xref: /netbsd-src/sys/kern/subr_pool.c (revision 17dd36da8292193180754d5047c0926dbb56818c)
1 /*	$NetBSD: subr_pool.c,v 1.50 2001/01/29 02:38:02 enami Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 
54 #include <uvm/uvm.h>
55 
56 /*
57  * Pool resource management utility.
58  *
59  * Memory is allocated in pages which are split into pieces according
60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61  * in the pool structure and the individual pool items are on a linked list
62  * headed by `ph_itemlist' in each page header. The memory for building
63  * the page list is either taken from the allocated pages themselves (for
64  * small pool items) or taken from an internal pool of page headers (`phpool').
65  */
66 
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69 
70 /* Private pool for page header structures */
71 static struct pool phpool;
72 
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75 
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool	*drainpp;
78 
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81 
82 struct pool_item_header {
83 	/* Page headers */
84 	TAILQ_ENTRY(pool_item_header)
85 				ph_pagelist;	/* pool page list */
86 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
87 	LIST_ENTRY(pool_item_header)
88 				ph_hashlist;	/* Off-page page headers */
89 	int			ph_nmissing;	/* # of chunks in use */
90 	caddr_t			ph_page;	/* this page's address */
91 	struct timeval		ph_time;	/* last referenced */
92 };
93 
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 	int pi_magic;
97 #endif
98 #define	PI_MAGIC 0xdeadbeef
99 	/* Other entries use only this list entry */
100 	TAILQ_ENTRY(pool_item)	pi_list;
101 };
102 
103 #define	PR_HASH_INDEX(pp,addr) \
104 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
105 
106 /*
107  * Pool cache management.
108  *
109  * Pool caches provide a way for constructed objects to be cached by the
110  * pool subsystem.  This can lead to performance improvements by avoiding
111  * needless object construction/destruction; it is deferred until absolutely
112  * necessary.
113  *
114  * Caches are grouped into cache groups.  Each cache group references
115  * up to 16 constructed objects.  When a cache allocates an object
116  * from the pool, it calls the object's constructor and places it into
117  * a cache group.  When a cache group frees an object back to the pool,
118  * it first calls the object's destructor.  This allows the object to
119  * persist in constructed form while freed to the cache.
120  *
121  * Multiple caches may exist for each pool.  This allows a single
122  * object type to have multiple constructed forms.  The pool references
123  * each cache, so that when a pool is drained by the pagedaemon, it can
124  * drain each individual cache as well.  Each time a cache is drained,
125  * the most idle cache group is freed to the pool in its entirety.
126  *
127  * Pool caches are layed on top of pools.  By layering them, we can avoid
128  * the complexity of cache management for pools which would not benefit
129  * from it.
130  */
131 
132 /* The cache group pool. */
133 static struct pool pcgpool;
134 
135 /* The pool cache group. */
136 #define	PCG_NOBJECTS		16
137 struct pool_cache_group {
138 	TAILQ_ENTRY(pool_cache_group)
139 		pcg_list;	/* link in the pool cache's group list */
140 	u_int	pcg_avail;	/* # available objects */
141 				/* pointers to the objects */
142 	void	*pcg_objects[PCG_NOBJECTS];
143 };
144 
145 static void	pool_cache_reclaim(struct pool_cache *);
146 
147 static int	pool_catchup(struct pool *);
148 static int	pool_prime_page(struct pool *, caddr_t, int);
149 static void	*pool_page_alloc(unsigned long, int, int);
150 static void	pool_page_free(void *, unsigned long, int);
151 
152 static void pool_print1(struct pool *, const char *,
153 	void (*)(const char *, ...));
154 
155 /*
156  * Pool log entry. An array of these is allocated in pool_create().
157  */
158 struct pool_log {
159 	const char	*pl_file;
160 	long		pl_line;
161 	int		pl_action;
162 #define	PRLOG_GET	1
163 #define	PRLOG_PUT	2
164 	void		*pl_addr;
165 };
166 
167 /* Number of entries in pool log buffers */
168 #ifndef POOL_LOGSIZE
169 #define	POOL_LOGSIZE	10
170 #endif
171 
172 int pool_logsize = POOL_LOGSIZE;
173 
174 #ifdef DIAGNOSTIC
175 static __inline void
176 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
177 {
178 	int n = pp->pr_curlogentry;
179 	struct pool_log *pl;
180 
181 	if ((pp->pr_roflags & PR_LOGGING) == 0)
182 		return;
183 
184 	/*
185 	 * Fill in the current entry. Wrap around and overwrite
186 	 * the oldest entry if necessary.
187 	 */
188 	pl = &pp->pr_log[n];
189 	pl->pl_file = file;
190 	pl->pl_line = line;
191 	pl->pl_action = action;
192 	pl->pl_addr = v;
193 	if (++n >= pp->pr_logsize)
194 		n = 0;
195 	pp->pr_curlogentry = n;
196 }
197 
198 static void
199 pr_printlog(struct pool *pp, struct pool_item *pi,
200     void (*pr)(const char *, ...))
201 {
202 	int i = pp->pr_logsize;
203 	int n = pp->pr_curlogentry;
204 
205 	if ((pp->pr_roflags & PR_LOGGING) == 0)
206 		return;
207 
208 	/*
209 	 * Print all entries in this pool's log.
210 	 */
211 	while (i-- > 0) {
212 		struct pool_log *pl = &pp->pr_log[n];
213 		if (pl->pl_action != 0) {
214 			if (pi == NULL || pi == pl->pl_addr) {
215 				(*pr)("\tlog entry %d:\n", i);
216 				(*pr)("\t\taction = %s, addr = %p\n",
217 				    pl->pl_action == PRLOG_GET ? "get" : "put",
218 				    pl->pl_addr);
219 				(*pr)("\t\tfile: %s at line %lu\n",
220 				    pl->pl_file, pl->pl_line);
221 			}
222 		}
223 		if (++n >= pp->pr_logsize)
224 			n = 0;
225 	}
226 }
227 
228 static __inline void
229 pr_enter(struct pool *pp, const char *file, long line)
230 {
231 
232 	if (__predict_false(pp->pr_entered_file != NULL)) {
233 		printf("pool %s: reentrancy at file %s line %ld\n",
234 		    pp->pr_wchan, file, line);
235 		printf("         previous entry at file %s line %ld\n",
236 		    pp->pr_entered_file, pp->pr_entered_line);
237 		panic("pr_enter");
238 	}
239 
240 	pp->pr_entered_file = file;
241 	pp->pr_entered_line = line;
242 }
243 
244 static __inline void
245 pr_leave(struct pool *pp)
246 {
247 
248 	if (__predict_false(pp->pr_entered_file == NULL)) {
249 		printf("pool %s not entered?\n", pp->pr_wchan);
250 		panic("pr_leave");
251 	}
252 
253 	pp->pr_entered_file = NULL;
254 	pp->pr_entered_line = 0;
255 }
256 
257 static __inline void
258 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
259 {
260 
261 	if (pp->pr_entered_file != NULL)
262 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
263 		    pp->pr_entered_file, pp->pr_entered_line);
264 }
265 #else
266 #define	pr_log(pp, v, action, file, line)
267 #define	pr_printlog(pp, pi, pr)
268 #define	pr_enter(pp, file, line)
269 #define	pr_leave(pp)
270 #define	pr_enter_check(pp, pr)
271 #endif /* DIAGNOSTIC */
272 
273 /*
274  * Return the pool page header based on page address.
275  */
276 static __inline struct pool_item_header *
277 pr_find_pagehead(struct pool *pp, caddr_t page)
278 {
279 	struct pool_item_header *ph;
280 
281 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
282 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
283 
284 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
285 	     ph != NULL;
286 	     ph = LIST_NEXT(ph, ph_hashlist)) {
287 		if (ph->ph_page == page)
288 			return (ph);
289 	}
290 	return (NULL);
291 }
292 
293 /*
294  * Remove a page from the pool.
295  */
296 static __inline void
297 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
298 {
299 
300 	/*
301 	 * If the page was idle, decrement the idle page count.
302 	 */
303 	if (ph->ph_nmissing == 0) {
304 #ifdef DIAGNOSTIC
305 		if (pp->pr_nidle == 0)
306 			panic("pr_rmpage: nidle inconsistent");
307 		if (pp->pr_nitems < pp->pr_itemsperpage)
308 			panic("pr_rmpage: nitems inconsistent");
309 #endif
310 		pp->pr_nidle--;
311 	}
312 
313 	pp->pr_nitems -= pp->pr_itemsperpage;
314 
315 	/*
316 	 * Unlink a page from the pool and release it.
317 	 */
318 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
319 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
320 	pp->pr_npages--;
321 	pp->pr_npagefree++;
322 
323 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
324 		int s;
325 		LIST_REMOVE(ph, ph_hashlist);
326 		s = splhigh();
327 		pool_put(&phpool, ph);
328 		splx(s);
329 	}
330 
331 	if (pp->pr_curpage == ph) {
332 		/*
333 		 * Find a new non-empty page header, if any.
334 		 * Start search from the page head, to increase the
335 		 * chance for "high water" pages to be freed.
336 		 */
337 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
338 		     ph = TAILQ_NEXT(ph, ph_pagelist))
339 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
340 				break;
341 
342 		pp->pr_curpage = ph;
343 	}
344 }
345 
346 /*
347  * Allocate and initialize a pool.
348  */
349 struct pool *
350 pool_create(size_t size, u_int align, u_int ioff, int nitems,
351     const char *wchan, size_t pagesz,
352     void *(*alloc)(unsigned long, int, int),
353     void (*release)(void *, unsigned long, int),
354     int mtype)
355 {
356 	struct pool *pp;
357 	int flags;
358 
359 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
360 	if (pp == NULL)
361 		return (NULL);
362 
363 	flags = PR_FREEHEADER;
364 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
365 		  alloc, release, mtype);
366 
367 	if (nitems != 0) {
368 		if (pool_prime(pp, nitems, NULL) != 0) {
369 			pool_destroy(pp);
370 			return (NULL);
371 		}
372 	}
373 
374 	return (pp);
375 }
376 
377 /*
378  * Initialize the given pool resource structure.
379  *
380  * We export this routine to allow other kernel parts to declare
381  * static pools that must be initialized before malloc() is available.
382  */
383 void
384 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
385     const char *wchan, size_t pagesz,
386     void *(*alloc)(unsigned long, int, int),
387     void (*release)(void *, unsigned long, int),
388     int mtype)
389 {
390 	int off, slack, i;
391 
392 #ifdef POOL_DIAGNOSTIC
393 	/*
394 	 * Always log if POOL_DIAGNOSTIC is defined.
395 	 */
396 	if (pool_logsize != 0)
397 		flags |= PR_LOGGING;
398 #endif
399 
400 	/*
401 	 * Check arguments and construct default values.
402 	 */
403 	if (!powerof2(pagesz))
404 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
405 
406 	if (alloc == NULL && release == NULL) {
407 		alloc = pool_page_alloc;
408 		release = pool_page_free;
409 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
410 	} else if ((alloc != NULL && release != NULL) == 0) {
411 		/* If you specifiy one, must specify both. */
412 		panic("pool_init: must specify alloc and release together");
413 	}
414 
415 	if (pagesz == 0)
416 		pagesz = PAGE_SIZE;
417 
418 	if (align == 0)
419 		align = ALIGN(1);
420 
421 	if (size < sizeof(struct pool_item))
422 		size = sizeof(struct pool_item);
423 
424 	size = ALIGN(size);
425 	if (size > pagesz)
426 		panic("pool_init: pool item size (%lu) too large",
427 		      (u_long)size);
428 
429 	/*
430 	 * Initialize the pool structure.
431 	 */
432 	TAILQ_INIT(&pp->pr_pagelist);
433 	TAILQ_INIT(&pp->pr_cachelist);
434 	pp->pr_curpage = NULL;
435 	pp->pr_npages = 0;
436 	pp->pr_minitems = 0;
437 	pp->pr_minpages = 0;
438 	pp->pr_maxpages = UINT_MAX;
439 	pp->pr_roflags = flags;
440 	pp->pr_flags = 0;
441 	pp->pr_size = size;
442 	pp->pr_align = align;
443 	pp->pr_wchan = wchan;
444 	pp->pr_mtype = mtype;
445 	pp->pr_alloc = alloc;
446 	pp->pr_free = release;
447 	pp->pr_pagesz = pagesz;
448 	pp->pr_pagemask = ~(pagesz - 1);
449 	pp->pr_pageshift = ffs(pagesz) - 1;
450 	pp->pr_nitems = 0;
451 	pp->pr_nout = 0;
452 	pp->pr_hardlimit = UINT_MAX;
453 	pp->pr_hardlimit_warning = NULL;
454 	pp->pr_hardlimit_ratecap.tv_sec = 0;
455 	pp->pr_hardlimit_ratecap.tv_usec = 0;
456 	pp->pr_hardlimit_warning_last.tv_sec = 0;
457 	pp->pr_hardlimit_warning_last.tv_usec = 0;
458 
459 	/*
460 	 * Decide whether to put the page header off page to avoid
461 	 * wasting too large a part of the page. Off-page page headers
462 	 * go on a hash table, so we can match a returned item
463 	 * with its header based on the page address.
464 	 * We use 1/16 of the page size as the threshold (XXX: tune)
465 	 */
466 	if (pp->pr_size < pagesz/16) {
467 		/* Use the end of the page for the page header */
468 		pp->pr_roflags |= PR_PHINPAGE;
469 		pp->pr_phoffset = off =
470 			pagesz - ALIGN(sizeof(struct pool_item_header));
471 	} else {
472 		/* The page header will be taken from our page header pool */
473 		pp->pr_phoffset = 0;
474 		off = pagesz;
475 		for (i = 0; i < PR_HASHTABSIZE; i++) {
476 			LIST_INIT(&pp->pr_hashtab[i]);
477 		}
478 	}
479 
480 	/*
481 	 * Alignment is to take place at `ioff' within the item. This means
482 	 * we must reserve up to `align - 1' bytes on the page to allow
483 	 * appropriate positioning of each item.
484 	 *
485 	 * Silently enforce `0 <= ioff < align'.
486 	 */
487 	pp->pr_itemoffset = ioff = ioff % align;
488 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
489 	KASSERT(pp->pr_itemsperpage != 0);
490 
491 	/*
492 	 * Use the slack between the chunks and the page header
493 	 * for "cache coloring".
494 	 */
495 	slack = off - pp->pr_itemsperpage * pp->pr_size;
496 	pp->pr_maxcolor = (slack / align) * align;
497 	pp->pr_curcolor = 0;
498 
499 	pp->pr_nget = 0;
500 	pp->pr_nfail = 0;
501 	pp->pr_nput = 0;
502 	pp->pr_npagealloc = 0;
503 	pp->pr_npagefree = 0;
504 	pp->pr_hiwat = 0;
505 	pp->pr_nidle = 0;
506 
507 	if (flags & PR_LOGGING) {
508 		if (kmem_map == NULL ||
509 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
510 		     M_TEMP, M_NOWAIT)) == NULL)
511 			pp->pr_roflags &= ~PR_LOGGING;
512 		pp->pr_curlogentry = 0;
513 		pp->pr_logsize = pool_logsize;
514 	}
515 
516 	pp->pr_entered_file = NULL;
517 	pp->pr_entered_line = 0;
518 
519 	simple_lock_init(&pp->pr_slock);
520 
521 	/*
522 	 * Initialize private page header pool and cache magazine pool if we
523 	 * haven't done so yet.
524 	 * XXX LOCKING.
525 	 */
526 	if (phpool.pr_size == 0) {
527 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
528 		    0, "phpool", 0, 0, 0, 0);
529 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
530 		    0, "pcgpool", 0, 0, 0, 0);
531 	}
532 
533 	/* Insert into the list of all pools. */
534 	simple_lock(&pool_head_slock);
535 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
536 	simple_unlock(&pool_head_slock);
537 }
538 
539 /*
540  * De-commision a pool resource.
541  */
542 void
543 pool_destroy(struct pool *pp)
544 {
545 	struct pool_item_header *ph;
546 	struct pool_cache *pc;
547 
548 	/* Destroy all caches for this pool. */
549 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
550 		pool_cache_destroy(pc);
551 
552 #ifdef DIAGNOSTIC
553 	if (pp->pr_nout != 0) {
554 		pr_printlog(pp, NULL, printf);
555 		panic("pool_destroy: pool busy: still out: %u\n",
556 		    pp->pr_nout);
557 	}
558 #endif
559 
560 	/* Remove all pages */
561 	if ((pp->pr_roflags & PR_STATIC) == 0)
562 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
563 			pr_rmpage(pp, ph);
564 
565 	/* Remove from global pool list */
566 	simple_lock(&pool_head_slock);
567 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
568 	/* XXX Only clear this if we were drainpp? */
569 	drainpp = NULL;
570 	simple_unlock(&pool_head_slock);
571 
572 	if ((pp->pr_roflags & PR_LOGGING) != 0)
573 		free(pp->pr_log, M_TEMP);
574 
575 	if (pp->pr_roflags & PR_FREEHEADER)
576 		free(pp, M_POOL);
577 }
578 
579 
580 /*
581  * Grab an item from the pool; must be called at appropriate spl level
582  */
583 void *
584 _pool_get(struct pool *pp, int flags, const char *file, long line)
585 {
586 	void *v;
587 	struct pool_item *pi;
588 	struct pool_item_header *ph;
589 
590 #ifdef DIAGNOSTIC
591 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
592 			    (flags & PR_MALLOCOK))) {
593 		pr_printlog(pp, NULL, printf);
594 		panic("pool_get: static");
595 	}
596 #endif
597 
598 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
599 			    (flags & PR_WAITOK) != 0))
600 		panic("pool_get: must have NOWAIT");
601 
602 	simple_lock(&pp->pr_slock);
603 	pr_enter(pp, file, line);
604 
605  startover:
606 	/*
607 	 * Check to see if we've reached the hard limit.  If we have,
608 	 * and we can wait, then wait until an item has been returned to
609 	 * the pool.
610 	 */
611 #ifdef DIAGNOSTIC
612 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
613 		pr_leave(pp);
614 		simple_unlock(&pp->pr_slock);
615 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
616 	}
617 #endif
618 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
619 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
620 			/*
621 			 * XXX: A warning isn't logged in this case.  Should
622 			 * it be?
623 			 */
624 			pp->pr_flags |= PR_WANTED;
625 			pr_leave(pp);
626 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
627 			pr_enter(pp, file, line);
628 			goto startover;
629 		}
630 
631 		/*
632 		 * Log a message that the hard limit has been hit.
633 		 */
634 		if (pp->pr_hardlimit_warning != NULL &&
635 		    ratecheck(&pp->pr_hardlimit_warning_last,
636 			      &pp->pr_hardlimit_ratecap))
637 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
638 
639 		if (flags & PR_URGENT)
640 			panic("pool_get: urgent");
641 
642 		pp->pr_nfail++;
643 
644 		pr_leave(pp);
645 		simple_unlock(&pp->pr_slock);
646 		return (NULL);
647 	}
648 
649 	/*
650 	 * The convention we use is that if `curpage' is not NULL, then
651 	 * it points at a non-empty bucket. In particular, `curpage'
652 	 * never points at a page header which has PR_PHINPAGE set and
653 	 * has no items in its bucket.
654 	 */
655 	if ((ph = pp->pr_curpage) == NULL) {
656 		void *v;
657 
658 #ifdef DIAGNOSTIC
659 		if (pp->pr_nitems != 0) {
660 			simple_unlock(&pp->pr_slock);
661 			printf("pool_get: %s: curpage NULL, nitems %u\n",
662 			    pp->pr_wchan, pp->pr_nitems);
663 			panic("pool_get: nitems inconsistent\n");
664 		}
665 #endif
666 
667 		/*
668 		 * Call the back-end page allocator for more memory.
669 		 * Release the pool lock, as the back-end page allocator
670 		 * may block.
671 		 */
672 		pr_leave(pp);
673 		simple_unlock(&pp->pr_slock);
674 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
675 		simple_lock(&pp->pr_slock);
676 		pr_enter(pp, file, line);
677 
678 		if (v == NULL) {
679 			/*
680 			 * We were unable to allocate a page, but
681 			 * we released the lock during allocation,
682 			 * so perhaps items were freed back to the
683 			 * pool.  Check for this case.
684 			 */
685 			if (pp->pr_curpage != NULL)
686 				goto startover;
687 
688 			if (flags & PR_URGENT)
689 				panic("pool_get: urgent");
690 
691 			if ((flags & PR_WAITOK) == 0) {
692 				pp->pr_nfail++;
693 				pr_leave(pp);
694 				simple_unlock(&pp->pr_slock);
695 				return (NULL);
696 			}
697 
698 			/*
699 			 * Wait for items to be returned to this pool.
700 			 *
701 			 * XXX: we actually want to wait just until
702 			 * the page allocator has memory again. Depending
703 			 * on this pool's usage, we might get stuck here
704 			 * for a long time.
705 			 *
706 			 * XXX: maybe we should wake up once a second and
707 			 * try again?
708 			 */
709 			pp->pr_flags |= PR_WANTED;
710 			pr_leave(pp);
711 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
712 			pr_enter(pp, file, line);
713 			goto startover;
714 		}
715 
716 		/* We have more memory; add it to the pool */
717 		if (pool_prime_page(pp, v, flags & PR_WAITOK) != 0) {
718 			/*
719 			 * Probably, we don't allowed to wait and
720 			 * couldn't allocate a page header.
721 			 */
722 			(*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
723 			pp->pr_nfail++;
724 			pr_leave(pp);
725 			simple_unlock(&pp->pr_slock);
726 			return (NULL);
727 		}
728 		pp->pr_npagealloc++;
729 
730 		/* Start the allocation process over. */
731 		goto startover;
732 	}
733 
734 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
735 		pr_leave(pp);
736 		simple_unlock(&pp->pr_slock);
737 		panic("pool_get: %s: page empty", pp->pr_wchan);
738 	}
739 #ifdef DIAGNOSTIC
740 	if (__predict_false(pp->pr_nitems == 0)) {
741 		pr_leave(pp);
742 		simple_unlock(&pp->pr_slock);
743 		printf("pool_get: %s: items on itemlist, nitems %u\n",
744 		    pp->pr_wchan, pp->pr_nitems);
745 		panic("pool_get: nitems inconsistent\n");
746 	}
747 #endif
748 	pr_log(pp, v, PRLOG_GET, file, line);
749 
750 #ifdef DIAGNOSTIC
751 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
752 		pr_printlog(pp, pi, printf);
753 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
754 		       " item addr %p\n",
755 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
756 	}
757 #endif
758 
759 	/*
760 	 * Remove from item list.
761 	 */
762 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
763 	pp->pr_nitems--;
764 	pp->pr_nout++;
765 	if (ph->ph_nmissing == 0) {
766 #ifdef DIAGNOSTIC
767 		if (__predict_false(pp->pr_nidle == 0))
768 			panic("pool_get: nidle inconsistent");
769 #endif
770 		pp->pr_nidle--;
771 	}
772 	ph->ph_nmissing++;
773 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
774 #ifdef DIAGNOSTIC
775 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
776 			pr_leave(pp);
777 			simple_unlock(&pp->pr_slock);
778 			panic("pool_get: %s: nmissing inconsistent",
779 			    pp->pr_wchan);
780 		}
781 #endif
782 		/*
783 		 * Find a new non-empty page header, if any.
784 		 * Start search from the page head, to increase
785 		 * the chance for "high water" pages to be freed.
786 		 *
787 		 * Migrate empty pages to the end of the list.  This
788 		 * will speed the update of curpage as pages become
789 		 * idle.  Empty pages intermingled with idle pages
790 		 * is no big deal.  As soon as a page becomes un-empty,
791 		 * it will move back to the head of the list.
792 		 */
793 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
794 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
795 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
796 		     ph = TAILQ_NEXT(ph, ph_pagelist))
797 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
798 				break;
799 
800 		pp->pr_curpage = ph;
801 	}
802 
803 	pp->pr_nget++;
804 
805 	/*
806 	 * If we have a low water mark and we are now below that low
807 	 * water mark, add more items to the pool.
808 	 */
809 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
810 		/*
811 		 * XXX: Should we log a warning?  Should we set up a timeout
812 		 * to try again in a second or so?  The latter could break
813 		 * a caller's assumptions about interrupt protection, etc.
814 		 */
815 	}
816 
817 	pr_leave(pp);
818 	simple_unlock(&pp->pr_slock);
819 	return (v);
820 }
821 
822 /*
823  * Internal version of pool_put().  Pool is already locked/entered.
824  */
825 static void
826 pool_do_put(struct pool *pp, void *v, const char *file, long line)
827 {
828 	struct pool_item *pi = v;
829 	struct pool_item_header *ph;
830 	caddr_t page;
831 	int s;
832 
833 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
834 
835 #ifdef DIAGNOSTIC
836 	if (__predict_false(pp->pr_nout == 0)) {
837 		printf("pool %s: putting with none out\n",
838 		    pp->pr_wchan);
839 		panic("pool_put");
840 	}
841 #endif
842 
843 	pr_log(pp, v, PRLOG_PUT, file, line);
844 
845 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
846 		pr_printlog(pp, NULL, printf);
847 		panic("pool_put: %s: page header missing", pp->pr_wchan);
848 	}
849 
850 #ifdef LOCKDEBUG
851 	/*
852 	 * Check if we're freeing a locked simple lock.
853 	 */
854 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
855 #endif
856 
857 	/*
858 	 * Return to item list.
859 	 */
860 #ifdef DIAGNOSTIC
861 	pi->pi_magic = PI_MAGIC;
862 #endif
863 #ifdef DEBUG
864 	{
865 		int i, *ip = v;
866 
867 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
868 			*ip++ = PI_MAGIC;
869 		}
870 	}
871 #endif
872 
873 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
874 	ph->ph_nmissing--;
875 	pp->pr_nput++;
876 	pp->pr_nitems++;
877 	pp->pr_nout--;
878 
879 	/* Cancel "pool empty" condition if it exists */
880 	if (pp->pr_curpage == NULL)
881 		pp->pr_curpage = ph;
882 
883 	if (pp->pr_flags & PR_WANTED) {
884 		pp->pr_flags &= ~PR_WANTED;
885 		if (ph->ph_nmissing == 0)
886 			pp->pr_nidle++;
887 		wakeup((caddr_t)pp);
888 		return;
889 	}
890 
891 	/*
892 	 * If this page is now complete, do one of two things:
893 	 *
894 	 *	(1) If we have more pages than the page high water
895 	 *	    mark, free the page back to the system.
896 	 *
897 	 *	(2) Move it to the end of the page list, so that
898 	 *	    we minimize our chances of fragmenting the
899 	 *	    pool.  Idle pages migrate to the end (along with
900 	 *	    completely empty pages, so that we find un-empty
901 	 *	    pages more quickly when we update curpage) of the
902 	 *	    list so they can be more easily swept up by
903 	 *	    the pagedaemon when pages are scarce.
904 	 */
905 	if (ph->ph_nmissing == 0) {
906 		pp->pr_nidle++;
907 		if (pp->pr_npages > pp->pr_maxpages) {
908 			pr_rmpage(pp, ph);
909 		} else {
910 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
911 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
912 
913 			/*
914 			 * Update the timestamp on the page.  A page must
915 			 * be idle for some period of time before it can
916 			 * be reclaimed by the pagedaemon.  This minimizes
917 			 * ping-pong'ing for memory.
918 			 */
919 			s = splclock();
920 			ph->ph_time = mono_time;
921 			splx(s);
922 
923 			/*
924 			 * Update the current page pointer.  Just look for
925 			 * the first page with any free items.
926 			 *
927 			 * XXX: Maybe we want an option to look for the
928 			 * page with the fewest available items, to minimize
929 			 * fragmentation?
930 			 */
931 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
932 			     ph = TAILQ_NEXT(ph, ph_pagelist))
933 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
934 					break;
935 
936 			pp->pr_curpage = ph;
937 		}
938 	}
939 	/*
940 	 * If the page has just become un-empty, move it to the head of
941 	 * the list, and make it the current page.  The next allocation
942 	 * will get the item from this page, instead of further fragmenting
943 	 * the pool.
944 	 */
945 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
946 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
947 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
948 		pp->pr_curpage = ph;
949 	}
950 }
951 
952 /*
953  * Return resource to the pool; must be called at appropriate spl level
954  */
955 void
956 _pool_put(struct pool *pp, void *v, const char *file, long line)
957 {
958 
959 	simple_lock(&pp->pr_slock);
960 	pr_enter(pp, file, line);
961 
962 	pool_do_put(pp, v, file, line);
963 
964 	pr_leave(pp);
965 	simple_unlock(&pp->pr_slock);
966 }
967 
968 /*
969  * Add N items to the pool.
970  */
971 int
972 pool_prime(struct pool *pp, int n, caddr_t storage)
973 {
974 	caddr_t cp;
975 	int error, newnitems, newpages;
976 
977 #ifdef DIAGNOSTIC
978 	if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
979 		panic("pool_prime: static");
980 	/* !storage && static caught below */
981 #endif
982 
983 	simple_lock(&pp->pr_slock);
984 
985 	newnitems = pp->pr_minitems + n;
986 	newpages =
987 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
988 		- pp->pr_minpages;
989 
990 	while (newpages-- > 0) {
991 		if (pp->pr_roflags & PR_STATIC) {
992 			cp = storage;
993 			storage += pp->pr_pagesz;
994 		} else {
995 			simple_unlock(&pp->pr_slock);
996 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
997 			simple_lock(&pp->pr_slock);
998 		}
999 
1000 		if (cp == NULL) {
1001 			simple_unlock(&pp->pr_slock);
1002 			return (ENOMEM);
1003 		}
1004 
1005 		if ((error = pool_prime_page(pp, cp, PR_NOWAIT)) != 0) {
1006 			if ((pp->pr_roflags & PR_STATIC) == 0)
1007 				(*pp->pr_free)(cp, pp->pr_pagesz,
1008 				    pp->pr_mtype);
1009 			simple_unlock(&pp->pr_slock);
1010 			return (error);
1011 		}
1012 		pp->pr_npagealloc++;
1013 		pp->pr_minpages++;
1014 	}
1015 
1016 	pp->pr_minitems = newnitems;
1017 
1018 	if (pp->pr_minpages >= pp->pr_maxpages)
1019 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1020 
1021 	simple_unlock(&pp->pr_slock);
1022 	return (0);
1023 }
1024 
1025 /*
1026  * Add a page worth of items to the pool.
1027  *
1028  * Note, we must be called with the pool descriptor LOCKED.
1029  */
1030 static int
1031 pool_prime_page(struct pool *pp, caddr_t storage, int flags)
1032 {
1033 	struct pool_item *pi;
1034 	struct pool_item_header *ph;
1035 	caddr_t cp = storage;
1036 	unsigned int align = pp->pr_align;
1037 	unsigned int ioff = pp->pr_itemoffset;
1038 	int s, n;
1039 
1040 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1041 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1042 
1043 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1044 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1045 	} else {
1046 		s = splhigh();
1047 		ph = pool_get(&phpool, flags);
1048 		splx(s);
1049 		if (ph == NULL)
1050 			return (ENOMEM);
1051 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1052 				 ph, ph_hashlist);
1053 	}
1054 
1055 	/*
1056 	 * Insert page header.
1057 	 */
1058 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1059 	TAILQ_INIT(&ph->ph_itemlist);
1060 	ph->ph_page = storage;
1061 	ph->ph_nmissing = 0;
1062 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1063 
1064 	pp->pr_nidle++;
1065 
1066 	/*
1067 	 * Color this page.
1068 	 */
1069 	cp = (caddr_t)(cp + pp->pr_curcolor);
1070 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1071 		pp->pr_curcolor = 0;
1072 
1073 	/*
1074 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1075 	 */
1076 	if (ioff != 0)
1077 		cp = (caddr_t)(cp + (align - ioff));
1078 
1079 	/*
1080 	 * Insert remaining chunks on the bucket list.
1081 	 */
1082 	n = pp->pr_itemsperpage;
1083 	pp->pr_nitems += n;
1084 
1085 	while (n--) {
1086 		pi = (struct pool_item *)cp;
1087 
1088 		/* Insert on page list */
1089 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1090 #ifdef DIAGNOSTIC
1091 		pi->pi_magic = PI_MAGIC;
1092 #endif
1093 		cp = (caddr_t)(cp + pp->pr_size);
1094 	}
1095 
1096 	/*
1097 	 * If the pool was depleted, point at the new page.
1098 	 */
1099 	if (pp->pr_curpage == NULL)
1100 		pp->pr_curpage = ph;
1101 
1102 	if (++pp->pr_npages > pp->pr_hiwat)
1103 		pp->pr_hiwat = pp->pr_npages;
1104 
1105 	return (0);
1106 }
1107 
1108 /*
1109  * Like pool_prime(), except this is used by pool_get() when nitems
1110  * drops below the low water mark.  This is used to catch up nitmes
1111  * with the low water mark.
1112  *
1113  * Note 1, we never wait for memory here, we let the caller decide what to do.
1114  *
1115  * Note 2, this doesn't work with static pools.
1116  *
1117  * Note 3, we must be called with the pool already locked, and we return
1118  * with it locked.
1119  */
1120 static int
1121 pool_catchup(struct pool *pp)
1122 {
1123 	caddr_t cp;
1124 	int error = 0;
1125 
1126 	if (pp->pr_roflags & PR_STATIC) {
1127 		/*
1128 		 * We dropped below the low water mark, and this is not a
1129 		 * good thing.  Log a warning.
1130 		 *
1131 		 * XXX: rate-limit this?
1132 		 */
1133 		printf("WARNING: static pool `%s' dropped below low water "
1134 		    "mark\n", pp->pr_wchan);
1135 		return (0);
1136 	}
1137 
1138 	while (pp->pr_nitems < pp->pr_minitems) {
1139 		/*
1140 		 * Call the page back-end allocator for more memory.
1141 		 *
1142 		 * XXX: We never wait, so should we bother unlocking
1143 		 * the pool descriptor?
1144 		 */
1145 		simple_unlock(&pp->pr_slock);
1146 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1147 		simple_lock(&pp->pr_slock);
1148 		if (__predict_false(cp == NULL)) {
1149 			error = ENOMEM;
1150 			break;
1151 		}
1152 		if ((error = pool_prime_page(pp, cp, PR_NOWAIT)) != 0) {
1153 			(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1154 			break;
1155 		}
1156 		pp->pr_npagealloc++;
1157 	}
1158 
1159 	return (error);
1160 }
1161 
1162 void
1163 pool_setlowat(struct pool *pp, int n)
1164 {
1165 	int error;
1166 
1167 	simple_lock(&pp->pr_slock);
1168 
1169 	pp->pr_minitems = n;
1170 	pp->pr_minpages = (n == 0)
1171 		? 0
1172 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1173 
1174 	/* Make sure we're caught up with the newly-set low water mark. */
1175 	if ((pp->pr_nitems < pp->pr_minitems) &&
1176 	    (error = pool_catchup(pp)) != 0) {
1177 		/*
1178 		 * XXX: Should we log a warning?  Should we set up a timeout
1179 		 * to try again in a second or so?  The latter could break
1180 		 * a caller's assumptions about interrupt protection, etc.
1181 		 */
1182 	}
1183 
1184 	simple_unlock(&pp->pr_slock);
1185 }
1186 
1187 void
1188 pool_sethiwat(struct pool *pp, int n)
1189 {
1190 
1191 	simple_lock(&pp->pr_slock);
1192 
1193 	pp->pr_maxpages = (n == 0)
1194 		? 0
1195 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1196 
1197 	simple_unlock(&pp->pr_slock);
1198 }
1199 
1200 void
1201 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1202 {
1203 
1204 	simple_lock(&pp->pr_slock);
1205 
1206 	pp->pr_hardlimit = n;
1207 	pp->pr_hardlimit_warning = warnmess;
1208 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1209 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1210 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1211 
1212 	/*
1213 	 * In-line version of pool_sethiwat(), because we don't want to
1214 	 * release the lock.
1215 	 */
1216 	pp->pr_maxpages = (n == 0)
1217 		? 0
1218 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1219 
1220 	simple_unlock(&pp->pr_slock);
1221 }
1222 
1223 /*
1224  * Default page allocator.
1225  */
1226 static void *
1227 pool_page_alloc(unsigned long sz, int flags, int mtype)
1228 {
1229 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1230 
1231 	return ((void *)uvm_km_alloc_poolpage(waitok));
1232 }
1233 
1234 static void
1235 pool_page_free(void *v, unsigned long sz, int mtype)
1236 {
1237 
1238 	uvm_km_free_poolpage((vaddr_t)v);
1239 }
1240 
1241 /*
1242  * Alternate pool page allocator for pools that know they will
1243  * never be accessed in interrupt context.
1244  */
1245 void *
1246 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1247 {
1248 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1249 
1250 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1251 	    waitok));
1252 }
1253 
1254 void
1255 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1256 {
1257 
1258 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1259 }
1260 
1261 
1262 /*
1263  * Release all complete pages that have not been used recently.
1264  */
1265 void
1266 _pool_reclaim(struct pool *pp, const char *file, long line)
1267 {
1268 	struct pool_item_header *ph, *phnext;
1269 	struct pool_cache *pc;
1270 	struct timeval curtime;
1271 	int s;
1272 
1273 	if (pp->pr_roflags & PR_STATIC)
1274 		return;
1275 
1276 	if (simple_lock_try(&pp->pr_slock) == 0)
1277 		return;
1278 	pr_enter(pp, file, line);
1279 
1280 	/*
1281 	 * Reclaim items from the pool's caches.
1282 	 */
1283 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1284 	     pc = TAILQ_NEXT(pc, pc_poollist))
1285 		pool_cache_reclaim(pc);
1286 
1287 	s = splclock();
1288 	curtime = mono_time;
1289 	splx(s);
1290 
1291 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1292 		phnext = TAILQ_NEXT(ph, ph_pagelist);
1293 
1294 		/* Check our minimum page claim */
1295 		if (pp->pr_npages <= pp->pr_minpages)
1296 			break;
1297 
1298 		if (ph->ph_nmissing == 0) {
1299 			struct timeval diff;
1300 			timersub(&curtime, &ph->ph_time, &diff);
1301 			if (diff.tv_sec < pool_inactive_time)
1302 				continue;
1303 
1304 			/*
1305 			 * If freeing this page would put us below
1306 			 * the low water mark, stop now.
1307 			 */
1308 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
1309 			    pp->pr_minitems)
1310 				break;
1311 
1312 			pr_rmpage(pp, ph);
1313 		}
1314 	}
1315 
1316 	pr_leave(pp);
1317 	simple_unlock(&pp->pr_slock);
1318 }
1319 
1320 
1321 /*
1322  * Drain pools, one at a time.
1323  *
1324  * Note, we must never be called from an interrupt context.
1325  */
1326 void
1327 pool_drain(void *arg)
1328 {
1329 	struct pool *pp;
1330 	int s;
1331 
1332 	s = splvm();
1333 	simple_lock(&pool_head_slock);
1334 
1335 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1336 		goto out;
1337 
1338 	pp = drainpp;
1339 	drainpp = TAILQ_NEXT(pp, pr_poollist);
1340 
1341 	pool_reclaim(pp);
1342 
1343  out:
1344 	simple_unlock(&pool_head_slock);
1345 	splx(s);
1346 }
1347 
1348 
1349 /*
1350  * Diagnostic helpers.
1351  */
1352 void
1353 pool_print(struct pool *pp, const char *modif)
1354 {
1355 	int s;
1356 
1357 	s = splvm();
1358 	if (simple_lock_try(&pp->pr_slock) == 0) {
1359 		printf("pool %s is locked; try again later\n",
1360 		    pp->pr_wchan);
1361 		splx(s);
1362 		return;
1363 	}
1364 	pool_print1(pp, modif, printf);
1365 	simple_unlock(&pp->pr_slock);
1366 	splx(s);
1367 }
1368 
1369 void
1370 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1371 {
1372 	int didlock = 0;
1373 
1374 	if (pp == NULL) {
1375 		(*pr)("Must specify a pool to print.\n");
1376 		return;
1377 	}
1378 
1379 	/*
1380 	 * Called from DDB; interrupts should be blocked, and all
1381 	 * other processors should be paused.  We can skip locking
1382 	 * the pool in this case.
1383 	 *
1384 	 * We do a simple_lock_try() just to print the lock
1385 	 * status, however.
1386 	 */
1387 
1388 	if (simple_lock_try(&pp->pr_slock) == 0)
1389 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1390 	else
1391 		didlock = 1;
1392 
1393 	pool_print1(pp, modif, pr);
1394 
1395 	if (didlock)
1396 		simple_unlock(&pp->pr_slock);
1397 }
1398 
1399 static void
1400 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1401 {
1402 	struct pool_item_header *ph;
1403 	struct pool_cache *pc;
1404 	struct pool_cache_group *pcg;
1405 #ifdef DIAGNOSTIC
1406 	struct pool_item *pi;
1407 #endif
1408 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1409 	char c;
1410 
1411 	while ((c = *modif++) != '\0') {
1412 		if (c == 'l')
1413 			print_log = 1;
1414 		if (c == 'p')
1415 			print_pagelist = 1;
1416 		if (c == 'c')
1417 			print_cache = 1;
1418 		modif++;
1419 	}
1420 
1421 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1422 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1423 	    pp->pr_roflags);
1424 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1425 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1426 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1427 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1428 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1429 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1430 
1431 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1432 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1433 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1434 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1435 
1436 	if (print_pagelist == 0)
1437 		goto skip_pagelist;
1438 
1439 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1440 		(*pr)("\n\tpage list:\n");
1441 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1442 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1443 		    ph->ph_page, ph->ph_nmissing,
1444 		    (u_long)ph->ph_time.tv_sec,
1445 		    (u_long)ph->ph_time.tv_usec);
1446 #ifdef DIAGNOSTIC
1447 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1448 		     pi = TAILQ_NEXT(pi, pi_list)) {
1449 			if (pi->pi_magic != PI_MAGIC) {
1450 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1451 				    pi, pi->pi_magic);
1452 			}
1453 		}
1454 #endif
1455 	}
1456 	if (pp->pr_curpage == NULL)
1457 		(*pr)("\tno current page\n");
1458 	else
1459 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1460 
1461  skip_pagelist:
1462 
1463 	if (print_log == 0)
1464 		goto skip_log;
1465 
1466 	(*pr)("\n");
1467 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1468 		(*pr)("\tno log\n");
1469 	else
1470 		pr_printlog(pp, NULL, pr);
1471 
1472  skip_log:
1473 
1474 	if (print_cache == 0)
1475 		goto skip_cache;
1476 
1477 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1478 	     pc = TAILQ_NEXT(pc, pc_poollist)) {
1479 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1480 		    pc->pc_allocfrom, pc->pc_freeto);
1481 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1482 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1483 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1484 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
1485 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1486 			for (i = 0; i < PCG_NOBJECTS; i++)
1487 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1488 		}
1489 	}
1490 
1491  skip_cache:
1492 
1493 	pr_enter_check(pp, pr);
1494 }
1495 
1496 int
1497 pool_chk(struct pool *pp, const char *label)
1498 {
1499 	struct pool_item_header *ph;
1500 	int r = 0;
1501 
1502 	simple_lock(&pp->pr_slock);
1503 
1504 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1505 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
1506 
1507 		struct pool_item *pi;
1508 		int n;
1509 		caddr_t page;
1510 
1511 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1512 		if (page != ph->ph_page &&
1513 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1514 			if (label != NULL)
1515 				printf("%s: ", label);
1516 			printf("pool(%p:%s): page inconsistency: page %p;"
1517 			       " at page head addr %p (p %p)\n", pp,
1518 				pp->pr_wchan, ph->ph_page,
1519 				ph, page);
1520 			r++;
1521 			goto out;
1522 		}
1523 
1524 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1525 		     pi != NULL;
1526 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
1527 
1528 #ifdef DIAGNOSTIC
1529 			if (pi->pi_magic != PI_MAGIC) {
1530 				if (label != NULL)
1531 					printf("%s: ", label);
1532 				printf("pool(%s): free list modified: magic=%x;"
1533 				       " page %p; item ordinal %d;"
1534 				       " addr %p (p %p)\n",
1535 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
1536 					n, pi, page);
1537 				panic("pool");
1538 			}
1539 #endif
1540 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1541 			if (page == ph->ph_page)
1542 				continue;
1543 
1544 			if (label != NULL)
1545 				printf("%s: ", label);
1546 			printf("pool(%p:%s): page inconsistency: page %p;"
1547 			       " item ordinal %d; addr %p (p %p)\n", pp,
1548 				pp->pr_wchan, ph->ph_page,
1549 				n, pi, page);
1550 			r++;
1551 			goto out;
1552 		}
1553 	}
1554 out:
1555 	simple_unlock(&pp->pr_slock);
1556 	return (r);
1557 }
1558 
1559 /*
1560  * pool_cache_init:
1561  *
1562  *	Initialize a pool cache.
1563  *
1564  *	NOTE: If the pool must be protected from interrupts, we expect
1565  *	to be called at the appropriate interrupt priority level.
1566  */
1567 void
1568 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1569     int (*ctor)(void *, void *, int),
1570     void (*dtor)(void *, void *),
1571     void *arg)
1572 {
1573 
1574 	TAILQ_INIT(&pc->pc_grouplist);
1575 	simple_lock_init(&pc->pc_slock);
1576 
1577 	pc->pc_allocfrom = NULL;
1578 	pc->pc_freeto = NULL;
1579 	pc->pc_pool = pp;
1580 
1581 	pc->pc_ctor = ctor;
1582 	pc->pc_dtor = dtor;
1583 	pc->pc_arg  = arg;
1584 
1585 	pc->pc_hits   = 0;
1586 	pc->pc_misses = 0;
1587 
1588 	pc->pc_ngroups = 0;
1589 
1590 	pc->pc_nitems = 0;
1591 
1592 	simple_lock(&pp->pr_slock);
1593 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1594 	simple_unlock(&pp->pr_slock);
1595 }
1596 
1597 /*
1598  * pool_cache_destroy:
1599  *
1600  *	Destroy a pool cache.
1601  */
1602 void
1603 pool_cache_destroy(struct pool_cache *pc)
1604 {
1605 	struct pool *pp = pc->pc_pool;
1606 
1607 	/* First, invalidate the entire cache. */
1608 	pool_cache_invalidate(pc);
1609 
1610 	/* ...and remove it from the pool's cache list. */
1611 	simple_lock(&pp->pr_slock);
1612 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1613 	simple_unlock(&pp->pr_slock);
1614 }
1615 
1616 static __inline void *
1617 pcg_get(struct pool_cache_group *pcg)
1618 {
1619 	void *object;
1620 	u_int idx;
1621 
1622 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1623 	KASSERT(pcg->pcg_avail != 0);
1624 	idx = --pcg->pcg_avail;
1625 
1626 	KASSERT(pcg->pcg_objects[idx] != NULL);
1627 	object = pcg->pcg_objects[idx];
1628 	pcg->pcg_objects[idx] = NULL;
1629 
1630 	return (object);
1631 }
1632 
1633 static __inline void
1634 pcg_put(struct pool_cache_group *pcg, void *object)
1635 {
1636 	u_int idx;
1637 
1638 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1639 	idx = pcg->pcg_avail++;
1640 
1641 	KASSERT(pcg->pcg_objects[idx] == NULL);
1642 	pcg->pcg_objects[idx] = object;
1643 }
1644 
1645 /*
1646  * pool_cache_get:
1647  *
1648  *	Get an object from a pool cache.
1649  */
1650 void *
1651 pool_cache_get(struct pool_cache *pc, int flags)
1652 {
1653 	struct pool_cache_group *pcg;
1654 	void *object;
1655 
1656 	simple_lock(&pc->pc_slock);
1657 
1658 	if ((pcg = pc->pc_allocfrom) == NULL) {
1659 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1660 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
1661 			if (pcg->pcg_avail != 0) {
1662 				pc->pc_allocfrom = pcg;
1663 				goto have_group;
1664 			}
1665 		}
1666 
1667 		/*
1668 		 * No groups with any available objects.  Allocate
1669 		 * a new object, construct it, and return it to
1670 		 * the caller.  We will allocate a group, if necessary,
1671 		 * when the object is freed back to the cache.
1672 		 */
1673 		pc->pc_misses++;
1674 		simple_unlock(&pc->pc_slock);
1675 		object = pool_get(pc->pc_pool, flags);
1676 		if (object != NULL && pc->pc_ctor != NULL) {
1677 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1678 				pool_put(pc->pc_pool, object);
1679 				return (NULL);
1680 			}
1681 		}
1682 		return (object);
1683 	}
1684 
1685  have_group:
1686 	pc->pc_hits++;
1687 	pc->pc_nitems--;
1688 	object = pcg_get(pcg);
1689 
1690 	if (pcg->pcg_avail == 0)
1691 		pc->pc_allocfrom = NULL;
1692 
1693 	simple_unlock(&pc->pc_slock);
1694 
1695 	return (object);
1696 }
1697 
1698 /*
1699  * pool_cache_put:
1700  *
1701  *	Put an object back to the pool cache.
1702  */
1703 void
1704 pool_cache_put(struct pool_cache *pc, void *object)
1705 {
1706 	struct pool_cache_group *pcg;
1707 
1708 	simple_lock(&pc->pc_slock);
1709 
1710 	if ((pcg = pc->pc_freeto) == NULL) {
1711 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1712 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
1713 			if (pcg->pcg_avail != PCG_NOBJECTS) {
1714 				pc->pc_freeto = pcg;
1715 				goto have_group;
1716 			}
1717 		}
1718 
1719 		/*
1720 		 * No empty groups to free the object to.  Attempt to
1721 		 * allocate one.
1722 		 */
1723 		simple_unlock(&pc->pc_slock);
1724 		pcg = pool_get(&pcgpool, PR_NOWAIT);
1725 		if (pcg != NULL) {
1726 			memset(pcg, 0, sizeof(*pcg));
1727 			simple_lock(&pc->pc_slock);
1728 			pc->pc_ngroups++;
1729 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1730 			if (pc->pc_freeto == NULL)
1731 				pc->pc_freeto = pcg;
1732 			goto have_group;
1733 		}
1734 
1735 		/*
1736 		 * Unable to allocate a cache group; destruct the object
1737 		 * and free it back to the pool.
1738 		 */
1739 		if (pc->pc_dtor != NULL)
1740 			(*pc->pc_dtor)(pc->pc_arg, object);
1741 		pool_put(pc->pc_pool, object);
1742 		return;
1743 	}
1744 
1745  have_group:
1746 	pc->pc_nitems++;
1747 	pcg_put(pcg, object);
1748 
1749 	if (pcg->pcg_avail == PCG_NOBJECTS)
1750 		pc->pc_freeto = NULL;
1751 
1752 	simple_unlock(&pc->pc_slock);
1753 }
1754 
1755 /*
1756  * pool_cache_do_invalidate:
1757  *
1758  *	This internal function implements pool_cache_invalidate() and
1759  *	pool_cache_reclaim().
1760  */
1761 static void
1762 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1763     void (*putit)(struct pool *, void *, const char *, long))
1764 {
1765 	struct pool_cache_group *pcg, *npcg;
1766 	void *object;
1767 
1768 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1769 	     pcg = npcg) {
1770 		npcg = TAILQ_NEXT(pcg, pcg_list);
1771 		while (pcg->pcg_avail != 0) {
1772 			pc->pc_nitems--;
1773 			object = pcg_get(pcg);
1774 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1775 				pc->pc_allocfrom = NULL;
1776 			if (pc->pc_dtor != NULL)
1777 				(*pc->pc_dtor)(pc->pc_arg, object);
1778 			(*putit)(pc->pc_pool, object, __FILE__, __LINE__);
1779 		}
1780 		if (free_groups) {
1781 			pc->pc_ngroups--;
1782 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1783 			if (pc->pc_freeto == pcg)
1784 				pc->pc_freeto = NULL;
1785 			pool_put(&pcgpool, pcg);
1786 		}
1787 	}
1788 }
1789 
1790 /*
1791  * pool_cache_invalidate:
1792  *
1793  *	Invalidate a pool cache (destruct and release all of the
1794  *	cached objects).
1795  */
1796 void
1797 pool_cache_invalidate(struct pool_cache *pc)
1798 {
1799 
1800 	simple_lock(&pc->pc_slock);
1801 	pool_cache_do_invalidate(pc, 0, _pool_put);
1802 	simple_unlock(&pc->pc_slock);
1803 }
1804 
1805 /*
1806  * pool_cache_reclaim:
1807  *
1808  *	Reclaim a pool cache for pool_reclaim().
1809  */
1810 static void
1811 pool_cache_reclaim(struct pool_cache *pc)
1812 {
1813 
1814 	simple_lock(&pc->pc_slock);
1815 	pool_cache_do_invalidate(pc, 1, pool_do_put);
1816 	simple_unlock(&pc->pc_slock);
1817 }
1818