1 /* $NetBSD: subr_pool.c,v 1.50 2001/01/29 02:38:02 enami Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include "opt_pool.h" 41 #include "opt_poollog.h" 42 #include "opt_lockdebug.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/errno.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 54 #include <uvm/uvm.h> 55 56 /* 57 * Pool resource management utility. 58 * 59 * Memory is allocated in pages which are split into pieces according 60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist' 61 * in the pool structure and the individual pool items are on a linked list 62 * headed by `ph_itemlist' in each page header. The memory for building 63 * the page list is either taken from the allocated pages themselves (for 64 * small pool items) or taken from an internal pool of page headers (`phpool'). 65 */ 66 67 /* List of all pools */ 68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 69 70 /* Private pool for page header structures */ 71 static struct pool phpool; 72 73 /* # of seconds to retain page after last use */ 74 int pool_inactive_time = 10; 75 76 /* Next candidate for drainage (see pool_drain()) */ 77 static struct pool *drainpp; 78 79 /* This spin lock protects both pool_head and drainpp. */ 80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 81 82 struct pool_item_header { 83 /* Page headers */ 84 TAILQ_ENTRY(pool_item_header) 85 ph_pagelist; /* pool page list */ 86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 87 LIST_ENTRY(pool_item_header) 88 ph_hashlist; /* Off-page page headers */ 89 int ph_nmissing; /* # of chunks in use */ 90 caddr_t ph_page; /* this page's address */ 91 struct timeval ph_time; /* last referenced */ 92 }; 93 94 struct pool_item { 95 #ifdef DIAGNOSTIC 96 int pi_magic; 97 #endif 98 #define PI_MAGIC 0xdeadbeef 99 /* Other entries use only this list entry */ 100 TAILQ_ENTRY(pool_item) pi_list; 101 }; 102 103 #define PR_HASH_INDEX(pp,addr) \ 104 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1)) 105 106 /* 107 * Pool cache management. 108 * 109 * Pool caches provide a way for constructed objects to be cached by the 110 * pool subsystem. This can lead to performance improvements by avoiding 111 * needless object construction/destruction; it is deferred until absolutely 112 * necessary. 113 * 114 * Caches are grouped into cache groups. Each cache group references 115 * up to 16 constructed objects. When a cache allocates an object 116 * from the pool, it calls the object's constructor and places it into 117 * a cache group. When a cache group frees an object back to the pool, 118 * it first calls the object's destructor. This allows the object to 119 * persist in constructed form while freed to the cache. 120 * 121 * Multiple caches may exist for each pool. This allows a single 122 * object type to have multiple constructed forms. The pool references 123 * each cache, so that when a pool is drained by the pagedaemon, it can 124 * drain each individual cache as well. Each time a cache is drained, 125 * the most idle cache group is freed to the pool in its entirety. 126 * 127 * Pool caches are layed on top of pools. By layering them, we can avoid 128 * the complexity of cache management for pools which would not benefit 129 * from it. 130 */ 131 132 /* The cache group pool. */ 133 static struct pool pcgpool; 134 135 /* The pool cache group. */ 136 #define PCG_NOBJECTS 16 137 struct pool_cache_group { 138 TAILQ_ENTRY(pool_cache_group) 139 pcg_list; /* link in the pool cache's group list */ 140 u_int pcg_avail; /* # available objects */ 141 /* pointers to the objects */ 142 void *pcg_objects[PCG_NOBJECTS]; 143 }; 144 145 static void pool_cache_reclaim(struct pool_cache *); 146 147 static int pool_catchup(struct pool *); 148 static int pool_prime_page(struct pool *, caddr_t, int); 149 static void *pool_page_alloc(unsigned long, int, int); 150 static void pool_page_free(void *, unsigned long, int); 151 152 static void pool_print1(struct pool *, const char *, 153 void (*)(const char *, ...)); 154 155 /* 156 * Pool log entry. An array of these is allocated in pool_create(). 157 */ 158 struct pool_log { 159 const char *pl_file; 160 long pl_line; 161 int pl_action; 162 #define PRLOG_GET 1 163 #define PRLOG_PUT 2 164 void *pl_addr; 165 }; 166 167 /* Number of entries in pool log buffers */ 168 #ifndef POOL_LOGSIZE 169 #define POOL_LOGSIZE 10 170 #endif 171 172 int pool_logsize = POOL_LOGSIZE; 173 174 #ifdef DIAGNOSTIC 175 static __inline void 176 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 177 { 178 int n = pp->pr_curlogentry; 179 struct pool_log *pl; 180 181 if ((pp->pr_roflags & PR_LOGGING) == 0) 182 return; 183 184 /* 185 * Fill in the current entry. Wrap around and overwrite 186 * the oldest entry if necessary. 187 */ 188 pl = &pp->pr_log[n]; 189 pl->pl_file = file; 190 pl->pl_line = line; 191 pl->pl_action = action; 192 pl->pl_addr = v; 193 if (++n >= pp->pr_logsize) 194 n = 0; 195 pp->pr_curlogentry = n; 196 } 197 198 static void 199 pr_printlog(struct pool *pp, struct pool_item *pi, 200 void (*pr)(const char *, ...)) 201 { 202 int i = pp->pr_logsize; 203 int n = pp->pr_curlogentry; 204 205 if ((pp->pr_roflags & PR_LOGGING) == 0) 206 return; 207 208 /* 209 * Print all entries in this pool's log. 210 */ 211 while (i-- > 0) { 212 struct pool_log *pl = &pp->pr_log[n]; 213 if (pl->pl_action != 0) { 214 if (pi == NULL || pi == pl->pl_addr) { 215 (*pr)("\tlog entry %d:\n", i); 216 (*pr)("\t\taction = %s, addr = %p\n", 217 pl->pl_action == PRLOG_GET ? "get" : "put", 218 pl->pl_addr); 219 (*pr)("\t\tfile: %s at line %lu\n", 220 pl->pl_file, pl->pl_line); 221 } 222 } 223 if (++n >= pp->pr_logsize) 224 n = 0; 225 } 226 } 227 228 static __inline void 229 pr_enter(struct pool *pp, const char *file, long line) 230 { 231 232 if (__predict_false(pp->pr_entered_file != NULL)) { 233 printf("pool %s: reentrancy at file %s line %ld\n", 234 pp->pr_wchan, file, line); 235 printf(" previous entry at file %s line %ld\n", 236 pp->pr_entered_file, pp->pr_entered_line); 237 panic("pr_enter"); 238 } 239 240 pp->pr_entered_file = file; 241 pp->pr_entered_line = line; 242 } 243 244 static __inline void 245 pr_leave(struct pool *pp) 246 { 247 248 if (__predict_false(pp->pr_entered_file == NULL)) { 249 printf("pool %s not entered?\n", pp->pr_wchan); 250 panic("pr_leave"); 251 } 252 253 pp->pr_entered_file = NULL; 254 pp->pr_entered_line = 0; 255 } 256 257 static __inline void 258 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 259 { 260 261 if (pp->pr_entered_file != NULL) 262 (*pr)("\n\tcurrently entered from file %s line %ld\n", 263 pp->pr_entered_file, pp->pr_entered_line); 264 } 265 #else 266 #define pr_log(pp, v, action, file, line) 267 #define pr_printlog(pp, pi, pr) 268 #define pr_enter(pp, file, line) 269 #define pr_leave(pp) 270 #define pr_enter_check(pp, pr) 271 #endif /* DIAGNOSTIC */ 272 273 /* 274 * Return the pool page header based on page address. 275 */ 276 static __inline struct pool_item_header * 277 pr_find_pagehead(struct pool *pp, caddr_t page) 278 { 279 struct pool_item_header *ph; 280 281 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 282 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 283 284 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]); 285 ph != NULL; 286 ph = LIST_NEXT(ph, ph_hashlist)) { 287 if (ph->ph_page == page) 288 return (ph); 289 } 290 return (NULL); 291 } 292 293 /* 294 * Remove a page from the pool. 295 */ 296 static __inline void 297 pr_rmpage(struct pool *pp, struct pool_item_header *ph) 298 { 299 300 /* 301 * If the page was idle, decrement the idle page count. 302 */ 303 if (ph->ph_nmissing == 0) { 304 #ifdef DIAGNOSTIC 305 if (pp->pr_nidle == 0) 306 panic("pr_rmpage: nidle inconsistent"); 307 if (pp->pr_nitems < pp->pr_itemsperpage) 308 panic("pr_rmpage: nitems inconsistent"); 309 #endif 310 pp->pr_nidle--; 311 } 312 313 pp->pr_nitems -= pp->pr_itemsperpage; 314 315 /* 316 * Unlink a page from the pool and release it. 317 */ 318 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 319 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype); 320 pp->pr_npages--; 321 pp->pr_npagefree++; 322 323 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 324 int s; 325 LIST_REMOVE(ph, ph_hashlist); 326 s = splhigh(); 327 pool_put(&phpool, ph); 328 splx(s); 329 } 330 331 if (pp->pr_curpage == ph) { 332 /* 333 * Find a new non-empty page header, if any. 334 * Start search from the page head, to increase the 335 * chance for "high water" pages to be freed. 336 */ 337 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 338 ph = TAILQ_NEXT(ph, ph_pagelist)) 339 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 340 break; 341 342 pp->pr_curpage = ph; 343 } 344 } 345 346 /* 347 * Allocate and initialize a pool. 348 */ 349 struct pool * 350 pool_create(size_t size, u_int align, u_int ioff, int nitems, 351 const char *wchan, size_t pagesz, 352 void *(*alloc)(unsigned long, int, int), 353 void (*release)(void *, unsigned long, int), 354 int mtype) 355 { 356 struct pool *pp; 357 int flags; 358 359 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT); 360 if (pp == NULL) 361 return (NULL); 362 363 flags = PR_FREEHEADER; 364 pool_init(pp, size, align, ioff, flags, wchan, pagesz, 365 alloc, release, mtype); 366 367 if (nitems != 0) { 368 if (pool_prime(pp, nitems, NULL) != 0) { 369 pool_destroy(pp); 370 return (NULL); 371 } 372 } 373 374 return (pp); 375 } 376 377 /* 378 * Initialize the given pool resource structure. 379 * 380 * We export this routine to allow other kernel parts to declare 381 * static pools that must be initialized before malloc() is available. 382 */ 383 void 384 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 385 const char *wchan, size_t pagesz, 386 void *(*alloc)(unsigned long, int, int), 387 void (*release)(void *, unsigned long, int), 388 int mtype) 389 { 390 int off, slack, i; 391 392 #ifdef POOL_DIAGNOSTIC 393 /* 394 * Always log if POOL_DIAGNOSTIC is defined. 395 */ 396 if (pool_logsize != 0) 397 flags |= PR_LOGGING; 398 #endif 399 400 /* 401 * Check arguments and construct default values. 402 */ 403 if (!powerof2(pagesz)) 404 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz); 405 406 if (alloc == NULL && release == NULL) { 407 alloc = pool_page_alloc; 408 release = pool_page_free; 409 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */ 410 } else if ((alloc != NULL && release != NULL) == 0) { 411 /* If you specifiy one, must specify both. */ 412 panic("pool_init: must specify alloc and release together"); 413 } 414 415 if (pagesz == 0) 416 pagesz = PAGE_SIZE; 417 418 if (align == 0) 419 align = ALIGN(1); 420 421 if (size < sizeof(struct pool_item)) 422 size = sizeof(struct pool_item); 423 424 size = ALIGN(size); 425 if (size > pagesz) 426 panic("pool_init: pool item size (%lu) too large", 427 (u_long)size); 428 429 /* 430 * Initialize the pool structure. 431 */ 432 TAILQ_INIT(&pp->pr_pagelist); 433 TAILQ_INIT(&pp->pr_cachelist); 434 pp->pr_curpage = NULL; 435 pp->pr_npages = 0; 436 pp->pr_minitems = 0; 437 pp->pr_minpages = 0; 438 pp->pr_maxpages = UINT_MAX; 439 pp->pr_roflags = flags; 440 pp->pr_flags = 0; 441 pp->pr_size = size; 442 pp->pr_align = align; 443 pp->pr_wchan = wchan; 444 pp->pr_mtype = mtype; 445 pp->pr_alloc = alloc; 446 pp->pr_free = release; 447 pp->pr_pagesz = pagesz; 448 pp->pr_pagemask = ~(pagesz - 1); 449 pp->pr_pageshift = ffs(pagesz) - 1; 450 pp->pr_nitems = 0; 451 pp->pr_nout = 0; 452 pp->pr_hardlimit = UINT_MAX; 453 pp->pr_hardlimit_warning = NULL; 454 pp->pr_hardlimit_ratecap.tv_sec = 0; 455 pp->pr_hardlimit_ratecap.tv_usec = 0; 456 pp->pr_hardlimit_warning_last.tv_sec = 0; 457 pp->pr_hardlimit_warning_last.tv_usec = 0; 458 459 /* 460 * Decide whether to put the page header off page to avoid 461 * wasting too large a part of the page. Off-page page headers 462 * go on a hash table, so we can match a returned item 463 * with its header based on the page address. 464 * We use 1/16 of the page size as the threshold (XXX: tune) 465 */ 466 if (pp->pr_size < pagesz/16) { 467 /* Use the end of the page for the page header */ 468 pp->pr_roflags |= PR_PHINPAGE; 469 pp->pr_phoffset = off = 470 pagesz - ALIGN(sizeof(struct pool_item_header)); 471 } else { 472 /* The page header will be taken from our page header pool */ 473 pp->pr_phoffset = 0; 474 off = pagesz; 475 for (i = 0; i < PR_HASHTABSIZE; i++) { 476 LIST_INIT(&pp->pr_hashtab[i]); 477 } 478 } 479 480 /* 481 * Alignment is to take place at `ioff' within the item. This means 482 * we must reserve up to `align - 1' bytes on the page to allow 483 * appropriate positioning of each item. 484 * 485 * Silently enforce `0 <= ioff < align'. 486 */ 487 pp->pr_itemoffset = ioff = ioff % align; 488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 489 KASSERT(pp->pr_itemsperpage != 0); 490 491 /* 492 * Use the slack between the chunks and the page header 493 * for "cache coloring". 494 */ 495 slack = off - pp->pr_itemsperpage * pp->pr_size; 496 pp->pr_maxcolor = (slack / align) * align; 497 pp->pr_curcolor = 0; 498 499 pp->pr_nget = 0; 500 pp->pr_nfail = 0; 501 pp->pr_nput = 0; 502 pp->pr_npagealloc = 0; 503 pp->pr_npagefree = 0; 504 pp->pr_hiwat = 0; 505 pp->pr_nidle = 0; 506 507 if (flags & PR_LOGGING) { 508 if (kmem_map == NULL || 509 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 510 M_TEMP, M_NOWAIT)) == NULL) 511 pp->pr_roflags &= ~PR_LOGGING; 512 pp->pr_curlogentry = 0; 513 pp->pr_logsize = pool_logsize; 514 } 515 516 pp->pr_entered_file = NULL; 517 pp->pr_entered_line = 0; 518 519 simple_lock_init(&pp->pr_slock); 520 521 /* 522 * Initialize private page header pool and cache magazine pool if we 523 * haven't done so yet. 524 * XXX LOCKING. 525 */ 526 if (phpool.pr_size == 0) { 527 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 528 0, "phpool", 0, 0, 0, 0); 529 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0, 530 0, "pcgpool", 0, 0, 0, 0); 531 } 532 533 /* Insert into the list of all pools. */ 534 simple_lock(&pool_head_slock); 535 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 536 simple_unlock(&pool_head_slock); 537 } 538 539 /* 540 * De-commision a pool resource. 541 */ 542 void 543 pool_destroy(struct pool *pp) 544 { 545 struct pool_item_header *ph; 546 struct pool_cache *pc; 547 548 /* Destroy all caches for this pool. */ 549 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL) 550 pool_cache_destroy(pc); 551 552 #ifdef DIAGNOSTIC 553 if (pp->pr_nout != 0) { 554 pr_printlog(pp, NULL, printf); 555 panic("pool_destroy: pool busy: still out: %u\n", 556 pp->pr_nout); 557 } 558 #endif 559 560 /* Remove all pages */ 561 if ((pp->pr_roflags & PR_STATIC) == 0) 562 while ((ph = pp->pr_pagelist.tqh_first) != NULL) 563 pr_rmpage(pp, ph); 564 565 /* Remove from global pool list */ 566 simple_lock(&pool_head_slock); 567 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 568 /* XXX Only clear this if we were drainpp? */ 569 drainpp = NULL; 570 simple_unlock(&pool_head_slock); 571 572 if ((pp->pr_roflags & PR_LOGGING) != 0) 573 free(pp->pr_log, M_TEMP); 574 575 if (pp->pr_roflags & PR_FREEHEADER) 576 free(pp, M_POOL); 577 } 578 579 580 /* 581 * Grab an item from the pool; must be called at appropriate spl level 582 */ 583 void * 584 _pool_get(struct pool *pp, int flags, const char *file, long line) 585 { 586 void *v; 587 struct pool_item *pi; 588 struct pool_item_header *ph; 589 590 #ifdef DIAGNOSTIC 591 if (__predict_false((pp->pr_roflags & PR_STATIC) && 592 (flags & PR_MALLOCOK))) { 593 pr_printlog(pp, NULL, printf); 594 panic("pool_get: static"); 595 } 596 #endif 597 598 if (__predict_false(curproc == NULL && doing_shutdown == 0 && 599 (flags & PR_WAITOK) != 0)) 600 panic("pool_get: must have NOWAIT"); 601 602 simple_lock(&pp->pr_slock); 603 pr_enter(pp, file, line); 604 605 startover: 606 /* 607 * Check to see if we've reached the hard limit. If we have, 608 * and we can wait, then wait until an item has been returned to 609 * the pool. 610 */ 611 #ifdef DIAGNOSTIC 612 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 613 pr_leave(pp); 614 simple_unlock(&pp->pr_slock); 615 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 616 } 617 #endif 618 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 619 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 620 /* 621 * XXX: A warning isn't logged in this case. Should 622 * it be? 623 */ 624 pp->pr_flags |= PR_WANTED; 625 pr_leave(pp); 626 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 627 pr_enter(pp, file, line); 628 goto startover; 629 } 630 631 /* 632 * Log a message that the hard limit has been hit. 633 */ 634 if (pp->pr_hardlimit_warning != NULL && 635 ratecheck(&pp->pr_hardlimit_warning_last, 636 &pp->pr_hardlimit_ratecap)) 637 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 638 639 if (flags & PR_URGENT) 640 panic("pool_get: urgent"); 641 642 pp->pr_nfail++; 643 644 pr_leave(pp); 645 simple_unlock(&pp->pr_slock); 646 return (NULL); 647 } 648 649 /* 650 * The convention we use is that if `curpage' is not NULL, then 651 * it points at a non-empty bucket. In particular, `curpage' 652 * never points at a page header which has PR_PHINPAGE set and 653 * has no items in its bucket. 654 */ 655 if ((ph = pp->pr_curpage) == NULL) { 656 void *v; 657 658 #ifdef DIAGNOSTIC 659 if (pp->pr_nitems != 0) { 660 simple_unlock(&pp->pr_slock); 661 printf("pool_get: %s: curpage NULL, nitems %u\n", 662 pp->pr_wchan, pp->pr_nitems); 663 panic("pool_get: nitems inconsistent\n"); 664 } 665 #endif 666 667 /* 668 * Call the back-end page allocator for more memory. 669 * Release the pool lock, as the back-end page allocator 670 * may block. 671 */ 672 pr_leave(pp); 673 simple_unlock(&pp->pr_slock); 674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype); 675 simple_lock(&pp->pr_slock); 676 pr_enter(pp, file, line); 677 678 if (v == NULL) { 679 /* 680 * We were unable to allocate a page, but 681 * we released the lock during allocation, 682 * so perhaps items were freed back to the 683 * pool. Check for this case. 684 */ 685 if (pp->pr_curpage != NULL) 686 goto startover; 687 688 if (flags & PR_URGENT) 689 panic("pool_get: urgent"); 690 691 if ((flags & PR_WAITOK) == 0) { 692 pp->pr_nfail++; 693 pr_leave(pp); 694 simple_unlock(&pp->pr_slock); 695 return (NULL); 696 } 697 698 /* 699 * Wait for items to be returned to this pool. 700 * 701 * XXX: we actually want to wait just until 702 * the page allocator has memory again. Depending 703 * on this pool's usage, we might get stuck here 704 * for a long time. 705 * 706 * XXX: maybe we should wake up once a second and 707 * try again? 708 */ 709 pp->pr_flags |= PR_WANTED; 710 pr_leave(pp); 711 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 712 pr_enter(pp, file, line); 713 goto startover; 714 } 715 716 /* We have more memory; add it to the pool */ 717 if (pool_prime_page(pp, v, flags & PR_WAITOK) != 0) { 718 /* 719 * Probably, we don't allowed to wait and 720 * couldn't allocate a page header. 721 */ 722 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype); 723 pp->pr_nfail++; 724 pr_leave(pp); 725 simple_unlock(&pp->pr_slock); 726 return (NULL); 727 } 728 pp->pr_npagealloc++; 729 730 /* Start the allocation process over. */ 731 goto startover; 732 } 733 734 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 735 pr_leave(pp); 736 simple_unlock(&pp->pr_slock); 737 panic("pool_get: %s: page empty", pp->pr_wchan); 738 } 739 #ifdef DIAGNOSTIC 740 if (__predict_false(pp->pr_nitems == 0)) { 741 pr_leave(pp); 742 simple_unlock(&pp->pr_slock); 743 printf("pool_get: %s: items on itemlist, nitems %u\n", 744 pp->pr_wchan, pp->pr_nitems); 745 panic("pool_get: nitems inconsistent\n"); 746 } 747 #endif 748 pr_log(pp, v, PRLOG_GET, file, line); 749 750 #ifdef DIAGNOSTIC 751 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 752 pr_printlog(pp, pi, printf); 753 panic("pool_get(%s): free list modified: magic=%x; page %p;" 754 " item addr %p\n", 755 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 756 } 757 #endif 758 759 /* 760 * Remove from item list. 761 */ 762 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 763 pp->pr_nitems--; 764 pp->pr_nout++; 765 if (ph->ph_nmissing == 0) { 766 #ifdef DIAGNOSTIC 767 if (__predict_false(pp->pr_nidle == 0)) 768 panic("pool_get: nidle inconsistent"); 769 #endif 770 pp->pr_nidle--; 771 } 772 ph->ph_nmissing++; 773 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) { 774 #ifdef DIAGNOSTIC 775 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 776 pr_leave(pp); 777 simple_unlock(&pp->pr_slock); 778 panic("pool_get: %s: nmissing inconsistent", 779 pp->pr_wchan); 780 } 781 #endif 782 /* 783 * Find a new non-empty page header, if any. 784 * Start search from the page head, to increase 785 * the chance for "high water" pages to be freed. 786 * 787 * Migrate empty pages to the end of the list. This 788 * will speed the update of curpage as pages become 789 * idle. Empty pages intermingled with idle pages 790 * is no big deal. As soon as a page becomes un-empty, 791 * it will move back to the head of the list. 792 */ 793 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 794 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 795 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 796 ph = TAILQ_NEXT(ph, ph_pagelist)) 797 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 798 break; 799 800 pp->pr_curpage = ph; 801 } 802 803 pp->pr_nget++; 804 805 /* 806 * If we have a low water mark and we are now below that low 807 * water mark, add more items to the pool. 808 */ 809 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) { 810 /* 811 * XXX: Should we log a warning? Should we set up a timeout 812 * to try again in a second or so? The latter could break 813 * a caller's assumptions about interrupt protection, etc. 814 */ 815 } 816 817 pr_leave(pp); 818 simple_unlock(&pp->pr_slock); 819 return (v); 820 } 821 822 /* 823 * Internal version of pool_put(). Pool is already locked/entered. 824 */ 825 static void 826 pool_do_put(struct pool *pp, void *v, const char *file, long line) 827 { 828 struct pool_item *pi = v; 829 struct pool_item_header *ph; 830 caddr_t page; 831 int s; 832 833 page = (caddr_t)((u_long)v & pp->pr_pagemask); 834 835 #ifdef DIAGNOSTIC 836 if (__predict_false(pp->pr_nout == 0)) { 837 printf("pool %s: putting with none out\n", 838 pp->pr_wchan); 839 panic("pool_put"); 840 } 841 #endif 842 843 pr_log(pp, v, PRLOG_PUT, file, line); 844 845 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 846 pr_printlog(pp, NULL, printf); 847 panic("pool_put: %s: page header missing", pp->pr_wchan); 848 } 849 850 #ifdef LOCKDEBUG 851 /* 852 * Check if we're freeing a locked simple lock. 853 */ 854 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 855 #endif 856 857 /* 858 * Return to item list. 859 */ 860 #ifdef DIAGNOSTIC 861 pi->pi_magic = PI_MAGIC; 862 #endif 863 #ifdef DEBUG 864 { 865 int i, *ip = v; 866 867 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 868 *ip++ = PI_MAGIC; 869 } 870 } 871 #endif 872 873 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 874 ph->ph_nmissing--; 875 pp->pr_nput++; 876 pp->pr_nitems++; 877 pp->pr_nout--; 878 879 /* Cancel "pool empty" condition if it exists */ 880 if (pp->pr_curpage == NULL) 881 pp->pr_curpage = ph; 882 883 if (pp->pr_flags & PR_WANTED) { 884 pp->pr_flags &= ~PR_WANTED; 885 if (ph->ph_nmissing == 0) 886 pp->pr_nidle++; 887 wakeup((caddr_t)pp); 888 return; 889 } 890 891 /* 892 * If this page is now complete, do one of two things: 893 * 894 * (1) If we have more pages than the page high water 895 * mark, free the page back to the system. 896 * 897 * (2) Move it to the end of the page list, so that 898 * we minimize our chances of fragmenting the 899 * pool. Idle pages migrate to the end (along with 900 * completely empty pages, so that we find un-empty 901 * pages more quickly when we update curpage) of the 902 * list so they can be more easily swept up by 903 * the pagedaemon when pages are scarce. 904 */ 905 if (ph->ph_nmissing == 0) { 906 pp->pr_nidle++; 907 if (pp->pr_npages > pp->pr_maxpages) { 908 pr_rmpage(pp, ph); 909 } else { 910 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 911 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 912 913 /* 914 * Update the timestamp on the page. A page must 915 * be idle for some period of time before it can 916 * be reclaimed by the pagedaemon. This minimizes 917 * ping-pong'ing for memory. 918 */ 919 s = splclock(); 920 ph->ph_time = mono_time; 921 splx(s); 922 923 /* 924 * Update the current page pointer. Just look for 925 * the first page with any free items. 926 * 927 * XXX: Maybe we want an option to look for the 928 * page with the fewest available items, to minimize 929 * fragmentation? 930 */ 931 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 932 ph = TAILQ_NEXT(ph, ph_pagelist)) 933 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 934 break; 935 936 pp->pr_curpage = ph; 937 } 938 } 939 /* 940 * If the page has just become un-empty, move it to the head of 941 * the list, and make it the current page. The next allocation 942 * will get the item from this page, instead of further fragmenting 943 * the pool. 944 */ 945 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 946 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 947 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 948 pp->pr_curpage = ph; 949 } 950 } 951 952 /* 953 * Return resource to the pool; must be called at appropriate spl level 954 */ 955 void 956 _pool_put(struct pool *pp, void *v, const char *file, long line) 957 { 958 959 simple_lock(&pp->pr_slock); 960 pr_enter(pp, file, line); 961 962 pool_do_put(pp, v, file, line); 963 964 pr_leave(pp); 965 simple_unlock(&pp->pr_slock); 966 } 967 968 /* 969 * Add N items to the pool. 970 */ 971 int 972 pool_prime(struct pool *pp, int n, caddr_t storage) 973 { 974 caddr_t cp; 975 int error, newnitems, newpages; 976 977 #ifdef DIAGNOSTIC 978 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC))) 979 panic("pool_prime: static"); 980 /* !storage && static caught below */ 981 #endif 982 983 simple_lock(&pp->pr_slock); 984 985 newnitems = pp->pr_minitems + n; 986 newpages = 987 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage 988 - pp->pr_minpages; 989 990 while (newpages-- > 0) { 991 if (pp->pr_roflags & PR_STATIC) { 992 cp = storage; 993 storage += pp->pr_pagesz; 994 } else { 995 simple_unlock(&pp->pr_slock); 996 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 997 simple_lock(&pp->pr_slock); 998 } 999 1000 if (cp == NULL) { 1001 simple_unlock(&pp->pr_slock); 1002 return (ENOMEM); 1003 } 1004 1005 if ((error = pool_prime_page(pp, cp, PR_NOWAIT)) != 0) { 1006 if ((pp->pr_roflags & PR_STATIC) == 0) 1007 (*pp->pr_free)(cp, pp->pr_pagesz, 1008 pp->pr_mtype); 1009 simple_unlock(&pp->pr_slock); 1010 return (error); 1011 } 1012 pp->pr_npagealloc++; 1013 pp->pr_minpages++; 1014 } 1015 1016 pp->pr_minitems = newnitems; 1017 1018 if (pp->pr_minpages >= pp->pr_maxpages) 1019 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1020 1021 simple_unlock(&pp->pr_slock); 1022 return (0); 1023 } 1024 1025 /* 1026 * Add a page worth of items to the pool. 1027 * 1028 * Note, we must be called with the pool descriptor LOCKED. 1029 */ 1030 static int 1031 pool_prime_page(struct pool *pp, caddr_t storage, int flags) 1032 { 1033 struct pool_item *pi; 1034 struct pool_item_header *ph; 1035 caddr_t cp = storage; 1036 unsigned int align = pp->pr_align; 1037 unsigned int ioff = pp->pr_itemoffset; 1038 int s, n; 1039 1040 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0) 1041 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1042 1043 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 1044 ph = (struct pool_item_header *)(cp + pp->pr_phoffset); 1045 } else { 1046 s = splhigh(); 1047 ph = pool_get(&phpool, flags); 1048 splx(s); 1049 if (ph == NULL) 1050 return (ENOMEM); 1051 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)], 1052 ph, ph_hashlist); 1053 } 1054 1055 /* 1056 * Insert page header. 1057 */ 1058 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1059 TAILQ_INIT(&ph->ph_itemlist); 1060 ph->ph_page = storage; 1061 ph->ph_nmissing = 0; 1062 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1063 1064 pp->pr_nidle++; 1065 1066 /* 1067 * Color this page. 1068 */ 1069 cp = (caddr_t)(cp + pp->pr_curcolor); 1070 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1071 pp->pr_curcolor = 0; 1072 1073 /* 1074 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1075 */ 1076 if (ioff != 0) 1077 cp = (caddr_t)(cp + (align - ioff)); 1078 1079 /* 1080 * Insert remaining chunks on the bucket list. 1081 */ 1082 n = pp->pr_itemsperpage; 1083 pp->pr_nitems += n; 1084 1085 while (n--) { 1086 pi = (struct pool_item *)cp; 1087 1088 /* Insert on page list */ 1089 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1090 #ifdef DIAGNOSTIC 1091 pi->pi_magic = PI_MAGIC; 1092 #endif 1093 cp = (caddr_t)(cp + pp->pr_size); 1094 } 1095 1096 /* 1097 * If the pool was depleted, point at the new page. 1098 */ 1099 if (pp->pr_curpage == NULL) 1100 pp->pr_curpage = ph; 1101 1102 if (++pp->pr_npages > pp->pr_hiwat) 1103 pp->pr_hiwat = pp->pr_npages; 1104 1105 return (0); 1106 } 1107 1108 /* 1109 * Like pool_prime(), except this is used by pool_get() when nitems 1110 * drops below the low water mark. This is used to catch up nitmes 1111 * with the low water mark. 1112 * 1113 * Note 1, we never wait for memory here, we let the caller decide what to do. 1114 * 1115 * Note 2, this doesn't work with static pools. 1116 * 1117 * Note 3, we must be called with the pool already locked, and we return 1118 * with it locked. 1119 */ 1120 static int 1121 pool_catchup(struct pool *pp) 1122 { 1123 caddr_t cp; 1124 int error = 0; 1125 1126 if (pp->pr_roflags & PR_STATIC) { 1127 /* 1128 * We dropped below the low water mark, and this is not a 1129 * good thing. Log a warning. 1130 * 1131 * XXX: rate-limit this? 1132 */ 1133 printf("WARNING: static pool `%s' dropped below low water " 1134 "mark\n", pp->pr_wchan); 1135 return (0); 1136 } 1137 1138 while (pp->pr_nitems < pp->pr_minitems) { 1139 /* 1140 * Call the page back-end allocator for more memory. 1141 * 1142 * XXX: We never wait, so should we bother unlocking 1143 * the pool descriptor? 1144 */ 1145 simple_unlock(&pp->pr_slock); 1146 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype); 1147 simple_lock(&pp->pr_slock); 1148 if (__predict_false(cp == NULL)) { 1149 error = ENOMEM; 1150 break; 1151 } 1152 if ((error = pool_prime_page(pp, cp, PR_NOWAIT)) != 0) { 1153 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype); 1154 break; 1155 } 1156 pp->pr_npagealloc++; 1157 } 1158 1159 return (error); 1160 } 1161 1162 void 1163 pool_setlowat(struct pool *pp, int n) 1164 { 1165 int error; 1166 1167 simple_lock(&pp->pr_slock); 1168 1169 pp->pr_minitems = n; 1170 pp->pr_minpages = (n == 0) 1171 ? 0 1172 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1173 1174 /* Make sure we're caught up with the newly-set low water mark. */ 1175 if ((pp->pr_nitems < pp->pr_minitems) && 1176 (error = pool_catchup(pp)) != 0) { 1177 /* 1178 * XXX: Should we log a warning? Should we set up a timeout 1179 * to try again in a second or so? The latter could break 1180 * a caller's assumptions about interrupt protection, etc. 1181 */ 1182 } 1183 1184 simple_unlock(&pp->pr_slock); 1185 } 1186 1187 void 1188 pool_sethiwat(struct pool *pp, int n) 1189 { 1190 1191 simple_lock(&pp->pr_slock); 1192 1193 pp->pr_maxpages = (n == 0) 1194 ? 0 1195 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1196 1197 simple_unlock(&pp->pr_slock); 1198 } 1199 1200 void 1201 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1202 { 1203 1204 simple_lock(&pp->pr_slock); 1205 1206 pp->pr_hardlimit = n; 1207 pp->pr_hardlimit_warning = warnmess; 1208 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1209 pp->pr_hardlimit_warning_last.tv_sec = 0; 1210 pp->pr_hardlimit_warning_last.tv_usec = 0; 1211 1212 /* 1213 * In-line version of pool_sethiwat(), because we don't want to 1214 * release the lock. 1215 */ 1216 pp->pr_maxpages = (n == 0) 1217 ? 0 1218 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1219 1220 simple_unlock(&pp->pr_slock); 1221 } 1222 1223 /* 1224 * Default page allocator. 1225 */ 1226 static void * 1227 pool_page_alloc(unsigned long sz, int flags, int mtype) 1228 { 1229 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1230 1231 return ((void *)uvm_km_alloc_poolpage(waitok)); 1232 } 1233 1234 static void 1235 pool_page_free(void *v, unsigned long sz, int mtype) 1236 { 1237 1238 uvm_km_free_poolpage((vaddr_t)v); 1239 } 1240 1241 /* 1242 * Alternate pool page allocator for pools that know they will 1243 * never be accessed in interrupt context. 1244 */ 1245 void * 1246 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype) 1247 { 1248 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1249 1250 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object, 1251 waitok)); 1252 } 1253 1254 void 1255 pool_page_free_nointr(void *v, unsigned long sz, int mtype) 1256 { 1257 1258 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v); 1259 } 1260 1261 1262 /* 1263 * Release all complete pages that have not been used recently. 1264 */ 1265 void 1266 _pool_reclaim(struct pool *pp, const char *file, long line) 1267 { 1268 struct pool_item_header *ph, *phnext; 1269 struct pool_cache *pc; 1270 struct timeval curtime; 1271 int s; 1272 1273 if (pp->pr_roflags & PR_STATIC) 1274 return; 1275 1276 if (simple_lock_try(&pp->pr_slock) == 0) 1277 return; 1278 pr_enter(pp, file, line); 1279 1280 /* 1281 * Reclaim items from the pool's caches. 1282 */ 1283 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL; 1284 pc = TAILQ_NEXT(pc, pc_poollist)) 1285 pool_cache_reclaim(pc); 1286 1287 s = splclock(); 1288 curtime = mono_time; 1289 splx(s); 1290 1291 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) { 1292 phnext = TAILQ_NEXT(ph, ph_pagelist); 1293 1294 /* Check our minimum page claim */ 1295 if (pp->pr_npages <= pp->pr_minpages) 1296 break; 1297 1298 if (ph->ph_nmissing == 0) { 1299 struct timeval diff; 1300 timersub(&curtime, &ph->ph_time, &diff); 1301 if (diff.tv_sec < pool_inactive_time) 1302 continue; 1303 1304 /* 1305 * If freeing this page would put us below 1306 * the low water mark, stop now. 1307 */ 1308 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1309 pp->pr_minitems) 1310 break; 1311 1312 pr_rmpage(pp, ph); 1313 } 1314 } 1315 1316 pr_leave(pp); 1317 simple_unlock(&pp->pr_slock); 1318 } 1319 1320 1321 /* 1322 * Drain pools, one at a time. 1323 * 1324 * Note, we must never be called from an interrupt context. 1325 */ 1326 void 1327 pool_drain(void *arg) 1328 { 1329 struct pool *pp; 1330 int s; 1331 1332 s = splvm(); 1333 simple_lock(&pool_head_slock); 1334 1335 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL) 1336 goto out; 1337 1338 pp = drainpp; 1339 drainpp = TAILQ_NEXT(pp, pr_poollist); 1340 1341 pool_reclaim(pp); 1342 1343 out: 1344 simple_unlock(&pool_head_slock); 1345 splx(s); 1346 } 1347 1348 1349 /* 1350 * Diagnostic helpers. 1351 */ 1352 void 1353 pool_print(struct pool *pp, const char *modif) 1354 { 1355 int s; 1356 1357 s = splvm(); 1358 if (simple_lock_try(&pp->pr_slock) == 0) { 1359 printf("pool %s is locked; try again later\n", 1360 pp->pr_wchan); 1361 splx(s); 1362 return; 1363 } 1364 pool_print1(pp, modif, printf); 1365 simple_unlock(&pp->pr_slock); 1366 splx(s); 1367 } 1368 1369 void 1370 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1371 { 1372 int didlock = 0; 1373 1374 if (pp == NULL) { 1375 (*pr)("Must specify a pool to print.\n"); 1376 return; 1377 } 1378 1379 /* 1380 * Called from DDB; interrupts should be blocked, and all 1381 * other processors should be paused. We can skip locking 1382 * the pool in this case. 1383 * 1384 * We do a simple_lock_try() just to print the lock 1385 * status, however. 1386 */ 1387 1388 if (simple_lock_try(&pp->pr_slock) == 0) 1389 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1390 else 1391 didlock = 1; 1392 1393 pool_print1(pp, modif, pr); 1394 1395 if (didlock) 1396 simple_unlock(&pp->pr_slock); 1397 } 1398 1399 static void 1400 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1401 { 1402 struct pool_item_header *ph; 1403 struct pool_cache *pc; 1404 struct pool_cache_group *pcg; 1405 #ifdef DIAGNOSTIC 1406 struct pool_item *pi; 1407 #endif 1408 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1409 char c; 1410 1411 while ((c = *modif++) != '\0') { 1412 if (c == 'l') 1413 print_log = 1; 1414 if (c == 'p') 1415 print_pagelist = 1; 1416 if (c == 'c') 1417 print_cache = 1; 1418 modif++; 1419 } 1420 1421 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1422 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1423 pp->pr_roflags); 1424 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype); 1425 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free); 1426 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1427 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1428 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1429 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1430 1431 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1432 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1433 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1434 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1435 1436 if (print_pagelist == 0) 1437 goto skip_pagelist; 1438 1439 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 1440 (*pr)("\n\tpage list:\n"); 1441 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) { 1442 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1443 ph->ph_page, ph->ph_nmissing, 1444 (u_long)ph->ph_time.tv_sec, 1445 (u_long)ph->ph_time.tv_usec); 1446 #ifdef DIAGNOSTIC 1447 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL; 1448 pi = TAILQ_NEXT(pi, pi_list)) { 1449 if (pi->pi_magic != PI_MAGIC) { 1450 (*pr)("\t\t\titem %p, magic 0x%x\n", 1451 pi, pi->pi_magic); 1452 } 1453 } 1454 #endif 1455 } 1456 if (pp->pr_curpage == NULL) 1457 (*pr)("\tno current page\n"); 1458 else 1459 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1460 1461 skip_pagelist: 1462 1463 if (print_log == 0) 1464 goto skip_log; 1465 1466 (*pr)("\n"); 1467 if ((pp->pr_roflags & PR_LOGGING) == 0) 1468 (*pr)("\tno log\n"); 1469 else 1470 pr_printlog(pp, NULL, pr); 1471 1472 skip_log: 1473 1474 if (print_cache == 0) 1475 goto skip_cache; 1476 1477 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL; 1478 pc = TAILQ_NEXT(pc, pc_poollist)) { 1479 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc, 1480 pc->pc_allocfrom, pc->pc_freeto); 1481 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n", 1482 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems); 1483 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1484 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1485 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); 1486 for (i = 0; i < PCG_NOBJECTS; i++) 1487 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]); 1488 } 1489 } 1490 1491 skip_cache: 1492 1493 pr_enter_check(pp, pr); 1494 } 1495 1496 int 1497 pool_chk(struct pool *pp, const char *label) 1498 { 1499 struct pool_item_header *ph; 1500 int r = 0; 1501 1502 simple_lock(&pp->pr_slock); 1503 1504 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 1505 ph = TAILQ_NEXT(ph, ph_pagelist)) { 1506 1507 struct pool_item *pi; 1508 int n; 1509 caddr_t page; 1510 1511 page = (caddr_t)((u_long)ph & pp->pr_pagemask); 1512 if (page != ph->ph_page && 1513 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1514 if (label != NULL) 1515 printf("%s: ", label); 1516 printf("pool(%p:%s): page inconsistency: page %p;" 1517 " at page head addr %p (p %p)\n", pp, 1518 pp->pr_wchan, ph->ph_page, 1519 ph, page); 1520 r++; 1521 goto out; 1522 } 1523 1524 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1525 pi != NULL; 1526 pi = TAILQ_NEXT(pi,pi_list), n++) { 1527 1528 #ifdef DIAGNOSTIC 1529 if (pi->pi_magic != PI_MAGIC) { 1530 if (label != NULL) 1531 printf("%s: ", label); 1532 printf("pool(%s): free list modified: magic=%x;" 1533 " page %p; item ordinal %d;" 1534 " addr %p (p %p)\n", 1535 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1536 n, pi, page); 1537 panic("pool"); 1538 } 1539 #endif 1540 page = (caddr_t)((u_long)pi & pp->pr_pagemask); 1541 if (page == ph->ph_page) 1542 continue; 1543 1544 if (label != NULL) 1545 printf("%s: ", label); 1546 printf("pool(%p:%s): page inconsistency: page %p;" 1547 " item ordinal %d; addr %p (p %p)\n", pp, 1548 pp->pr_wchan, ph->ph_page, 1549 n, pi, page); 1550 r++; 1551 goto out; 1552 } 1553 } 1554 out: 1555 simple_unlock(&pp->pr_slock); 1556 return (r); 1557 } 1558 1559 /* 1560 * pool_cache_init: 1561 * 1562 * Initialize a pool cache. 1563 * 1564 * NOTE: If the pool must be protected from interrupts, we expect 1565 * to be called at the appropriate interrupt priority level. 1566 */ 1567 void 1568 pool_cache_init(struct pool_cache *pc, struct pool *pp, 1569 int (*ctor)(void *, void *, int), 1570 void (*dtor)(void *, void *), 1571 void *arg) 1572 { 1573 1574 TAILQ_INIT(&pc->pc_grouplist); 1575 simple_lock_init(&pc->pc_slock); 1576 1577 pc->pc_allocfrom = NULL; 1578 pc->pc_freeto = NULL; 1579 pc->pc_pool = pp; 1580 1581 pc->pc_ctor = ctor; 1582 pc->pc_dtor = dtor; 1583 pc->pc_arg = arg; 1584 1585 pc->pc_hits = 0; 1586 pc->pc_misses = 0; 1587 1588 pc->pc_ngroups = 0; 1589 1590 pc->pc_nitems = 0; 1591 1592 simple_lock(&pp->pr_slock); 1593 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist); 1594 simple_unlock(&pp->pr_slock); 1595 } 1596 1597 /* 1598 * pool_cache_destroy: 1599 * 1600 * Destroy a pool cache. 1601 */ 1602 void 1603 pool_cache_destroy(struct pool_cache *pc) 1604 { 1605 struct pool *pp = pc->pc_pool; 1606 1607 /* First, invalidate the entire cache. */ 1608 pool_cache_invalidate(pc); 1609 1610 /* ...and remove it from the pool's cache list. */ 1611 simple_lock(&pp->pr_slock); 1612 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist); 1613 simple_unlock(&pp->pr_slock); 1614 } 1615 1616 static __inline void * 1617 pcg_get(struct pool_cache_group *pcg) 1618 { 1619 void *object; 1620 u_int idx; 1621 1622 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 1623 KASSERT(pcg->pcg_avail != 0); 1624 idx = --pcg->pcg_avail; 1625 1626 KASSERT(pcg->pcg_objects[idx] != NULL); 1627 object = pcg->pcg_objects[idx]; 1628 pcg->pcg_objects[idx] = NULL; 1629 1630 return (object); 1631 } 1632 1633 static __inline void 1634 pcg_put(struct pool_cache_group *pcg, void *object) 1635 { 1636 u_int idx; 1637 1638 KASSERT(pcg->pcg_avail < PCG_NOBJECTS); 1639 idx = pcg->pcg_avail++; 1640 1641 KASSERT(pcg->pcg_objects[idx] == NULL); 1642 pcg->pcg_objects[idx] = object; 1643 } 1644 1645 /* 1646 * pool_cache_get: 1647 * 1648 * Get an object from a pool cache. 1649 */ 1650 void * 1651 pool_cache_get(struct pool_cache *pc, int flags) 1652 { 1653 struct pool_cache_group *pcg; 1654 void *object; 1655 1656 simple_lock(&pc->pc_slock); 1657 1658 if ((pcg = pc->pc_allocfrom) == NULL) { 1659 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1660 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1661 if (pcg->pcg_avail != 0) { 1662 pc->pc_allocfrom = pcg; 1663 goto have_group; 1664 } 1665 } 1666 1667 /* 1668 * No groups with any available objects. Allocate 1669 * a new object, construct it, and return it to 1670 * the caller. We will allocate a group, if necessary, 1671 * when the object is freed back to the cache. 1672 */ 1673 pc->pc_misses++; 1674 simple_unlock(&pc->pc_slock); 1675 object = pool_get(pc->pc_pool, flags); 1676 if (object != NULL && pc->pc_ctor != NULL) { 1677 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 1678 pool_put(pc->pc_pool, object); 1679 return (NULL); 1680 } 1681 } 1682 return (object); 1683 } 1684 1685 have_group: 1686 pc->pc_hits++; 1687 pc->pc_nitems--; 1688 object = pcg_get(pcg); 1689 1690 if (pcg->pcg_avail == 0) 1691 pc->pc_allocfrom = NULL; 1692 1693 simple_unlock(&pc->pc_slock); 1694 1695 return (object); 1696 } 1697 1698 /* 1699 * pool_cache_put: 1700 * 1701 * Put an object back to the pool cache. 1702 */ 1703 void 1704 pool_cache_put(struct pool_cache *pc, void *object) 1705 { 1706 struct pool_cache_group *pcg; 1707 1708 simple_lock(&pc->pc_slock); 1709 1710 if ((pcg = pc->pc_freeto) == NULL) { 1711 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1712 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1713 if (pcg->pcg_avail != PCG_NOBJECTS) { 1714 pc->pc_freeto = pcg; 1715 goto have_group; 1716 } 1717 } 1718 1719 /* 1720 * No empty groups to free the object to. Attempt to 1721 * allocate one. 1722 */ 1723 simple_unlock(&pc->pc_slock); 1724 pcg = pool_get(&pcgpool, PR_NOWAIT); 1725 if (pcg != NULL) { 1726 memset(pcg, 0, sizeof(*pcg)); 1727 simple_lock(&pc->pc_slock); 1728 pc->pc_ngroups++; 1729 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list); 1730 if (pc->pc_freeto == NULL) 1731 pc->pc_freeto = pcg; 1732 goto have_group; 1733 } 1734 1735 /* 1736 * Unable to allocate a cache group; destruct the object 1737 * and free it back to the pool. 1738 */ 1739 if (pc->pc_dtor != NULL) 1740 (*pc->pc_dtor)(pc->pc_arg, object); 1741 pool_put(pc->pc_pool, object); 1742 return; 1743 } 1744 1745 have_group: 1746 pc->pc_nitems++; 1747 pcg_put(pcg, object); 1748 1749 if (pcg->pcg_avail == PCG_NOBJECTS) 1750 pc->pc_freeto = NULL; 1751 1752 simple_unlock(&pc->pc_slock); 1753 } 1754 1755 /* 1756 * pool_cache_do_invalidate: 1757 * 1758 * This internal function implements pool_cache_invalidate() and 1759 * pool_cache_reclaim(). 1760 */ 1761 static void 1762 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups, 1763 void (*putit)(struct pool *, void *, const char *, long)) 1764 { 1765 struct pool_cache_group *pcg, *npcg; 1766 void *object; 1767 1768 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1769 pcg = npcg) { 1770 npcg = TAILQ_NEXT(pcg, pcg_list); 1771 while (pcg->pcg_avail != 0) { 1772 pc->pc_nitems--; 1773 object = pcg_get(pcg); 1774 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg) 1775 pc->pc_allocfrom = NULL; 1776 if (pc->pc_dtor != NULL) 1777 (*pc->pc_dtor)(pc->pc_arg, object); 1778 (*putit)(pc->pc_pool, object, __FILE__, __LINE__); 1779 } 1780 if (free_groups) { 1781 pc->pc_ngroups--; 1782 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list); 1783 if (pc->pc_freeto == pcg) 1784 pc->pc_freeto = NULL; 1785 pool_put(&pcgpool, pcg); 1786 } 1787 } 1788 } 1789 1790 /* 1791 * pool_cache_invalidate: 1792 * 1793 * Invalidate a pool cache (destruct and release all of the 1794 * cached objects). 1795 */ 1796 void 1797 pool_cache_invalidate(struct pool_cache *pc) 1798 { 1799 1800 simple_lock(&pc->pc_slock); 1801 pool_cache_do_invalidate(pc, 0, _pool_put); 1802 simple_unlock(&pc->pc_slock); 1803 } 1804 1805 /* 1806 * pool_cache_reclaim: 1807 * 1808 * Reclaim a pool cache for pool_reclaim(). 1809 */ 1810 static void 1811 pool_cache_reclaim(struct pool_cache *pc) 1812 { 1813 1814 simple_lock(&pc->pc_slock); 1815 pool_cache_do_invalidate(pc, 1, pool_do_put); 1816 simple_unlock(&pc->pc_slock); 1817 } 1818