xref: /netbsd-src/sys/kern/subr_pool.c (revision 0df165c04d0a9ca1adde9ed2b890344c937954a6)
1 /*	$NetBSD: subr_pool.c,v 1.137 2007/11/18 16:27:43 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.137 2007/11/18 16:27:43 ad Exp $");
42 
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bitops.h>
50 #include <sys/proc.h>
51 #include <sys/errno.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/pool.h>
56 #include <sys/syslog.h>
57 #include <sys/debug.h>
58 #include <sys/lockdebug.h>
59 #include <sys/xcall.h>
60 #include <sys/cpu.h>
61 
62 #include <uvm/uvm.h>
63 
64 /*
65  * Pool resource management utility.
66  *
67  * Memory is allocated in pages which are split into pieces according to
68  * the pool item size. Each page is kept on one of three lists in the
69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70  * for empty, full and partially-full pages respectively. The individual
71  * pool items are on a linked list headed by `ph_itemlist' in each page
72  * header. The memory for building the page list is either taken from
73  * the allocated pages themselves (for small pool items) or taken from
74  * an internal pool of page headers (`phpool').
75  */
76 
77 /* List of all pools */
78 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
79 
80 /* List of all caches. */
81 LIST_HEAD(,pool_cache) pool_cache_head =
82     LIST_HEAD_INITIALIZER(pool_cache_head);
83 
84 /* Private pool for page header structures */
85 #define	PHPOOL_MAX	8
86 static struct pool phpool[PHPOOL_MAX];
87 #define	PHPOOL_FREELIST_NELEM(idx) \
88 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
89 
90 #ifdef POOL_SUBPAGE
91 /* Pool of subpages for use by normal pools. */
92 static struct pool psppool;
93 #endif
94 
95 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
96     SLIST_HEAD_INITIALIZER(pa_deferinitq);
97 
98 static void *pool_page_alloc_meta(struct pool *, int);
99 static void pool_page_free_meta(struct pool *, void *);
100 
101 /* allocator for pool metadata */
102 struct pool_allocator pool_allocator_meta = {
103 	pool_page_alloc_meta, pool_page_free_meta,
104 	.pa_backingmapptr = &kmem_map,
105 };
106 
107 /* # of seconds to retain page after last use */
108 int pool_inactive_time = 10;
109 
110 /* Next candidate for drainage (see pool_drain()) */
111 static struct pool	*drainpp;
112 
113 /* This lock protects both pool_head and drainpp. */
114 static kmutex_t pool_head_lock;
115 static kcondvar_t pool_busy;
116 
117 typedef uint32_t pool_item_bitmap_t;
118 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
119 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
120 
121 struct pool_item_header {
122 	/* Page headers */
123 	LIST_ENTRY(pool_item_header)
124 				ph_pagelist;	/* pool page list */
125 	SPLAY_ENTRY(pool_item_header)
126 				ph_node;	/* Off-page page headers */
127 	void *			ph_page;	/* this page's address */
128 	struct timeval		ph_time;	/* last referenced */
129 	uint16_t		ph_nmissing;	/* # of chunks in use */
130 	union {
131 		/* !PR_NOTOUCH */
132 		struct {
133 			LIST_HEAD(, pool_item)
134 				phu_itemlist;	/* chunk list for this page */
135 		} phu_normal;
136 		/* PR_NOTOUCH */
137 		struct {
138 			uint16_t phu_off;	/* start offset in page */
139 			pool_item_bitmap_t phu_bitmap[];
140 		} phu_notouch;
141 	} ph_u;
142 };
143 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
144 #define	ph_off		ph_u.phu_notouch.phu_off
145 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
146 
147 struct pool_item {
148 #ifdef DIAGNOSTIC
149 	u_int pi_magic;
150 #endif
151 #define	PI_MAGIC 0xdeaddeadU
152 	/* Other entries use only this list entry */
153 	LIST_ENTRY(pool_item)	pi_list;
154 };
155 
156 #define	POOL_NEEDS_CATCHUP(pp)						\
157 	((pp)->pr_nitems < (pp)->pr_minitems)
158 
159 /*
160  * Pool cache management.
161  *
162  * Pool caches provide a way for constructed objects to be cached by the
163  * pool subsystem.  This can lead to performance improvements by avoiding
164  * needless object construction/destruction; it is deferred until absolutely
165  * necessary.
166  *
167  * Caches are grouped into cache groups.  Each cache group references up
168  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
169  * object from the pool, it calls the object's constructor and places it
170  * into a cache group.  When a cache group frees an object back to the
171  * pool, it first calls the object's destructor.  This allows the object
172  * to persist in constructed form while freed to the cache.
173  *
174  * The pool references each cache, so that when a pool is drained by the
175  * pagedaemon, it can drain each individual cache as well.  Each time a
176  * cache is drained, the most idle cache group is freed to the pool in
177  * its entirety.
178  *
179  * Pool caches are layed on top of pools.  By layering them, we can avoid
180  * the complexity of cache management for pools which would not benefit
181  * from it.
182  */
183 
184 static struct pool pcgpool;
185 static struct pool cache_pool;
186 static struct pool cache_cpu_pool;
187 
188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
189 					     void *, paddr_t);
190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
191 					     void **, paddr_t *, int);
192 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 static void	pool_cache_xcall(pool_cache_t);
195 
196 static int	pool_catchup(struct pool *);
197 static void	pool_prime_page(struct pool *, void *,
198 		    struct pool_item_header *);
199 static void	pool_update_curpage(struct pool *);
200 
201 static int	pool_grow(struct pool *, int);
202 static void	*pool_allocator_alloc(struct pool *, int);
203 static void	pool_allocator_free(struct pool *, void *);
204 
205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 	void (*)(const char *, ...));
207 static void pool_print1(struct pool *, const char *,
208 	void (*)(const char *, ...));
209 
210 static int pool_chk_page(struct pool *, const char *,
211 			 struct pool_item_header *);
212 
213 /*
214  * Pool log entry. An array of these is allocated in pool_init().
215  */
216 struct pool_log {
217 	const char	*pl_file;
218 	long		pl_line;
219 	int		pl_action;
220 #define	PRLOG_GET	1
221 #define	PRLOG_PUT	2
222 	void		*pl_addr;
223 };
224 
225 #ifdef POOL_DIAGNOSTIC
226 /* Number of entries in pool log buffers */
227 #ifndef POOL_LOGSIZE
228 #define	POOL_LOGSIZE	10
229 #endif
230 
231 int pool_logsize = POOL_LOGSIZE;
232 
233 static inline void
234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
235 {
236 	int n = pp->pr_curlogentry;
237 	struct pool_log *pl;
238 
239 	if ((pp->pr_roflags & PR_LOGGING) == 0)
240 		return;
241 
242 	/*
243 	 * Fill in the current entry. Wrap around and overwrite
244 	 * the oldest entry if necessary.
245 	 */
246 	pl = &pp->pr_log[n];
247 	pl->pl_file = file;
248 	pl->pl_line = line;
249 	pl->pl_action = action;
250 	pl->pl_addr = v;
251 	if (++n >= pp->pr_logsize)
252 		n = 0;
253 	pp->pr_curlogentry = n;
254 }
255 
256 static void
257 pr_printlog(struct pool *pp, struct pool_item *pi,
258     void (*pr)(const char *, ...))
259 {
260 	int i = pp->pr_logsize;
261 	int n = pp->pr_curlogentry;
262 
263 	if ((pp->pr_roflags & PR_LOGGING) == 0)
264 		return;
265 
266 	/*
267 	 * Print all entries in this pool's log.
268 	 */
269 	while (i-- > 0) {
270 		struct pool_log *pl = &pp->pr_log[n];
271 		if (pl->pl_action != 0) {
272 			if (pi == NULL || pi == pl->pl_addr) {
273 				(*pr)("\tlog entry %d:\n", i);
274 				(*pr)("\t\taction = %s, addr = %p\n",
275 				    pl->pl_action == PRLOG_GET ? "get" : "put",
276 				    pl->pl_addr);
277 				(*pr)("\t\tfile: %s at line %lu\n",
278 				    pl->pl_file, pl->pl_line);
279 			}
280 		}
281 		if (++n >= pp->pr_logsize)
282 			n = 0;
283 	}
284 }
285 
286 static inline void
287 pr_enter(struct pool *pp, const char *file, long line)
288 {
289 
290 	if (__predict_false(pp->pr_entered_file != NULL)) {
291 		printf("pool %s: reentrancy at file %s line %ld\n",
292 		    pp->pr_wchan, file, line);
293 		printf("         previous entry at file %s line %ld\n",
294 		    pp->pr_entered_file, pp->pr_entered_line);
295 		panic("pr_enter");
296 	}
297 
298 	pp->pr_entered_file = file;
299 	pp->pr_entered_line = line;
300 }
301 
302 static inline void
303 pr_leave(struct pool *pp)
304 {
305 
306 	if (__predict_false(pp->pr_entered_file == NULL)) {
307 		printf("pool %s not entered?\n", pp->pr_wchan);
308 		panic("pr_leave");
309 	}
310 
311 	pp->pr_entered_file = NULL;
312 	pp->pr_entered_line = 0;
313 }
314 
315 static inline void
316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
317 {
318 
319 	if (pp->pr_entered_file != NULL)
320 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
321 		    pp->pr_entered_file, pp->pr_entered_line);
322 }
323 #else
324 #define	pr_log(pp, v, action, file, line)
325 #define	pr_printlog(pp, pi, pr)
326 #define	pr_enter(pp, file, line)
327 #define	pr_leave(pp)
328 #define	pr_enter_check(pp, pr)
329 #endif /* POOL_DIAGNOSTIC */
330 
331 static inline unsigned int
332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
333     const void *v)
334 {
335 	const char *cp = v;
336 	unsigned int idx;
337 
338 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
339 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
340 	KASSERT(idx < pp->pr_itemsperpage);
341 	return idx;
342 }
343 
344 static inline void
345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
346     void *obj)
347 {
348 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
349 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
350 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
351 
352 	KASSERT((*bitmap & mask) == 0);
353 	*bitmap |= mask;
354 }
355 
356 static inline void *
357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
358 {
359 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
360 	unsigned int idx;
361 	int i;
362 
363 	for (i = 0; ; i++) {
364 		int bit;
365 
366 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
367 		bit = ffs32(bitmap[i]);
368 		if (bit) {
369 			pool_item_bitmap_t mask;
370 
371 			bit--;
372 			idx = (i * BITMAP_SIZE) + bit;
373 			mask = 1 << bit;
374 			KASSERT((bitmap[i] & mask) != 0);
375 			bitmap[i] &= ~mask;
376 			break;
377 		}
378 	}
379 	KASSERT(idx < pp->pr_itemsperpage);
380 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
381 }
382 
383 static inline void
384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
385 {
386 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
387 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
388 	int i;
389 
390 	for (i = 0; i < n; i++) {
391 		bitmap[i] = (pool_item_bitmap_t)-1;
392 	}
393 }
394 
395 static inline int
396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
397 {
398 
399 	/*
400 	 * we consider pool_item_header with smaller ph_page bigger.
401 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
402 	 */
403 
404 	if (a->ph_page < b->ph_page)
405 		return (1);
406 	else if (a->ph_page > b->ph_page)
407 		return (-1);
408 	else
409 		return (0);
410 }
411 
412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
414 
415 /*
416  * Return the pool page header based on item address.
417  */
418 static inline struct pool_item_header *
419 pr_find_pagehead(struct pool *pp, void *v)
420 {
421 	struct pool_item_header *ph, tmp;
422 
423 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
424 		tmp.ph_page = (void *)(uintptr_t)v;
425 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
426 		if (ph == NULL) {
427 			ph = SPLAY_ROOT(&pp->pr_phtree);
428 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
429 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
430 			}
431 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
432 		}
433 	} else {
434 		void *page =
435 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
436 
437 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
438 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
439 		} else {
440 			tmp.ph_page = page;
441 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
442 		}
443 	}
444 
445 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
446 	    ((char *)ph->ph_page <= (char *)v &&
447 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
448 	return ph;
449 }
450 
451 static void
452 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
453 {
454 	struct pool_item_header *ph;
455 
456 	while ((ph = LIST_FIRST(pq)) != NULL) {
457 		LIST_REMOVE(ph, ph_pagelist);
458 		pool_allocator_free(pp, ph->ph_page);
459 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
460 			pool_put(pp->pr_phpool, ph);
461 	}
462 }
463 
464 /*
465  * Remove a page from the pool.
466  */
467 static inline void
468 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
469      struct pool_pagelist *pq)
470 {
471 
472 	KASSERT(mutex_owned(&pp->pr_lock));
473 
474 	/*
475 	 * If the page was idle, decrement the idle page count.
476 	 */
477 	if (ph->ph_nmissing == 0) {
478 #ifdef DIAGNOSTIC
479 		if (pp->pr_nidle == 0)
480 			panic("pr_rmpage: nidle inconsistent");
481 		if (pp->pr_nitems < pp->pr_itemsperpage)
482 			panic("pr_rmpage: nitems inconsistent");
483 #endif
484 		pp->pr_nidle--;
485 	}
486 
487 	pp->pr_nitems -= pp->pr_itemsperpage;
488 
489 	/*
490 	 * Unlink the page from the pool and queue it for release.
491 	 */
492 	LIST_REMOVE(ph, ph_pagelist);
493 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
494 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
495 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
496 
497 	pp->pr_npages--;
498 	pp->pr_npagefree++;
499 
500 	pool_update_curpage(pp);
501 }
502 
503 static bool
504 pa_starved_p(struct pool_allocator *pa)
505 {
506 
507 	if (pa->pa_backingmap != NULL) {
508 		return vm_map_starved_p(pa->pa_backingmap);
509 	}
510 	return false;
511 }
512 
513 static int
514 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
515 {
516 	struct pool *pp = obj;
517 	struct pool_allocator *pa = pp->pr_alloc;
518 
519 	KASSERT(&pp->pr_reclaimerentry == ce);
520 	pool_reclaim(pp);
521 	if (!pa_starved_p(pa)) {
522 		return CALLBACK_CHAIN_ABORT;
523 	}
524 	return CALLBACK_CHAIN_CONTINUE;
525 }
526 
527 static void
528 pool_reclaim_register(struct pool *pp)
529 {
530 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
531 	int s;
532 
533 	if (map == NULL) {
534 		return;
535 	}
536 
537 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
538 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
539 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
540 	splx(s);
541 }
542 
543 static void
544 pool_reclaim_unregister(struct pool *pp)
545 {
546 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
547 	int s;
548 
549 	if (map == NULL) {
550 		return;
551 	}
552 
553 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
554 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
555 	    &pp->pr_reclaimerentry);
556 	splx(s);
557 }
558 
559 static void
560 pa_reclaim_register(struct pool_allocator *pa)
561 {
562 	struct vm_map *map = *pa->pa_backingmapptr;
563 	struct pool *pp;
564 
565 	KASSERT(pa->pa_backingmap == NULL);
566 	if (map == NULL) {
567 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
568 		return;
569 	}
570 	pa->pa_backingmap = map;
571 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
572 		pool_reclaim_register(pp);
573 	}
574 }
575 
576 /*
577  * Initialize all the pools listed in the "pools" link set.
578  */
579 void
580 pool_subsystem_init(void)
581 {
582 	struct pool_allocator *pa;
583 	__link_set_decl(pools, struct link_pool_init);
584 	struct link_pool_init * const *pi;
585 
586 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
587 	cv_init(&pool_busy, "poolbusy");
588 
589 	__link_set_foreach(pi, pools)
590 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
591 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
592 		    (*pi)->palloc, (*pi)->ipl);
593 
594 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
595 		KASSERT(pa->pa_backingmapptr != NULL);
596 		KASSERT(*pa->pa_backingmapptr != NULL);
597 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
598 		pa_reclaim_register(pa);
599 	}
600 
601 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
602 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
603 
604 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
605 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
606 }
607 
608 /*
609  * Initialize the given pool resource structure.
610  *
611  * We export this routine to allow other kernel parts to declare
612  * static pools that must be initialized before malloc() is available.
613  */
614 void
615 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
616     const char *wchan, struct pool_allocator *palloc, int ipl)
617 {
618 #ifdef DEBUG
619 	struct pool *pp1;
620 #endif
621 	size_t trysize, phsize;
622 	int off, slack;
623 
624 #ifdef DEBUG
625 	/*
626 	 * Check that the pool hasn't already been initialised and
627 	 * added to the list of all pools.
628 	 */
629 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
630 		if (pp == pp1)
631 			panic("pool_init: pool %s already initialised",
632 			    wchan);
633 	}
634 #endif
635 
636 #ifdef POOL_DIAGNOSTIC
637 	/*
638 	 * Always log if POOL_DIAGNOSTIC is defined.
639 	 */
640 	if (pool_logsize != 0)
641 		flags |= PR_LOGGING;
642 #endif
643 
644 	if (palloc == NULL)
645 		palloc = &pool_allocator_kmem;
646 #ifdef POOL_SUBPAGE
647 	if (size > palloc->pa_pagesz) {
648 		if (palloc == &pool_allocator_kmem)
649 			palloc = &pool_allocator_kmem_fullpage;
650 		else if (palloc == &pool_allocator_nointr)
651 			palloc = &pool_allocator_nointr_fullpage;
652 	}
653 #endif /* POOL_SUBPAGE */
654 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
655 		if (palloc->pa_pagesz == 0)
656 			palloc->pa_pagesz = PAGE_SIZE;
657 
658 		TAILQ_INIT(&palloc->pa_list);
659 
660 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
661 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
662 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
663 
664 		if (palloc->pa_backingmapptr != NULL) {
665 			pa_reclaim_register(palloc);
666 		}
667 		palloc->pa_flags |= PA_INITIALIZED;
668 	}
669 
670 	if (align == 0)
671 		align = ALIGN(1);
672 
673 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
674 		size = sizeof(struct pool_item);
675 
676 	size = roundup(size, align);
677 #ifdef DIAGNOSTIC
678 	if (size > palloc->pa_pagesz)
679 		panic("pool_init: pool item size (%zu) too large", size);
680 #endif
681 
682 	/*
683 	 * Initialize the pool structure.
684 	 */
685 	LIST_INIT(&pp->pr_emptypages);
686 	LIST_INIT(&pp->pr_fullpages);
687 	LIST_INIT(&pp->pr_partpages);
688 	pp->pr_cache = NULL;
689 	pp->pr_curpage = NULL;
690 	pp->pr_npages = 0;
691 	pp->pr_minitems = 0;
692 	pp->pr_minpages = 0;
693 	pp->pr_maxpages = UINT_MAX;
694 	pp->pr_roflags = flags;
695 	pp->pr_flags = 0;
696 	pp->pr_size = size;
697 	pp->pr_align = align;
698 	pp->pr_wchan = wchan;
699 	pp->pr_alloc = palloc;
700 	pp->pr_nitems = 0;
701 	pp->pr_nout = 0;
702 	pp->pr_hardlimit = UINT_MAX;
703 	pp->pr_hardlimit_warning = NULL;
704 	pp->pr_hardlimit_ratecap.tv_sec = 0;
705 	pp->pr_hardlimit_ratecap.tv_usec = 0;
706 	pp->pr_hardlimit_warning_last.tv_sec = 0;
707 	pp->pr_hardlimit_warning_last.tv_usec = 0;
708 	pp->pr_drain_hook = NULL;
709 	pp->pr_drain_hook_arg = NULL;
710 	pp->pr_freecheck = NULL;
711 
712 	/*
713 	 * Decide whether to put the page header off page to avoid
714 	 * wasting too large a part of the page or too big item.
715 	 * Off-page page headers go on a hash table, so we can match
716 	 * a returned item with its header based on the page address.
717 	 * We use 1/16 of the page size and about 8 times of the item
718 	 * size as the threshold (XXX: tune)
719 	 *
720 	 * However, we'll put the header into the page if we can put
721 	 * it without wasting any items.
722 	 *
723 	 * Silently enforce `0 <= ioff < align'.
724 	 */
725 	pp->pr_itemoffset = ioff %= align;
726 	/* See the comment below about reserved bytes. */
727 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
728 	phsize = ALIGN(sizeof(struct pool_item_header));
729 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
730 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
731 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
732 		/* Use the end of the page for the page header */
733 		pp->pr_roflags |= PR_PHINPAGE;
734 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
735 	} else {
736 		/* The page header will be taken from our page header pool */
737 		pp->pr_phoffset = 0;
738 		off = palloc->pa_pagesz;
739 		SPLAY_INIT(&pp->pr_phtree);
740 	}
741 
742 	/*
743 	 * Alignment is to take place at `ioff' within the item. This means
744 	 * we must reserve up to `align - 1' bytes on the page to allow
745 	 * appropriate positioning of each item.
746 	 */
747 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
748 	KASSERT(pp->pr_itemsperpage != 0);
749 	if ((pp->pr_roflags & PR_NOTOUCH)) {
750 		int idx;
751 
752 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
753 		    idx++) {
754 			/* nothing */
755 		}
756 		if (idx >= PHPOOL_MAX) {
757 			/*
758 			 * if you see this panic, consider to tweak
759 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
760 			 */
761 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
762 			    pp->pr_wchan, pp->pr_itemsperpage);
763 		}
764 		pp->pr_phpool = &phpool[idx];
765 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
766 		pp->pr_phpool = &phpool[0];
767 	}
768 #if defined(DIAGNOSTIC)
769 	else {
770 		pp->pr_phpool = NULL;
771 	}
772 #endif
773 
774 	/*
775 	 * Use the slack between the chunks and the page header
776 	 * for "cache coloring".
777 	 */
778 	slack = off - pp->pr_itemsperpage * pp->pr_size;
779 	pp->pr_maxcolor = (slack / align) * align;
780 	pp->pr_curcolor = 0;
781 
782 	pp->pr_nget = 0;
783 	pp->pr_nfail = 0;
784 	pp->pr_nput = 0;
785 	pp->pr_npagealloc = 0;
786 	pp->pr_npagefree = 0;
787 	pp->pr_hiwat = 0;
788 	pp->pr_nidle = 0;
789 	pp->pr_refcnt = 0;
790 
791 #ifdef POOL_DIAGNOSTIC
792 	if (flags & PR_LOGGING) {
793 		if (kmem_map == NULL ||
794 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
795 		     M_TEMP, M_NOWAIT)) == NULL)
796 			pp->pr_roflags &= ~PR_LOGGING;
797 		pp->pr_curlogentry = 0;
798 		pp->pr_logsize = pool_logsize;
799 	}
800 #endif
801 
802 	pp->pr_entered_file = NULL;
803 	pp->pr_entered_line = 0;
804 
805 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
806 	cv_init(&pp->pr_cv, wchan);
807 	pp->pr_ipl = ipl;
808 
809 	/*
810 	 * Initialize private page header pool and cache magazine pool if we
811 	 * haven't done so yet.
812 	 * XXX LOCKING.
813 	 */
814 	if (phpool[0].pr_size == 0) {
815 		int idx;
816 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
817 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
818 			int nelem;
819 			size_t sz;
820 
821 			nelem = PHPOOL_FREELIST_NELEM(idx);
822 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
823 			    "phpool-%d", nelem);
824 			sz = sizeof(struct pool_item_header);
825 			if (nelem) {
826 				sz = offsetof(struct pool_item_header,
827 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
828 			}
829 			pool_init(&phpool[idx], sz, 0, 0, 0,
830 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
831 		}
832 #ifdef POOL_SUBPAGE
833 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
834 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
835 #endif
836 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
837 		    "cachegrp", &pool_allocator_meta, IPL_VM);
838 	}
839 
840 	if (__predict_true(!cold)) {
841 		/* Insert into the list of all pools. */
842 		mutex_enter(&pool_head_lock);
843 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
844 		mutex_exit(&pool_head_lock);
845 
846 		/* Insert this into the list of pools using this allocator. */
847 		mutex_enter(&palloc->pa_lock);
848 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
849 		mutex_exit(&palloc->pa_lock);
850 	} else {
851 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
852 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
853 	}
854 
855 	pool_reclaim_register(pp);
856 }
857 
858 /*
859  * De-commision a pool resource.
860  */
861 void
862 pool_destroy(struct pool *pp)
863 {
864 	struct pool_pagelist pq;
865 	struct pool_item_header *ph;
866 
867 	/* Remove from global pool list */
868 	mutex_enter(&pool_head_lock);
869 	while (pp->pr_refcnt != 0)
870 		cv_wait(&pool_busy, &pool_head_lock);
871 	LIST_REMOVE(pp, pr_poollist);
872 	if (drainpp == pp)
873 		drainpp = NULL;
874 	mutex_exit(&pool_head_lock);
875 
876 	/* Remove this pool from its allocator's list of pools. */
877 	pool_reclaim_unregister(pp);
878 	mutex_enter(&pp->pr_alloc->pa_lock);
879 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
880 	mutex_exit(&pp->pr_alloc->pa_lock);
881 
882 	mutex_enter(&pp->pr_lock);
883 
884 	KASSERT(pp->pr_cache == NULL);
885 
886 #ifdef DIAGNOSTIC
887 	if (pp->pr_nout != 0) {
888 		pr_printlog(pp, NULL, printf);
889 		panic("pool_destroy: pool busy: still out: %u",
890 		    pp->pr_nout);
891 	}
892 #endif
893 
894 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
895 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
896 
897 	/* Remove all pages */
898 	LIST_INIT(&pq);
899 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
900 		pr_rmpage(pp, ph, &pq);
901 
902 	mutex_exit(&pp->pr_lock);
903 
904 	pr_pagelist_free(pp, &pq);
905 
906 #ifdef POOL_DIAGNOSTIC
907 	if ((pp->pr_roflags & PR_LOGGING) != 0)
908 		free(pp->pr_log, M_TEMP);
909 #endif
910 
911 	cv_destroy(&pp->pr_cv);
912 	mutex_destroy(&pp->pr_lock);
913 }
914 
915 void
916 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
917 {
918 
919 	/* XXX no locking -- must be used just after pool_init() */
920 #ifdef DIAGNOSTIC
921 	if (pp->pr_drain_hook != NULL)
922 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
923 #endif
924 	pp->pr_drain_hook = fn;
925 	pp->pr_drain_hook_arg = arg;
926 }
927 
928 static struct pool_item_header *
929 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
930 {
931 	struct pool_item_header *ph;
932 
933 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
934 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
935 	else
936 		ph = pool_get(pp->pr_phpool, flags);
937 
938 	return (ph);
939 }
940 
941 /*
942  * Grab an item from the pool.
943  */
944 void *
945 #ifdef POOL_DIAGNOSTIC
946 _pool_get(struct pool *pp, int flags, const char *file, long line)
947 #else
948 pool_get(struct pool *pp, int flags)
949 #endif
950 {
951 	struct pool_item *pi;
952 	struct pool_item_header *ph;
953 	void *v;
954 
955 #ifdef DIAGNOSTIC
956 	if (__predict_false(pp->pr_itemsperpage == 0))
957 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
958 		    "pool not initialized?", pp);
959 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
960 			    (flags & PR_WAITOK) != 0))
961 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
962 
963 #endif /* DIAGNOSTIC */
964 #ifdef LOCKDEBUG
965 	if (flags & PR_WAITOK)
966 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
967 #endif
968 
969 	mutex_enter(&pp->pr_lock);
970 	pr_enter(pp, file, line);
971 
972  startover:
973 	/*
974 	 * Check to see if we've reached the hard limit.  If we have,
975 	 * and we can wait, then wait until an item has been returned to
976 	 * the pool.
977 	 */
978 #ifdef DIAGNOSTIC
979 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
980 		pr_leave(pp);
981 		mutex_exit(&pp->pr_lock);
982 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
983 	}
984 #endif
985 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
986 		if (pp->pr_drain_hook != NULL) {
987 			/*
988 			 * Since the drain hook is going to free things
989 			 * back to the pool, unlock, call the hook, re-lock,
990 			 * and check the hardlimit condition again.
991 			 */
992 			pr_leave(pp);
993 			mutex_exit(&pp->pr_lock);
994 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
995 			mutex_enter(&pp->pr_lock);
996 			pr_enter(pp, file, line);
997 			if (pp->pr_nout < pp->pr_hardlimit)
998 				goto startover;
999 		}
1000 
1001 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1002 			/*
1003 			 * XXX: A warning isn't logged in this case.  Should
1004 			 * it be?
1005 			 */
1006 			pp->pr_flags |= PR_WANTED;
1007 			pr_leave(pp);
1008 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1009 			pr_enter(pp, file, line);
1010 			goto startover;
1011 		}
1012 
1013 		/*
1014 		 * Log a message that the hard limit has been hit.
1015 		 */
1016 		if (pp->pr_hardlimit_warning != NULL &&
1017 		    ratecheck(&pp->pr_hardlimit_warning_last,
1018 			      &pp->pr_hardlimit_ratecap))
1019 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1020 
1021 		pp->pr_nfail++;
1022 
1023 		pr_leave(pp);
1024 		mutex_exit(&pp->pr_lock);
1025 		return (NULL);
1026 	}
1027 
1028 	/*
1029 	 * The convention we use is that if `curpage' is not NULL, then
1030 	 * it points at a non-empty bucket. In particular, `curpage'
1031 	 * never points at a page header which has PR_PHINPAGE set and
1032 	 * has no items in its bucket.
1033 	 */
1034 	if ((ph = pp->pr_curpage) == NULL) {
1035 		int error;
1036 
1037 #ifdef DIAGNOSTIC
1038 		if (pp->pr_nitems != 0) {
1039 			mutex_exit(&pp->pr_lock);
1040 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1041 			    pp->pr_wchan, pp->pr_nitems);
1042 			panic("pool_get: nitems inconsistent");
1043 		}
1044 #endif
1045 
1046 		/*
1047 		 * Call the back-end page allocator for more memory.
1048 		 * Release the pool lock, as the back-end page allocator
1049 		 * may block.
1050 		 */
1051 		pr_leave(pp);
1052 		error = pool_grow(pp, flags);
1053 		pr_enter(pp, file, line);
1054 		if (error != 0) {
1055 			/*
1056 			 * We were unable to allocate a page or item
1057 			 * header, but we released the lock during
1058 			 * allocation, so perhaps items were freed
1059 			 * back to the pool.  Check for this case.
1060 			 */
1061 			if (pp->pr_curpage != NULL)
1062 				goto startover;
1063 
1064 			pp->pr_nfail++;
1065 			pr_leave(pp);
1066 			mutex_exit(&pp->pr_lock);
1067 			return (NULL);
1068 		}
1069 
1070 		/* Start the allocation process over. */
1071 		goto startover;
1072 	}
1073 	if (pp->pr_roflags & PR_NOTOUCH) {
1074 #ifdef DIAGNOSTIC
1075 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1076 			pr_leave(pp);
1077 			mutex_exit(&pp->pr_lock);
1078 			panic("pool_get: %s: page empty", pp->pr_wchan);
1079 		}
1080 #endif
1081 		v = pr_item_notouch_get(pp, ph);
1082 #ifdef POOL_DIAGNOSTIC
1083 		pr_log(pp, v, PRLOG_GET, file, line);
1084 #endif
1085 	} else {
1086 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1087 		if (__predict_false(v == NULL)) {
1088 			pr_leave(pp);
1089 			mutex_exit(&pp->pr_lock);
1090 			panic("pool_get: %s: page empty", pp->pr_wchan);
1091 		}
1092 #ifdef DIAGNOSTIC
1093 		if (__predict_false(pp->pr_nitems == 0)) {
1094 			pr_leave(pp);
1095 			mutex_exit(&pp->pr_lock);
1096 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1097 			    pp->pr_wchan, pp->pr_nitems);
1098 			panic("pool_get: nitems inconsistent");
1099 		}
1100 #endif
1101 
1102 #ifdef POOL_DIAGNOSTIC
1103 		pr_log(pp, v, PRLOG_GET, file, line);
1104 #endif
1105 
1106 #ifdef DIAGNOSTIC
1107 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1108 			pr_printlog(pp, pi, printf);
1109 			panic("pool_get(%s): free list modified: "
1110 			    "magic=%x; page %p; item addr %p\n",
1111 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1112 		}
1113 #endif
1114 
1115 		/*
1116 		 * Remove from item list.
1117 		 */
1118 		LIST_REMOVE(pi, pi_list);
1119 	}
1120 	pp->pr_nitems--;
1121 	pp->pr_nout++;
1122 	if (ph->ph_nmissing == 0) {
1123 #ifdef DIAGNOSTIC
1124 		if (__predict_false(pp->pr_nidle == 0))
1125 			panic("pool_get: nidle inconsistent");
1126 #endif
1127 		pp->pr_nidle--;
1128 
1129 		/*
1130 		 * This page was previously empty.  Move it to the list of
1131 		 * partially-full pages.  This page is already curpage.
1132 		 */
1133 		LIST_REMOVE(ph, ph_pagelist);
1134 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1135 	}
1136 	ph->ph_nmissing++;
1137 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1138 #ifdef DIAGNOSTIC
1139 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1140 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1141 			pr_leave(pp);
1142 			mutex_exit(&pp->pr_lock);
1143 			panic("pool_get: %s: nmissing inconsistent",
1144 			    pp->pr_wchan);
1145 		}
1146 #endif
1147 		/*
1148 		 * This page is now full.  Move it to the full list
1149 		 * and select a new current page.
1150 		 */
1151 		LIST_REMOVE(ph, ph_pagelist);
1152 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1153 		pool_update_curpage(pp);
1154 	}
1155 
1156 	pp->pr_nget++;
1157 	pr_leave(pp);
1158 
1159 	/*
1160 	 * If we have a low water mark and we are now below that low
1161 	 * water mark, add more items to the pool.
1162 	 */
1163 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1164 		/*
1165 		 * XXX: Should we log a warning?  Should we set up a timeout
1166 		 * to try again in a second or so?  The latter could break
1167 		 * a caller's assumptions about interrupt protection, etc.
1168 		 */
1169 	}
1170 
1171 	mutex_exit(&pp->pr_lock);
1172 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1173 	FREECHECK_OUT(&pp->pr_freecheck, v);
1174 	return (v);
1175 }
1176 
1177 /*
1178  * Internal version of pool_put().  Pool is already locked/entered.
1179  */
1180 static void
1181 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1182 {
1183 	struct pool_item *pi = v;
1184 	struct pool_item_header *ph;
1185 
1186 	KASSERT(mutex_owned(&pp->pr_lock));
1187 	FREECHECK_IN(&pp->pr_freecheck, v);
1188 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1189 
1190 #ifdef DIAGNOSTIC
1191 	if (__predict_false(pp->pr_nout == 0)) {
1192 		printf("pool %s: putting with none out\n",
1193 		    pp->pr_wchan);
1194 		panic("pool_put");
1195 	}
1196 #endif
1197 
1198 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1199 		pr_printlog(pp, NULL, printf);
1200 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1201 	}
1202 
1203 	/*
1204 	 * Return to item list.
1205 	 */
1206 	if (pp->pr_roflags & PR_NOTOUCH) {
1207 		pr_item_notouch_put(pp, ph, v);
1208 	} else {
1209 #ifdef DIAGNOSTIC
1210 		pi->pi_magic = PI_MAGIC;
1211 #endif
1212 #ifdef DEBUG
1213 		{
1214 			int i, *ip = v;
1215 
1216 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1217 				*ip++ = PI_MAGIC;
1218 			}
1219 		}
1220 #endif
1221 
1222 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1223 	}
1224 	KDASSERT(ph->ph_nmissing != 0);
1225 	ph->ph_nmissing--;
1226 	pp->pr_nput++;
1227 	pp->pr_nitems++;
1228 	pp->pr_nout--;
1229 
1230 	/* Cancel "pool empty" condition if it exists */
1231 	if (pp->pr_curpage == NULL)
1232 		pp->pr_curpage = ph;
1233 
1234 	if (pp->pr_flags & PR_WANTED) {
1235 		pp->pr_flags &= ~PR_WANTED;
1236 		if (ph->ph_nmissing == 0)
1237 			pp->pr_nidle++;
1238 		cv_broadcast(&pp->pr_cv);
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * If this page is now empty, do one of two things:
1244 	 *
1245 	 *	(1) If we have more pages than the page high water mark,
1246 	 *	    free the page back to the system.  ONLY CONSIDER
1247 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1248 	 *	    CLAIM.
1249 	 *
1250 	 *	(2) Otherwise, move the page to the empty page list.
1251 	 *
1252 	 * Either way, select a new current page (so we use a partially-full
1253 	 * page if one is available).
1254 	 */
1255 	if (ph->ph_nmissing == 0) {
1256 		pp->pr_nidle++;
1257 		if (pp->pr_npages > pp->pr_minpages &&
1258 		    (pp->pr_npages > pp->pr_maxpages ||
1259 		     pa_starved_p(pp->pr_alloc))) {
1260 			pr_rmpage(pp, ph, pq);
1261 		} else {
1262 			LIST_REMOVE(ph, ph_pagelist);
1263 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1264 
1265 			/*
1266 			 * Update the timestamp on the page.  A page must
1267 			 * be idle for some period of time before it can
1268 			 * be reclaimed by the pagedaemon.  This minimizes
1269 			 * ping-pong'ing for memory.
1270 			 */
1271 			getmicrotime(&ph->ph_time);
1272 		}
1273 		pool_update_curpage(pp);
1274 	}
1275 
1276 	/*
1277 	 * If the page was previously completely full, move it to the
1278 	 * partially-full list and make it the current page.  The next
1279 	 * allocation will get the item from this page, instead of
1280 	 * further fragmenting the pool.
1281 	 */
1282 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1283 		LIST_REMOVE(ph, ph_pagelist);
1284 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1285 		pp->pr_curpage = ph;
1286 	}
1287 }
1288 
1289 /*
1290  * Return resource to the pool.
1291  */
1292 #ifdef POOL_DIAGNOSTIC
1293 void
1294 _pool_put(struct pool *pp, void *v, const char *file, long line)
1295 {
1296 	struct pool_pagelist pq;
1297 
1298 	LIST_INIT(&pq);
1299 
1300 	mutex_enter(&pp->pr_lock);
1301 	pr_enter(pp, file, line);
1302 
1303 	pr_log(pp, v, PRLOG_PUT, file, line);
1304 
1305 	pool_do_put(pp, v, &pq);
1306 
1307 	pr_leave(pp);
1308 	mutex_exit(&pp->pr_lock);
1309 
1310 	pr_pagelist_free(pp, &pq);
1311 }
1312 #undef pool_put
1313 #endif /* POOL_DIAGNOSTIC */
1314 
1315 void
1316 pool_put(struct pool *pp, void *v)
1317 {
1318 	struct pool_pagelist pq;
1319 
1320 	LIST_INIT(&pq);
1321 
1322 	mutex_enter(&pp->pr_lock);
1323 	pool_do_put(pp, v, &pq);
1324 	mutex_exit(&pp->pr_lock);
1325 
1326 	pr_pagelist_free(pp, &pq);
1327 }
1328 
1329 #ifdef POOL_DIAGNOSTIC
1330 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1331 #endif
1332 
1333 /*
1334  * pool_grow: grow a pool by a page.
1335  *
1336  * => called with pool locked.
1337  * => unlock and relock the pool.
1338  * => return with pool locked.
1339  */
1340 
1341 static int
1342 pool_grow(struct pool *pp, int flags)
1343 {
1344 	struct pool_item_header *ph = NULL;
1345 	char *cp;
1346 
1347 	mutex_exit(&pp->pr_lock);
1348 	cp = pool_allocator_alloc(pp, flags);
1349 	if (__predict_true(cp != NULL)) {
1350 		ph = pool_alloc_item_header(pp, cp, flags);
1351 	}
1352 	if (__predict_false(cp == NULL || ph == NULL)) {
1353 		if (cp != NULL) {
1354 			pool_allocator_free(pp, cp);
1355 		}
1356 		mutex_enter(&pp->pr_lock);
1357 		return ENOMEM;
1358 	}
1359 
1360 	mutex_enter(&pp->pr_lock);
1361 	pool_prime_page(pp, cp, ph);
1362 	pp->pr_npagealloc++;
1363 	return 0;
1364 }
1365 
1366 /*
1367  * Add N items to the pool.
1368  */
1369 int
1370 pool_prime(struct pool *pp, int n)
1371 {
1372 	int newpages;
1373 	int error = 0;
1374 
1375 	mutex_enter(&pp->pr_lock);
1376 
1377 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1378 
1379 	while (newpages-- > 0) {
1380 		error = pool_grow(pp, PR_NOWAIT);
1381 		if (error) {
1382 			break;
1383 		}
1384 		pp->pr_minpages++;
1385 	}
1386 
1387 	if (pp->pr_minpages >= pp->pr_maxpages)
1388 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1389 
1390 	mutex_exit(&pp->pr_lock);
1391 	return error;
1392 }
1393 
1394 /*
1395  * Add a page worth of items to the pool.
1396  *
1397  * Note, we must be called with the pool descriptor LOCKED.
1398  */
1399 static void
1400 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1401 {
1402 	struct pool_item *pi;
1403 	void *cp = storage;
1404 	const unsigned int align = pp->pr_align;
1405 	const unsigned int ioff = pp->pr_itemoffset;
1406 	int n;
1407 
1408 	KASSERT(mutex_owned(&pp->pr_lock));
1409 
1410 #ifdef DIAGNOSTIC
1411 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1412 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1413 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1414 #endif
1415 
1416 	/*
1417 	 * Insert page header.
1418 	 */
1419 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1420 	LIST_INIT(&ph->ph_itemlist);
1421 	ph->ph_page = storage;
1422 	ph->ph_nmissing = 0;
1423 	getmicrotime(&ph->ph_time);
1424 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1425 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1426 
1427 	pp->pr_nidle++;
1428 
1429 	/*
1430 	 * Color this page.
1431 	 */
1432 	cp = (char *)cp + pp->pr_curcolor;
1433 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1434 		pp->pr_curcolor = 0;
1435 
1436 	/*
1437 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1438 	 */
1439 	if (ioff != 0)
1440 		cp = (char *)cp + align - ioff;
1441 
1442 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1443 
1444 	/*
1445 	 * Insert remaining chunks on the bucket list.
1446 	 */
1447 	n = pp->pr_itemsperpage;
1448 	pp->pr_nitems += n;
1449 
1450 	if (pp->pr_roflags & PR_NOTOUCH) {
1451 		pr_item_notouch_init(pp, ph);
1452 	} else {
1453 		while (n--) {
1454 			pi = (struct pool_item *)cp;
1455 
1456 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1457 
1458 			/* Insert on page list */
1459 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1460 #ifdef DIAGNOSTIC
1461 			pi->pi_magic = PI_MAGIC;
1462 #endif
1463 			cp = (char *)cp + pp->pr_size;
1464 
1465 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1466 		}
1467 	}
1468 
1469 	/*
1470 	 * If the pool was depleted, point at the new page.
1471 	 */
1472 	if (pp->pr_curpage == NULL)
1473 		pp->pr_curpage = ph;
1474 
1475 	if (++pp->pr_npages > pp->pr_hiwat)
1476 		pp->pr_hiwat = pp->pr_npages;
1477 }
1478 
1479 /*
1480  * Used by pool_get() when nitems drops below the low water mark.  This
1481  * is used to catch up pr_nitems with the low water mark.
1482  *
1483  * Note 1, we never wait for memory here, we let the caller decide what to do.
1484  *
1485  * Note 2, we must be called with the pool already locked, and we return
1486  * with it locked.
1487  */
1488 static int
1489 pool_catchup(struct pool *pp)
1490 {
1491 	int error = 0;
1492 
1493 	while (POOL_NEEDS_CATCHUP(pp)) {
1494 		error = pool_grow(pp, PR_NOWAIT);
1495 		if (error) {
1496 			break;
1497 		}
1498 	}
1499 	return error;
1500 }
1501 
1502 static void
1503 pool_update_curpage(struct pool *pp)
1504 {
1505 
1506 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1507 	if (pp->pr_curpage == NULL) {
1508 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1509 	}
1510 }
1511 
1512 void
1513 pool_setlowat(struct pool *pp, int n)
1514 {
1515 
1516 	mutex_enter(&pp->pr_lock);
1517 
1518 	pp->pr_minitems = n;
1519 	pp->pr_minpages = (n == 0)
1520 		? 0
1521 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1522 
1523 	/* Make sure we're caught up with the newly-set low water mark. */
1524 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1525 		/*
1526 		 * XXX: Should we log a warning?  Should we set up a timeout
1527 		 * to try again in a second or so?  The latter could break
1528 		 * a caller's assumptions about interrupt protection, etc.
1529 		 */
1530 	}
1531 
1532 	mutex_exit(&pp->pr_lock);
1533 }
1534 
1535 void
1536 pool_sethiwat(struct pool *pp, int n)
1537 {
1538 
1539 	mutex_enter(&pp->pr_lock);
1540 
1541 	pp->pr_maxpages = (n == 0)
1542 		? 0
1543 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1544 
1545 	mutex_exit(&pp->pr_lock);
1546 }
1547 
1548 void
1549 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1550 {
1551 
1552 	mutex_enter(&pp->pr_lock);
1553 
1554 	pp->pr_hardlimit = n;
1555 	pp->pr_hardlimit_warning = warnmess;
1556 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1557 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1558 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1559 
1560 	/*
1561 	 * In-line version of pool_sethiwat(), because we don't want to
1562 	 * release the lock.
1563 	 */
1564 	pp->pr_maxpages = (n == 0)
1565 		? 0
1566 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1567 
1568 	mutex_exit(&pp->pr_lock);
1569 }
1570 
1571 /*
1572  * Release all complete pages that have not been used recently.
1573  */
1574 int
1575 #ifdef POOL_DIAGNOSTIC
1576 _pool_reclaim(struct pool *pp, const char *file, long line)
1577 #else
1578 pool_reclaim(struct pool *pp)
1579 #endif
1580 {
1581 	struct pool_item_header *ph, *phnext;
1582 	struct pool_pagelist pq;
1583 	struct timeval curtime, diff;
1584 	bool klock;
1585 	int rv;
1586 
1587 	if (pp->pr_drain_hook != NULL) {
1588 		/*
1589 		 * The drain hook must be called with the pool unlocked.
1590 		 */
1591 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1592 	}
1593 
1594 	/*
1595 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1596 	 * and we are called from the pagedaemon without kernel_lock.
1597 	 * Does not apply to IPL_SOFTBIO.
1598 	 */
1599 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1600 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1601 		KERNEL_LOCK(1, NULL);
1602 		klock = true;
1603 	} else
1604 		klock = false;
1605 
1606 	/* Reclaim items from the pool's cache (if any). */
1607 	if (pp->pr_cache != NULL)
1608 		pool_cache_invalidate(pp->pr_cache);
1609 
1610 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1611 		if (klock) {
1612 			KERNEL_UNLOCK_ONE(NULL);
1613 		}
1614 		return (0);
1615 	}
1616 	pr_enter(pp, file, line);
1617 
1618 	LIST_INIT(&pq);
1619 
1620 	getmicrotime(&curtime);
1621 
1622 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1623 		phnext = LIST_NEXT(ph, ph_pagelist);
1624 
1625 		/* Check our minimum page claim */
1626 		if (pp->pr_npages <= pp->pr_minpages)
1627 			break;
1628 
1629 		KASSERT(ph->ph_nmissing == 0);
1630 		timersub(&curtime, &ph->ph_time, &diff);
1631 		if (diff.tv_sec < pool_inactive_time
1632 		    && !pa_starved_p(pp->pr_alloc))
1633 			continue;
1634 
1635 		/*
1636 		 * If freeing this page would put us below
1637 		 * the low water mark, stop now.
1638 		 */
1639 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1640 		    pp->pr_minitems)
1641 			break;
1642 
1643 		pr_rmpage(pp, ph, &pq);
1644 	}
1645 
1646 	pr_leave(pp);
1647 	mutex_exit(&pp->pr_lock);
1648 
1649 	if (LIST_EMPTY(&pq))
1650 		rv = 0;
1651 	else {
1652 		pr_pagelist_free(pp, &pq);
1653 		rv = 1;
1654 	}
1655 
1656 	if (klock) {
1657 		KERNEL_UNLOCK_ONE(NULL);
1658 	}
1659 
1660 	return (rv);
1661 }
1662 
1663 /*
1664  * Drain pools, one at a time.  This is a two stage process;
1665  * drain_start kicks off a cross call to drain CPU-level caches
1666  * if the pool has an associated pool_cache.  drain_end waits
1667  * for those cross calls to finish, and then drains the cache
1668  * (if any) and pool.
1669  *
1670  * Note, must never be called from interrupt context.
1671  */
1672 void
1673 pool_drain_start(struct pool **ppp, uint64_t *wp)
1674 {
1675 	struct pool *pp;
1676 
1677 	KASSERT(!LIST_EMPTY(&pool_head));
1678 
1679 	pp = NULL;
1680 
1681 	/* Find next pool to drain, and add a reference. */
1682 	mutex_enter(&pool_head_lock);
1683 	do {
1684 		if (drainpp == NULL) {
1685 			drainpp = LIST_FIRST(&pool_head);
1686 		}
1687 		if (drainpp != NULL) {
1688 			pp = drainpp;
1689 			drainpp = LIST_NEXT(pp, pr_poollist);
1690 		}
1691 		/*
1692 		 * Skip completely idle pools.  We depend on at least
1693 		 * one pool in the system being active.
1694 		 */
1695 	} while (pp == NULL || pp->pr_npages == 0);
1696 	pp->pr_refcnt++;
1697 	mutex_exit(&pool_head_lock);
1698 
1699 	/* If there is a pool_cache, drain CPU level caches. */
1700 	*ppp = pp;
1701 	if (pp->pr_cache != NULL) {
1702 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1703 		    pp->pr_cache, NULL);
1704 	}
1705 }
1706 
1707 void
1708 pool_drain_end(struct pool *pp, uint64_t where)
1709 {
1710 
1711 	if (pp == NULL)
1712 		return;
1713 
1714 	KASSERT(pp->pr_refcnt > 0);
1715 
1716 	/* Wait for remote draining to complete. */
1717 	if (pp->pr_cache != NULL)
1718 		xc_wait(where);
1719 
1720 	/* Drain the cache (if any) and pool.. */
1721 	pool_reclaim(pp);
1722 
1723 	/* Finally, unlock the pool. */
1724 	mutex_enter(&pool_head_lock);
1725 	pp->pr_refcnt--;
1726 	cv_broadcast(&pool_busy);
1727 	mutex_exit(&pool_head_lock);
1728 }
1729 
1730 /*
1731  * Diagnostic helpers.
1732  */
1733 void
1734 pool_print(struct pool *pp, const char *modif)
1735 {
1736 
1737 	pool_print1(pp, modif, printf);
1738 }
1739 
1740 void
1741 pool_printall(const char *modif, void (*pr)(const char *, ...))
1742 {
1743 	struct pool *pp;
1744 
1745 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
1746 		pool_printit(pp, modif, pr);
1747 	}
1748 }
1749 
1750 void
1751 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1752 {
1753 
1754 	if (pp == NULL) {
1755 		(*pr)("Must specify a pool to print.\n");
1756 		return;
1757 	}
1758 
1759 	pool_print1(pp, modif, pr);
1760 }
1761 
1762 static void
1763 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1764     void (*pr)(const char *, ...))
1765 {
1766 	struct pool_item_header *ph;
1767 #ifdef DIAGNOSTIC
1768 	struct pool_item *pi;
1769 #endif
1770 
1771 	LIST_FOREACH(ph, pl, ph_pagelist) {
1772 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1773 		    ph->ph_page, ph->ph_nmissing,
1774 		    (u_long)ph->ph_time.tv_sec,
1775 		    (u_long)ph->ph_time.tv_usec);
1776 #ifdef DIAGNOSTIC
1777 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1778 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1779 				if (pi->pi_magic != PI_MAGIC) {
1780 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1781 					    pi, pi->pi_magic);
1782 				}
1783 			}
1784 		}
1785 #endif
1786 	}
1787 }
1788 
1789 static void
1790 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1791 {
1792 	struct pool_item_header *ph;
1793 	pool_cache_t pc;
1794 	pcg_t *pcg;
1795 	pool_cache_cpu_t *cc;
1796 	uint64_t cpuhit, cpumiss;
1797 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1798 	char c;
1799 
1800 	while ((c = *modif++) != '\0') {
1801 		if (c == 'l')
1802 			print_log = 1;
1803 		if (c == 'p')
1804 			print_pagelist = 1;
1805 		if (c == 'c')
1806 			print_cache = 1;
1807 	}
1808 
1809 	if ((pc = pp->pr_cache) != NULL) {
1810 		(*pr)("POOL CACHE");
1811 	} else {
1812 		(*pr)("POOL");
1813 	}
1814 
1815 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1816 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1817 	    pp->pr_roflags);
1818 	(*pr)("\talloc %p\n", pp->pr_alloc);
1819 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1820 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1821 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1822 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1823 
1824 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1825 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1826 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1827 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1828 
1829 	if (print_pagelist == 0)
1830 		goto skip_pagelist;
1831 
1832 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1833 		(*pr)("\n\tempty page list:\n");
1834 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1835 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1836 		(*pr)("\n\tfull page list:\n");
1837 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1838 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1839 		(*pr)("\n\tpartial-page list:\n");
1840 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1841 
1842 	if (pp->pr_curpage == NULL)
1843 		(*pr)("\tno current page\n");
1844 	else
1845 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1846 
1847  skip_pagelist:
1848 	if (print_log == 0)
1849 		goto skip_log;
1850 
1851 	(*pr)("\n");
1852 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1853 		(*pr)("\tno log\n");
1854 	else {
1855 		pr_printlog(pp, NULL, pr);
1856 	}
1857 
1858  skip_log:
1859 
1860 #define PR_GROUPLIST(pcg)						\
1861 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1862 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
1863 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1864 		    POOL_PADDR_INVALID) {				\
1865 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1866 			    pcg->pcg_objects[i].pcgo_va,		\
1867 			    (unsigned long long)			\
1868 			    pcg->pcg_objects[i].pcgo_pa);		\
1869 		} else {						\
1870 			(*pr)("\t\t\t%p\n",				\
1871 			    pcg->pcg_objects[i].pcgo_va);		\
1872 		}							\
1873 	}
1874 
1875 	if (pc != NULL) {
1876 		cpuhit = 0;
1877 		cpumiss = 0;
1878 		for (i = 0; i < MAXCPUS; i++) {
1879 			if ((cc = pc->pc_cpus[i]) == NULL)
1880 				continue;
1881 			cpuhit += cc->cc_hits;
1882 			cpumiss += cc->cc_misses;
1883 		}
1884 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1885 		(*pr)("\tcache layer hits %llu misses %llu\n",
1886 		    pc->pc_hits, pc->pc_misses);
1887 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1888 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1889 		    pc->pc_contended);
1890 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1891 		    pc->pc_nempty, pc->pc_nfull);
1892 		if (print_cache) {
1893 			(*pr)("\tfull cache groups:\n");
1894 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1895 			    pcg = pcg->pcg_next) {
1896 				PR_GROUPLIST(pcg);
1897 			}
1898 			(*pr)("\tempty cache groups:\n");
1899 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1900 			    pcg = pcg->pcg_next) {
1901 				PR_GROUPLIST(pcg);
1902 			}
1903 		}
1904 	}
1905 #undef PR_GROUPLIST
1906 
1907 	pr_enter_check(pp, pr);
1908 }
1909 
1910 static int
1911 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1912 {
1913 	struct pool_item *pi;
1914 	void *page;
1915 	int n;
1916 
1917 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1918 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1919 		if (page != ph->ph_page &&
1920 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1921 			if (label != NULL)
1922 				printf("%s: ", label);
1923 			printf("pool(%p:%s): page inconsistency: page %p;"
1924 			       " at page head addr %p (p %p)\n", pp,
1925 				pp->pr_wchan, ph->ph_page,
1926 				ph, page);
1927 			return 1;
1928 		}
1929 	}
1930 
1931 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1932 		return 0;
1933 
1934 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1935 	     pi != NULL;
1936 	     pi = LIST_NEXT(pi,pi_list), n++) {
1937 
1938 #ifdef DIAGNOSTIC
1939 		if (pi->pi_magic != PI_MAGIC) {
1940 			if (label != NULL)
1941 				printf("%s: ", label);
1942 			printf("pool(%s): free list modified: magic=%x;"
1943 			       " page %p; item ordinal %d; addr %p\n",
1944 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1945 				n, pi);
1946 			panic("pool");
1947 		}
1948 #endif
1949 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1950 			continue;
1951 		}
1952 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1953 		if (page == ph->ph_page)
1954 			continue;
1955 
1956 		if (label != NULL)
1957 			printf("%s: ", label);
1958 		printf("pool(%p:%s): page inconsistency: page %p;"
1959 		       " item ordinal %d; addr %p (p %p)\n", pp,
1960 			pp->pr_wchan, ph->ph_page,
1961 			n, pi, page);
1962 		return 1;
1963 	}
1964 	return 0;
1965 }
1966 
1967 
1968 int
1969 pool_chk(struct pool *pp, const char *label)
1970 {
1971 	struct pool_item_header *ph;
1972 	int r = 0;
1973 
1974 	mutex_enter(&pp->pr_lock);
1975 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1976 		r = pool_chk_page(pp, label, ph);
1977 		if (r) {
1978 			goto out;
1979 		}
1980 	}
1981 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1982 		r = pool_chk_page(pp, label, ph);
1983 		if (r) {
1984 			goto out;
1985 		}
1986 	}
1987 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1988 		r = pool_chk_page(pp, label, ph);
1989 		if (r) {
1990 			goto out;
1991 		}
1992 	}
1993 
1994 out:
1995 	mutex_exit(&pp->pr_lock);
1996 	return (r);
1997 }
1998 
1999 /*
2000  * pool_cache_init:
2001  *
2002  *	Initialize a pool cache.
2003  */
2004 pool_cache_t
2005 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2006     const char *wchan, struct pool_allocator *palloc, int ipl,
2007     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2008 {
2009 	pool_cache_t pc;
2010 
2011 	pc = pool_get(&cache_pool, PR_WAITOK);
2012 	if (pc == NULL)
2013 		return NULL;
2014 
2015 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2016 	   palloc, ipl, ctor, dtor, arg);
2017 
2018 	return pc;
2019 }
2020 
2021 /*
2022  * pool_cache_bootstrap:
2023  *
2024  *	Kernel-private version of pool_cache_init().  The caller
2025  *	provides initial storage.
2026  */
2027 void
2028 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2029     u_int align_offset, u_int flags, const char *wchan,
2030     struct pool_allocator *palloc, int ipl,
2031     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2032     void *arg)
2033 {
2034 	CPU_INFO_ITERATOR cii;
2035 	struct cpu_info *ci;
2036 	struct pool *pp;
2037 
2038 	pp = &pc->pc_pool;
2039 	if (palloc == NULL && ipl == IPL_NONE)
2040 		palloc = &pool_allocator_nointr;
2041 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2042 
2043 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
2044 
2045 	if (ctor == NULL) {
2046 		ctor = (int (*)(void *, void *, int))nullop;
2047 	}
2048 	if (dtor == NULL) {
2049 		dtor = (void (*)(void *, void *))nullop;
2050 	}
2051 
2052 	pc->pc_emptygroups = NULL;
2053 	pc->pc_fullgroups = NULL;
2054 	pc->pc_partgroups = NULL;
2055 	pc->pc_ctor = ctor;
2056 	pc->pc_dtor = dtor;
2057 	pc->pc_arg  = arg;
2058 	pc->pc_hits  = 0;
2059 	pc->pc_misses = 0;
2060 	pc->pc_nempty = 0;
2061 	pc->pc_npart = 0;
2062 	pc->pc_nfull = 0;
2063 	pc->pc_contended = 0;
2064 	pc->pc_refcnt = 0;
2065 	pc->pc_freecheck = NULL;
2066 
2067 	/* Allocate per-CPU caches. */
2068 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2069 	pc->pc_ncpu = 0;
2070 	if (ncpu == 0) {
2071 		/* XXX For sparc: boot CPU is not attached yet. */
2072 		pool_cache_cpu_init1(curcpu(), pc);
2073 	} else {
2074 		for (CPU_INFO_FOREACH(cii, ci)) {
2075 			pool_cache_cpu_init1(ci, pc);
2076 		}
2077 	}
2078 
2079 	if (__predict_true(!cold)) {
2080 		mutex_enter(&pp->pr_lock);
2081 		pp->pr_cache = pc;
2082 		mutex_exit(&pp->pr_lock);
2083 		mutex_enter(&pool_head_lock);
2084 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2085 		mutex_exit(&pool_head_lock);
2086 	} else {
2087 		pp->pr_cache = pc;
2088 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2089 	}
2090 }
2091 
2092 /*
2093  * pool_cache_destroy:
2094  *
2095  *	Destroy a pool cache.
2096  */
2097 void
2098 pool_cache_destroy(pool_cache_t pc)
2099 {
2100 	struct pool *pp = &pc->pc_pool;
2101 	pool_cache_cpu_t *cc;
2102 	pcg_t *pcg;
2103 	int i;
2104 
2105 	/* Remove it from the global list. */
2106 	mutex_enter(&pool_head_lock);
2107 	while (pc->pc_refcnt != 0)
2108 		cv_wait(&pool_busy, &pool_head_lock);
2109 	LIST_REMOVE(pc, pc_cachelist);
2110 	mutex_exit(&pool_head_lock);
2111 
2112 	/* First, invalidate the entire cache. */
2113 	pool_cache_invalidate(pc);
2114 
2115 	/* Disassociate it from the pool. */
2116 	mutex_enter(&pp->pr_lock);
2117 	pp->pr_cache = NULL;
2118 	mutex_exit(&pp->pr_lock);
2119 
2120 	/* Destroy per-CPU data */
2121 	for (i = 0; i < MAXCPUS; i++) {
2122 		if ((cc = pc->pc_cpus[i]) == NULL)
2123 			continue;
2124 		if ((pcg = cc->cc_current) != NULL) {
2125 			pcg->pcg_next = NULL;
2126 			pool_cache_invalidate_groups(pc, pcg);
2127 		}
2128 		if ((pcg = cc->cc_previous) != NULL) {
2129 			pcg->pcg_next = NULL;
2130 			pool_cache_invalidate_groups(pc, pcg);
2131 		}
2132 		if (cc != &pc->pc_cpu0)
2133 			pool_put(&cache_cpu_pool, cc);
2134 	}
2135 
2136 	/* Finally, destroy it. */
2137 	mutex_destroy(&pc->pc_lock);
2138 	pool_destroy(pp);
2139 	pool_put(&cache_pool, pc);
2140 }
2141 
2142 /*
2143  * pool_cache_cpu_init1:
2144  *
2145  *	Called for each pool_cache whenever a new CPU is attached.
2146  */
2147 static void
2148 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2149 {
2150 	pool_cache_cpu_t *cc;
2151 	int index;
2152 
2153 	index = ci->ci_index;
2154 
2155 	KASSERT(index < MAXCPUS);
2156 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2157 
2158 	if ((cc = pc->pc_cpus[index]) != NULL) {
2159 		KASSERT(cc->cc_cpuindex == index);
2160 		return;
2161 	}
2162 
2163 	/*
2164 	 * The first CPU is 'free'.  This needs to be the case for
2165 	 * bootstrap - we may not be able to allocate yet.
2166 	 */
2167 	if (pc->pc_ncpu == 0) {
2168 		cc = &pc->pc_cpu0;
2169 		pc->pc_ncpu = 1;
2170 	} else {
2171 		mutex_enter(&pc->pc_lock);
2172 		pc->pc_ncpu++;
2173 		mutex_exit(&pc->pc_lock);
2174 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2175 	}
2176 
2177 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2178 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2179 	cc->cc_cache = pc;
2180 	cc->cc_cpuindex = index;
2181 	cc->cc_hits = 0;
2182 	cc->cc_misses = 0;
2183 	cc->cc_current = NULL;
2184 	cc->cc_previous = NULL;
2185 
2186 	pc->pc_cpus[index] = cc;
2187 }
2188 
2189 /*
2190  * pool_cache_cpu_init:
2191  *
2192  *	Called whenever a new CPU is attached.
2193  */
2194 void
2195 pool_cache_cpu_init(struct cpu_info *ci)
2196 {
2197 	pool_cache_t pc;
2198 
2199 	mutex_enter(&pool_head_lock);
2200 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2201 		pc->pc_refcnt++;
2202 		mutex_exit(&pool_head_lock);
2203 
2204 		pool_cache_cpu_init1(ci, pc);
2205 
2206 		mutex_enter(&pool_head_lock);
2207 		pc->pc_refcnt--;
2208 		cv_broadcast(&pool_busy);
2209 	}
2210 	mutex_exit(&pool_head_lock);
2211 }
2212 
2213 /*
2214  * pool_cache_reclaim:
2215  *
2216  *	Reclaim memory from a pool cache.
2217  */
2218 bool
2219 pool_cache_reclaim(pool_cache_t pc)
2220 {
2221 
2222 	return pool_reclaim(&pc->pc_pool);
2223 }
2224 
2225 static void
2226 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2227 {
2228 
2229 	(*pc->pc_dtor)(pc->pc_arg, object);
2230 	pool_put(&pc->pc_pool, object);
2231 }
2232 
2233 /*
2234  * pool_cache_destruct_object:
2235  *
2236  *	Force destruction of an object and its release back into
2237  *	the pool.
2238  */
2239 void
2240 pool_cache_destruct_object(pool_cache_t pc, void *object)
2241 {
2242 
2243 	FREECHECK_IN(&pc->pc_freecheck, object);
2244 
2245 	pool_cache_destruct_object1(pc, object);
2246 }
2247 
2248 /*
2249  * pool_cache_invalidate_groups:
2250  *
2251  *	Invalidate a chain of groups and destruct all objects.
2252  */
2253 static void
2254 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2255 {
2256 	void *object;
2257 	pcg_t *next;
2258 	int i;
2259 
2260 	for (; pcg != NULL; pcg = next) {
2261 		next = pcg->pcg_next;
2262 
2263 		for (i = 0; i < pcg->pcg_avail; i++) {
2264 			object = pcg->pcg_objects[i].pcgo_va;
2265 			pool_cache_destruct_object1(pc, object);
2266 		}
2267 
2268 		pool_put(&pcgpool, pcg);
2269 	}
2270 }
2271 
2272 /*
2273  * pool_cache_invalidate:
2274  *
2275  *	Invalidate a pool cache (destruct and release all of the
2276  *	cached objects).  Does not reclaim objects from the pool.
2277  */
2278 void
2279 pool_cache_invalidate(pool_cache_t pc)
2280 {
2281 	pcg_t *full, *empty, *part;
2282 
2283 	mutex_enter(&pc->pc_lock);
2284 	full = pc->pc_fullgroups;
2285 	empty = pc->pc_emptygroups;
2286 	part = pc->pc_partgroups;
2287 	pc->pc_fullgroups = NULL;
2288 	pc->pc_emptygroups = NULL;
2289 	pc->pc_partgroups = NULL;
2290 	pc->pc_nfull = 0;
2291 	pc->pc_nempty = 0;
2292 	pc->pc_npart = 0;
2293 	mutex_exit(&pc->pc_lock);
2294 
2295 	pool_cache_invalidate_groups(pc, full);
2296 	pool_cache_invalidate_groups(pc, empty);
2297 	pool_cache_invalidate_groups(pc, part);
2298 }
2299 
2300 void
2301 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2302 {
2303 
2304 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2305 }
2306 
2307 void
2308 pool_cache_setlowat(pool_cache_t pc, int n)
2309 {
2310 
2311 	pool_setlowat(&pc->pc_pool, n);
2312 }
2313 
2314 void
2315 pool_cache_sethiwat(pool_cache_t pc, int n)
2316 {
2317 
2318 	pool_sethiwat(&pc->pc_pool, n);
2319 }
2320 
2321 void
2322 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2323 {
2324 
2325 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2326 }
2327 
2328 static inline pool_cache_cpu_t *
2329 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2330 {
2331 	pool_cache_cpu_t *cc;
2332 
2333 	/*
2334 	 * Prevent other users of the cache from accessing our
2335 	 * CPU-local data.  To avoid touching shared state, we
2336 	 * pull the neccessary information from CPU local data.
2337 	 */
2338 	crit_enter();
2339 	cc = pc->pc_cpus[curcpu()->ci_index];
2340 	KASSERT(cc->cc_cache == pc);
2341 	if (cc->cc_ipl != IPL_NONE) {
2342 		*s = splraiseipl(cc->cc_iplcookie);
2343 	}
2344 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2345 
2346 	return cc;
2347 }
2348 
2349 static inline void
2350 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2351 {
2352 
2353 	/* No longer need exclusive access to the per-CPU data. */
2354 	if (cc->cc_ipl != IPL_NONE) {
2355 		splx(*s);
2356 	}
2357 	crit_exit();
2358 }
2359 
2360 #if __GNUC_PREREQ__(3, 0)
2361 __attribute ((noinline))
2362 #endif
2363 pool_cache_cpu_t *
2364 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2365 		    paddr_t *pap, int flags)
2366 {
2367 	pcg_t *pcg, *cur;
2368 	uint64_t ncsw;
2369 	pool_cache_t pc;
2370 	void *object;
2371 
2372 	pc = cc->cc_cache;
2373 	cc->cc_misses++;
2374 
2375 	/*
2376 	 * Nothing was available locally.  Try and grab a group
2377 	 * from the cache.
2378 	 */
2379 	if (!mutex_tryenter(&pc->pc_lock)) {
2380 		ncsw = curlwp->l_ncsw;
2381 		mutex_enter(&pc->pc_lock);
2382 		pc->pc_contended++;
2383 
2384 		/*
2385 		 * If we context switched while locking, then
2386 		 * our view of the per-CPU data is invalid:
2387 		 * retry.
2388 		 */
2389 		if (curlwp->l_ncsw != ncsw) {
2390 			mutex_exit(&pc->pc_lock);
2391 			pool_cache_cpu_exit(cc, s);
2392 			return pool_cache_cpu_enter(pc, s);
2393 		}
2394 	}
2395 
2396 	if ((pcg = pc->pc_fullgroups) != NULL) {
2397 		/*
2398 		 * If there's a full group, release our empty
2399 		 * group back to the cache.  Install the full
2400 		 * group as cc_current and return.
2401 		 */
2402 		if ((cur = cc->cc_current) != NULL) {
2403 			KASSERT(cur->pcg_avail == 0);
2404 			cur->pcg_next = pc->pc_emptygroups;
2405 			pc->pc_emptygroups = cur;
2406 			pc->pc_nempty++;
2407 		}
2408 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2409 		cc->cc_current = pcg;
2410 		pc->pc_fullgroups = pcg->pcg_next;
2411 		pc->pc_hits++;
2412 		pc->pc_nfull--;
2413 		mutex_exit(&pc->pc_lock);
2414 		return cc;
2415 	}
2416 
2417 	/*
2418 	 * Nothing available locally or in cache.  Take the slow
2419 	 * path: fetch a new object from the pool and construct
2420 	 * it.
2421 	 */
2422 	pc->pc_misses++;
2423 	mutex_exit(&pc->pc_lock);
2424 	pool_cache_cpu_exit(cc, s);
2425 
2426 	object = pool_get(&pc->pc_pool, flags);
2427 	*objectp = object;
2428 	if (object == NULL)
2429 		return NULL;
2430 
2431 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2432 		pool_put(&pc->pc_pool, object);
2433 		*objectp = NULL;
2434 		return NULL;
2435 	}
2436 
2437 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2438 	    (pc->pc_pool.pr_align - 1)) == 0);
2439 
2440 	if (pap != NULL) {
2441 #ifdef POOL_VTOPHYS
2442 		*pap = POOL_VTOPHYS(object);
2443 #else
2444 		*pap = POOL_PADDR_INVALID;
2445 #endif
2446 	}
2447 
2448 	FREECHECK_OUT(&pc->pc_freecheck, object);
2449 	return NULL;
2450 }
2451 
2452 /*
2453  * pool_cache_get{,_paddr}:
2454  *
2455  *	Get an object from a pool cache (optionally returning
2456  *	the physical address of the object).
2457  */
2458 void *
2459 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2460 {
2461 	pool_cache_cpu_t *cc;
2462 	pcg_t *pcg;
2463 	void *object;
2464 	int s;
2465 
2466 #ifdef LOCKDEBUG
2467 	if (flags & PR_WAITOK)
2468 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2469 #endif
2470 
2471 	cc = pool_cache_cpu_enter(pc, &s);
2472 	do {
2473 		/* Try and allocate an object from the current group. */
2474 	 	pcg = cc->cc_current;
2475 		if (pcg != NULL && pcg->pcg_avail > 0) {
2476 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2477 			if (pap != NULL)
2478 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2479 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2480 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2481 			KASSERT(object != NULL);
2482 			cc->cc_hits++;
2483 			pool_cache_cpu_exit(cc, &s);
2484 			FREECHECK_OUT(&pc->pc_freecheck, object);
2485 			return object;
2486 		}
2487 
2488 		/*
2489 		 * That failed.  If the previous group isn't empty, swap
2490 		 * it with the current group and allocate from there.
2491 		 */
2492 		pcg = cc->cc_previous;
2493 		if (pcg != NULL && pcg->pcg_avail > 0) {
2494 			cc->cc_previous = cc->cc_current;
2495 			cc->cc_current = pcg;
2496 			continue;
2497 		}
2498 
2499 		/*
2500 		 * Can't allocate from either group: try the slow path.
2501 		 * If get_slow() allocated an object for us, or if
2502 		 * no more objects are available, it will return NULL.
2503 		 * Otherwise, we need to retry.
2504 		 */
2505 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2506 	} while (cc != NULL);
2507 
2508 	return object;
2509 }
2510 
2511 #if __GNUC_PREREQ__(3, 0)
2512 __attribute ((noinline))
2513 #endif
2514 pool_cache_cpu_t *
2515 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2516 {
2517 	pcg_t *pcg, *cur;
2518 	uint64_t ncsw;
2519 	pool_cache_t pc;
2520 
2521 	pc = cc->cc_cache;
2522 	cc->cc_misses++;
2523 
2524 	/*
2525 	 * No free slots locally.  Try to grab an empty, unused
2526 	 * group from the cache.
2527 	 */
2528 	if (!mutex_tryenter(&pc->pc_lock)) {
2529 		ncsw = curlwp->l_ncsw;
2530 		mutex_enter(&pc->pc_lock);
2531 		pc->pc_contended++;
2532 
2533 		/*
2534 		 * If we context switched while locking, then
2535 		 * our view of the per-CPU data is invalid:
2536 		 * retry.
2537 		 */
2538 		if (curlwp->l_ncsw != ncsw) {
2539 			mutex_exit(&pc->pc_lock);
2540 			pool_cache_cpu_exit(cc, s);
2541 			return pool_cache_cpu_enter(pc, s);
2542 		}
2543 	}
2544 
2545 	if ((pcg = pc->pc_emptygroups) != NULL) {
2546 		/*
2547 		 * If there's a empty group, release our full
2548 		 * group back to the cache.  Install the empty
2549 		 * group as cc_current and return.
2550 		 */
2551 		if ((cur = cc->cc_current) != NULL) {
2552 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2553 			cur->pcg_next = pc->pc_fullgroups;
2554 			pc->pc_fullgroups = cur;
2555 			pc->pc_nfull++;
2556 		}
2557 		KASSERT(pcg->pcg_avail == 0);
2558 		cc->cc_current = pcg;
2559 		pc->pc_emptygroups = pcg->pcg_next;
2560 		pc->pc_hits++;
2561 		pc->pc_nempty--;
2562 		mutex_exit(&pc->pc_lock);
2563 		return cc;
2564 	}
2565 
2566 	/*
2567 	 * Nothing available locally or in cache.  Take the
2568 	 * slow path and try to allocate a new group that we
2569 	 * can release to.
2570 	 */
2571 	pc->pc_misses++;
2572 	mutex_exit(&pc->pc_lock);
2573 	pool_cache_cpu_exit(cc, s);
2574 
2575 	/*
2576 	 * If we can't allocate a new group, just throw the
2577 	 * object away.
2578 	 */
2579 	pcg = pool_get(&pcgpool, PR_NOWAIT);
2580 	if (pcg == NULL) {
2581 		pool_cache_destruct_object(pc, object);
2582 		return NULL;
2583 	}
2584 #ifdef DIAGNOSTIC
2585 	memset(pcg, 0, sizeof(*pcg));
2586 #else
2587 	pcg->pcg_avail = 0;
2588 #endif
2589 
2590 	/*
2591 	 * Add the empty group to the cache and try again.
2592 	 */
2593 	mutex_enter(&pc->pc_lock);
2594 	pcg->pcg_next = pc->pc_emptygroups;
2595 	pc->pc_emptygroups = pcg;
2596 	pc->pc_nempty++;
2597 	mutex_exit(&pc->pc_lock);
2598 
2599 	return pool_cache_cpu_enter(pc, s);
2600 }
2601 
2602 /*
2603  * pool_cache_put{,_paddr}:
2604  *
2605  *	Put an object back to the pool cache (optionally caching the
2606  *	physical address of the object).
2607  */
2608 void
2609 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2610 {
2611 	pool_cache_cpu_t *cc;
2612 	pcg_t *pcg;
2613 	int s;
2614 
2615 	FREECHECK_IN(&pc->pc_freecheck, object);
2616 
2617 	cc = pool_cache_cpu_enter(pc, &s);
2618 	do {
2619 		/* If the current group isn't full, release it there. */
2620 	 	pcg = cc->cc_current;
2621 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2622 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2623 			    == NULL);
2624 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2625 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2626 			pcg->pcg_avail++;
2627 			cc->cc_hits++;
2628 			pool_cache_cpu_exit(cc, &s);
2629 			return;
2630 		}
2631 
2632 		/*
2633 		 * That failed.  If the previous group is empty, swap
2634 		 * it with the current group and try again.
2635 		 */
2636 		pcg = cc->cc_previous;
2637 		if (pcg != NULL && pcg->pcg_avail == 0) {
2638 			cc->cc_previous = cc->cc_current;
2639 			cc->cc_current = pcg;
2640 			continue;
2641 		}
2642 
2643 		/*
2644 		 * Can't free to either group: try the slow path.
2645 		 * If put_slow() releases the object for us, it
2646 		 * will return NULL.  Otherwise we need to retry.
2647 		 */
2648 		cc = pool_cache_put_slow(cc, &s, object, pa);
2649 	} while (cc != NULL);
2650 }
2651 
2652 /*
2653  * pool_cache_xcall:
2654  *
2655  *	Transfer objects from the per-CPU cache to the global cache.
2656  *	Run within a cross-call thread.
2657  */
2658 static void
2659 pool_cache_xcall(pool_cache_t pc)
2660 {
2661 	pool_cache_cpu_t *cc;
2662 	pcg_t *prev, *cur, **list;
2663 	int s = 0; /* XXXgcc */
2664 
2665 	cc = pool_cache_cpu_enter(pc, &s);
2666 	cur = cc->cc_current;
2667 	cc->cc_current = NULL;
2668 	prev = cc->cc_previous;
2669 	cc->cc_previous = NULL;
2670 	pool_cache_cpu_exit(cc, &s);
2671 
2672 	/*
2673 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2674 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
2675 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
2676 	 * kernel_lock.
2677 	 */
2678 	s = splvm();
2679 	mutex_enter(&pc->pc_lock);
2680 	if (cur != NULL) {
2681 		if (cur->pcg_avail == PCG_NOBJECTS) {
2682 			list = &pc->pc_fullgroups;
2683 			pc->pc_nfull++;
2684 		} else if (cur->pcg_avail == 0) {
2685 			list = &pc->pc_emptygroups;
2686 			pc->pc_nempty++;
2687 		} else {
2688 			list = &pc->pc_partgroups;
2689 			pc->pc_npart++;
2690 		}
2691 		cur->pcg_next = *list;
2692 		*list = cur;
2693 	}
2694 	if (prev != NULL) {
2695 		if (prev->pcg_avail == PCG_NOBJECTS) {
2696 			list = &pc->pc_fullgroups;
2697 			pc->pc_nfull++;
2698 		} else if (prev->pcg_avail == 0) {
2699 			list = &pc->pc_emptygroups;
2700 			pc->pc_nempty++;
2701 		} else {
2702 			list = &pc->pc_partgroups;
2703 			pc->pc_npart++;
2704 		}
2705 		prev->pcg_next = *list;
2706 		*list = prev;
2707 	}
2708 	mutex_exit(&pc->pc_lock);
2709 	splx(s);
2710 }
2711 
2712 /*
2713  * Pool backend allocators.
2714  *
2715  * Each pool has a backend allocator that handles allocation, deallocation,
2716  * and any additional draining that might be needed.
2717  *
2718  * We provide two standard allocators:
2719  *
2720  *	pool_allocator_kmem - the default when no allocator is specified
2721  *
2722  *	pool_allocator_nointr - used for pools that will not be accessed
2723  *	in interrupt context.
2724  */
2725 void	*pool_page_alloc(struct pool *, int);
2726 void	pool_page_free(struct pool *, void *);
2727 
2728 #ifdef POOL_SUBPAGE
2729 struct pool_allocator pool_allocator_kmem_fullpage = {
2730 	pool_page_alloc, pool_page_free, 0,
2731 	.pa_backingmapptr = &kmem_map,
2732 };
2733 #else
2734 struct pool_allocator pool_allocator_kmem = {
2735 	pool_page_alloc, pool_page_free, 0,
2736 	.pa_backingmapptr = &kmem_map,
2737 };
2738 #endif
2739 
2740 void	*pool_page_alloc_nointr(struct pool *, int);
2741 void	pool_page_free_nointr(struct pool *, void *);
2742 
2743 #ifdef POOL_SUBPAGE
2744 struct pool_allocator pool_allocator_nointr_fullpage = {
2745 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2746 	.pa_backingmapptr = &kernel_map,
2747 };
2748 #else
2749 struct pool_allocator pool_allocator_nointr = {
2750 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2751 	.pa_backingmapptr = &kernel_map,
2752 };
2753 #endif
2754 
2755 #ifdef POOL_SUBPAGE
2756 void	*pool_subpage_alloc(struct pool *, int);
2757 void	pool_subpage_free(struct pool *, void *);
2758 
2759 struct pool_allocator pool_allocator_kmem = {
2760 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2761 	.pa_backingmapptr = &kmem_map,
2762 };
2763 
2764 void	*pool_subpage_alloc_nointr(struct pool *, int);
2765 void	pool_subpage_free_nointr(struct pool *, void *);
2766 
2767 struct pool_allocator pool_allocator_nointr = {
2768 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2769 	.pa_backingmapptr = &kmem_map,
2770 };
2771 #endif /* POOL_SUBPAGE */
2772 
2773 static void *
2774 pool_allocator_alloc(struct pool *pp, int flags)
2775 {
2776 	struct pool_allocator *pa = pp->pr_alloc;
2777 	void *res;
2778 
2779 	res = (*pa->pa_alloc)(pp, flags);
2780 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2781 		/*
2782 		 * We only run the drain hook here if PR_NOWAIT.
2783 		 * In other cases, the hook will be run in
2784 		 * pool_reclaim().
2785 		 */
2786 		if (pp->pr_drain_hook != NULL) {
2787 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2788 			res = (*pa->pa_alloc)(pp, flags);
2789 		}
2790 	}
2791 	return res;
2792 }
2793 
2794 static void
2795 pool_allocator_free(struct pool *pp, void *v)
2796 {
2797 	struct pool_allocator *pa = pp->pr_alloc;
2798 
2799 	(*pa->pa_free)(pp, v);
2800 }
2801 
2802 void *
2803 pool_page_alloc(struct pool *pp, int flags)
2804 {
2805 	bool waitok = (flags & PR_WAITOK) ? true : false;
2806 
2807 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2808 }
2809 
2810 void
2811 pool_page_free(struct pool *pp, void *v)
2812 {
2813 
2814 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2815 }
2816 
2817 static void *
2818 pool_page_alloc_meta(struct pool *pp, int flags)
2819 {
2820 	bool waitok = (flags & PR_WAITOK) ? true : false;
2821 
2822 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2823 }
2824 
2825 static void
2826 pool_page_free_meta(struct pool *pp, void *v)
2827 {
2828 
2829 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2830 }
2831 
2832 #ifdef POOL_SUBPAGE
2833 /* Sub-page allocator, for machines with large hardware pages. */
2834 void *
2835 pool_subpage_alloc(struct pool *pp, int flags)
2836 {
2837 	return pool_get(&psppool, flags);
2838 }
2839 
2840 void
2841 pool_subpage_free(struct pool *pp, void *v)
2842 {
2843 	pool_put(&psppool, v);
2844 }
2845 
2846 /* We don't provide a real nointr allocator.  Maybe later. */
2847 void *
2848 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2849 {
2850 
2851 	return (pool_subpage_alloc(pp, flags));
2852 }
2853 
2854 void
2855 pool_subpage_free_nointr(struct pool *pp, void *v)
2856 {
2857 
2858 	pool_subpage_free(pp, v);
2859 }
2860 #endif /* POOL_SUBPAGE */
2861 void *
2862 pool_page_alloc_nointr(struct pool *pp, int flags)
2863 {
2864 	bool waitok = (flags & PR_WAITOK) ? true : false;
2865 
2866 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2867 }
2868 
2869 void
2870 pool_page_free_nointr(struct pool *pp, void *v)
2871 {
2872 
2873 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2874 }
2875