }
3202 
3203 static bool
3204 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3205 {
3206 
3207 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3208 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3209 		pool_item_bitmap_t *bitmap =
3210 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
3211 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3212 
3213 		return (*bitmap & mask) == 0;
3214 	} else {
3215 		struct pool_item *pi;
3216 
3217 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3218 			if (pool_in_item(pp, pi, addr)) {
3219 				return false;
3220 			}
3221 		}
3222 		return true;
3223 	}
3224 }
3225 
3226 void
3227 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3228 {
3229 	struct pool *pp;
3230 
3231 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3232 		struct pool_item_header *ph;
3233 		uintptr_t item;
3234 		bool allocated = true;
3235 		bool incache = false;
3236 		bool incpucache = false;
3237 		char cpucachestr[32];
3238 
3239 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3240 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3241 				if (pool_in_page(pp, ph, addr)) {
3242 					goto found;
3243 				}
3244 			}
3245 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3246 				if (pool_in_page(pp, ph, addr)) {
3247 					allocated =
3248 					    pool_allocated(pp, ph, addr);
3249 					goto found;
3250 				}
3251 			}
3252 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3253 				if (pool_in_page(pp, ph, addr)) {
3254 					allocated = false;
3255 					goto found;
3256 				}
3257 			}
3258 			continue;
3259 		} else {
3260 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3261 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3262 				continue;
3263 			}
3264 			allocated = pool_allocated(pp, ph, addr);
3265 		}
3266 found:
3267 		if (allocated && pp->pr_cache) {
3268 			pool_cache_t pc = pp->pr_cache;
3269 			struct pool_cache_group *pcg;
3270 			int i;
3271 
3272 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3273 			    pcg = pcg->pcg_next) {
3274 				if (pool_in_cg(pp, pcg, addr)) {
3275 					incache = true;
3276 					goto print;
3277 				}
3278 			}
3279 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3280 				pool_cache_cpu_t *cc;
3281 
3282 				if ((cc = pc->pc_cpus[i]) == NULL) {
3283 					continue;
3284 				}
3285 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3286 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3287 					struct cpu_info *ci =
3288 					    cpu_lookup(i);
3289 
3290 					incpucache = true;
3291 					snprintf(cpucachestr,
3292 					    sizeof(cpucachestr),
3293 					    "cached by CPU %u",
3294 					    ci->ci_index);
3295 					goto print;
3296 				}
3297 			}
3298 		}
3299 print:
3300 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3301 		item = item + rounddown(addr - item, pp->pr_size);
3302 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3303 		    (void *)addr, item, (size_t)(addr - item),
3304 		    pp->pr_wchan,
3305 		    incpucache ? cpucachestr :
3306 		    incache ? "cached" : allocated ? "allocated" : "free");
3307 	}
3308 }
3309 #endif /* defined(DDB) */
3310 
3311 static int
3312 pool_sysctl(SYSCTLFN_ARGS)
3313 {
3314 	struct pool_sysctl data;
3315 	struct pool *pp;
3316 	struct pool_cache *pc;
3317 	pool_cache_cpu_t *cc;
3318 	int error;
3319 	size_t i, written;
3320 
3321 	if (oldp == NULL) {
3322 		*oldlenp = 0;
3323 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3324 			*oldlenp += sizeof(data);
3325 		return 0;
3326 	}
3327 
3328 	memset(&data, 0, sizeof(data));
3329 	error = 0;
3330 	written = 0;
3331 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3332 		if (written + sizeof(data) > *oldlenp)
3333 			break;
3334 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3335 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3336 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3337 #define COPY(field) data.field = pp->field
3338 		COPY(pr_size);
3339 
3340 		COPY(pr_itemsperpage);
3341 		COPY(pr_nitems);
3342 		COPY(pr_nout);
3343 		COPY(pr_hardlimit);
3344 		COPY(pr_npages);
3345 		COPY(pr_minpages);
3346 		COPY(pr_maxpages);
3347 
3348 		COPY(pr_nget);
3349 		COPY(pr_nfail);
3350 		COPY(pr_nput);
3351 		COPY(pr_npagealloc);
3352 		COPY(pr_npagefree);
3353 		COPY(pr_hiwat);
3354 		COPY(pr_nidle);
3355 #undef COPY
3356 
3357 		data.pr_cache_nmiss_pcpu = 0;
3358 		data.pr_cache_nhit_pcpu = 0;
3359 		data.pr_cache_nmiss_global = 0;
3360 		data.pr_cache_nempty = 0;
3361 		data.pr_cache_ncontended = 0;
3362 		data.pr_cache_npartial = 0;
3363 		if (pp->pr_cache) {
3364 			uint32_t nfull = 0;
3365 			pc = pp->pr_cache;
3366 			data.pr_cache_meta_size = pc->pc_pcgsize;
3367 			for (i = 0; i < pc->pc_ncpu; ++i) {
3368 				cc = pc->pc_cpus[i];
3369 				if (cc == NULL)
3370 					continue;
3371 				data.pr_cache_ncontended += cc->cc_contended;
3372 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3373 				data.pr_cache_nhit_pcpu += cc->cc_hits;
3374 				data.pr_cache_nmiss_global += cc->cc_pcmisses;
3375 				nfull += cc->cc_nfull; /* 32-bit rollover! */
3376 				data.pr_cache_npartial += cc->cc_npart;
3377 			}
3378 			data.pr_cache_nfull = nfull;
3379 		} else {
3380 			data.pr_cache_meta_size = 0;
3381 			data.pr_cache_nfull = 0;
3382 		}
3383 		data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3384 		    data.pr_cache_nmiss_global;
3385 
3386 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3387 		if (error)
3388 			break;
3389 		written += sizeof(data);
3390 		oldp = (char *)oldp + sizeof(data);
3391 	}
3392 
3393 	*oldlenp = written;
3394 	return error;
3395 }
3396 
3397 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3398 {
3399 	const struct sysctlnode *rnode = NULL;
3400 
3401 	sysctl_createv(clog, 0, NULL, &rnode,
3402 		       CTLFLAG_PERMANENT,
3403 		       CTLTYPE_STRUCT, "pool",
3404 		       SYSCTL_DESCR("Get pool statistics"),
3405 		       pool_sysctl, 0, NULL, 0,
3406 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3407 }
3408