1 /* $NetBSD: subr_pool.c,v 1.59 2001/06/05 18:51:04 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include "opt_pool.h" 41 #include "opt_poollog.h" 42 #include "opt_lockdebug.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/errno.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/pool.h> 52 #include <sys/syslog.h> 53 54 #include <uvm/uvm.h> 55 56 /* 57 * Pool resource management utility. 58 * 59 * Memory is allocated in pages which are split into pieces according 60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist' 61 * in the pool structure and the individual pool items are on a linked list 62 * headed by `ph_itemlist' in each page header. The memory for building 63 * the page list is either taken from the allocated pages themselves (for 64 * small pool items) or taken from an internal pool of page headers (`phpool'). 65 */ 66 67 /* List of all pools */ 68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 69 70 /* Private pool for page header structures */ 71 static struct pool phpool; 72 73 /* # of seconds to retain page after last use */ 74 int pool_inactive_time = 10; 75 76 /* Next candidate for drainage (see pool_drain()) */ 77 static struct pool *drainpp; 78 79 /* This spin lock protects both pool_head and drainpp. */ 80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 81 82 struct pool_item_header { 83 /* Page headers */ 84 TAILQ_ENTRY(pool_item_header) 85 ph_pagelist; /* pool page list */ 86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 87 LIST_ENTRY(pool_item_header) 88 ph_hashlist; /* Off-page page headers */ 89 int ph_nmissing; /* # of chunks in use */ 90 caddr_t ph_page; /* this page's address */ 91 struct timeval ph_time; /* last referenced */ 92 }; 93 94 struct pool_item { 95 #ifdef DIAGNOSTIC 96 int pi_magic; 97 #endif 98 #define PI_MAGIC 0xdeadbeef 99 /* Other entries use only this list entry */ 100 TAILQ_ENTRY(pool_item) pi_list; 101 }; 102 103 #define PR_HASH_INDEX(pp,addr) \ 104 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1)) 105 106 #define POOL_NEEDS_CATCHUP(pp) \ 107 ((pp)->pr_nitems < (pp)->pr_minitems) 108 109 /* 110 * Pool cache management. 111 * 112 * Pool caches provide a way for constructed objects to be cached by the 113 * pool subsystem. This can lead to performance improvements by avoiding 114 * needless object construction/destruction; it is deferred until absolutely 115 * necessary. 116 * 117 * Caches are grouped into cache groups. Each cache group references 118 * up to 16 constructed objects. When a cache allocates an object 119 * from the pool, it calls the object's constructor and places it into 120 * a cache group. When a cache group frees an object back to the pool, 121 * it first calls the object's destructor. This allows the object to 122 * persist in constructed form while freed to the cache. 123 * 124 * Multiple caches may exist for each pool. This allows a single 125 * object type to have multiple constructed forms. The pool references 126 * each cache, so that when a pool is drained by the pagedaemon, it can 127 * drain each individual cache as well. Each time a cache is drained, 128 * the most idle cache group is freed to the pool in its entirety. 129 * 130 * Pool caches are layed on top of pools. By layering them, we can avoid 131 * the complexity of cache management for pools which would not benefit 132 * from it. 133 */ 134 135 /* The cache group pool. */ 136 static struct pool pcgpool; 137 138 /* The pool cache group. */ 139 #define PCG_NOBJECTS 16 140 struct pool_cache_group { 141 TAILQ_ENTRY(pool_cache_group) 142 pcg_list; /* link in the pool cache's group list */ 143 u_int pcg_avail; /* # available objects */ 144 /* pointers to the objects */ 145 void *pcg_objects[PCG_NOBJECTS]; 146 }; 147 148 static void pool_cache_reclaim(struct pool_cache *); 149 150 static int pool_catchup(struct pool *); 151 static void pool_prime_page(struct pool *, caddr_t, 152 struct pool_item_header *); 153 static void *pool_page_alloc(unsigned long, int, int); 154 static void pool_page_free(void *, unsigned long, int); 155 156 static void pool_print1(struct pool *, const char *, 157 void (*)(const char *, ...)); 158 159 /* 160 * Pool log entry. An array of these is allocated in pool_init(). 161 */ 162 struct pool_log { 163 const char *pl_file; 164 long pl_line; 165 int pl_action; 166 #define PRLOG_GET 1 167 #define PRLOG_PUT 2 168 void *pl_addr; 169 }; 170 171 /* Number of entries in pool log buffers */ 172 #ifndef POOL_LOGSIZE 173 #define POOL_LOGSIZE 10 174 #endif 175 176 int pool_logsize = POOL_LOGSIZE; 177 178 #ifdef POOL_DIAGNOSTIC 179 static __inline void 180 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 181 { 182 int n = pp->pr_curlogentry; 183 struct pool_log *pl; 184 185 if ((pp->pr_roflags & PR_LOGGING) == 0) 186 return; 187 188 /* 189 * Fill in the current entry. Wrap around and overwrite 190 * the oldest entry if necessary. 191 */ 192 pl = &pp->pr_log[n]; 193 pl->pl_file = file; 194 pl->pl_line = line; 195 pl->pl_action = action; 196 pl->pl_addr = v; 197 if (++n >= pp->pr_logsize) 198 n = 0; 199 pp->pr_curlogentry = n; 200 } 201 202 static void 203 pr_printlog(struct pool *pp, struct pool_item *pi, 204 void (*pr)(const char *, ...)) 205 { 206 int i = pp->pr_logsize; 207 int n = pp->pr_curlogentry; 208 209 if ((pp->pr_roflags & PR_LOGGING) == 0) 210 return; 211 212 /* 213 * Print all entries in this pool's log. 214 */ 215 while (i-- > 0) { 216 struct pool_log *pl = &pp->pr_log[n]; 217 if (pl->pl_action != 0) { 218 if (pi == NULL || pi == pl->pl_addr) { 219 (*pr)("\tlog entry %d:\n", i); 220 (*pr)("\t\taction = %s, addr = %p\n", 221 pl->pl_action == PRLOG_GET ? "get" : "put", 222 pl->pl_addr); 223 (*pr)("\t\tfile: %s at line %lu\n", 224 pl->pl_file, pl->pl_line); 225 } 226 } 227 if (++n >= pp->pr_logsize) 228 n = 0; 229 } 230 } 231 232 static __inline void 233 pr_enter(struct pool *pp, const char *file, long line) 234 { 235 236 if (__predict_false(pp->pr_entered_file != NULL)) { 237 printf("pool %s: reentrancy at file %s line %ld\n", 238 pp->pr_wchan, file, line); 239 printf(" previous entry at file %s line %ld\n", 240 pp->pr_entered_file, pp->pr_entered_line); 241 panic("pr_enter"); 242 } 243 244 pp->pr_entered_file = file; 245 pp->pr_entered_line = line; 246 } 247 248 static __inline void 249 pr_leave(struct pool *pp) 250 { 251 252 if (__predict_false(pp->pr_entered_file == NULL)) { 253 printf("pool %s not entered?\n", pp->pr_wchan); 254 panic("pr_leave"); 255 } 256 257 pp->pr_entered_file = NULL; 258 pp->pr_entered_line = 0; 259 } 260 261 static __inline void 262 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 263 { 264 265 if (pp->pr_entered_file != NULL) 266 (*pr)("\n\tcurrently entered from file %s line %ld\n", 267 pp->pr_entered_file, pp->pr_entered_line); 268 } 269 #else 270 #define pr_log(pp, v, action, file, line) 271 #define pr_printlog(pp, pi, pr) 272 #define pr_enter(pp, file, line) 273 #define pr_leave(pp) 274 #define pr_enter_check(pp, pr) 275 #endif /* POOL_DIAGNOSTIC */ 276 277 /* 278 * Return the pool page header based on page address. 279 */ 280 static __inline struct pool_item_header * 281 pr_find_pagehead(struct pool *pp, caddr_t page) 282 { 283 struct pool_item_header *ph; 284 285 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 286 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 287 288 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]); 289 ph != NULL; 290 ph = LIST_NEXT(ph, ph_hashlist)) { 291 if (ph->ph_page == page) 292 return (ph); 293 } 294 return (NULL); 295 } 296 297 /* 298 * Remove a page from the pool. 299 */ 300 static __inline void 301 pr_rmpage(struct pool *pp, struct pool_item_header *ph) 302 { 303 304 /* 305 * If the page was idle, decrement the idle page count. 306 */ 307 if (ph->ph_nmissing == 0) { 308 #ifdef DIAGNOSTIC 309 if (pp->pr_nidle == 0) 310 panic("pr_rmpage: nidle inconsistent"); 311 if (pp->pr_nitems < pp->pr_itemsperpage) 312 panic("pr_rmpage: nitems inconsistent"); 313 #endif 314 pp->pr_nidle--; 315 } 316 317 pp->pr_nitems -= pp->pr_itemsperpage; 318 319 /* 320 * Unlink a page from the pool and release it. 321 */ 322 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 323 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype); 324 pp->pr_npages--; 325 pp->pr_npagefree++; 326 327 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 328 int s; 329 LIST_REMOVE(ph, ph_hashlist); 330 s = splhigh(); 331 pool_put(&phpool, ph); 332 splx(s); 333 } 334 335 if (pp->pr_curpage == ph) { 336 /* 337 * Find a new non-empty page header, if any. 338 * Start search from the page head, to increase the 339 * chance for "high water" pages to be freed. 340 */ 341 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 342 ph = TAILQ_NEXT(ph, ph_pagelist)) 343 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 344 break; 345 346 pp->pr_curpage = ph; 347 } 348 } 349 350 /* 351 * Initialize the given pool resource structure. 352 * 353 * We export this routine to allow other kernel parts to declare 354 * static pools that must be initialized before malloc() is available. 355 */ 356 void 357 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 358 const char *wchan, size_t pagesz, 359 void *(*alloc)(unsigned long, int, int), 360 void (*release)(void *, unsigned long, int), 361 int mtype) 362 { 363 int off, slack, i; 364 365 #ifdef POOL_DIAGNOSTIC 366 /* 367 * Always log if POOL_DIAGNOSTIC is defined. 368 */ 369 if (pool_logsize != 0) 370 flags |= PR_LOGGING; 371 #endif 372 373 /* 374 * Check arguments and construct default values. 375 */ 376 if (!powerof2(pagesz)) 377 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz); 378 379 if (alloc == NULL && release == NULL) { 380 alloc = pool_page_alloc; 381 release = pool_page_free; 382 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */ 383 } else if ((alloc != NULL && release != NULL) == 0) { 384 /* If you specifiy one, must specify both. */ 385 panic("pool_init: must specify alloc and release together"); 386 } 387 388 if (pagesz == 0) 389 pagesz = PAGE_SIZE; 390 391 if (align == 0) 392 align = ALIGN(1); 393 394 if (size < sizeof(struct pool_item)) 395 size = sizeof(struct pool_item); 396 397 size = ALIGN(size); 398 if (size > pagesz) 399 panic("pool_init: pool item size (%lu) too large", 400 (u_long)size); 401 402 /* 403 * Initialize the pool structure. 404 */ 405 TAILQ_INIT(&pp->pr_pagelist); 406 TAILQ_INIT(&pp->pr_cachelist); 407 pp->pr_curpage = NULL; 408 pp->pr_npages = 0; 409 pp->pr_minitems = 0; 410 pp->pr_minpages = 0; 411 pp->pr_maxpages = UINT_MAX; 412 pp->pr_roflags = flags; 413 pp->pr_flags = 0; 414 pp->pr_size = size; 415 pp->pr_align = align; 416 pp->pr_wchan = wchan; 417 pp->pr_mtype = mtype; 418 pp->pr_alloc = alloc; 419 pp->pr_free = release; 420 pp->pr_pagesz = pagesz; 421 pp->pr_pagemask = ~(pagesz - 1); 422 pp->pr_pageshift = ffs(pagesz) - 1; 423 pp->pr_nitems = 0; 424 pp->pr_nout = 0; 425 pp->pr_hardlimit = UINT_MAX; 426 pp->pr_hardlimit_warning = NULL; 427 pp->pr_hardlimit_ratecap.tv_sec = 0; 428 pp->pr_hardlimit_ratecap.tv_usec = 0; 429 pp->pr_hardlimit_warning_last.tv_sec = 0; 430 pp->pr_hardlimit_warning_last.tv_usec = 0; 431 432 /* 433 * Decide whether to put the page header off page to avoid 434 * wasting too large a part of the page. Off-page page headers 435 * go on a hash table, so we can match a returned item 436 * with its header based on the page address. 437 * We use 1/16 of the page size as the threshold (XXX: tune) 438 */ 439 if (pp->pr_size < pagesz/16) { 440 /* Use the end of the page for the page header */ 441 pp->pr_roflags |= PR_PHINPAGE; 442 pp->pr_phoffset = off = 443 pagesz - ALIGN(sizeof(struct pool_item_header)); 444 } else { 445 /* The page header will be taken from our page header pool */ 446 pp->pr_phoffset = 0; 447 off = pagesz; 448 for (i = 0; i < PR_HASHTABSIZE; i++) { 449 LIST_INIT(&pp->pr_hashtab[i]); 450 } 451 } 452 453 /* 454 * Alignment is to take place at `ioff' within the item. This means 455 * we must reserve up to `align - 1' bytes on the page to allow 456 * appropriate positioning of each item. 457 * 458 * Silently enforce `0 <= ioff < align'. 459 */ 460 pp->pr_itemoffset = ioff = ioff % align; 461 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 462 KASSERT(pp->pr_itemsperpage != 0); 463 464 /* 465 * Use the slack between the chunks and the page header 466 * for "cache coloring". 467 */ 468 slack = off - pp->pr_itemsperpage * pp->pr_size; 469 pp->pr_maxcolor = (slack / align) * align; 470 pp->pr_curcolor = 0; 471 472 pp->pr_nget = 0; 473 pp->pr_nfail = 0; 474 pp->pr_nput = 0; 475 pp->pr_npagealloc = 0; 476 pp->pr_npagefree = 0; 477 pp->pr_hiwat = 0; 478 pp->pr_nidle = 0; 479 480 #ifdef POOL_DIAGNOSTIC 481 if (flags & PR_LOGGING) { 482 if (kmem_map == NULL || 483 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 484 M_TEMP, M_NOWAIT)) == NULL) 485 pp->pr_roflags &= ~PR_LOGGING; 486 pp->pr_curlogentry = 0; 487 pp->pr_logsize = pool_logsize; 488 } 489 #endif 490 491 pp->pr_entered_file = NULL; 492 pp->pr_entered_line = 0; 493 494 simple_lock_init(&pp->pr_slock); 495 496 /* 497 * Initialize private page header pool and cache magazine pool if we 498 * haven't done so yet. 499 * XXX LOCKING. 500 */ 501 if (phpool.pr_size == 0) { 502 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 503 0, "phpool", 0, 0, 0, 0); 504 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0, 505 0, "pcgpool", 0, 0, 0, 0); 506 } 507 508 /* Insert into the list of all pools. */ 509 simple_lock(&pool_head_slock); 510 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 511 simple_unlock(&pool_head_slock); 512 } 513 514 /* 515 * De-commision a pool resource. 516 */ 517 void 518 pool_destroy(struct pool *pp) 519 { 520 struct pool_item_header *ph; 521 struct pool_cache *pc; 522 523 /* Destroy all caches for this pool. */ 524 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL) 525 pool_cache_destroy(pc); 526 527 #ifdef DIAGNOSTIC 528 if (pp->pr_nout != 0) { 529 pr_printlog(pp, NULL, printf); 530 panic("pool_destroy: pool busy: still out: %u\n", 531 pp->pr_nout); 532 } 533 #endif 534 535 /* Remove all pages */ 536 if ((pp->pr_roflags & PR_STATIC) == 0) 537 while ((ph = pp->pr_pagelist.tqh_first) != NULL) 538 pr_rmpage(pp, ph); 539 540 /* Remove from global pool list */ 541 simple_lock(&pool_head_slock); 542 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 543 /* XXX Only clear this if we were drainpp? */ 544 drainpp = NULL; 545 simple_unlock(&pool_head_slock); 546 547 #ifdef POOL_DIAGNOSTIC 548 if ((pp->pr_roflags & PR_LOGGING) != 0) 549 free(pp->pr_log, M_TEMP); 550 #endif 551 552 if (pp->pr_roflags & PR_FREEHEADER) 553 free(pp, M_POOL); 554 } 555 556 static __inline struct pool_item_header * 557 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags) 558 { 559 struct pool_item_header *ph; 560 int s; 561 562 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0); 563 564 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 565 ph = (struct pool_item_header *) (storage + pp->pr_phoffset); 566 else { 567 s = splhigh(); 568 ph = pool_get(&phpool, flags); 569 splx(s); 570 } 571 572 return (ph); 573 } 574 575 /* 576 * Grab an item from the pool; must be called at appropriate spl level 577 */ 578 void * 579 #ifdef POOL_DIAGNOSTIC 580 _pool_get(struct pool *pp, int flags, const char *file, long line) 581 #else 582 pool_get(struct pool *pp, int flags) 583 #endif 584 { 585 struct pool_item *pi; 586 struct pool_item_header *ph; 587 void *v; 588 589 #ifdef DIAGNOSTIC 590 if (__predict_false((pp->pr_roflags & PR_STATIC) && 591 (flags & PR_MALLOCOK))) { 592 pr_printlog(pp, NULL, printf); 593 panic("pool_get: static"); 594 } 595 596 if (__predict_false(curproc == NULL && doing_shutdown == 0 && 597 (flags & PR_WAITOK) != 0)) 598 panic("pool_get: must have NOWAIT"); 599 600 #ifdef LOCKDEBUG 601 if (flags & PR_WAITOK) 602 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)"); 603 #endif 604 #endif /* DIAGNOSTIC */ 605 606 simple_lock(&pp->pr_slock); 607 pr_enter(pp, file, line); 608 609 startover: 610 /* 611 * Check to see if we've reached the hard limit. If we have, 612 * and we can wait, then wait until an item has been returned to 613 * the pool. 614 */ 615 #ifdef DIAGNOSTIC 616 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 617 pr_leave(pp); 618 simple_unlock(&pp->pr_slock); 619 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 620 } 621 #endif 622 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 623 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 624 /* 625 * XXX: A warning isn't logged in this case. Should 626 * it be? 627 */ 628 pp->pr_flags |= PR_WANTED; 629 pr_leave(pp); 630 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 631 pr_enter(pp, file, line); 632 goto startover; 633 } 634 635 /* 636 * Log a message that the hard limit has been hit. 637 */ 638 if (pp->pr_hardlimit_warning != NULL && 639 ratecheck(&pp->pr_hardlimit_warning_last, 640 &pp->pr_hardlimit_ratecap)) 641 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 642 643 if (flags & PR_URGENT) 644 panic("pool_get: urgent"); 645 646 pp->pr_nfail++; 647 648 pr_leave(pp); 649 simple_unlock(&pp->pr_slock); 650 return (NULL); 651 } 652 653 /* 654 * The convention we use is that if `curpage' is not NULL, then 655 * it points at a non-empty bucket. In particular, `curpage' 656 * never points at a page header which has PR_PHINPAGE set and 657 * has no items in its bucket. 658 */ 659 if ((ph = pp->pr_curpage) == NULL) { 660 #ifdef DIAGNOSTIC 661 if (pp->pr_nitems != 0) { 662 simple_unlock(&pp->pr_slock); 663 printf("pool_get: %s: curpage NULL, nitems %u\n", 664 pp->pr_wchan, pp->pr_nitems); 665 panic("pool_get: nitems inconsistent\n"); 666 } 667 #endif 668 669 /* 670 * Call the back-end page allocator for more memory. 671 * Release the pool lock, as the back-end page allocator 672 * may block. 673 */ 674 pr_leave(pp); 675 simple_unlock(&pp->pr_slock); 676 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype); 677 if (__predict_true(v != NULL)) 678 ph = pool_alloc_item_header(pp, v, flags); 679 simple_lock(&pp->pr_slock); 680 pr_enter(pp, file, line); 681 682 if (__predict_false(v == NULL || ph == NULL)) { 683 if (v != NULL) 684 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype); 685 686 /* 687 * We were unable to allocate a page or item 688 * header, but we released the lock during 689 * allocation, so perhaps items were freed 690 * back to the pool. Check for this case. 691 */ 692 if (pp->pr_curpage != NULL) 693 goto startover; 694 695 if (flags & PR_URGENT) 696 panic("pool_get: urgent"); 697 698 if ((flags & PR_WAITOK) == 0) { 699 pp->pr_nfail++; 700 pr_leave(pp); 701 simple_unlock(&pp->pr_slock); 702 return (NULL); 703 } 704 705 /* 706 * Wait for items to be returned to this pool. 707 * 708 * XXX: we actually want to wait just until 709 * the page allocator has memory again. Depending 710 * on this pool's usage, we might get stuck here 711 * for a long time. 712 * 713 * XXX: maybe we should wake up once a second and 714 * try again? 715 */ 716 pp->pr_flags |= PR_WANTED; 717 pr_leave(pp); 718 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 719 pr_enter(pp, file, line); 720 goto startover; 721 } 722 723 /* We have more memory; add it to the pool */ 724 pool_prime_page(pp, v, ph); 725 pp->pr_npagealloc++; 726 727 /* Start the allocation process over. */ 728 goto startover; 729 } 730 731 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 732 pr_leave(pp); 733 simple_unlock(&pp->pr_slock); 734 panic("pool_get: %s: page empty", pp->pr_wchan); 735 } 736 #ifdef DIAGNOSTIC 737 if (__predict_false(pp->pr_nitems == 0)) { 738 pr_leave(pp); 739 simple_unlock(&pp->pr_slock); 740 printf("pool_get: %s: items on itemlist, nitems %u\n", 741 pp->pr_wchan, pp->pr_nitems); 742 panic("pool_get: nitems inconsistent\n"); 743 } 744 745 pr_log(pp, v, PRLOG_GET, file, line); 746 747 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 748 pr_printlog(pp, pi, printf); 749 panic("pool_get(%s): free list modified: magic=%x; page %p;" 750 " item addr %p\n", 751 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 752 } 753 #endif 754 755 /* 756 * Remove from item list. 757 */ 758 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 759 pp->pr_nitems--; 760 pp->pr_nout++; 761 if (ph->ph_nmissing == 0) { 762 #ifdef DIAGNOSTIC 763 if (__predict_false(pp->pr_nidle == 0)) 764 panic("pool_get: nidle inconsistent"); 765 #endif 766 pp->pr_nidle--; 767 } 768 ph->ph_nmissing++; 769 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) { 770 #ifdef DIAGNOSTIC 771 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 772 pr_leave(pp); 773 simple_unlock(&pp->pr_slock); 774 panic("pool_get: %s: nmissing inconsistent", 775 pp->pr_wchan); 776 } 777 #endif 778 /* 779 * Find a new non-empty page header, if any. 780 * Start search from the page head, to increase 781 * the chance for "high water" pages to be freed. 782 * 783 * Migrate empty pages to the end of the list. This 784 * will speed the update of curpage as pages become 785 * idle. Empty pages intermingled with idle pages 786 * is no big deal. As soon as a page becomes un-empty, 787 * it will move back to the head of the list. 788 */ 789 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 790 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 791 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 792 ph = TAILQ_NEXT(ph, ph_pagelist)) 793 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 794 break; 795 796 pp->pr_curpage = ph; 797 } 798 799 pp->pr_nget++; 800 801 /* 802 * If we have a low water mark and we are now below that low 803 * water mark, add more items to the pool. 804 */ 805 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 806 /* 807 * XXX: Should we log a warning? Should we set up a timeout 808 * to try again in a second or so? The latter could break 809 * a caller's assumptions about interrupt protection, etc. 810 */ 811 } 812 813 pr_leave(pp); 814 simple_unlock(&pp->pr_slock); 815 return (v); 816 } 817 818 /* 819 * Internal version of pool_put(). Pool is already locked/entered. 820 */ 821 static void 822 pool_do_put(struct pool *pp, void *v) 823 { 824 struct pool_item *pi = v; 825 struct pool_item_header *ph; 826 caddr_t page; 827 int s; 828 829 page = (caddr_t)((u_long)v & pp->pr_pagemask); 830 831 #ifdef DIAGNOSTIC 832 if (__predict_false(pp->pr_nout == 0)) { 833 printf("pool %s: putting with none out\n", 834 pp->pr_wchan); 835 panic("pool_put"); 836 } 837 #endif 838 839 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 840 pr_printlog(pp, NULL, printf); 841 panic("pool_put: %s: page header missing", pp->pr_wchan); 842 } 843 844 #ifdef LOCKDEBUG 845 /* 846 * Check if we're freeing a locked simple lock. 847 */ 848 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 849 #endif 850 851 /* 852 * Return to item list. 853 */ 854 #ifdef DIAGNOSTIC 855 pi->pi_magic = PI_MAGIC; 856 #endif 857 #ifdef DEBUG 858 { 859 int i, *ip = v; 860 861 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 862 *ip++ = PI_MAGIC; 863 } 864 } 865 #endif 866 867 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 868 ph->ph_nmissing--; 869 pp->pr_nput++; 870 pp->pr_nitems++; 871 pp->pr_nout--; 872 873 /* Cancel "pool empty" condition if it exists */ 874 if (pp->pr_curpage == NULL) 875 pp->pr_curpage = ph; 876 877 if (pp->pr_flags & PR_WANTED) { 878 pp->pr_flags &= ~PR_WANTED; 879 if (ph->ph_nmissing == 0) 880 pp->pr_nidle++; 881 wakeup((caddr_t)pp); 882 return; 883 } 884 885 /* 886 * If this page is now complete, do one of two things: 887 * 888 * (1) If we have more pages than the page high water 889 * mark, free the page back to the system. 890 * 891 * (2) Move it to the end of the page list, so that 892 * we minimize our chances of fragmenting the 893 * pool. Idle pages migrate to the end (along with 894 * completely empty pages, so that we find un-empty 895 * pages more quickly when we update curpage) of the 896 * list so they can be more easily swept up by 897 * the pagedaemon when pages are scarce. 898 */ 899 if (ph->ph_nmissing == 0) { 900 pp->pr_nidle++; 901 if (pp->pr_npages > pp->pr_maxpages) { 902 pr_rmpage(pp, ph); 903 } else { 904 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 905 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 906 907 /* 908 * Update the timestamp on the page. A page must 909 * be idle for some period of time before it can 910 * be reclaimed by the pagedaemon. This minimizes 911 * ping-pong'ing for memory. 912 */ 913 s = splclock(); 914 ph->ph_time = mono_time; 915 splx(s); 916 917 /* 918 * Update the current page pointer. Just look for 919 * the first page with any free items. 920 * 921 * XXX: Maybe we want an option to look for the 922 * page with the fewest available items, to minimize 923 * fragmentation? 924 */ 925 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 926 ph = TAILQ_NEXT(ph, ph_pagelist)) 927 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 928 break; 929 930 pp->pr_curpage = ph; 931 } 932 } 933 /* 934 * If the page has just become un-empty, move it to the head of 935 * the list, and make it the current page. The next allocation 936 * will get the item from this page, instead of further fragmenting 937 * the pool. 938 */ 939 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 940 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 941 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 942 pp->pr_curpage = ph; 943 } 944 } 945 946 /* 947 * Return resource to the pool; must be called at appropriate spl level 948 */ 949 #ifdef POOL_DIAGNOSTIC 950 void 951 _pool_put(struct pool *pp, void *v, const char *file, long line) 952 { 953 954 simple_lock(&pp->pr_slock); 955 pr_enter(pp, file, line); 956 957 pr_log(pp, v, PRLOG_PUT, file, line); 958 959 pool_do_put(pp, v); 960 961 pr_leave(pp); 962 simple_unlock(&pp->pr_slock); 963 } 964 #undef pool_put 965 #endif /* POOL_DIAGNOSTIC */ 966 967 void 968 pool_put(struct pool *pp, void *v) 969 { 970 971 simple_lock(&pp->pr_slock); 972 973 pool_do_put(pp, v); 974 975 simple_unlock(&pp->pr_slock); 976 } 977 978 #ifdef POOL_DIAGNOSTIC 979 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 980 #endif 981 982 /* 983 * Add N items to the pool. 984 */ 985 int 986 pool_prime(struct pool *pp, int n) 987 { 988 struct pool_item_header *ph; 989 caddr_t cp; 990 int newpages, error = 0; 991 992 simple_lock(&pp->pr_slock); 993 994 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 995 996 while (newpages-- > 0) { 997 simple_unlock(&pp->pr_slock); 998 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype); 999 if (__predict_true(cp != NULL)) 1000 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1001 simple_lock(&pp->pr_slock); 1002 1003 if (__predict_false(cp == NULL || ph == NULL)) { 1004 error = ENOMEM; 1005 if (cp != NULL) 1006 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype); 1007 break; 1008 } 1009 1010 pool_prime_page(pp, cp, ph); 1011 pp->pr_npagealloc++; 1012 pp->pr_minpages++; 1013 } 1014 1015 if (pp->pr_minpages >= pp->pr_maxpages) 1016 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1017 1018 simple_unlock(&pp->pr_slock); 1019 return (0); 1020 } 1021 1022 /* 1023 * Add a page worth of items to the pool. 1024 * 1025 * Note, we must be called with the pool descriptor LOCKED. 1026 */ 1027 static void 1028 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph) 1029 { 1030 struct pool_item *pi; 1031 caddr_t cp = storage; 1032 unsigned int align = pp->pr_align; 1033 unsigned int ioff = pp->pr_itemoffset; 1034 int n; 1035 1036 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0) 1037 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1038 1039 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1040 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)], 1041 ph, ph_hashlist); 1042 1043 /* 1044 * Insert page header. 1045 */ 1046 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1047 TAILQ_INIT(&ph->ph_itemlist); 1048 ph->ph_page = storage; 1049 ph->ph_nmissing = 0; 1050 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1051 1052 pp->pr_nidle++; 1053 1054 /* 1055 * Color this page. 1056 */ 1057 cp = (caddr_t)(cp + pp->pr_curcolor); 1058 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1059 pp->pr_curcolor = 0; 1060 1061 /* 1062 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1063 */ 1064 if (ioff != 0) 1065 cp = (caddr_t)(cp + (align - ioff)); 1066 1067 /* 1068 * Insert remaining chunks on the bucket list. 1069 */ 1070 n = pp->pr_itemsperpage; 1071 pp->pr_nitems += n; 1072 1073 while (n--) { 1074 pi = (struct pool_item *)cp; 1075 1076 /* Insert on page list */ 1077 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1078 #ifdef DIAGNOSTIC 1079 pi->pi_magic = PI_MAGIC; 1080 #endif 1081 cp = (caddr_t)(cp + pp->pr_size); 1082 } 1083 1084 /* 1085 * If the pool was depleted, point at the new page. 1086 */ 1087 if (pp->pr_curpage == NULL) 1088 pp->pr_curpage = ph; 1089 1090 if (++pp->pr_npages > pp->pr_hiwat) 1091 pp->pr_hiwat = pp->pr_npages; 1092 } 1093 1094 /* 1095 * Used by pool_get() when nitems drops below the low water mark. This 1096 * is used to catch up nitmes with the low water mark. 1097 * 1098 * Note 1, we never wait for memory here, we let the caller decide what to do. 1099 * 1100 * Note 2, this doesn't work with static pools. 1101 * 1102 * Note 3, we must be called with the pool already locked, and we return 1103 * with it locked. 1104 */ 1105 static int 1106 pool_catchup(struct pool *pp) 1107 { 1108 struct pool_item_header *ph; 1109 caddr_t cp; 1110 int error = 0; 1111 1112 if (pp->pr_roflags & PR_STATIC) { 1113 /* 1114 * We dropped below the low water mark, and this is not a 1115 * good thing. Log a warning. 1116 * 1117 * XXX: rate-limit this? 1118 */ 1119 printf("WARNING: static pool `%s' dropped below low water " 1120 "mark\n", pp->pr_wchan); 1121 return (0); 1122 } 1123 1124 while (POOL_NEEDS_CATCHUP(pp)) { 1125 /* 1126 * Call the page back-end allocator for more memory. 1127 * 1128 * XXX: We never wait, so should we bother unlocking 1129 * the pool descriptor? 1130 */ 1131 simple_unlock(&pp->pr_slock); 1132 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype); 1133 if (__predict_true(cp != NULL)) 1134 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1135 simple_lock(&pp->pr_slock); 1136 if (__predict_false(cp == NULL || ph == NULL)) { 1137 if (cp != NULL) 1138 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype); 1139 error = ENOMEM; 1140 break; 1141 } 1142 pool_prime_page(pp, cp, ph); 1143 pp->pr_npagealloc++; 1144 } 1145 1146 return (error); 1147 } 1148 1149 void 1150 pool_setlowat(struct pool *pp, int n) 1151 { 1152 int error; 1153 1154 simple_lock(&pp->pr_slock); 1155 1156 pp->pr_minitems = n; 1157 pp->pr_minpages = (n == 0) 1158 ? 0 1159 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1160 1161 /* Make sure we're caught up with the newly-set low water mark. */ 1162 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) { 1163 /* 1164 * XXX: Should we log a warning? Should we set up a timeout 1165 * to try again in a second or so? The latter could break 1166 * a caller's assumptions about interrupt protection, etc. 1167 */ 1168 } 1169 1170 simple_unlock(&pp->pr_slock); 1171 } 1172 1173 void 1174 pool_sethiwat(struct pool *pp, int n) 1175 { 1176 1177 simple_lock(&pp->pr_slock); 1178 1179 pp->pr_maxpages = (n == 0) 1180 ? 0 1181 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1182 1183 simple_unlock(&pp->pr_slock); 1184 } 1185 1186 void 1187 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1188 { 1189 1190 simple_lock(&pp->pr_slock); 1191 1192 pp->pr_hardlimit = n; 1193 pp->pr_hardlimit_warning = warnmess; 1194 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1195 pp->pr_hardlimit_warning_last.tv_sec = 0; 1196 pp->pr_hardlimit_warning_last.tv_usec = 0; 1197 1198 /* 1199 * In-line version of pool_sethiwat(), because we don't want to 1200 * release the lock. 1201 */ 1202 pp->pr_maxpages = (n == 0) 1203 ? 0 1204 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1205 1206 simple_unlock(&pp->pr_slock); 1207 } 1208 1209 /* 1210 * Default page allocator. 1211 */ 1212 static void * 1213 pool_page_alloc(unsigned long sz, int flags, int mtype) 1214 { 1215 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1216 1217 return ((void *)uvm_km_alloc_poolpage(waitok)); 1218 } 1219 1220 static void 1221 pool_page_free(void *v, unsigned long sz, int mtype) 1222 { 1223 1224 uvm_km_free_poolpage((vaddr_t)v); 1225 } 1226 1227 /* 1228 * Alternate pool page allocator for pools that know they will 1229 * never be accessed in interrupt context. 1230 */ 1231 void * 1232 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype) 1233 { 1234 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1235 1236 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object, 1237 waitok)); 1238 } 1239 1240 void 1241 pool_page_free_nointr(void *v, unsigned long sz, int mtype) 1242 { 1243 1244 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v); 1245 } 1246 1247 1248 /* 1249 * Release all complete pages that have not been used recently. 1250 */ 1251 void 1252 #ifdef POOL_DIAGNOSTIC 1253 _pool_reclaim(struct pool *pp, const char *file, long line) 1254 #else 1255 pool_reclaim(struct pool *pp) 1256 #endif 1257 { 1258 struct pool_item_header *ph, *phnext; 1259 struct pool_cache *pc; 1260 struct timeval curtime; 1261 int s; 1262 1263 if (pp->pr_roflags & PR_STATIC) 1264 return; 1265 1266 if (simple_lock_try(&pp->pr_slock) == 0) 1267 return; 1268 pr_enter(pp, file, line); 1269 1270 /* 1271 * Reclaim items from the pool's caches. 1272 */ 1273 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL; 1274 pc = TAILQ_NEXT(pc, pc_poollist)) 1275 pool_cache_reclaim(pc); 1276 1277 s = splclock(); 1278 curtime = mono_time; 1279 splx(s); 1280 1281 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) { 1282 phnext = TAILQ_NEXT(ph, ph_pagelist); 1283 1284 /* Check our minimum page claim */ 1285 if (pp->pr_npages <= pp->pr_minpages) 1286 break; 1287 1288 if (ph->ph_nmissing == 0) { 1289 struct timeval diff; 1290 timersub(&curtime, &ph->ph_time, &diff); 1291 if (diff.tv_sec < pool_inactive_time) 1292 continue; 1293 1294 /* 1295 * If freeing this page would put us below 1296 * the low water mark, stop now. 1297 */ 1298 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1299 pp->pr_minitems) 1300 break; 1301 1302 pr_rmpage(pp, ph); 1303 } 1304 } 1305 1306 pr_leave(pp); 1307 simple_unlock(&pp->pr_slock); 1308 } 1309 1310 1311 /* 1312 * Drain pools, one at a time. 1313 * 1314 * Note, we must never be called from an interrupt context. 1315 */ 1316 void 1317 pool_drain(void *arg) 1318 { 1319 struct pool *pp; 1320 int s; 1321 1322 s = splvm(); 1323 simple_lock(&pool_head_slock); 1324 1325 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL) 1326 goto out; 1327 1328 pp = drainpp; 1329 drainpp = TAILQ_NEXT(pp, pr_poollist); 1330 1331 pool_reclaim(pp); 1332 1333 out: 1334 simple_unlock(&pool_head_slock); 1335 splx(s); 1336 } 1337 1338 1339 /* 1340 * Diagnostic helpers. 1341 */ 1342 void 1343 pool_print(struct pool *pp, const char *modif) 1344 { 1345 int s; 1346 1347 s = splvm(); 1348 if (simple_lock_try(&pp->pr_slock) == 0) { 1349 printf("pool %s is locked; try again later\n", 1350 pp->pr_wchan); 1351 splx(s); 1352 return; 1353 } 1354 pool_print1(pp, modif, printf); 1355 simple_unlock(&pp->pr_slock); 1356 splx(s); 1357 } 1358 1359 void 1360 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1361 { 1362 int didlock = 0; 1363 1364 if (pp == NULL) { 1365 (*pr)("Must specify a pool to print.\n"); 1366 return; 1367 } 1368 1369 /* 1370 * Called from DDB; interrupts should be blocked, and all 1371 * other processors should be paused. We can skip locking 1372 * the pool in this case. 1373 * 1374 * We do a simple_lock_try() just to print the lock 1375 * status, however. 1376 */ 1377 1378 if (simple_lock_try(&pp->pr_slock) == 0) 1379 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1380 else 1381 didlock = 1; 1382 1383 pool_print1(pp, modif, pr); 1384 1385 if (didlock) 1386 simple_unlock(&pp->pr_slock); 1387 } 1388 1389 static void 1390 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1391 { 1392 struct pool_item_header *ph; 1393 struct pool_cache *pc; 1394 struct pool_cache_group *pcg; 1395 #ifdef DIAGNOSTIC 1396 struct pool_item *pi; 1397 #endif 1398 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1399 char c; 1400 1401 while ((c = *modif++) != '\0') { 1402 if (c == 'l') 1403 print_log = 1; 1404 if (c == 'p') 1405 print_pagelist = 1; 1406 if (c == 'c') 1407 print_cache = 1; 1408 modif++; 1409 } 1410 1411 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1412 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1413 pp->pr_roflags); 1414 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype); 1415 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free); 1416 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1417 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1418 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1419 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1420 1421 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1422 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1423 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1424 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1425 1426 if (print_pagelist == 0) 1427 goto skip_pagelist; 1428 1429 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 1430 (*pr)("\n\tpage list:\n"); 1431 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) { 1432 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1433 ph->ph_page, ph->ph_nmissing, 1434 (u_long)ph->ph_time.tv_sec, 1435 (u_long)ph->ph_time.tv_usec); 1436 #ifdef DIAGNOSTIC 1437 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL; 1438 pi = TAILQ_NEXT(pi, pi_list)) { 1439 if (pi->pi_magic != PI_MAGIC) { 1440 (*pr)("\t\t\titem %p, magic 0x%x\n", 1441 pi, pi->pi_magic); 1442 } 1443 } 1444 #endif 1445 } 1446 if (pp->pr_curpage == NULL) 1447 (*pr)("\tno current page\n"); 1448 else 1449 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1450 1451 skip_pagelist: 1452 1453 if (print_log == 0) 1454 goto skip_log; 1455 1456 (*pr)("\n"); 1457 if ((pp->pr_roflags & PR_LOGGING) == 0) 1458 (*pr)("\tno log\n"); 1459 else 1460 pr_printlog(pp, NULL, pr); 1461 1462 skip_log: 1463 1464 if (print_cache == 0) 1465 goto skip_cache; 1466 1467 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL; 1468 pc = TAILQ_NEXT(pc, pc_poollist)) { 1469 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc, 1470 pc->pc_allocfrom, pc->pc_freeto); 1471 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n", 1472 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems); 1473 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1474 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1475 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); 1476 for (i = 0; i < PCG_NOBJECTS; i++) 1477 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]); 1478 } 1479 } 1480 1481 skip_cache: 1482 1483 pr_enter_check(pp, pr); 1484 } 1485 1486 int 1487 pool_chk(struct pool *pp, const char *label) 1488 { 1489 struct pool_item_header *ph; 1490 int r = 0; 1491 1492 simple_lock(&pp->pr_slock); 1493 1494 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; 1495 ph = TAILQ_NEXT(ph, ph_pagelist)) { 1496 1497 struct pool_item *pi; 1498 int n; 1499 caddr_t page; 1500 1501 page = (caddr_t)((u_long)ph & pp->pr_pagemask); 1502 if (page != ph->ph_page && 1503 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1504 if (label != NULL) 1505 printf("%s: ", label); 1506 printf("pool(%p:%s): page inconsistency: page %p;" 1507 " at page head addr %p (p %p)\n", pp, 1508 pp->pr_wchan, ph->ph_page, 1509 ph, page); 1510 r++; 1511 goto out; 1512 } 1513 1514 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1515 pi != NULL; 1516 pi = TAILQ_NEXT(pi,pi_list), n++) { 1517 1518 #ifdef DIAGNOSTIC 1519 if (pi->pi_magic != PI_MAGIC) { 1520 if (label != NULL) 1521 printf("%s: ", label); 1522 printf("pool(%s): free list modified: magic=%x;" 1523 " page %p; item ordinal %d;" 1524 " addr %p (p %p)\n", 1525 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1526 n, pi, page); 1527 panic("pool"); 1528 } 1529 #endif 1530 page = (caddr_t)((u_long)pi & pp->pr_pagemask); 1531 if (page == ph->ph_page) 1532 continue; 1533 1534 if (label != NULL) 1535 printf("%s: ", label); 1536 printf("pool(%p:%s): page inconsistency: page %p;" 1537 " item ordinal %d; addr %p (p %p)\n", pp, 1538 pp->pr_wchan, ph->ph_page, 1539 n, pi, page); 1540 r++; 1541 goto out; 1542 } 1543 } 1544 out: 1545 simple_unlock(&pp->pr_slock); 1546 return (r); 1547 } 1548 1549 /* 1550 * pool_cache_init: 1551 * 1552 * Initialize a pool cache. 1553 * 1554 * NOTE: If the pool must be protected from interrupts, we expect 1555 * to be called at the appropriate interrupt priority level. 1556 */ 1557 void 1558 pool_cache_init(struct pool_cache *pc, struct pool *pp, 1559 int (*ctor)(void *, void *, int), 1560 void (*dtor)(void *, void *), 1561 void *arg) 1562 { 1563 1564 TAILQ_INIT(&pc->pc_grouplist); 1565 simple_lock_init(&pc->pc_slock); 1566 1567 pc->pc_allocfrom = NULL; 1568 pc->pc_freeto = NULL; 1569 pc->pc_pool = pp; 1570 1571 pc->pc_ctor = ctor; 1572 pc->pc_dtor = dtor; 1573 pc->pc_arg = arg; 1574 1575 pc->pc_hits = 0; 1576 pc->pc_misses = 0; 1577 1578 pc->pc_ngroups = 0; 1579 1580 pc->pc_nitems = 0; 1581 1582 simple_lock(&pp->pr_slock); 1583 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist); 1584 simple_unlock(&pp->pr_slock); 1585 } 1586 1587 /* 1588 * pool_cache_destroy: 1589 * 1590 * Destroy a pool cache. 1591 */ 1592 void 1593 pool_cache_destroy(struct pool_cache *pc) 1594 { 1595 struct pool *pp = pc->pc_pool; 1596 1597 /* First, invalidate the entire cache. */ 1598 pool_cache_invalidate(pc); 1599 1600 /* ...and remove it from the pool's cache list. */ 1601 simple_lock(&pp->pr_slock); 1602 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist); 1603 simple_unlock(&pp->pr_slock); 1604 } 1605 1606 static __inline void * 1607 pcg_get(struct pool_cache_group *pcg) 1608 { 1609 void *object; 1610 u_int idx; 1611 1612 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 1613 KASSERT(pcg->pcg_avail != 0); 1614 idx = --pcg->pcg_avail; 1615 1616 KASSERT(pcg->pcg_objects[idx] != NULL); 1617 object = pcg->pcg_objects[idx]; 1618 pcg->pcg_objects[idx] = NULL; 1619 1620 return (object); 1621 } 1622 1623 static __inline void 1624 pcg_put(struct pool_cache_group *pcg, void *object) 1625 { 1626 u_int idx; 1627 1628 KASSERT(pcg->pcg_avail < PCG_NOBJECTS); 1629 idx = pcg->pcg_avail++; 1630 1631 KASSERT(pcg->pcg_objects[idx] == NULL); 1632 pcg->pcg_objects[idx] = object; 1633 } 1634 1635 /* 1636 * pool_cache_get: 1637 * 1638 * Get an object from a pool cache. 1639 */ 1640 void * 1641 pool_cache_get(struct pool_cache *pc, int flags) 1642 { 1643 struct pool_cache_group *pcg; 1644 void *object; 1645 1646 #ifdef LOCKDEBUG 1647 if (flags & PR_WAITOK) 1648 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)"); 1649 #endif 1650 1651 simple_lock(&pc->pc_slock); 1652 1653 if ((pcg = pc->pc_allocfrom) == NULL) { 1654 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1655 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1656 if (pcg->pcg_avail != 0) { 1657 pc->pc_allocfrom = pcg; 1658 goto have_group; 1659 } 1660 } 1661 1662 /* 1663 * No groups with any available objects. Allocate 1664 * a new object, construct it, and return it to 1665 * the caller. We will allocate a group, if necessary, 1666 * when the object is freed back to the cache. 1667 */ 1668 pc->pc_misses++; 1669 simple_unlock(&pc->pc_slock); 1670 object = pool_get(pc->pc_pool, flags); 1671 if (object != NULL && pc->pc_ctor != NULL) { 1672 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 1673 pool_put(pc->pc_pool, object); 1674 return (NULL); 1675 } 1676 } 1677 return (object); 1678 } 1679 1680 have_group: 1681 pc->pc_hits++; 1682 pc->pc_nitems--; 1683 object = pcg_get(pcg); 1684 1685 if (pcg->pcg_avail == 0) 1686 pc->pc_allocfrom = NULL; 1687 1688 simple_unlock(&pc->pc_slock); 1689 1690 return (object); 1691 } 1692 1693 /* 1694 * pool_cache_put: 1695 * 1696 * Put an object back to the pool cache. 1697 */ 1698 void 1699 pool_cache_put(struct pool_cache *pc, void *object) 1700 { 1701 struct pool_cache_group *pcg; 1702 1703 simple_lock(&pc->pc_slock); 1704 1705 if ((pcg = pc->pc_freeto) == NULL) { 1706 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1707 pcg = TAILQ_NEXT(pcg, pcg_list)) { 1708 if (pcg->pcg_avail != PCG_NOBJECTS) { 1709 pc->pc_freeto = pcg; 1710 goto have_group; 1711 } 1712 } 1713 1714 /* 1715 * No empty groups to free the object to. Attempt to 1716 * allocate one. 1717 */ 1718 simple_unlock(&pc->pc_slock); 1719 pcg = pool_get(&pcgpool, PR_NOWAIT); 1720 if (pcg != NULL) { 1721 memset(pcg, 0, sizeof(*pcg)); 1722 simple_lock(&pc->pc_slock); 1723 pc->pc_ngroups++; 1724 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list); 1725 if (pc->pc_freeto == NULL) 1726 pc->pc_freeto = pcg; 1727 goto have_group; 1728 } 1729 1730 /* 1731 * Unable to allocate a cache group; destruct the object 1732 * and free it back to the pool. 1733 */ 1734 pool_cache_destruct_object(pc, object); 1735 return; 1736 } 1737 1738 have_group: 1739 pc->pc_nitems++; 1740 pcg_put(pcg, object); 1741 1742 if (pcg->pcg_avail == PCG_NOBJECTS) 1743 pc->pc_freeto = NULL; 1744 1745 simple_unlock(&pc->pc_slock); 1746 } 1747 1748 /* 1749 * pool_cache_destruct_object: 1750 * 1751 * Force destruction of an object and its release back into 1752 * the pool. 1753 */ 1754 void 1755 pool_cache_destruct_object(struct pool_cache *pc, void *object) 1756 { 1757 1758 if (pc->pc_dtor != NULL) 1759 (*pc->pc_dtor)(pc->pc_arg, object); 1760 pool_put(pc->pc_pool, object); 1761 } 1762 1763 /* 1764 * pool_cache_do_invalidate: 1765 * 1766 * This internal function implements pool_cache_invalidate() and 1767 * pool_cache_reclaim(). 1768 */ 1769 static void 1770 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups, 1771 void (*putit)(struct pool *, void *)) 1772 { 1773 struct pool_cache_group *pcg, *npcg; 1774 void *object; 1775 1776 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1777 pcg = npcg) { 1778 npcg = TAILQ_NEXT(pcg, pcg_list); 1779 while (pcg->pcg_avail != 0) { 1780 pc->pc_nitems--; 1781 object = pcg_get(pcg); 1782 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg) 1783 pc->pc_allocfrom = NULL; 1784 if (pc->pc_dtor != NULL) 1785 (*pc->pc_dtor)(pc->pc_arg, object); 1786 (*putit)(pc->pc_pool, object); 1787 } 1788 if (free_groups) { 1789 pc->pc_ngroups--; 1790 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list); 1791 if (pc->pc_freeto == pcg) 1792 pc->pc_freeto = NULL; 1793 pool_put(&pcgpool, pcg); 1794 } 1795 } 1796 } 1797 1798 /* 1799 * pool_cache_invalidate: 1800 * 1801 * Invalidate a pool cache (destruct and release all of the 1802 * cached objects). 1803 */ 1804 void 1805 pool_cache_invalidate(struct pool_cache *pc) 1806 { 1807 1808 simple_lock(&pc->pc_slock); 1809 pool_cache_do_invalidate(pc, 0, pool_put); 1810 simple_unlock(&pc->pc_slock); 1811 } 1812 1813 /* 1814 * pool_cache_reclaim: 1815 * 1816 * Reclaim a pool cache for pool_reclaim(). 1817 */ 1818 static void 1819 pool_cache_reclaim(struct pool_cache *pc) 1820 { 1821 1822 simple_lock(&pc->pc_slock); 1823 pool_cache_do_invalidate(pc, 1, pool_do_put); 1824 simple_unlock(&pc->pc_slock); 1825 } 1826