1 /* $NetBSD: subr_pool.c,v 1.137 2007/11/18 16:27:43 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.137 2007/11/18 16:27:43 ad Exp $"); 42 43 #include "opt_pool.h" 44 #include "opt_poollog.h" 45 #include "opt_lockdebug.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/bitops.h> 50 #include <sys/proc.h> 51 #include <sys/errno.h> 52 #include <sys/kernel.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/pool.h> 56 #include <sys/syslog.h> 57 #include <sys/debug.h> 58 #include <sys/lockdebug.h> 59 #include <sys/xcall.h> 60 #include <sys/cpu.h> 61 62 #include <uvm/uvm.h> 63 64 /* 65 * Pool resource management utility. 66 * 67 * Memory is allocated in pages which are split into pieces according to 68 * the pool item size. Each page is kept on one of three lists in the 69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 70 * for empty, full and partially-full pages respectively. The individual 71 * pool items are on a linked list headed by `ph_itemlist' in each page 72 * header. The memory for building the page list is either taken from 73 * the allocated pages themselves (for small pool items) or taken from 74 * an internal pool of page headers (`phpool'). 75 */ 76 77 /* List of all pools */ 78 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head); 79 80 /* List of all caches. */ 81 LIST_HEAD(,pool_cache) pool_cache_head = 82 LIST_HEAD_INITIALIZER(pool_cache_head); 83 84 /* Private pool for page header structures */ 85 #define PHPOOL_MAX 8 86 static struct pool phpool[PHPOOL_MAX]; 87 #define PHPOOL_FREELIST_NELEM(idx) \ 88 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 89 90 #ifdef POOL_SUBPAGE 91 /* Pool of subpages for use by normal pools. */ 92 static struct pool psppool; 93 #endif 94 95 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 96 SLIST_HEAD_INITIALIZER(pa_deferinitq); 97 98 static void *pool_page_alloc_meta(struct pool *, int); 99 static void pool_page_free_meta(struct pool *, void *); 100 101 /* allocator for pool metadata */ 102 struct pool_allocator pool_allocator_meta = { 103 pool_page_alloc_meta, pool_page_free_meta, 104 .pa_backingmapptr = &kmem_map, 105 }; 106 107 /* # of seconds to retain page after last use */ 108 int pool_inactive_time = 10; 109 110 /* Next candidate for drainage (see pool_drain()) */ 111 static struct pool *drainpp; 112 113 /* This lock protects both pool_head and drainpp. */ 114 static kmutex_t pool_head_lock; 115 static kcondvar_t pool_busy; 116 117 typedef uint32_t pool_item_bitmap_t; 118 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 119 #define BITMAP_MASK (BITMAP_SIZE - 1) 120 121 struct pool_item_header { 122 /* Page headers */ 123 LIST_ENTRY(pool_item_header) 124 ph_pagelist; /* pool page list */ 125 SPLAY_ENTRY(pool_item_header) 126 ph_node; /* Off-page page headers */ 127 void * ph_page; /* this page's address */ 128 struct timeval ph_time; /* last referenced */ 129 uint16_t ph_nmissing; /* # of chunks in use */ 130 union { 131 /* !PR_NOTOUCH */ 132 struct { 133 LIST_HEAD(, pool_item) 134 phu_itemlist; /* chunk list for this page */ 135 } phu_normal; 136 /* PR_NOTOUCH */ 137 struct { 138 uint16_t phu_off; /* start offset in page */ 139 pool_item_bitmap_t phu_bitmap[]; 140 } phu_notouch; 141 } ph_u; 142 }; 143 #define ph_itemlist ph_u.phu_normal.phu_itemlist 144 #define ph_off ph_u.phu_notouch.phu_off 145 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 146 147 struct pool_item { 148 #ifdef DIAGNOSTIC 149 u_int pi_magic; 150 #endif 151 #define PI_MAGIC 0xdeaddeadU 152 /* Other entries use only this list entry */ 153 LIST_ENTRY(pool_item) pi_list; 154 }; 155 156 #define POOL_NEEDS_CATCHUP(pp) \ 157 ((pp)->pr_nitems < (pp)->pr_minitems) 158 159 /* 160 * Pool cache management. 161 * 162 * Pool caches provide a way for constructed objects to be cached by the 163 * pool subsystem. This can lead to performance improvements by avoiding 164 * needless object construction/destruction; it is deferred until absolutely 165 * necessary. 166 * 167 * Caches are grouped into cache groups. Each cache group references up 168 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 169 * object from the pool, it calls the object's constructor and places it 170 * into a cache group. When a cache group frees an object back to the 171 * pool, it first calls the object's destructor. This allows the object 172 * to persist in constructed form while freed to the cache. 173 * 174 * The pool references each cache, so that when a pool is drained by the 175 * pagedaemon, it can drain each individual cache as well. Each time a 176 * cache is drained, the most idle cache group is freed to the pool in 177 * its entirety. 178 * 179 * Pool caches are layed on top of pools. By layering them, we can avoid 180 * the complexity of cache management for pools which would not benefit 181 * from it. 182 */ 183 184 static struct pool pcgpool; 185 static struct pool cache_pool; 186 static struct pool cache_cpu_pool; 187 188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *, 189 void *, paddr_t); 190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *, 191 void **, paddr_t *, int); 192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 194 static void pool_cache_xcall(pool_cache_t); 195 196 static int pool_catchup(struct pool *); 197 static void pool_prime_page(struct pool *, void *, 198 struct pool_item_header *); 199 static void pool_update_curpage(struct pool *); 200 201 static int pool_grow(struct pool *, int); 202 static void *pool_allocator_alloc(struct pool *, int); 203 static void pool_allocator_free(struct pool *, void *); 204 205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 206 void (*)(const char *, ...)); 207 static void pool_print1(struct pool *, const char *, 208 void (*)(const char *, ...)); 209 210 static int pool_chk_page(struct pool *, const char *, 211 struct pool_item_header *); 212 213 /* 214 * Pool log entry. An array of these is allocated in pool_init(). 215 */ 216 struct pool_log { 217 const char *pl_file; 218 long pl_line; 219 int pl_action; 220 #define PRLOG_GET 1 221 #define PRLOG_PUT 2 222 void *pl_addr; 223 }; 224 225 #ifdef POOL_DIAGNOSTIC 226 /* Number of entries in pool log buffers */ 227 #ifndef POOL_LOGSIZE 228 #define POOL_LOGSIZE 10 229 #endif 230 231 int pool_logsize = POOL_LOGSIZE; 232 233 static inline void 234 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 235 { 236 int n = pp->pr_curlogentry; 237 struct pool_log *pl; 238 239 if ((pp->pr_roflags & PR_LOGGING) == 0) 240 return; 241 242 /* 243 * Fill in the current entry. Wrap around and overwrite 244 * the oldest entry if necessary. 245 */ 246 pl = &pp->pr_log[n]; 247 pl->pl_file = file; 248 pl->pl_line = line; 249 pl->pl_action = action; 250 pl->pl_addr = v; 251 if (++n >= pp->pr_logsize) 252 n = 0; 253 pp->pr_curlogentry = n; 254 } 255 256 static void 257 pr_printlog(struct pool *pp, struct pool_item *pi, 258 void (*pr)(const char *, ...)) 259 { 260 int i = pp->pr_logsize; 261 int n = pp->pr_curlogentry; 262 263 if ((pp->pr_roflags & PR_LOGGING) == 0) 264 return; 265 266 /* 267 * Print all entries in this pool's log. 268 */ 269 while (i-- > 0) { 270 struct pool_log *pl = &pp->pr_log[n]; 271 if (pl->pl_action != 0) { 272 if (pi == NULL || pi == pl->pl_addr) { 273 (*pr)("\tlog entry %d:\n", i); 274 (*pr)("\t\taction = %s, addr = %p\n", 275 pl->pl_action == PRLOG_GET ? "get" : "put", 276 pl->pl_addr); 277 (*pr)("\t\tfile: %s at line %lu\n", 278 pl->pl_file, pl->pl_line); 279 } 280 } 281 if (++n >= pp->pr_logsize) 282 n = 0; 283 } 284 } 285 286 static inline void 287 pr_enter(struct pool *pp, const char *file, long line) 288 { 289 290 if (__predict_false(pp->pr_entered_file != NULL)) { 291 printf("pool %s: reentrancy at file %s line %ld\n", 292 pp->pr_wchan, file, line); 293 printf(" previous entry at file %s line %ld\n", 294 pp->pr_entered_file, pp->pr_entered_line); 295 panic("pr_enter"); 296 } 297 298 pp->pr_entered_file = file; 299 pp->pr_entered_line = line; 300 } 301 302 static inline void 303 pr_leave(struct pool *pp) 304 { 305 306 if (__predict_false(pp->pr_entered_file == NULL)) { 307 printf("pool %s not entered?\n", pp->pr_wchan); 308 panic("pr_leave"); 309 } 310 311 pp->pr_entered_file = NULL; 312 pp->pr_entered_line = 0; 313 } 314 315 static inline void 316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 317 { 318 319 if (pp->pr_entered_file != NULL) 320 (*pr)("\n\tcurrently entered from file %s line %ld\n", 321 pp->pr_entered_file, pp->pr_entered_line); 322 } 323 #else 324 #define pr_log(pp, v, action, file, line) 325 #define pr_printlog(pp, pi, pr) 326 #define pr_enter(pp, file, line) 327 #define pr_leave(pp) 328 #define pr_enter_check(pp, pr) 329 #endif /* POOL_DIAGNOSTIC */ 330 331 static inline unsigned int 332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 333 const void *v) 334 { 335 const char *cp = v; 336 unsigned int idx; 337 338 KASSERT(pp->pr_roflags & PR_NOTOUCH); 339 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 340 KASSERT(idx < pp->pr_itemsperpage); 341 return idx; 342 } 343 344 static inline void 345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 346 void *obj) 347 { 348 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 349 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 350 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 351 352 KASSERT((*bitmap & mask) == 0); 353 *bitmap |= mask; 354 } 355 356 static inline void * 357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 358 { 359 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 360 unsigned int idx; 361 int i; 362 363 for (i = 0; ; i++) { 364 int bit; 365 366 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 367 bit = ffs32(bitmap[i]); 368 if (bit) { 369 pool_item_bitmap_t mask; 370 371 bit--; 372 idx = (i * BITMAP_SIZE) + bit; 373 mask = 1 << bit; 374 KASSERT((bitmap[i] & mask) != 0); 375 bitmap[i] &= ~mask; 376 break; 377 } 378 } 379 KASSERT(idx < pp->pr_itemsperpage); 380 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 381 } 382 383 static inline void 384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 385 { 386 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 387 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 388 int i; 389 390 for (i = 0; i < n; i++) { 391 bitmap[i] = (pool_item_bitmap_t)-1; 392 } 393 } 394 395 static inline int 396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 397 { 398 399 /* 400 * we consider pool_item_header with smaller ph_page bigger. 401 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 402 */ 403 404 if (a->ph_page < b->ph_page) 405 return (1); 406 else if (a->ph_page > b->ph_page) 407 return (-1); 408 else 409 return (0); 410 } 411 412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 414 415 /* 416 * Return the pool page header based on item address. 417 */ 418 static inline struct pool_item_header * 419 pr_find_pagehead(struct pool *pp, void *v) 420 { 421 struct pool_item_header *ph, tmp; 422 423 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 424 tmp.ph_page = (void *)(uintptr_t)v; 425 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 426 if (ph == NULL) { 427 ph = SPLAY_ROOT(&pp->pr_phtree); 428 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 429 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 430 } 431 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 432 } 433 } else { 434 void *page = 435 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 436 437 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 438 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 439 } else { 440 tmp.ph_page = page; 441 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 442 } 443 } 444 445 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 446 ((char *)ph->ph_page <= (char *)v && 447 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 448 return ph; 449 } 450 451 static void 452 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 453 { 454 struct pool_item_header *ph; 455 456 while ((ph = LIST_FIRST(pq)) != NULL) { 457 LIST_REMOVE(ph, ph_pagelist); 458 pool_allocator_free(pp, ph->ph_page); 459 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 460 pool_put(pp->pr_phpool, ph); 461 } 462 } 463 464 /* 465 * Remove a page from the pool. 466 */ 467 static inline void 468 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 469 struct pool_pagelist *pq) 470 { 471 472 KASSERT(mutex_owned(&pp->pr_lock)); 473 474 /* 475 * If the page was idle, decrement the idle page count. 476 */ 477 if (ph->ph_nmissing == 0) { 478 #ifdef DIAGNOSTIC 479 if (pp->pr_nidle == 0) 480 panic("pr_rmpage: nidle inconsistent"); 481 if (pp->pr_nitems < pp->pr_itemsperpage) 482 panic("pr_rmpage: nitems inconsistent"); 483 #endif 484 pp->pr_nidle--; 485 } 486 487 pp->pr_nitems -= pp->pr_itemsperpage; 488 489 /* 490 * Unlink the page from the pool and queue it for release. 491 */ 492 LIST_REMOVE(ph, ph_pagelist); 493 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 494 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 495 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 496 497 pp->pr_npages--; 498 pp->pr_npagefree++; 499 500 pool_update_curpage(pp); 501 } 502 503 static bool 504 pa_starved_p(struct pool_allocator *pa) 505 { 506 507 if (pa->pa_backingmap != NULL) { 508 return vm_map_starved_p(pa->pa_backingmap); 509 } 510 return false; 511 } 512 513 static int 514 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 515 { 516 struct pool *pp = obj; 517 struct pool_allocator *pa = pp->pr_alloc; 518 519 KASSERT(&pp->pr_reclaimerentry == ce); 520 pool_reclaim(pp); 521 if (!pa_starved_p(pa)) { 522 return CALLBACK_CHAIN_ABORT; 523 } 524 return CALLBACK_CHAIN_CONTINUE; 525 } 526 527 static void 528 pool_reclaim_register(struct pool *pp) 529 { 530 struct vm_map *map = pp->pr_alloc->pa_backingmap; 531 int s; 532 533 if (map == NULL) { 534 return; 535 } 536 537 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 538 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 539 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 540 splx(s); 541 } 542 543 static void 544 pool_reclaim_unregister(struct pool *pp) 545 { 546 struct vm_map *map = pp->pr_alloc->pa_backingmap; 547 int s; 548 549 if (map == NULL) { 550 return; 551 } 552 553 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 554 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 555 &pp->pr_reclaimerentry); 556 splx(s); 557 } 558 559 static void 560 pa_reclaim_register(struct pool_allocator *pa) 561 { 562 struct vm_map *map = *pa->pa_backingmapptr; 563 struct pool *pp; 564 565 KASSERT(pa->pa_backingmap == NULL); 566 if (map == NULL) { 567 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 568 return; 569 } 570 pa->pa_backingmap = map; 571 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 572 pool_reclaim_register(pp); 573 } 574 } 575 576 /* 577 * Initialize all the pools listed in the "pools" link set. 578 */ 579 void 580 pool_subsystem_init(void) 581 { 582 struct pool_allocator *pa; 583 __link_set_decl(pools, struct link_pool_init); 584 struct link_pool_init * const *pi; 585 586 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 587 cv_init(&pool_busy, "poolbusy"); 588 589 __link_set_foreach(pi, pools) 590 pool_init((*pi)->pp, (*pi)->size, (*pi)->align, 591 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan, 592 (*pi)->palloc, (*pi)->ipl); 593 594 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 595 KASSERT(pa->pa_backingmapptr != NULL); 596 KASSERT(*pa->pa_backingmapptr != NULL); 597 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 598 pa_reclaim_register(pa); 599 } 600 601 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE, 602 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 603 604 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE, 605 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 606 } 607 608 /* 609 * Initialize the given pool resource structure. 610 * 611 * We export this routine to allow other kernel parts to declare 612 * static pools that must be initialized before malloc() is available. 613 */ 614 void 615 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 616 const char *wchan, struct pool_allocator *palloc, int ipl) 617 { 618 #ifdef DEBUG 619 struct pool *pp1; 620 #endif 621 size_t trysize, phsize; 622 int off, slack; 623 624 #ifdef DEBUG 625 /* 626 * Check that the pool hasn't already been initialised and 627 * added to the list of all pools. 628 */ 629 LIST_FOREACH(pp1, &pool_head, pr_poollist) { 630 if (pp == pp1) 631 panic("pool_init: pool %s already initialised", 632 wchan); 633 } 634 #endif 635 636 #ifdef POOL_DIAGNOSTIC 637 /* 638 * Always log if POOL_DIAGNOSTIC is defined. 639 */ 640 if (pool_logsize != 0) 641 flags |= PR_LOGGING; 642 #endif 643 644 if (palloc == NULL) 645 palloc = &pool_allocator_kmem; 646 #ifdef POOL_SUBPAGE 647 if (size > palloc->pa_pagesz) { 648 if (palloc == &pool_allocator_kmem) 649 palloc = &pool_allocator_kmem_fullpage; 650 else if (palloc == &pool_allocator_nointr) 651 palloc = &pool_allocator_nointr_fullpage; 652 } 653 #endif /* POOL_SUBPAGE */ 654 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 655 if (palloc->pa_pagesz == 0) 656 palloc->pa_pagesz = PAGE_SIZE; 657 658 TAILQ_INIT(&palloc->pa_list); 659 660 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 661 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 662 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 663 664 if (palloc->pa_backingmapptr != NULL) { 665 pa_reclaim_register(palloc); 666 } 667 palloc->pa_flags |= PA_INITIALIZED; 668 } 669 670 if (align == 0) 671 align = ALIGN(1); 672 673 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 674 size = sizeof(struct pool_item); 675 676 size = roundup(size, align); 677 #ifdef DIAGNOSTIC 678 if (size > palloc->pa_pagesz) 679 panic("pool_init: pool item size (%zu) too large", size); 680 #endif 681 682 /* 683 * Initialize the pool structure. 684 */ 685 LIST_INIT(&pp->pr_emptypages); 686 LIST_INIT(&pp->pr_fullpages); 687 LIST_INIT(&pp->pr_partpages); 688 pp->pr_cache = NULL; 689 pp->pr_curpage = NULL; 690 pp->pr_npages = 0; 691 pp->pr_minitems = 0; 692 pp->pr_minpages = 0; 693 pp->pr_maxpages = UINT_MAX; 694 pp->pr_roflags = flags; 695 pp->pr_flags = 0; 696 pp->pr_size = size; 697 pp->pr_align = align; 698 pp->pr_wchan = wchan; 699 pp->pr_alloc = palloc; 700 pp->pr_nitems = 0; 701 pp->pr_nout = 0; 702 pp->pr_hardlimit = UINT_MAX; 703 pp->pr_hardlimit_warning = NULL; 704 pp->pr_hardlimit_ratecap.tv_sec = 0; 705 pp->pr_hardlimit_ratecap.tv_usec = 0; 706 pp->pr_hardlimit_warning_last.tv_sec = 0; 707 pp->pr_hardlimit_warning_last.tv_usec = 0; 708 pp->pr_drain_hook = NULL; 709 pp->pr_drain_hook_arg = NULL; 710 pp->pr_freecheck = NULL; 711 712 /* 713 * Decide whether to put the page header off page to avoid 714 * wasting too large a part of the page or too big item. 715 * Off-page page headers go on a hash table, so we can match 716 * a returned item with its header based on the page address. 717 * We use 1/16 of the page size and about 8 times of the item 718 * size as the threshold (XXX: tune) 719 * 720 * However, we'll put the header into the page if we can put 721 * it without wasting any items. 722 * 723 * Silently enforce `0 <= ioff < align'. 724 */ 725 pp->pr_itemoffset = ioff %= align; 726 /* See the comment below about reserved bytes. */ 727 trysize = palloc->pa_pagesz - ((align - ioff) % align); 728 phsize = ALIGN(sizeof(struct pool_item_header)); 729 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 730 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 731 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 732 /* Use the end of the page for the page header */ 733 pp->pr_roflags |= PR_PHINPAGE; 734 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 735 } else { 736 /* The page header will be taken from our page header pool */ 737 pp->pr_phoffset = 0; 738 off = palloc->pa_pagesz; 739 SPLAY_INIT(&pp->pr_phtree); 740 } 741 742 /* 743 * Alignment is to take place at `ioff' within the item. This means 744 * we must reserve up to `align - 1' bytes on the page to allow 745 * appropriate positioning of each item. 746 */ 747 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 748 KASSERT(pp->pr_itemsperpage != 0); 749 if ((pp->pr_roflags & PR_NOTOUCH)) { 750 int idx; 751 752 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 753 idx++) { 754 /* nothing */ 755 } 756 if (idx >= PHPOOL_MAX) { 757 /* 758 * if you see this panic, consider to tweak 759 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 760 */ 761 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 762 pp->pr_wchan, pp->pr_itemsperpage); 763 } 764 pp->pr_phpool = &phpool[idx]; 765 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 766 pp->pr_phpool = &phpool[0]; 767 } 768 #if defined(DIAGNOSTIC) 769 else { 770 pp->pr_phpool = NULL; 771 } 772 #endif 773 774 /* 775 * Use the slack between the chunks and the page header 776 * for "cache coloring". 777 */ 778 slack = off - pp->pr_itemsperpage * pp->pr_size; 779 pp->pr_maxcolor = (slack / align) * align; 780 pp->pr_curcolor = 0; 781 782 pp->pr_nget = 0; 783 pp->pr_nfail = 0; 784 pp->pr_nput = 0; 785 pp->pr_npagealloc = 0; 786 pp->pr_npagefree = 0; 787 pp->pr_hiwat = 0; 788 pp->pr_nidle = 0; 789 pp->pr_refcnt = 0; 790 791 #ifdef POOL_DIAGNOSTIC 792 if (flags & PR_LOGGING) { 793 if (kmem_map == NULL || 794 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 795 M_TEMP, M_NOWAIT)) == NULL) 796 pp->pr_roflags &= ~PR_LOGGING; 797 pp->pr_curlogentry = 0; 798 pp->pr_logsize = pool_logsize; 799 } 800 #endif 801 802 pp->pr_entered_file = NULL; 803 pp->pr_entered_line = 0; 804 805 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 806 cv_init(&pp->pr_cv, wchan); 807 pp->pr_ipl = ipl; 808 809 /* 810 * Initialize private page header pool and cache magazine pool if we 811 * haven't done so yet. 812 * XXX LOCKING. 813 */ 814 if (phpool[0].pr_size == 0) { 815 int idx; 816 for (idx = 0; idx < PHPOOL_MAX; idx++) { 817 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 818 int nelem; 819 size_t sz; 820 821 nelem = PHPOOL_FREELIST_NELEM(idx); 822 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 823 "phpool-%d", nelem); 824 sz = sizeof(struct pool_item_header); 825 if (nelem) { 826 sz = offsetof(struct pool_item_header, 827 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 828 } 829 pool_init(&phpool[idx], sz, 0, 0, 0, 830 phpool_names[idx], &pool_allocator_meta, IPL_VM); 831 } 832 #ifdef POOL_SUBPAGE 833 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 834 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 835 #endif 836 pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0, 837 "cachegrp", &pool_allocator_meta, IPL_VM); 838 } 839 840 if (__predict_true(!cold)) { 841 /* Insert into the list of all pools. */ 842 mutex_enter(&pool_head_lock); 843 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist); 844 mutex_exit(&pool_head_lock); 845 846 /* Insert this into the list of pools using this allocator. */ 847 mutex_enter(&palloc->pa_lock); 848 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 849 mutex_exit(&palloc->pa_lock); 850 } else { 851 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist); 852 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 853 } 854 855 pool_reclaim_register(pp); 856 } 857 858 /* 859 * De-commision a pool resource. 860 */ 861 void 862 pool_destroy(struct pool *pp) 863 { 864 struct pool_pagelist pq; 865 struct pool_item_header *ph; 866 867 /* Remove from global pool list */ 868 mutex_enter(&pool_head_lock); 869 while (pp->pr_refcnt != 0) 870 cv_wait(&pool_busy, &pool_head_lock); 871 LIST_REMOVE(pp, pr_poollist); 872 if (drainpp == pp) 873 drainpp = NULL; 874 mutex_exit(&pool_head_lock); 875 876 /* Remove this pool from its allocator's list of pools. */ 877 pool_reclaim_unregister(pp); 878 mutex_enter(&pp->pr_alloc->pa_lock); 879 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 880 mutex_exit(&pp->pr_alloc->pa_lock); 881 882 mutex_enter(&pp->pr_lock); 883 884 KASSERT(pp->pr_cache == NULL); 885 886 #ifdef DIAGNOSTIC 887 if (pp->pr_nout != 0) { 888 pr_printlog(pp, NULL, printf); 889 panic("pool_destroy: pool busy: still out: %u", 890 pp->pr_nout); 891 } 892 #endif 893 894 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 895 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 896 897 /* Remove all pages */ 898 LIST_INIT(&pq); 899 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 900 pr_rmpage(pp, ph, &pq); 901 902 mutex_exit(&pp->pr_lock); 903 904 pr_pagelist_free(pp, &pq); 905 906 #ifdef POOL_DIAGNOSTIC 907 if ((pp->pr_roflags & PR_LOGGING) != 0) 908 free(pp->pr_log, M_TEMP); 909 #endif 910 911 cv_destroy(&pp->pr_cv); 912 mutex_destroy(&pp->pr_lock); 913 } 914 915 void 916 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 917 { 918 919 /* XXX no locking -- must be used just after pool_init() */ 920 #ifdef DIAGNOSTIC 921 if (pp->pr_drain_hook != NULL) 922 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 923 #endif 924 pp->pr_drain_hook = fn; 925 pp->pr_drain_hook_arg = arg; 926 } 927 928 static struct pool_item_header * 929 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 930 { 931 struct pool_item_header *ph; 932 933 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 934 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 935 else 936 ph = pool_get(pp->pr_phpool, flags); 937 938 return (ph); 939 } 940 941 /* 942 * Grab an item from the pool. 943 */ 944 void * 945 #ifdef POOL_DIAGNOSTIC 946 _pool_get(struct pool *pp, int flags, const char *file, long line) 947 #else 948 pool_get(struct pool *pp, int flags) 949 #endif 950 { 951 struct pool_item *pi; 952 struct pool_item_header *ph; 953 void *v; 954 955 #ifdef DIAGNOSTIC 956 if (__predict_false(pp->pr_itemsperpage == 0)) 957 panic("pool_get: pool %p: pr_itemsperpage is zero, " 958 "pool not initialized?", pp); 959 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 960 (flags & PR_WAITOK) != 0)) 961 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 962 963 #endif /* DIAGNOSTIC */ 964 #ifdef LOCKDEBUG 965 if (flags & PR_WAITOK) 966 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)"); 967 #endif 968 969 mutex_enter(&pp->pr_lock); 970 pr_enter(pp, file, line); 971 972 startover: 973 /* 974 * Check to see if we've reached the hard limit. If we have, 975 * and we can wait, then wait until an item has been returned to 976 * the pool. 977 */ 978 #ifdef DIAGNOSTIC 979 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 980 pr_leave(pp); 981 mutex_exit(&pp->pr_lock); 982 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 983 } 984 #endif 985 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 986 if (pp->pr_drain_hook != NULL) { 987 /* 988 * Since the drain hook is going to free things 989 * back to the pool, unlock, call the hook, re-lock, 990 * and check the hardlimit condition again. 991 */ 992 pr_leave(pp); 993 mutex_exit(&pp->pr_lock); 994 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 995 mutex_enter(&pp->pr_lock); 996 pr_enter(pp, file, line); 997 if (pp->pr_nout < pp->pr_hardlimit) 998 goto startover; 999 } 1000 1001 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1002 /* 1003 * XXX: A warning isn't logged in this case. Should 1004 * it be? 1005 */ 1006 pp->pr_flags |= PR_WANTED; 1007 pr_leave(pp); 1008 cv_wait(&pp->pr_cv, &pp->pr_lock); 1009 pr_enter(pp, file, line); 1010 goto startover; 1011 } 1012 1013 /* 1014 * Log a message that the hard limit has been hit. 1015 */ 1016 if (pp->pr_hardlimit_warning != NULL && 1017 ratecheck(&pp->pr_hardlimit_warning_last, 1018 &pp->pr_hardlimit_ratecap)) 1019 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1020 1021 pp->pr_nfail++; 1022 1023 pr_leave(pp); 1024 mutex_exit(&pp->pr_lock); 1025 return (NULL); 1026 } 1027 1028 /* 1029 * The convention we use is that if `curpage' is not NULL, then 1030 * it points at a non-empty bucket. In particular, `curpage' 1031 * never points at a page header which has PR_PHINPAGE set and 1032 * has no items in its bucket. 1033 */ 1034 if ((ph = pp->pr_curpage) == NULL) { 1035 int error; 1036 1037 #ifdef DIAGNOSTIC 1038 if (pp->pr_nitems != 0) { 1039 mutex_exit(&pp->pr_lock); 1040 printf("pool_get: %s: curpage NULL, nitems %u\n", 1041 pp->pr_wchan, pp->pr_nitems); 1042 panic("pool_get: nitems inconsistent"); 1043 } 1044 #endif 1045 1046 /* 1047 * Call the back-end page allocator for more memory. 1048 * Release the pool lock, as the back-end page allocator 1049 * may block. 1050 */ 1051 pr_leave(pp); 1052 error = pool_grow(pp, flags); 1053 pr_enter(pp, file, line); 1054 if (error != 0) { 1055 /* 1056 * We were unable to allocate a page or item 1057 * header, but we released the lock during 1058 * allocation, so perhaps items were freed 1059 * back to the pool. Check for this case. 1060 */ 1061 if (pp->pr_curpage != NULL) 1062 goto startover; 1063 1064 pp->pr_nfail++; 1065 pr_leave(pp); 1066 mutex_exit(&pp->pr_lock); 1067 return (NULL); 1068 } 1069 1070 /* Start the allocation process over. */ 1071 goto startover; 1072 } 1073 if (pp->pr_roflags & PR_NOTOUCH) { 1074 #ifdef DIAGNOSTIC 1075 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1076 pr_leave(pp); 1077 mutex_exit(&pp->pr_lock); 1078 panic("pool_get: %s: page empty", pp->pr_wchan); 1079 } 1080 #endif 1081 v = pr_item_notouch_get(pp, ph); 1082 #ifdef POOL_DIAGNOSTIC 1083 pr_log(pp, v, PRLOG_GET, file, line); 1084 #endif 1085 } else { 1086 v = pi = LIST_FIRST(&ph->ph_itemlist); 1087 if (__predict_false(v == NULL)) { 1088 pr_leave(pp); 1089 mutex_exit(&pp->pr_lock); 1090 panic("pool_get: %s: page empty", pp->pr_wchan); 1091 } 1092 #ifdef DIAGNOSTIC 1093 if (__predict_false(pp->pr_nitems == 0)) { 1094 pr_leave(pp); 1095 mutex_exit(&pp->pr_lock); 1096 printf("pool_get: %s: items on itemlist, nitems %u\n", 1097 pp->pr_wchan, pp->pr_nitems); 1098 panic("pool_get: nitems inconsistent"); 1099 } 1100 #endif 1101 1102 #ifdef POOL_DIAGNOSTIC 1103 pr_log(pp, v, PRLOG_GET, file, line); 1104 #endif 1105 1106 #ifdef DIAGNOSTIC 1107 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1108 pr_printlog(pp, pi, printf); 1109 panic("pool_get(%s): free list modified: " 1110 "magic=%x; page %p; item addr %p\n", 1111 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1112 } 1113 #endif 1114 1115 /* 1116 * Remove from item list. 1117 */ 1118 LIST_REMOVE(pi, pi_list); 1119 } 1120 pp->pr_nitems--; 1121 pp->pr_nout++; 1122 if (ph->ph_nmissing == 0) { 1123 #ifdef DIAGNOSTIC 1124 if (__predict_false(pp->pr_nidle == 0)) 1125 panic("pool_get: nidle inconsistent"); 1126 #endif 1127 pp->pr_nidle--; 1128 1129 /* 1130 * This page was previously empty. Move it to the list of 1131 * partially-full pages. This page is already curpage. 1132 */ 1133 LIST_REMOVE(ph, ph_pagelist); 1134 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1135 } 1136 ph->ph_nmissing++; 1137 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1138 #ifdef DIAGNOSTIC 1139 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1140 !LIST_EMPTY(&ph->ph_itemlist))) { 1141 pr_leave(pp); 1142 mutex_exit(&pp->pr_lock); 1143 panic("pool_get: %s: nmissing inconsistent", 1144 pp->pr_wchan); 1145 } 1146 #endif 1147 /* 1148 * This page is now full. Move it to the full list 1149 * and select a new current page. 1150 */ 1151 LIST_REMOVE(ph, ph_pagelist); 1152 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1153 pool_update_curpage(pp); 1154 } 1155 1156 pp->pr_nget++; 1157 pr_leave(pp); 1158 1159 /* 1160 * If we have a low water mark and we are now below that low 1161 * water mark, add more items to the pool. 1162 */ 1163 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1164 /* 1165 * XXX: Should we log a warning? Should we set up a timeout 1166 * to try again in a second or so? The latter could break 1167 * a caller's assumptions about interrupt protection, etc. 1168 */ 1169 } 1170 1171 mutex_exit(&pp->pr_lock); 1172 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1173 FREECHECK_OUT(&pp->pr_freecheck, v); 1174 return (v); 1175 } 1176 1177 /* 1178 * Internal version of pool_put(). Pool is already locked/entered. 1179 */ 1180 static void 1181 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1182 { 1183 struct pool_item *pi = v; 1184 struct pool_item_header *ph; 1185 1186 KASSERT(mutex_owned(&pp->pr_lock)); 1187 FREECHECK_IN(&pp->pr_freecheck, v); 1188 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1189 1190 #ifdef DIAGNOSTIC 1191 if (__predict_false(pp->pr_nout == 0)) { 1192 printf("pool %s: putting with none out\n", 1193 pp->pr_wchan); 1194 panic("pool_put"); 1195 } 1196 #endif 1197 1198 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1199 pr_printlog(pp, NULL, printf); 1200 panic("pool_put: %s: page header missing", pp->pr_wchan); 1201 } 1202 1203 /* 1204 * Return to item list. 1205 */ 1206 if (pp->pr_roflags & PR_NOTOUCH) { 1207 pr_item_notouch_put(pp, ph, v); 1208 } else { 1209 #ifdef DIAGNOSTIC 1210 pi->pi_magic = PI_MAGIC; 1211 #endif 1212 #ifdef DEBUG 1213 { 1214 int i, *ip = v; 1215 1216 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1217 *ip++ = PI_MAGIC; 1218 } 1219 } 1220 #endif 1221 1222 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1223 } 1224 KDASSERT(ph->ph_nmissing != 0); 1225 ph->ph_nmissing--; 1226 pp->pr_nput++; 1227 pp->pr_nitems++; 1228 pp->pr_nout--; 1229 1230 /* Cancel "pool empty" condition if it exists */ 1231 if (pp->pr_curpage == NULL) 1232 pp->pr_curpage = ph; 1233 1234 if (pp->pr_flags & PR_WANTED) { 1235 pp->pr_flags &= ~PR_WANTED; 1236 if (ph->ph_nmissing == 0) 1237 pp->pr_nidle++; 1238 cv_broadcast(&pp->pr_cv); 1239 return; 1240 } 1241 1242 /* 1243 * If this page is now empty, do one of two things: 1244 * 1245 * (1) If we have more pages than the page high water mark, 1246 * free the page back to the system. ONLY CONSIDER 1247 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1248 * CLAIM. 1249 * 1250 * (2) Otherwise, move the page to the empty page list. 1251 * 1252 * Either way, select a new current page (so we use a partially-full 1253 * page if one is available). 1254 */ 1255 if (ph->ph_nmissing == 0) { 1256 pp->pr_nidle++; 1257 if (pp->pr_npages > pp->pr_minpages && 1258 (pp->pr_npages > pp->pr_maxpages || 1259 pa_starved_p(pp->pr_alloc))) { 1260 pr_rmpage(pp, ph, pq); 1261 } else { 1262 LIST_REMOVE(ph, ph_pagelist); 1263 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1264 1265 /* 1266 * Update the timestamp on the page. A page must 1267 * be idle for some period of time before it can 1268 * be reclaimed by the pagedaemon. This minimizes 1269 * ping-pong'ing for memory. 1270 */ 1271 getmicrotime(&ph->ph_time); 1272 } 1273 pool_update_curpage(pp); 1274 } 1275 1276 /* 1277 * If the page was previously completely full, move it to the 1278 * partially-full list and make it the current page. The next 1279 * allocation will get the item from this page, instead of 1280 * further fragmenting the pool. 1281 */ 1282 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1283 LIST_REMOVE(ph, ph_pagelist); 1284 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1285 pp->pr_curpage = ph; 1286 } 1287 } 1288 1289 /* 1290 * Return resource to the pool. 1291 */ 1292 #ifdef POOL_DIAGNOSTIC 1293 void 1294 _pool_put(struct pool *pp, void *v, const char *file, long line) 1295 { 1296 struct pool_pagelist pq; 1297 1298 LIST_INIT(&pq); 1299 1300 mutex_enter(&pp->pr_lock); 1301 pr_enter(pp, file, line); 1302 1303 pr_log(pp, v, PRLOG_PUT, file, line); 1304 1305 pool_do_put(pp, v, &pq); 1306 1307 pr_leave(pp); 1308 mutex_exit(&pp->pr_lock); 1309 1310 pr_pagelist_free(pp, &pq); 1311 } 1312 #undef pool_put 1313 #endif /* POOL_DIAGNOSTIC */ 1314 1315 void 1316 pool_put(struct pool *pp, void *v) 1317 { 1318 struct pool_pagelist pq; 1319 1320 LIST_INIT(&pq); 1321 1322 mutex_enter(&pp->pr_lock); 1323 pool_do_put(pp, v, &pq); 1324 mutex_exit(&pp->pr_lock); 1325 1326 pr_pagelist_free(pp, &pq); 1327 } 1328 1329 #ifdef POOL_DIAGNOSTIC 1330 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1331 #endif 1332 1333 /* 1334 * pool_grow: grow a pool by a page. 1335 * 1336 * => called with pool locked. 1337 * => unlock and relock the pool. 1338 * => return with pool locked. 1339 */ 1340 1341 static int 1342 pool_grow(struct pool *pp, int flags) 1343 { 1344 struct pool_item_header *ph = NULL; 1345 char *cp; 1346 1347 mutex_exit(&pp->pr_lock); 1348 cp = pool_allocator_alloc(pp, flags); 1349 if (__predict_true(cp != NULL)) { 1350 ph = pool_alloc_item_header(pp, cp, flags); 1351 } 1352 if (__predict_false(cp == NULL || ph == NULL)) { 1353 if (cp != NULL) { 1354 pool_allocator_free(pp, cp); 1355 } 1356 mutex_enter(&pp->pr_lock); 1357 return ENOMEM; 1358 } 1359 1360 mutex_enter(&pp->pr_lock); 1361 pool_prime_page(pp, cp, ph); 1362 pp->pr_npagealloc++; 1363 return 0; 1364 } 1365 1366 /* 1367 * Add N items to the pool. 1368 */ 1369 int 1370 pool_prime(struct pool *pp, int n) 1371 { 1372 int newpages; 1373 int error = 0; 1374 1375 mutex_enter(&pp->pr_lock); 1376 1377 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1378 1379 while (newpages-- > 0) { 1380 error = pool_grow(pp, PR_NOWAIT); 1381 if (error) { 1382 break; 1383 } 1384 pp->pr_minpages++; 1385 } 1386 1387 if (pp->pr_minpages >= pp->pr_maxpages) 1388 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1389 1390 mutex_exit(&pp->pr_lock); 1391 return error; 1392 } 1393 1394 /* 1395 * Add a page worth of items to the pool. 1396 * 1397 * Note, we must be called with the pool descriptor LOCKED. 1398 */ 1399 static void 1400 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1401 { 1402 struct pool_item *pi; 1403 void *cp = storage; 1404 const unsigned int align = pp->pr_align; 1405 const unsigned int ioff = pp->pr_itemoffset; 1406 int n; 1407 1408 KASSERT(mutex_owned(&pp->pr_lock)); 1409 1410 #ifdef DIAGNOSTIC 1411 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1412 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1413 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1414 #endif 1415 1416 /* 1417 * Insert page header. 1418 */ 1419 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1420 LIST_INIT(&ph->ph_itemlist); 1421 ph->ph_page = storage; 1422 ph->ph_nmissing = 0; 1423 getmicrotime(&ph->ph_time); 1424 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1425 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1426 1427 pp->pr_nidle++; 1428 1429 /* 1430 * Color this page. 1431 */ 1432 cp = (char *)cp + pp->pr_curcolor; 1433 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1434 pp->pr_curcolor = 0; 1435 1436 /* 1437 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1438 */ 1439 if (ioff != 0) 1440 cp = (char *)cp + align - ioff; 1441 1442 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1443 1444 /* 1445 * Insert remaining chunks on the bucket list. 1446 */ 1447 n = pp->pr_itemsperpage; 1448 pp->pr_nitems += n; 1449 1450 if (pp->pr_roflags & PR_NOTOUCH) { 1451 pr_item_notouch_init(pp, ph); 1452 } else { 1453 while (n--) { 1454 pi = (struct pool_item *)cp; 1455 1456 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1457 1458 /* Insert on page list */ 1459 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1460 #ifdef DIAGNOSTIC 1461 pi->pi_magic = PI_MAGIC; 1462 #endif 1463 cp = (char *)cp + pp->pr_size; 1464 1465 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1466 } 1467 } 1468 1469 /* 1470 * If the pool was depleted, point at the new page. 1471 */ 1472 if (pp->pr_curpage == NULL) 1473 pp->pr_curpage = ph; 1474 1475 if (++pp->pr_npages > pp->pr_hiwat) 1476 pp->pr_hiwat = pp->pr_npages; 1477 } 1478 1479 /* 1480 * Used by pool_get() when nitems drops below the low water mark. This 1481 * is used to catch up pr_nitems with the low water mark. 1482 * 1483 * Note 1, we never wait for memory here, we let the caller decide what to do. 1484 * 1485 * Note 2, we must be called with the pool already locked, and we return 1486 * with it locked. 1487 */ 1488 static int 1489 pool_catchup(struct pool *pp) 1490 { 1491 int error = 0; 1492 1493 while (POOL_NEEDS_CATCHUP(pp)) { 1494 error = pool_grow(pp, PR_NOWAIT); 1495 if (error) { 1496 break; 1497 } 1498 } 1499 return error; 1500 } 1501 1502 static void 1503 pool_update_curpage(struct pool *pp) 1504 { 1505 1506 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1507 if (pp->pr_curpage == NULL) { 1508 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1509 } 1510 } 1511 1512 void 1513 pool_setlowat(struct pool *pp, int n) 1514 { 1515 1516 mutex_enter(&pp->pr_lock); 1517 1518 pp->pr_minitems = n; 1519 pp->pr_minpages = (n == 0) 1520 ? 0 1521 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1522 1523 /* Make sure we're caught up with the newly-set low water mark. */ 1524 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1525 /* 1526 * XXX: Should we log a warning? Should we set up a timeout 1527 * to try again in a second or so? The latter could break 1528 * a caller's assumptions about interrupt protection, etc. 1529 */ 1530 } 1531 1532 mutex_exit(&pp->pr_lock); 1533 } 1534 1535 void 1536 pool_sethiwat(struct pool *pp, int n) 1537 { 1538 1539 mutex_enter(&pp->pr_lock); 1540 1541 pp->pr_maxpages = (n == 0) 1542 ? 0 1543 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1544 1545 mutex_exit(&pp->pr_lock); 1546 } 1547 1548 void 1549 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1550 { 1551 1552 mutex_enter(&pp->pr_lock); 1553 1554 pp->pr_hardlimit = n; 1555 pp->pr_hardlimit_warning = warnmess; 1556 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1557 pp->pr_hardlimit_warning_last.tv_sec = 0; 1558 pp->pr_hardlimit_warning_last.tv_usec = 0; 1559 1560 /* 1561 * In-line version of pool_sethiwat(), because we don't want to 1562 * release the lock. 1563 */ 1564 pp->pr_maxpages = (n == 0) 1565 ? 0 1566 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1567 1568 mutex_exit(&pp->pr_lock); 1569 } 1570 1571 /* 1572 * Release all complete pages that have not been used recently. 1573 */ 1574 int 1575 #ifdef POOL_DIAGNOSTIC 1576 _pool_reclaim(struct pool *pp, const char *file, long line) 1577 #else 1578 pool_reclaim(struct pool *pp) 1579 #endif 1580 { 1581 struct pool_item_header *ph, *phnext; 1582 struct pool_pagelist pq; 1583 struct timeval curtime, diff; 1584 bool klock; 1585 int rv; 1586 1587 if (pp->pr_drain_hook != NULL) { 1588 /* 1589 * The drain hook must be called with the pool unlocked. 1590 */ 1591 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1592 } 1593 1594 /* 1595 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks, 1596 * and we are called from the pagedaemon without kernel_lock. 1597 * Does not apply to IPL_SOFTBIO. 1598 */ 1599 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1600 pp->pr_ipl == IPL_SOFTSERIAL) { 1601 KERNEL_LOCK(1, NULL); 1602 klock = true; 1603 } else 1604 klock = false; 1605 1606 /* Reclaim items from the pool's cache (if any). */ 1607 if (pp->pr_cache != NULL) 1608 pool_cache_invalidate(pp->pr_cache); 1609 1610 if (mutex_tryenter(&pp->pr_lock) == 0) { 1611 if (klock) { 1612 KERNEL_UNLOCK_ONE(NULL); 1613 } 1614 return (0); 1615 } 1616 pr_enter(pp, file, line); 1617 1618 LIST_INIT(&pq); 1619 1620 getmicrotime(&curtime); 1621 1622 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1623 phnext = LIST_NEXT(ph, ph_pagelist); 1624 1625 /* Check our minimum page claim */ 1626 if (pp->pr_npages <= pp->pr_minpages) 1627 break; 1628 1629 KASSERT(ph->ph_nmissing == 0); 1630 timersub(&curtime, &ph->ph_time, &diff); 1631 if (diff.tv_sec < pool_inactive_time 1632 && !pa_starved_p(pp->pr_alloc)) 1633 continue; 1634 1635 /* 1636 * If freeing this page would put us below 1637 * the low water mark, stop now. 1638 */ 1639 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1640 pp->pr_minitems) 1641 break; 1642 1643 pr_rmpage(pp, ph, &pq); 1644 } 1645 1646 pr_leave(pp); 1647 mutex_exit(&pp->pr_lock); 1648 1649 if (LIST_EMPTY(&pq)) 1650 rv = 0; 1651 else { 1652 pr_pagelist_free(pp, &pq); 1653 rv = 1; 1654 } 1655 1656 if (klock) { 1657 KERNEL_UNLOCK_ONE(NULL); 1658 } 1659 1660 return (rv); 1661 } 1662 1663 /* 1664 * Drain pools, one at a time. This is a two stage process; 1665 * drain_start kicks off a cross call to drain CPU-level caches 1666 * if the pool has an associated pool_cache. drain_end waits 1667 * for those cross calls to finish, and then drains the cache 1668 * (if any) and pool. 1669 * 1670 * Note, must never be called from interrupt context. 1671 */ 1672 void 1673 pool_drain_start(struct pool **ppp, uint64_t *wp) 1674 { 1675 struct pool *pp; 1676 1677 KASSERT(!LIST_EMPTY(&pool_head)); 1678 1679 pp = NULL; 1680 1681 /* Find next pool to drain, and add a reference. */ 1682 mutex_enter(&pool_head_lock); 1683 do { 1684 if (drainpp == NULL) { 1685 drainpp = LIST_FIRST(&pool_head); 1686 } 1687 if (drainpp != NULL) { 1688 pp = drainpp; 1689 drainpp = LIST_NEXT(pp, pr_poollist); 1690 } 1691 /* 1692 * Skip completely idle pools. We depend on at least 1693 * one pool in the system being active. 1694 */ 1695 } while (pp == NULL || pp->pr_npages == 0); 1696 pp->pr_refcnt++; 1697 mutex_exit(&pool_head_lock); 1698 1699 /* If there is a pool_cache, drain CPU level caches. */ 1700 *ppp = pp; 1701 if (pp->pr_cache != NULL) { 1702 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1703 pp->pr_cache, NULL); 1704 } 1705 } 1706 1707 void 1708 pool_drain_end(struct pool *pp, uint64_t where) 1709 { 1710 1711 if (pp == NULL) 1712 return; 1713 1714 KASSERT(pp->pr_refcnt > 0); 1715 1716 /* Wait for remote draining to complete. */ 1717 if (pp->pr_cache != NULL) 1718 xc_wait(where); 1719 1720 /* Drain the cache (if any) and pool.. */ 1721 pool_reclaim(pp); 1722 1723 /* Finally, unlock the pool. */ 1724 mutex_enter(&pool_head_lock); 1725 pp->pr_refcnt--; 1726 cv_broadcast(&pool_busy); 1727 mutex_exit(&pool_head_lock); 1728 } 1729 1730 /* 1731 * Diagnostic helpers. 1732 */ 1733 void 1734 pool_print(struct pool *pp, const char *modif) 1735 { 1736 1737 pool_print1(pp, modif, printf); 1738 } 1739 1740 void 1741 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1742 { 1743 struct pool *pp; 1744 1745 LIST_FOREACH(pp, &pool_head, pr_poollist) { 1746 pool_printit(pp, modif, pr); 1747 } 1748 } 1749 1750 void 1751 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1752 { 1753 1754 if (pp == NULL) { 1755 (*pr)("Must specify a pool to print.\n"); 1756 return; 1757 } 1758 1759 pool_print1(pp, modif, pr); 1760 } 1761 1762 static void 1763 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1764 void (*pr)(const char *, ...)) 1765 { 1766 struct pool_item_header *ph; 1767 #ifdef DIAGNOSTIC 1768 struct pool_item *pi; 1769 #endif 1770 1771 LIST_FOREACH(ph, pl, ph_pagelist) { 1772 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1773 ph->ph_page, ph->ph_nmissing, 1774 (u_long)ph->ph_time.tv_sec, 1775 (u_long)ph->ph_time.tv_usec); 1776 #ifdef DIAGNOSTIC 1777 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1778 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1779 if (pi->pi_magic != PI_MAGIC) { 1780 (*pr)("\t\t\titem %p, magic 0x%x\n", 1781 pi, pi->pi_magic); 1782 } 1783 } 1784 } 1785 #endif 1786 } 1787 } 1788 1789 static void 1790 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1791 { 1792 struct pool_item_header *ph; 1793 pool_cache_t pc; 1794 pcg_t *pcg; 1795 pool_cache_cpu_t *cc; 1796 uint64_t cpuhit, cpumiss; 1797 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1798 char c; 1799 1800 while ((c = *modif++) != '\0') { 1801 if (c == 'l') 1802 print_log = 1; 1803 if (c == 'p') 1804 print_pagelist = 1; 1805 if (c == 'c') 1806 print_cache = 1; 1807 } 1808 1809 if ((pc = pp->pr_cache) != NULL) { 1810 (*pr)("POOL CACHE"); 1811 } else { 1812 (*pr)("POOL"); 1813 } 1814 1815 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1816 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1817 pp->pr_roflags); 1818 (*pr)("\talloc %p\n", pp->pr_alloc); 1819 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1820 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1821 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1822 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1823 1824 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1825 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1826 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1827 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1828 1829 if (print_pagelist == 0) 1830 goto skip_pagelist; 1831 1832 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1833 (*pr)("\n\tempty page list:\n"); 1834 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1835 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1836 (*pr)("\n\tfull page list:\n"); 1837 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1838 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1839 (*pr)("\n\tpartial-page list:\n"); 1840 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1841 1842 if (pp->pr_curpage == NULL) 1843 (*pr)("\tno current page\n"); 1844 else 1845 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1846 1847 skip_pagelist: 1848 if (print_log == 0) 1849 goto skip_log; 1850 1851 (*pr)("\n"); 1852 if ((pp->pr_roflags & PR_LOGGING) == 0) 1853 (*pr)("\tno log\n"); 1854 else { 1855 pr_printlog(pp, NULL, pr); 1856 } 1857 1858 skip_log: 1859 1860 #define PR_GROUPLIST(pcg) \ 1861 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1862 for (i = 0; i < PCG_NOBJECTS; i++) { \ 1863 if (pcg->pcg_objects[i].pcgo_pa != \ 1864 POOL_PADDR_INVALID) { \ 1865 (*pr)("\t\t\t%p, 0x%llx\n", \ 1866 pcg->pcg_objects[i].pcgo_va, \ 1867 (unsigned long long) \ 1868 pcg->pcg_objects[i].pcgo_pa); \ 1869 } else { \ 1870 (*pr)("\t\t\t%p\n", \ 1871 pcg->pcg_objects[i].pcgo_va); \ 1872 } \ 1873 } 1874 1875 if (pc != NULL) { 1876 cpuhit = 0; 1877 cpumiss = 0; 1878 for (i = 0; i < MAXCPUS; i++) { 1879 if ((cc = pc->pc_cpus[i]) == NULL) 1880 continue; 1881 cpuhit += cc->cc_hits; 1882 cpumiss += cc->cc_misses; 1883 } 1884 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1885 (*pr)("\tcache layer hits %llu misses %llu\n", 1886 pc->pc_hits, pc->pc_misses); 1887 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1888 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1889 pc->pc_contended); 1890 (*pr)("\tcache layer empty groups %u full groups %u\n", 1891 pc->pc_nempty, pc->pc_nfull); 1892 if (print_cache) { 1893 (*pr)("\tfull cache groups:\n"); 1894 for (pcg = pc->pc_fullgroups; pcg != NULL; 1895 pcg = pcg->pcg_next) { 1896 PR_GROUPLIST(pcg); 1897 } 1898 (*pr)("\tempty cache groups:\n"); 1899 for (pcg = pc->pc_emptygroups; pcg != NULL; 1900 pcg = pcg->pcg_next) { 1901 PR_GROUPLIST(pcg); 1902 } 1903 } 1904 } 1905 #undef PR_GROUPLIST 1906 1907 pr_enter_check(pp, pr); 1908 } 1909 1910 static int 1911 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1912 { 1913 struct pool_item *pi; 1914 void *page; 1915 int n; 1916 1917 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1918 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1919 if (page != ph->ph_page && 1920 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1921 if (label != NULL) 1922 printf("%s: ", label); 1923 printf("pool(%p:%s): page inconsistency: page %p;" 1924 " at page head addr %p (p %p)\n", pp, 1925 pp->pr_wchan, ph->ph_page, 1926 ph, page); 1927 return 1; 1928 } 1929 } 1930 1931 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1932 return 0; 1933 1934 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1935 pi != NULL; 1936 pi = LIST_NEXT(pi,pi_list), n++) { 1937 1938 #ifdef DIAGNOSTIC 1939 if (pi->pi_magic != PI_MAGIC) { 1940 if (label != NULL) 1941 printf("%s: ", label); 1942 printf("pool(%s): free list modified: magic=%x;" 1943 " page %p; item ordinal %d; addr %p\n", 1944 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1945 n, pi); 1946 panic("pool"); 1947 } 1948 #endif 1949 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1950 continue; 1951 } 1952 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1953 if (page == ph->ph_page) 1954 continue; 1955 1956 if (label != NULL) 1957 printf("%s: ", label); 1958 printf("pool(%p:%s): page inconsistency: page %p;" 1959 " item ordinal %d; addr %p (p %p)\n", pp, 1960 pp->pr_wchan, ph->ph_page, 1961 n, pi, page); 1962 return 1; 1963 } 1964 return 0; 1965 } 1966 1967 1968 int 1969 pool_chk(struct pool *pp, const char *label) 1970 { 1971 struct pool_item_header *ph; 1972 int r = 0; 1973 1974 mutex_enter(&pp->pr_lock); 1975 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1976 r = pool_chk_page(pp, label, ph); 1977 if (r) { 1978 goto out; 1979 } 1980 } 1981 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1982 r = pool_chk_page(pp, label, ph); 1983 if (r) { 1984 goto out; 1985 } 1986 } 1987 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1988 r = pool_chk_page(pp, label, ph); 1989 if (r) { 1990 goto out; 1991 } 1992 } 1993 1994 out: 1995 mutex_exit(&pp->pr_lock); 1996 return (r); 1997 } 1998 1999 /* 2000 * pool_cache_init: 2001 * 2002 * Initialize a pool cache. 2003 */ 2004 pool_cache_t 2005 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2006 const char *wchan, struct pool_allocator *palloc, int ipl, 2007 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2008 { 2009 pool_cache_t pc; 2010 2011 pc = pool_get(&cache_pool, PR_WAITOK); 2012 if (pc == NULL) 2013 return NULL; 2014 2015 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2016 palloc, ipl, ctor, dtor, arg); 2017 2018 return pc; 2019 } 2020 2021 /* 2022 * pool_cache_bootstrap: 2023 * 2024 * Kernel-private version of pool_cache_init(). The caller 2025 * provides initial storage. 2026 */ 2027 void 2028 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2029 u_int align_offset, u_int flags, const char *wchan, 2030 struct pool_allocator *palloc, int ipl, 2031 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2032 void *arg) 2033 { 2034 CPU_INFO_ITERATOR cii; 2035 struct cpu_info *ci; 2036 struct pool *pp; 2037 2038 pp = &pc->pc_pool; 2039 if (palloc == NULL && ipl == IPL_NONE) 2040 palloc = &pool_allocator_nointr; 2041 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2042 2043 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl); 2044 2045 if (ctor == NULL) { 2046 ctor = (int (*)(void *, void *, int))nullop; 2047 } 2048 if (dtor == NULL) { 2049 dtor = (void (*)(void *, void *))nullop; 2050 } 2051 2052 pc->pc_emptygroups = NULL; 2053 pc->pc_fullgroups = NULL; 2054 pc->pc_partgroups = NULL; 2055 pc->pc_ctor = ctor; 2056 pc->pc_dtor = dtor; 2057 pc->pc_arg = arg; 2058 pc->pc_hits = 0; 2059 pc->pc_misses = 0; 2060 pc->pc_nempty = 0; 2061 pc->pc_npart = 0; 2062 pc->pc_nfull = 0; 2063 pc->pc_contended = 0; 2064 pc->pc_refcnt = 0; 2065 pc->pc_freecheck = NULL; 2066 2067 /* Allocate per-CPU caches. */ 2068 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2069 pc->pc_ncpu = 0; 2070 if (ncpu == 0) { 2071 /* XXX For sparc: boot CPU is not attached yet. */ 2072 pool_cache_cpu_init1(curcpu(), pc); 2073 } else { 2074 for (CPU_INFO_FOREACH(cii, ci)) { 2075 pool_cache_cpu_init1(ci, pc); 2076 } 2077 } 2078 2079 if (__predict_true(!cold)) { 2080 mutex_enter(&pp->pr_lock); 2081 pp->pr_cache = pc; 2082 mutex_exit(&pp->pr_lock); 2083 mutex_enter(&pool_head_lock); 2084 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist); 2085 mutex_exit(&pool_head_lock); 2086 } else { 2087 pp->pr_cache = pc; 2088 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist); 2089 } 2090 } 2091 2092 /* 2093 * pool_cache_destroy: 2094 * 2095 * Destroy a pool cache. 2096 */ 2097 void 2098 pool_cache_destroy(pool_cache_t pc) 2099 { 2100 struct pool *pp = &pc->pc_pool; 2101 pool_cache_cpu_t *cc; 2102 pcg_t *pcg; 2103 int i; 2104 2105 /* Remove it from the global list. */ 2106 mutex_enter(&pool_head_lock); 2107 while (pc->pc_refcnt != 0) 2108 cv_wait(&pool_busy, &pool_head_lock); 2109 LIST_REMOVE(pc, pc_cachelist); 2110 mutex_exit(&pool_head_lock); 2111 2112 /* First, invalidate the entire cache. */ 2113 pool_cache_invalidate(pc); 2114 2115 /* Disassociate it from the pool. */ 2116 mutex_enter(&pp->pr_lock); 2117 pp->pr_cache = NULL; 2118 mutex_exit(&pp->pr_lock); 2119 2120 /* Destroy per-CPU data */ 2121 for (i = 0; i < MAXCPUS; i++) { 2122 if ((cc = pc->pc_cpus[i]) == NULL) 2123 continue; 2124 if ((pcg = cc->cc_current) != NULL) { 2125 pcg->pcg_next = NULL; 2126 pool_cache_invalidate_groups(pc, pcg); 2127 } 2128 if ((pcg = cc->cc_previous) != NULL) { 2129 pcg->pcg_next = NULL; 2130 pool_cache_invalidate_groups(pc, pcg); 2131 } 2132 if (cc != &pc->pc_cpu0) 2133 pool_put(&cache_cpu_pool, cc); 2134 } 2135 2136 /* Finally, destroy it. */ 2137 mutex_destroy(&pc->pc_lock); 2138 pool_destroy(pp); 2139 pool_put(&cache_pool, pc); 2140 } 2141 2142 /* 2143 * pool_cache_cpu_init1: 2144 * 2145 * Called for each pool_cache whenever a new CPU is attached. 2146 */ 2147 static void 2148 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2149 { 2150 pool_cache_cpu_t *cc; 2151 int index; 2152 2153 index = ci->ci_index; 2154 2155 KASSERT(index < MAXCPUS); 2156 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0); 2157 2158 if ((cc = pc->pc_cpus[index]) != NULL) { 2159 KASSERT(cc->cc_cpuindex == index); 2160 return; 2161 } 2162 2163 /* 2164 * The first CPU is 'free'. This needs to be the case for 2165 * bootstrap - we may not be able to allocate yet. 2166 */ 2167 if (pc->pc_ncpu == 0) { 2168 cc = &pc->pc_cpu0; 2169 pc->pc_ncpu = 1; 2170 } else { 2171 mutex_enter(&pc->pc_lock); 2172 pc->pc_ncpu++; 2173 mutex_exit(&pc->pc_lock); 2174 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2175 } 2176 2177 cc->cc_ipl = pc->pc_pool.pr_ipl; 2178 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2179 cc->cc_cache = pc; 2180 cc->cc_cpuindex = index; 2181 cc->cc_hits = 0; 2182 cc->cc_misses = 0; 2183 cc->cc_current = NULL; 2184 cc->cc_previous = NULL; 2185 2186 pc->pc_cpus[index] = cc; 2187 } 2188 2189 /* 2190 * pool_cache_cpu_init: 2191 * 2192 * Called whenever a new CPU is attached. 2193 */ 2194 void 2195 pool_cache_cpu_init(struct cpu_info *ci) 2196 { 2197 pool_cache_t pc; 2198 2199 mutex_enter(&pool_head_lock); 2200 LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2201 pc->pc_refcnt++; 2202 mutex_exit(&pool_head_lock); 2203 2204 pool_cache_cpu_init1(ci, pc); 2205 2206 mutex_enter(&pool_head_lock); 2207 pc->pc_refcnt--; 2208 cv_broadcast(&pool_busy); 2209 } 2210 mutex_exit(&pool_head_lock); 2211 } 2212 2213 /* 2214 * pool_cache_reclaim: 2215 * 2216 * Reclaim memory from a pool cache. 2217 */ 2218 bool 2219 pool_cache_reclaim(pool_cache_t pc) 2220 { 2221 2222 return pool_reclaim(&pc->pc_pool); 2223 } 2224 2225 static void 2226 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2227 { 2228 2229 (*pc->pc_dtor)(pc->pc_arg, object); 2230 pool_put(&pc->pc_pool, object); 2231 } 2232 2233 /* 2234 * pool_cache_destruct_object: 2235 * 2236 * Force destruction of an object and its release back into 2237 * the pool. 2238 */ 2239 void 2240 pool_cache_destruct_object(pool_cache_t pc, void *object) 2241 { 2242 2243 FREECHECK_IN(&pc->pc_freecheck, object); 2244 2245 pool_cache_destruct_object1(pc, object); 2246 } 2247 2248 /* 2249 * pool_cache_invalidate_groups: 2250 * 2251 * Invalidate a chain of groups and destruct all objects. 2252 */ 2253 static void 2254 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2255 { 2256 void *object; 2257 pcg_t *next; 2258 int i; 2259 2260 for (; pcg != NULL; pcg = next) { 2261 next = pcg->pcg_next; 2262 2263 for (i = 0; i < pcg->pcg_avail; i++) { 2264 object = pcg->pcg_objects[i].pcgo_va; 2265 pool_cache_destruct_object1(pc, object); 2266 } 2267 2268 pool_put(&pcgpool, pcg); 2269 } 2270 } 2271 2272 /* 2273 * pool_cache_invalidate: 2274 * 2275 * Invalidate a pool cache (destruct and release all of the 2276 * cached objects). Does not reclaim objects from the pool. 2277 */ 2278 void 2279 pool_cache_invalidate(pool_cache_t pc) 2280 { 2281 pcg_t *full, *empty, *part; 2282 2283 mutex_enter(&pc->pc_lock); 2284 full = pc->pc_fullgroups; 2285 empty = pc->pc_emptygroups; 2286 part = pc->pc_partgroups; 2287 pc->pc_fullgroups = NULL; 2288 pc->pc_emptygroups = NULL; 2289 pc->pc_partgroups = NULL; 2290 pc->pc_nfull = 0; 2291 pc->pc_nempty = 0; 2292 pc->pc_npart = 0; 2293 mutex_exit(&pc->pc_lock); 2294 2295 pool_cache_invalidate_groups(pc, full); 2296 pool_cache_invalidate_groups(pc, empty); 2297 pool_cache_invalidate_groups(pc, part); 2298 } 2299 2300 void 2301 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2302 { 2303 2304 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2305 } 2306 2307 void 2308 pool_cache_setlowat(pool_cache_t pc, int n) 2309 { 2310 2311 pool_setlowat(&pc->pc_pool, n); 2312 } 2313 2314 void 2315 pool_cache_sethiwat(pool_cache_t pc, int n) 2316 { 2317 2318 pool_sethiwat(&pc->pc_pool, n); 2319 } 2320 2321 void 2322 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2323 { 2324 2325 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2326 } 2327 2328 static inline pool_cache_cpu_t * 2329 pool_cache_cpu_enter(pool_cache_t pc, int *s) 2330 { 2331 pool_cache_cpu_t *cc; 2332 2333 /* 2334 * Prevent other users of the cache from accessing our 2335 * CPU-local data. To avoid touching shared state, we 2336 * pull the neccessary information from CPU local data. 2337 */ 2338 crit_enter(); 2339 cc = pc->pc_cpus[curcpu()->ci_index]; 2340 KASSERT(cc->cc_cache == pc); 2341 if (cc->cc_ipl != IPL_NONE) { 2342 *s = splraiseipl(cc->cc_iplcookie); 2343 } 2344 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0); 2345 2346 return cc; 2347 } 2348 2349 static inline void 2350 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s) 2351 { 2352 2353 /* No longer need exclusive access to the per-CPU data. */ 2354 if (cc->cc_ipl != IPL_NONE) { 2355 splx(*s); 2356 } 2357 crit_exit(); 2358 } 2359 2360 #if __GNUC_PREREQ__(3, 0) 2361 __attribute ((noinline)) 2362 #endif 2363 pool_cache_cpu_t * 2364 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp, 2365 paddr_t *pap, int flags) 2366 { 2367 pcg_t *pcg, *cur; 2368 uint64_t ncsw; 2369 pool_cache_t pc; 2370 void *object; 2371 2372 pc = cc->cc_cache; 2373 cc->cc_misses++; 2374 2375 /* 2376 * Nothing was available locally. Try and grab a group 2377 * from the cache. 2378 */ 2379 if (!mutex_tryenter(&pc->pc_lock)) { 2380 ncsw = curlwp->l_ncsw; 2381 mutex_enter(&pc->pc_lock); 2382 pc->pc_contended++; 2383 2384 /* 2385 * If we context switched while locking, then 2386 * our view of the per-CPU data is invalid: 2387 * retry. 2388 */ 2389 if (curlwp->l_ncsw != ncsw) { 2390 mutex_exit(&pc->pc_lock); 2391 pool_cache_cpu_exit(cc, s); 2392 return pool_cache_cpu_enter(pc, s); 2393 } 2394 } 2395 2396 if ((pcg = pc->pc_fullgroups) != NULL) { 2397 /* 2398 * If there's a full group, release our empty 2399 * group back to the cache. Install the full 2400 * group as cc_current and return. 2401 */ 2402 if ((cur = cc->cc_current) != NULL) { 2403 KASSERT(cur->pcg_avail == 0); 2404 cur->pcg_next = pc->pc_emptygroups; 2405 pc->pc_emptygroups = cur; 2406 pc->pc_nempty++; 2407 } 2408 KASSERT(pcg->pcg_avail == PCG_NOBJECTS); 2409 cc->cc_current = pcg; 2410 pc->pc_fullgroups = pcg->pcg_next; 2411 pc->pc_hits++; 2412 pc->pc_nfull--; 2413 mutex_exit(&pc->pc_lock); 2414 return cc; 2415 } 2416 2417 /* 2418 * Nothing available locally or in cache. Take the slow 2419 * path: fetch a new object from the pool and construct 2420 * it. 2421 */ 2422 pc->pc_misses++; 2423 mutex_exit(&pc->pc_lock); 2424 pool_cache_cpu_exit(cc, s); 2425 2426 object = pool_get(&pc->pc_pool, flags); 2427 *objectp = object; 2428 if (object == NULL) 2429 return NULL; 2430 2431 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 2432 pool_put(&pc->pc_pool, object); 2433 *objectp = NULL; 2434 return NULL; 2435 } 2436 2437 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2438 (pc->pc_pool.pr_align - 1)) == 0); 2439 2440 if (pap != NULL) { 2441 #ifdef POOL_VTOPHYS 2442 *pap = POOL_VTOPHYS(object); 2443 #else 2444 *pap = POOL_PADDR_INVALID; 2445 #endif 2446 } 2447 2448 FREECHECK_OUT(&pc->pc_freecheck, object); 2449 return NULL; 2450 } 2451 2452 /* 2453 * pool_cache_get{,_paddr}: 2454 * 2455 * Get an object from a pool cache (optionally returning 2456 * the physical address of the object). 2457 */ 2458 void * 2459 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2460 { 2461 pool_cache_cpu_t *cc; 2462 pcg_t *pcg; 2463 void *object; 2464 int s; 2465 2466 #ifdef LOCKDEBUG 2467 if (flags & PR_WAITOK) 2468 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)"); 2469 #endif 2470 2471 cc = pool_cache_cpu_enter(pc, &s); 2472 do { 2473 /* Try and allocate an object from the current group. */ 2474 pcg = cc->cc_current; 2475 if (pcg != NULL && pcg->pcg_avail > 0) { 2476 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2477 if (pap != NULL) 2478 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2479 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2480 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 2481 KASSERT(object != NULL); 2482 cc->cc_hits++; 2483 pool_cache_cpu_exit(cc, &s); 2484 FREECHECK_OUT(&pc->pc_freecheck, object); 2485 return object; 2486 } 2487 2488 /* 2489 * That failed. If the previous group isn't empty, swap 2490 * it with the current group and allocate from there. 2491 */ 2492 pcg = cc->cc_previous; 2493 if (pcg != NULL && pcg->pcg_avail > 0) { 2494 cc->cc_previous = cc->cc_current; 2495 cc->cc_current = pcg; 2496 continue; 2497 } 2498 2499 /* 2500 * Can't allocate from either group: try the slow path. 2501 * If get_slow() allocated an object for us, or if 2502 * no more objects are available, it will return NULL. 2503 * Otherwise, we need to retry. 2504 */ 2505 cc = pool_cache_get_slow(cc, &s, &object, pap, flags); 2506 } while (cc != NULL); 2507 2508 return object; 2509 } 2510 2511 #if __GNUC_PREREQ__(3, 0) 2512 __attribute ((noinline)) 2513 #endif 2514 pool_cache_cpu_t * 2515 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa) 2516 { 2517 pcg_t *pcg, *cur; 2518 uint64_t ncsw; 2519 pool_cache_t pc; 2520 2521 pc = cc->cc_cache; 2522 cc->cc_misses++; 2523 2524 /* 2525 * No free slots locally. Try to grab an empty, unused 2526 * group from the cache. 2527 */ 2528 if (!mutex_tryenter(&pc->pc_lock)) { 2529 ncsw = curlwp->l_ncsw; 2530 mutex_enter(&pc->pc_lock); 2531 pc->pc_contended++; 2532 2533 /* 2534 * If we context switched while locking, then 2535 * our view of the per-CPU data is invalid: 2536 * retry. 2537 */ 2538 if (curlwp->l_ncsw != ncsw) { 2539 mutex_exit(&pc->pc_lock); 2540 pool_cache_cpu_exit(cc, s); 2541 return pool_cache_cpu_enter(pc, s); 2542 } 2543 } 2544 2545 if ((pcg = pc->pc_emptygroups) != NULL) { 2546 /* 2547 * If there's a empty group, release our full 2548 * group back to the cache. Install the empty 2549 * group as cc_current and return. 2550 */ 2551 if ((cur = cc->cc_current) != NULL) { 2552 KASSERT(cur->pcg_avail == PCG_NOBJECTS); 2553 cur->pcg_next = pc->pc_fullgroups; 2554 pc->pc_fullgroups = cur; 2555 pc->pc_nfull++; 2556 } 2557 KASSERT(pcg->pcg_avail == 0); 2558 cc->cc_current = pcg; 2559 pc->pc_emptygroups = pcg->pcg_next; 2560 pc->pc_hits++; 2561 pc->pc_nempty--; 2562 mutex_exit(&pc->pc_lock); 2563 return cc; 2564 } 2565 2566 /* 2567 * Nothing available locally or in cache. Take the 2568 * slow path and try to allocate a new group that we 2569 * can release to. 2570 */ 2571 pc->pc_misses++; 2572 mutex_exit(&pc->pc_lock); 2573 pool_cache_cpu_exit(cc, s); 2574 2575 /* 2576 * If we can't allocate a new group, just throw the 2577 * object away. 2578 */ 2579 pcg = pool_get(&pcgpool, PR_NOWAIT); 2580 if (pcg == NULL) { 2581 pool_cache_destruct_object(pc, object); 2582 return NULL; 2583 } 2584 #ifdef DIAGNOSTIC 2585 memset(pcg, 0, sizeof(*pcg)); 2586 #else 2587 pcg->pcg_avail = 0; 2588 #endif 2589 2590 /* 2591 * Add the empty group to the cache and try again. 2592 */ 2593 mutex_enter(&pc->pc_lock); 2594 pcg->pcg_next = pc->pc_emptygroups; 2595 pc->pc_emptygroups = pcg; 2596 pc->pc_nempty++; 2597 mutex_exit(&pc->pc_lock); 2598 2599 return pool_cache_cpu_enter(pc, s); 2600 } 2601 2602 /* 2603 * pool_cache_put{,_paddr}: 2604 * 2605 * Put an object back to the pool cache (optionally caching the 2606 * physical address of the object). 2607 */ 2608 void 2609 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2610 { 2611 pool_cache_cpu_t *cc; 2612 pcg_t *pcg; 2613 int s; 2614 2615 FREECHECK_IN(&pc->pc_freecheck, object); 2616 2617 cc = pool_cache_cpu_enter(pc, &s); 2618 do { 2619 /* If the current group isn't full, release it there. */ 2620 pcg = cc->cc_current; 2621 if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) { 2622 KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va 2623 == NULL); 2624 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2625 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2626 pcg->pcg_avail++; 2627 cc->cc_hits++; 2628 pool_cache_cpu_exit(cc, &s); 2629 return; 2630 } 2631 2632 /* 2633 * That failed. If the previous group is empty, swap 2634 * it with the current group and try again. 2635 */ 2636 pcg = cc->cc_previous; 2637 if (pcg != NULL && pcg->pcg_avail == 0) { 2638 cc->cc_previous = cc->cc_current; 2639 cc->cc_current = pcg; 2640 continue; 2641 } 2642 2643 /* 2644 * Can't free to either group: try the slow path. 2645 * If put_slow() releases the object for us, it 2646 * will return NULL. Otherwise we need to retry. 2647 */ 2648 cc = pool_cache_put_slow(cc, &s, object, pa); 2649 } while (cc != NULL); 2650 } 2651 2652 /* 2653 * pool_cache_xcall: 2654 * 2655 * Transfer objects from the per-CPU cache to the global cache. 2656 * Run within a cross-call thread. 2657 */ 2658 static void 2659 pool_cache_xcall(pool_cache_t pc) 2660 { 2661 pool_cache_cpu_t *cc; 2662 pcg_t *prev, *cur, **list; 2663 int s = 0; /* XXXgcc */ 2664 2665 cc = pool_cache_cpu_enter(pc, &s); 2666 cur = cc->cc_current; 2667 cc->cc_current = NULL; 2668 prev = cc->cc_previous; 2669 cc->cc_previous = NULL; 2670 pool_cache_cpu_exit(cc, &s); 2671 2672 /* 2673 * XXXSMP Go to splvm to prevent kernel_lock from being taken, 2674 * because locks at IPL_SOFTXXX are still spinlocks. Does not 2675 * apply to IPL_SOFTBIO. Cross-call threads do not take the 2676 * kernel_lock. 2677 */ 2678 s = splvm(); 2679 mutex_enter(&pc->pc_lock); 2680 if (cur != NULL) { 2681 if (cur->pcg_avail == PCG_NOBJECTS) { 2682 list = &pc->pc_fullgroups; 2683 pc->pc_nfull++; 2684 } else if (cur->pcg_avail == 0) { 2685 list = &pc->pc_emptygroups; 2686 pc->pc_nempty++; 2687 } else { 2688 list = &pc->pc_partgroups; 2689 pc->pc_npart++; 2690 } 2691 cur->pcg_next = *list; 2692 *list = cur; 2693 } 2694 if (prev != NULL) { 2695 if (prev->pcg_avail == PCG_NOBJECTS) { 2696 list = &pc->pc_fullgroups; 2697 pc->pc_nfull++; 2698 } else if (prev->pcg_avail == 0) { 2699 list = &pc->pc_emptygroups; 2700 pc->pc_nempty++; 2701 } else { 2702 list = &pc->pc_partgroups; 2703 pc->pc_npart++; 2704 } 2705 prev->pcg_next = *list; 2706 *list = prev; 2707 } 2708 mutex_exit(&pc->pc_lock); 2709 splx(s); 2710 } 2711 2712 /* 2713 * Pool backend allocators. 2714 * 2715 * Each pool has a backend allocator that handles allocation, deallocation, 2716 * and any additional draining that might be needed. 2717 * 2718 * We provide two standard allocators: 2719 * 2720 * pool_allocator_kmem - the default when no allocator is specified 2721 * 2722 * pool_allocator_nointr - used for pools that will not be accessed 2723 * in interrupt context. 2724 */ 2725 void *pool_page_alloc(struct pool *, int); 2726 void pool_page_free(struct pool *, void *); 2727 2728 #ifdef POOL_SUBPAGE 2729 struct pool_allocator pool_allocator_kmem_fullpage = { 2730 pool_page_alloc, pool_page_free, 0, 2731 .pa_backingmapptr = &kmem_map, 2732 }; 2733 #else 2734 struct pool_allocator pool_allocator_kmem = { 2735 pool_page_alloc, pool_page_free, 0, 2736 .pa_backingmapptr = &kmem_map, 2737 }; 2738 #endif 2739 2740 void *pool_page_alloc_nointr(struct pool *, int); 2741 void pool_page_free_nointr(struct pool *, void *); 2742 2743 #ifdef POOL_SUBPAGE 2744 struct pool_allocator pool_allocator_nointr_fullpage = { 2745 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2746 .pa_backingmapptr = &kernel_map, 2747 }; 2748 #else 2749 struct pool_allocator pool_allocator_nointr = { 2750 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2751 .pa_backingmapptr = &kernel_map, 2752 }; 2753 #endif 2754 2755 #ifdef POOL_SUBPAGE 2756 void *pool_subpage_alloc(struct pool *, int); 2757 void pool_subpage_free(struct pool *, void *); 2758 2759 struct pool_allocator pool_allocator_kmem = { 2760 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2761 .pa_backingmapptr = &kmem_map, 2762 }; 2763 2764 void *pool_subpage_alloc_nointr(struct pool *, int); 2765 void pool_subpage_free_nointr(struct pool *, void *); 2766 2767 struct pool_allocator pool_allocator_nointr = { 2768 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2769 .pa_backingmapptr = &kmem_map, 2770 }; 2771 #endif /* POOL_SUBPAGE */ 2772 2773 static void * 2774 pool_allocator_alloc(struct pool *pp, int flags) 2775 { 2776 struct pool_allocator *pa = pp->pr_alloc; 2777 void *res; 2778 2779 res = (*pa->pa_alloc)(pp, flags); 2780 if (res == NULL && (flags & PR_WAITOK) == 0) { 2781 /* 2782 * We only run the drain hook here if PR_NOWAIT. 2783 * In other cases, the hook will be run in 2784 * pool_reclaim(). 2785 */ 2786 if (pp->pr_drain_hook != NULL) { 2787 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2788 res = (*pa->pa_alloc)(pp, flags); 2789 } 2790 } 2791 return res; 2792 } 2793 2794 static void 2795 pool_allocator_free(struct pool *pp, void *v) 2796 { 2797 struct pool_allocator *pa = pp->pr_alloc; 2798 2799 (*pa->pa_free)(pp, v); 2800 } 2801 2802 void * 2803 pool_page_alloc(struct pool *pp, int flags) 2804 { 2805 bool waitok = (flags & PR_WAITOK) ? true : false; 2806 2807 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2808 } 2809 2810 void 2811 pool_page_free(struct pool *pp, void *v) 2812 { 2813 2814 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2815 } 2816 2817 static void * 2818 pool_page_alloc_meta(struct pool *pp, int flags) 2819 { 2820 bool waitok = (flags & PR_WAITOK) ? true : false; 2821 2822 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2823 } 2824 2825 static void 2826 pool_page_free_meta(struct pool *pp, void *v) 2827 { 2828 2829 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2830 } 2831 2832 #ifdef POOL_SUBPAGE 2833 /* Sub-page allocator, for machines with large hardware pages. */ 2834 void * 2835 pool_subpage_alloc(struct pool *pp, int flags) 2836 { 2837 return pool_get(&psppool, flags); 2838 } 2839 2840 void 2841 pool_subpage_free(struct pool *pp, void *v) 2842 { 2843 pool_put(&psppool, v); 2844 } 2845 2846 /* We don't provide a real nointr allocator. Maybe later. */ 2847 void * 2848 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2849 { 2850 2851 return (pool_subpage_alloc(pp, flags)); 2852 } 2853 2854 void 2855 pool_subpage_free_nointr(struct pool *pp, void *v) 2856 { 2857 2858 pool_subpage_free(pp, v); 2859 } 2860 #endif /* POOL_SUBPAGE */ 2861 void * 2862 pool_page_alloc_nointr(struct pool *pp, int flags) 2863 { 2864 bool waitok = (flags & PR_WAITOK) ? true : false; 2865 2866 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2867 } 2868 2869 void 2870 pool_page_free_nointr(struct pool *pp, void *v) 2871 { 2872 2873 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2874 } 2875