xref: /netbsd-src/sys/kern/subr_pool.c (revision 062cd249892f31a10349de47b78d800cd8ae2c25)
1 /*	$NetBSD: subr_pool.c,v 1.197 2012/06/05 22:51:47 jym Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.197 2012/06/05 22:51:47 jym Exp $");
36 
37 #include "opt_ddb.h"
38 #include "opt_lockdebug.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bitops.h>
43 #include <sys/proc.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/vmem.h>
47 #include <sys/pool.h>
48 #include <sys/syslog.h>
49 #include <sys/debug.h>
50 #include <sys/lockdebug.h>
51 #include <sys/xcall.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54 
55 #include <uvm/uvm_extern.h>
56 
57 /*
58  * Pool resource management utility.
59  *
60  * Memory is allocated in pages which are split into pieces according to
61  * the pool item size. Each page is kept on one of three lists in the
62  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
63  * for empty, full and partially-full pages respectively. The individual
64  * pool items are on a linked list headed by `ph_itemlist' in each page
65  * header. The memory for building the page list is either taken from
66  * the allocated pages themselves (for small pool items) or taken from
67  * an internal pool of page headers (`phpool').
68  */
69 
70 /* List of all pools */
71 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72 
73 /* Private pool for page header structures */
74 #define	PHPOOL_MAX	8
75 static struct pool phpool[PHPOOL_MAX];
76 #define	PHPOOL_FREELIST_NELEM(idx) \
77 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
78 
79 #ifdef POOL_SUBPAGE
80 /* Pool of subpages for use by normal pools. */
81 static struct pool psppool;
82 #endif
83 
84 static void *pool_page_alloc_meta(struct pool *, int);
85 static void pool_page_free_meta(struct pool *, void *);
86 
87 /* allocator for pool metadata */
88 struct pool_allocator pool_allocator_meta = {
89 	.pa_alloc = pool_page_alloc_meta,
90 	.pa_free = pool_page_free_meta,
91 	.pa_pagesz = 0
92 };
93 
94 /* # of seconds to retain page after last use */
95 int pool_inactive_time = 10;
96 
97 /* Next candidate for drainage (see pool_drain()) */
98 static struct pool	*drainpp;
99 
100 /* This lock protects both pool_head and drainpp. */
101 static kmutex_t pool_head_lock;
102 static kcondvar_t pool_busy;
103 
104 /* This lock protects initialization of a potentially shared pool allocator */
105 static kmutex_t pool_allocator_lock;
106 
107 typedef uint32_t pool_item_bitmap_t;
108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
110 
111 struct pool_item_header {
112 	/* Page headers */
113 	LIST_ENTRY(pool_item_header)
114 				ph_pagelist;	/* pool page list */
115 	SPLAY_ENTRY(pool_item_header)
116 				ph_node;	/* Off-page page headers */
117 	void *			ph_page;	/* this page's address */
118 	uint32_t		ph_time;	/* last referenced */
119 	uint16_t		ph_nmissing;	/* # of chunks in use */
120 	uint16_t		ph_off;		/* start offset in page */
121 	union {
122 		/* !PR_NOTOUCH */
123 		struct {
124 			LIST_HEAD(, pool_item)
125 				phu_itemlist;	/* chunk list for this page */
126 		} phu_normal;
127 		/* PR_NOTOUCH */
128 		struct {
129 			pool_item_bitmap_t phu_bitmap[1];
130 		} phu_notouch;
131 	} ph_u;
132 };
133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
135 
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 	u_int pi_magic;
139 #endif
140 #define	PI_MAGIC 0xdeaddeadU
141 	/* Other entries use only this list entry */
142 	LIST_ENTRY(pool_item)	pi_list;
143 };
144 
145 #define	POOL_NEEDS_CATCHUP(pp)						\
146 	((pp)->pr_nitems < (pp)->pr_minitems)
147 
148 /*
149  * Pool cache management.
150  *
151  * Pool caches provide a way for constructed objects to be cached by the
152  * pool subsystem.  This can lead to performance improvements by avoiding
153  * needless object construction/destruction; it is deferred until absolutely
154  * necessary.
155  *
156  * Caches are grouped into cache groups.  Each cache group references up
157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
158  * object from the pool, it calls the object's constructor and places it
159  * into a cache group.  When a cache group frees an object back to the
160  * pool, it first calls the object's destructor.  This allows the object
161  * to persist in constructed form while freed to the cache.
162  *
163  * The pool references each cache, so that when a pool is drained by the
164  * pagedaemon, it can drain each individual cache as well.  Each time a
165  * cache is drained, the most idle cache group is freed to the pool in
166  * its entirety.
167  *
168  * Pool caches are layed on top of pools.  By layering them, we can avoid
169  * the complexity of cache management for pools which would not benefit
170  * from it.
171  */
172 
173 static struct pool pcg_normal_pool;
174 static struct pool pcg_large_pool;
175 static struct pool cache_pool;
176 static struct pool cache_cpu_pool;
177 
178 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
179 
180 /* List of all caches. */
181 TAILQ_HEAD(,pool_cache) pool_cache_head =
182     TAILQ_HEAD_INITIALIZER(pool_cache_head);
183 
184 int pool_cache_disable;		/* global disable for caching */
185 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
186 
187 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
188 				    void *);
189 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
190 				    void **, paddr_t *, int);
191 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
192 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
193 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
194 static void	pool_cache_transfer(pool_cache_t);
195 
196 static int	pool_catchup(struct pool *);
197 static void	pool_prime_page(struct pool *, void *,
198 		    struct pool_item_header *);
199 static void	pool_update_curpage(struct pool *);
200 
201 static int	pool_grow(struct pool *, int);
202 static void	*pool_allocator_alloc(struct pool *, int);
203 static void	pool_allocator_free(struct pool *, void *);
204 
205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 	void (*)(const char *, ...));
207 static void pool_print1(struct pool *, const char *,
208 	void (*)(const char *, ...));
209 
210 static int pool_chk_page(struct pool *, const char *,
211 			 struct pool_item_header *);
212 
213 static inline unsigned int
214 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
215     const void *v)
216 {
217 	const char *cp = v;
218 	unsigned int idx;
219 
220 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
221 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
222 	KASSERT(idx < pp->pr_itemsperpage);
223 	return idx;
224 }
225 
226 static inline void
227 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
228     void *obj)
229 {
230 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
231 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
232 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
233 
234 	KASSERT((*bitmap & mask) == 0);
235 	*bitmap |= mask;
236 }
237 
238 static inline void *
239 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
240 {
241 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
242 	unsigned int idx;
243 	int i;
244 
245 	for (i = 0; ; i++) {
246 		int bit;
247 
248 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
249 		bit = ffs32(bitmap[i]);
250 		if (bit) {
251 			pool_item_bitmap_t mask;
252 
253 			bit--;
254 			idx = (i * BITMAP_SIZE) + bit;
255 			mask = 1 << bit;
256 			KASSERT((bitmap[i] & mask) != 0);
257 			bitmap[i] &= ~mask;
258 			break;
259 		}
260 	}
261 	KASSERT(idx < pp->pr_itemsperpage);
262 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
263 }
264 
265 static inline void
266 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
267 {
268 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
269 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
270 	int i;
271 
272 	for (i = 0; i < n; i++) {
273 		bitmap[i] = (pool_item_bitmap_t)-1;
274 	}
275 }
276 
277 static inline int
278 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
279 {
280 
281 	/*
282 	 * we consider pool_item_header with smaller ph_page bigger.
283 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
284 	 */
285 
286 	if (a->ph_page < b->ph_page)
287 		return (1);
288 	else if (a->ph_page > b->ph_page)
289 		return (-1);
290 	else
291 		return (0);
292 }
293 
294 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
295 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
296 
297 static inline struct pool_item_header *
298 pr_find_pagehead_noalign(struct pool *pp, void *v)
299 {
300 	struct pool_item_header *ph, tmp;
301 
302 	tmp.ph_page = (void *)(uintptr_t)v;
303 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
304 	if (ph == NULL) {
305 		ph = SPLAY_ROOT(&pp->pr_phtree);
306 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
307 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
308 		}
309 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
310 	}
311 
312 	return ph;
313 }
314 
315 /*
316  * Return the pool page header based on item address.
317  */
318 static inline struct pool_item_header *
319 pr_find_pagehead(struct pool *pp, void *v)
320 {
321 	struct pool_item_header *ph, tmp;
322 
323 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
324 		ph = pr_find_pagehead_noalign(pp, v);
325 	} else {
326 		void *page =
327 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
328 
329 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
330 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
331 		} else {
332 			tmp.ph_page = page;
333 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
334 		}
335 	}
336 
337 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
338 	    ((char *)ph->ph_page <= (char *)v &&
339 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
340 	return ph;
341 }
342 
343 static void
344 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
345 {
346 	struct pool_item_header *ph;
347 
348 	while ((ph = LIST_FIRST(pq)) != NULL) {
349 		LIST_REMOVE(ph, ph_pagelist);
350 		pool_allocator_free(pp, ph->ph_page);
351 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
352 			pool_put(pp->pr_phpool, ph);
353 	}
354 }
355 
356 /*
357  * Remove a page from the pool.
358  */
359 static inline void
360 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
361      struct pool_pagelist *pq)
362 {
363 
364 	KASSERT(mutex_owned(&pp->pr_lock));
365 
366 	/*
367 	 * If the page was idle, decrement the idle page count.
368 	 */
369 	if (ph->ph_nmissing == 0) {
370 #ifdef DIAGNOSTIC
371 		if (pp->pr_nidle == 0)
372 			panic("pr_rmpage: nidle inconsistent");
373 		if (pp->pr_nitems < pp->pr_itemsperpage)
374 			panic("pr_rmpage: nitems inconsistent");
375 #endif
376 		pp->pr_nidle--;
377 	}
378 
379 	pp->pr_nitems -= pp->pr_itemsperpage;
380 
381 	/*
382 	 * Unlink the page from the pool and queue it for release.
383 	 */
384 	LIST_REMOVE(ph, ph_pagelist);
385 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
386 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
387 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
388 
389 	pp->pr_npages--;
390 	pp->pr_npagefree++;
391 
392 	pool_update_curpage(pp);
393 }
394 
395 /*
396  * Initialize all the pools listed in the "pools" link set.
397  */
398 void
399 pool_subsystem_init(void)
400 {
401 	size_t size;
402 	int idx;
403 
404 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
405 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
406 	cv_init(&pool_busy, "poolbusy");
407 
408 	/*
409 	 * Initialize private page header pool and cache magazine pool if we
410 	 * haven't done so yet.
411 	 */
412 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
413 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
414 		int nelem;
415 		size_t sz;
416 
417 		nelem = PHPOOL_FREELIST_NELEM(idx);
418 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
419 		    "phpool-%d", nelem);
420 		sz = sizeof(struct pool_item_header);
421 		if (nelem) {
422 			sz = offsetof(struct pool_item_header,
423 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
424 		}
425 		pool_init(&phpool[idx], sz, 0, 0, 0,
426 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
427 	}
428 #ifdef POOL_SUBPAGE
429 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
430 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
431 #endif
432 
433 	size = sizeof(pcg_t) +
434 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
435 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
436 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
437 
438 	size = sizeof(pcg_t) +
439 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
440 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
441 	    "pcglarge", &pool_allocator_meta, IPL_VM);
442 
443 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
444 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
445 
446 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
447 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
448 }
449 
450 /*
451  * Initialize the given pool resource structure.
452  *
453  * We export this routine to allow other kernel parts to declare
454  * static pools that must be initialized before kmem(9) is available.
455  */
456 void
457 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
458     const char *wchan, struct pool_allocator *palloc, int ipl)
459 {
460 	struct pool *pp1;
461 	size_t trysize, phsize;
462 	int off, slack;
463 
464 #ifdef DEBUG
465 	/*
466 	 * Check that the pool hasn't already been initialised and
467 	 * added to the list of all pools.
468 	 */
469 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
470 		if (pp == pp1)
471 			panic("pool_init: pool %s already initialised",
472 			    wchan);
473 	}
474 #endif
475 
476 	if (palloc == NULL)
477 		palloc = &pool_allocator_kmem;
478 #ifdef POOL_SUBPAGE
479 	if (size > palloc->pa_pagesz) {
480 		if (palloc == &pool_allocator_kmem)
481 			palloc = &pool_allocator_kmem_fullpage;
482 		else if (palloc == &pool_allocator_nointr)
483 			palloc = &pool_allocator_nointr_fullpage;
484 	}
485 #endif /* POOL_SUBPAGE */
486 	if (!cold)
487 		mutex_enter(&pool_allocator_lock);
488 	if (palloc->pa_refcnt++ == 0) {
489 		if (palloc->pa_pagesz == 0)
490 			palloc->pa_pagesz = PAGE_SIZE;
491 
492 		TAILQ_INIT(&palloc->pa_list);
493 
494 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
495 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
496 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
497 	}
498 	if (!cold)
499 		mutex_exit(&pool_allocator_lock);
500 
501 	if (align == 0)
502 		align = ALIGN(1);
503 
504 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
505 		size = sizeof(struct pool_item);
506 
507 	size = roundup(size, align);
508 #ifdef DIAGNOSTIC
509 	if (size > palloc->pa_pagesz)
510 		panic("pool_init: pool item size (%zu) too large", size);
511 #endif
512 
513 	/*
514 	 * Initialize the pool structure.
515 	 */
516 	LIST_INIT(&pp->pr_emptypages);
517 	LIST_INIT(&pp->pr_fullpages);
518 	LIST_INIT(&pp->pr_partpages);
519 	pp->pr_cache = NULL;
520 	pp->pr_curpage = NULL;
521 	pp->pr_npages = 0;
522 	pp->pr_minitems = 0;
523 	pp->pr_minpages = 0;
524 	pp->pr_maxpages = UINT_MAX;
525 	pp->pr_roflags = flags;
526 	pp->pr_flags = 0;
527 	pp->pr_size = size;
528 	pp->pr_align = align;
529 	pp->pr_wchan = wchan;
530 	pp->pr_alloc = palloc;
531 	pp->pr_nitems = 0;
532 	pp->pr_nout = 0;
533 	pp->pr_hardlimit = UINT_MAX;
534 	pp->pr_hardlimit_warning = NULL;
535 	pp->pr_hardlimit_ratecap.tv_sec = 0;
536 	pp->pr_hardlimit_ratecap.tv_usec = 0;
537 	pp->pr_hardlimit_warning_last.tv_sec = 0;
538 	pp->pr_hardlimit_warning_last.tv_usec = 0;
539 	pp->pr_drain_hook = NULL;
540 	pp->pr_drain_hook_arg = NULL;
541 	pp->pr_freecheck = NULL;
542 
543 	/*
544 	 * Decide whether to put the page header off page to avoid
545 	 * wasting too large a part of the page or too big item.
546 	 * Off-page page headers go on a hash table, so we can match
547 	 * a returned item with its header based on the page address.
548 	 * We use 1/16 of the page size and about 8 times of the item
549 	 * size as the threshold (XXX: tune)
550 	 *
551 	 * However, we'll put the header into the page if we can put
552 	 * it without wasting any items.
553 	 *
554 	 * Silently enforce `0 <= ioff < align'.
555 	 */
556 	pp->pr_itemoffset = ioff %= align;
557 	/* See the comment below about reserved bytes. */
558 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
559 	phsize = ALIGN(sizeof(struct pool_item_header));
560 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
561 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
562 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
563 		/* Use the end of the page for the page header */
564 		pp->pr_roflags |= PR_PHINPAGE;
565 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
566 	} else {
567 		/* The page header will be taken from our page header pool */
568 		pp->pr_phoffset = 0;
569 		off = palloc->pa_pagesz;
570 		SPLAY_INIT(&pp->pr_phtree);
571 	}
572 
573 	/*
574 	 * Alignment is to take place at `ioff' within the item. This means
575 	 * we must reserve up to `align - 1' bytes on the page to allow
576 	 * appropriate positioning of each item.
577 	 */
578 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
579 	KASSERT(pp->pr_itemsperpage != 0);
580 	if ((pp->pr_roflags & PR_NOTOUCH)) {
581 		int idx;
582 
583 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
584 		    idx++) {
585 			/* nothing */
586 		}
587 		if (idx >= PHPOOL_MAX) {
588 			/*
589 			 * if you see this panic, consider to tweak
590 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
591 			 */
592 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
593 			    pp->pr_wchan, pp->pr_itemsperpage);
594 		}
595 		pp->pr_phpool = &phpool[idx];
596 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
597 		pp->pr_phpool = &phpool[0];
598 	}
599 #if defined(DIAGNOSTIC)
600 	else {
601 		pp->pr_phpool = NULL;
602 	}
603 #endif
604 
605 	/*
606 	 * Use the slack between the chunks and the page header
607 	 * for "cache coloring".
608 	 */
609 	slack = off - pp->pr_itemsperpage * pp->pr_size;
610 	pp->pr_maxcolor = (slack / align) * align;
611 	pp->pr_curcolor = 0;
612 
613 	pp->pr_nget = 0;
614 	pp->pr_nfail = 0;
615 	pp->pr_nput = 0;
616 	pp->pr_npagealloc = 0;
617 	pp->pr_npagefree = 0;
618 	pp->pr_hiwat = 0;
619 	pp->pr_nidle = 0;
620 	pp->pr_refcnt = 0;
621 
622 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
623 	cv_init(&pp->pr_cv, wchan);
624 	pp->pr_ipl = ipl;
625 
626 	/* Insert into the list of all pools. */
627 	if (!cold)
628 		mutex_enter(&pool_head_lock);
629 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
630 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
631 			break;
632 	}
633 	if (pp1 == NULL)
634 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
635 	else
636 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
637 	if (!cold)
638 		mutex_exit(&pool_head_lock);
639 
640 	/* Insert this into the list of pools using this allocator. */
641 	if (!cold)
642 		mutex_enter(&palloc->pa_lock);
643 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
644 	if (!cold)
645 		mutex_exit(&palloc->pa_lock);
646 }
647 
648 /*
649  * De-commision a pool resource.
650  */
651 void
652 pool_destroy(struct pool *pp)
653 {
654 	struct pool_pagelist pq;
655 	struct pool_item_header *ph;
656 
657 	/* Remove from global pool list */
658 	mutex_enter(&pool_head_lock);
659 	while (pp->pr_refcnt != 0)
660 		cv_wait(&pool_busy, &pool_head_lock);
661 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
662 	if (drainpp == pp)
663 		drainpp = NULL;
664 	mutex_exit(&pool_head_lock);
665 
666 	/* Remove this pool from its allocator's list of pools. */
667 	mutex_enter(&pp->pr_alloc->pa_lock);
668 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
669 	mutex_exit(&pp->pr_alloc->pa_lock);
670 
671 	mutex_enter(&pool_allocator_lock);
672 	if (--pp->pr_alloc->pa_refcnt == 0)
673 		mutex_destroy(&pp->pr_alloc->pa_lock);
674 	mutex_exit(&pool_allocator_lock);
675 
676 	mutex_enter(&pp->pr_lock);
677 
678 	KASSERT(pp->pr_cache == NULL);
679 
680 #ifdef DIAGNOSTIC
681 	if (pp->pr_nout != 0) {
682 		panic("pool_destroy: pool busy: still out: %u",
683 		    pp->pr_nout);
684 	}
685 #endif
686 
687 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
688 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
689 
690 	/* Remove all pages */
691 	LIST_INIT(&pq);
692 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
693 		pr_rmpage(pp, ph, &pq);
694 
695 	mutex_exit(&pp->pr_lock);
696 
697 	pr_pagelist_free(pp, &pq);
698 	cv_destroy(&pp->pr_cv);
699 	mutex_destroy(&pp->pr_lock);
700 }
701 
702 void
703 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
704 {
705 
706 	/* XXX no locking -- must be used just after pool_init() */
707 #ifdef DIAGNOSTIC
708 	if (pp->pr_drain_hook != NULL)
709 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
710 #endif
711 	pp->pr_drain_hook = fn;
712 	pp->pr_drain_hook_arg = arg;
713 }
714 
715 static struct pool_item_header *
716 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
717 {
718 	struct pool_item_header *ph;
719 
720 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
721 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
722 	else
723 		ph = pool_get(pp->pr_phpool, flags);
724 
725 	return (ph);
726 }
727 
728 /*
729  * Grab an item from the pool.
730  */
731 void *
732 pool_get(struct pool *pp, int flags)
733 {
734 	struct pool_item *pi;
735 	struct pool_item_header *ph;
736 	void *v;
737 
738 #ifdef DIAGNOSTIC
739 	if (pp->pr_itemsperpage == 0)
740 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
741 		    "pool not initialized?", pp->pr_wchan);
742 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
743 	    !cold && panicstr == NULL)
744 		panic("pool '%s' is IPL_NONE, but called from "
745 		    "interrupt context\n", pp->pr_wchan);
746 #endif
747 	if (flags & PR_WAITOK) {
748 		ASSERT_SLEEPABLE();
749 	}
750 
751 	mutex_enter(&pp->pr_lock);
752  startover:
753 	/*
754 	 * Check to see if we've reached the hard limit.  If we have,
755 	 * and we can wait, then wait until an item has been returned to
756 	 * the pool.
757 	 */
758 #ifdef DIAGNOSTIC
759 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
760 		mutex_exit(&pp->pr_lock);
761 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
762 	}
763 #endif
764 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
765 		if (pp->pr_drain_hook != NULL) {
766 			/*
767 			 * Since the drain hook is going to free things
768 			 * back to the pool, unlock, call the hook, re-lock,
769 			 * and check the hardlimit condition again.
770 			 */
771 			mutex_exit(&pp->pr_lock);
772 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
773 			mutex_enter(&pp->pr_lock);
774 			if (pp->pr_nout < pp->pr_hardlimit)
775 				goto startover;
776 		}
777 
778 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
779 			/*
780 			 * XXX: A warning isn't logged in this case.  Should
781 			 * it be?
782 			 */
783 			pp->pr_flags |= PR_WANTED;
784 			cv_wait(&pp->pr_cv, &pp->pr_lock);
785 			goto startover;
786 		}
787 
788 		/*
789 		 * Log a message that the hard limit has been hit.
790 		 */
791 		if (pp->pr_hardlimit_warning != NULL &&
792 		    ratecheck(&pp->pr_hardlimit_warning_last,
793 			      &pp->pr_hardlimit_ratecap))
794 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
795 
796 		pp->pr_nfail++;
797 
798 		mutex_exit(&pp->pr_lock);
799 		return (NULL);
800 	}
801 
802 	/*
803 	 * The convention we use is that if `curpage' is not NULL, then
804 	 * it points at a non-empty bucket. In particular, `curpage'
805 	 * never points at a page header which has PR_PHINPAGE set and
806 	 * has no items in its bucket.
807 	 */
808 	if ((ph = pp->pr_curpage) == NULL) {
809 		int error;
810 
811 #ifdef DIAGNOSTIC
812 		if (pp->pr_nitems != 0) {
813 			mutex_exit(&pp->pr_lock);
814 			printf("pool_get: %s: curpage NULL, nitems %u\n",
815 			    pp->pr_wchan, pp->pr_nitems);
816 			panic("pool_get: nitems inconsistent");
817 		}
818 #endif
819 
820 		/*
821 		 * Call the back-end page allocator for more memory.
822 		 * Release the pool lock, as the back-end page allocator
823 		 * may block.
824 		 */
825 		error = pool_grow(pp, flags);
826 		if (error != 0) {
827 			/*
828 			 * We were unable to allocate a page or item
829 			 * header, but we released the lock during
830 			 * allocation, so perhaps items were freed
831 			 * back to the pool.  Check for this case.
832 			 */
833 			if (pp->pr_curpage != NULL)
834 				goto startover;
835 
836 			pp->pr_nfail++;
837 			mutex_exit(&pp->pr_lock);
838 			return (NULL);
839 		}
840 
841 		/* Start the allocation process over. */
842 		goto startover;
843 	}
844 	if (pp->pr_roflags & PR_NOTOUCH) {
845 #ifdef DIAGNOSTIC
846 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
847 			mutex_exit(&pp->pr_lock);
848 			panic("pool_get: %s: page empty", pp->pr_wchan);
849 		}
850 #endif
851 		v = pr_item_notouch_get(pp, ph);
852 	} else {
853 		v = pi = LIST_FIRST(&ph->ph_itemlist);
854 		if (__predict_false(v == NULL)) {
855 			mutex_exit(&pp->pr_lock);
856 			panic("pool_get: %s: page empty", pp->pr_wchan);
857 		}
858 #ifdef DIAGNOSTIC
859 		if (__predict_false(pp->pr_nitems == 0)) {
860 			mutex_exit(&pp->pr_lock);
861 			printf("pool_get: %s: items on itemlist, nitems %u\n",
862 			    pp->pr_wchan, pp->pr_nitems);
863 			panic("pool_get: nitems inconsistent");
864 		}
865 #endif
866 
867 #ifdef DIAGNOSTIC
868 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
869 			panic("pool_get(%s): free list modified: "
870 			    "magic=%x; page %p; item addr %p\n",
871 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
872 		}
873 #endif
874 
875 		/*
876 		 * Remove from item list.
877 		 */
878 		LIST_REMOVE(pi, pi_list);
879 	}
880 	pp->pr_nitems--;
881 	pp->pr_nout++;
882 	if (ph->ph_nmissing == 0) {
883 #ifdef DIAGNOSTIC
884 		if (__predict_false(pp->pr_nidle == 0))
885 			panic("pool_get: nidle inconsistent");
886 #endif
887 		pp->pr_nidle--;
888 
889 		/*
890 		 * This page was previously empty.  Move it to the list of
891 		 * partially-full pages.  This page is already curpage.
892 		 */
893 		LIST_REMOVE(ph, ph_pagelist);
894 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
895 	}
896 	ph->ph_nmissing++;
897 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
898 #ifdef DIAGNOSTIC
899 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
900 		    !LIST_EMPTY(&ph->ph_itemlist))) {
901 			mutex_exit(&pp->pr_lock);
902 			panic("pool_get: %s: nmissing inconsistent",
903 			    pp->pr_wchan);
904 		}
905 #endif
906 		/*
907 		 * This page is now full.  Move it to the full list
908 		 * and select a new current page.
909 		 */
910 		LIST_REMOVE(ph, ph_pagelist);
911 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
912 		pool_update_curpage(pp);
913 	}
914 
915 	pp->pr_nget++;
916 
917 	/*
918 	 * If we have a low water mark and we are now below that low
919 	 * water mark, add more items to the pool.
920 	 */
921 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
922 		/*
923 		 * XXX: Should we log a warning?  Should we set up a timeout
924 		 * to try again in a second or so?  The latter could break
925 		 * a caller's assumptions about interrupt protection, etc.
926 		 */
927 	}
928 
929 	mutex_exit(&pp->pr_lock);
930 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
931 	FREECHECK_OUT(&pp->pr_freecheck, v);
932 	return (v);
933 }
934 
935 /*
936  * Internal version of pool_put().  Pool is already locked/entered.
937  */
938 static void
939 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
940 {
941 	struct pool_item *pi = v;
942 	struct pool_item_header *ph;
943 
944 	KASSERT(mutex_owned(&pp->pr_lock));
945 	FREECHECK_IN(&pp->pr_freecheck, v);
946 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
947 
948 #ifdef DIAGNOSTIC
949 	if (__predict_false(pp->pr_nout == 0)) {
950 		printf("pool %s: putting with none out\n",
951 		    pp->pr_wchan);
952 		panic("pool_put");
953 	}
954 #endif
955 
956 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
957 		panic("pool_put: %s: page header missing", pp->pr_wchan);
958 	}
959 
960 	/*
961 	 * Return to item list.
962 	 */
963 	if (pp->pr_roflags & PR_NOTOUCH) {
964 		pr_item_notouch_put(pp, ph, v);
965 	} else {
966 #ifdef DIAGNOSTIC
967 		pi->pi_magic = PI_MAGIC;
968 #endif
969 #ifdef DEBUG
970 		{
971 			int i, *ip = v;
972 
973 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
974 				*ip++ = PI_MAGIC;
975 			}
976 		}
977 #endif
978 
979 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
980 	}
981 	KDASSERT(ph->ph_nmissing != 0);
982 	ph->ph_nmissing--;
983 	pp->pr_nput++;
984 	pp->pr_nitems++;
985 	pp->pr_nout--;
986 
987 	/* Cancel "pool empty" condition if it exists */
988 	if (pp->pr_curpage == NULL)
989 		pp->pr_curpage = ph;
990 
991 	if (pp->pr_flags & PR_WANTED) {
992 		pp->pr_flags &= ~PR_WANTED;
993 		cv_broadcast(&pp->pr_cv);
994 	}
995 
996 	/*
997 	 * If this page is now empty, do one of two things:
998 	 *
999 	 *	(1) If we have more pages than the page high water mark,
1000 	 *	    free the page back to the system.  ONLY CONSIDER
1001 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1002 	 *	    CLAIM.
1003 	 *
1004 	 *	(2) Otherwise, move the page to the empty page list.
1005 	 *
1006 	 * Either way, select a new current page (so we use a partially-full
1007 	 * page if one is available).
1008 	 */
1009 	if (ph->ph_nmissing == 0) {
1010 		pp->pr_nidle++;
1011 		if (pp->pr_npages > pp->pr_minpages &&
1012 		    pp->pr_npages > pp->pr_maxpages) {
1013 			pr_rmpage(pp, ph, pq);
1014 		} else {
1015 			LIST_REMOVE(ph, ph_pagelist);
1016 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1017 
1018 			/*
1019 			 * Update the timestamp on the page.  A page must
1020 			 * be idle for some period of time before it can
1021 			 * be reclaimed by the pagedaemon.  This minimizes
1022 			 * ping-pong'ing for memory.
1023 			 *
1024 			 * note for 64-bit time_t: truncating to 32-bit is not
1025 			 * a problem for our usage.
1026 			 */
1027 			ph->ph_time = time_uptime;
1028 		}
1029 		pool_update_curpage(pp);
1030 	}
1031 
1032 	/*
1033 	 * If the page was previously completely full, move it to the
1034 	 * partially-full list and make it the current page.  The next
1035 	 * allocation will get the item from this page, instead of
1036 	 * further fragmenting the pool.
1037 	 */
1038 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1039 		LIST_REMOVE(ph, ph_pagelist);
1040 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1041 		pp->pr_curpage = ph;
1042 	}
1043 }
1044 
1045 void
1046 pool_put(struct pool *pp, void *v)
1047 {
1048 	struct pool_pagelist pq;
1049 
1050 	LIST_INIT(&pq);
1051 
1052 	mutex_enter(&pp->pr_lock);
1053 	pool_do_put(pp, v, &pq);
1054 	mutex_exit(&pp->pr_lock);
1055 
1056 	pr_pagelist_free(pp, &pq);
1057 }
1058 
1059 /*
1060  * pool_grow: grow a pool by a page.
1061  *
1062  * => called with pool locked.
1063  * => unlock and relock the pool.
1064  * => return with pool locked.
1065  */
1066 
1067 static int
1068 pool_grow(struct pool *pp, int flags)
1069 {
1070 	struct pool_item_header *ph = NULL;
1071 	char *cp;
1072 
1073 	mutex_exit(&pp->pr_lock);
1074 	cp = pool_allocator_alloc(pp, flags);
1075 	if (__predict_true(cp != NULL)) {
1076 		ph = pool_alloc_item_header(pp, cp, flags);
1077 	}
1078 	if (__predict_false(cp == NULL || ph == NULL)) {
1079 		if (cp != NULL) {
1080 			pool_allocator_free(pp, cp);
1081 		}
1082 		mutex_enter(&pp->pr_lock);
1083 		return ENOMEM;
1084 	}
1085 
1086 	mutex_enter(&pp->pr_lock);
1087 	pool_prime_page(pp, cp, ph);
1088 	pp->pr_npagealloc++;
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Add N items to the pool.
1094  */
1095 int
1096 pool_prime(struct pool *pp, int n)
1097 {
1098 	int newpages;
1099 	int error = 0;
1100 
1101 	mutex_enter(&pp->pr_lock);
1102 
1103 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1104 
1105 	while (newpages-- > 0) {
1106 		error = pool_grow(pp, PR_NOWAIT);
1107 		if (error) {
1108 			break;
1109 		}
1110 		pp->pr_minpages++;
1111 	}
1112 
1113 	if (pp->pr_minpages >= pp->pr_maxpages)
1114 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1115 
1116 	mutex_exit(&pp->pr_lock);
1117 	return error;
1118 }
1119 
1120 /*
1121  * Add a page worth of items to the pool.
1122  *
1123  * Note, we must be called with the pool descriptor LOCKED.
1124  */
1125 static void
1126 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1127 {
1128 	struct pool_item *pi;
1129 	void *cp = storage;
1130 	const unsigned int align = pp->pr_align;
1131 	const unsigned int ioff = pp->pr_itemoffset;
1132 	int n;
1133 
1134 	KASSERT(mutex_owned(&pp->pr_lock));
1135 
1136 #ifdef DIAGNOSTIC
1137 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1138 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1139 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1140 #endif
1141 
1142 	/*
1143 	 * Insert page header.
1144 	 */
1145 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1146 	LIST_INIT(&ph->ph_itemlist);
1147 	ph->ph_page = storage;
1148 	ph->ph_nmissing = 0;
1149 	ph->ph_time = time_uptime;
1150 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1151 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1152 
1153 	pp->pr_nidle++;
1154 
1155 	/*
1156 	 * Color this page.
1157 	 */
1158 	ph->ph_off = pp->pr_curcolor;
1159 	cp = (char *)cp + ph->ph_off;
1160 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1161 		pp->pr_curcolor = 0;
1162 
1163 	/*
1164 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1165 	 */
1166 	if (ioff != 0)
1167 		cp = (char *)cp + align - ioff;
1168 
1169 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1170 
1171 	/*
1172 	 * Insert remaining chunks on the bucket list.
1173 	 */
1174 	n = pp->pr_itemsperpage;
1175 	pp->pr_nitems += n;
1176 
1177 	if (pp->pr_roflags & PR_NOTOUCH) {
1178 		pr_item_notouch_init(pp, ph);
1179 	} else {
1180 		while (n--) {
1181 			pi = (struct pool_item *)cp;
1182 
1183 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1184 
1185 			/* Insert on page list */
1186 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1187 #ifdef DIAGNOSTIC
1188 			pi->pi_magic = PI_MAGIC;
1189 #endif
1190 			cp = (char *)cp + pp->pr_size;
1191 
1192 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * If the pool was depleted, point at the new page.
1198 	 */
1199 	if (pp->pr_curpage == NULL)
1200 		pp->pr_curpage = ph;
1201 
1202 	if (++pp->pr_npages > pp->pr_hiwat)
1203 		pp->pr_hiwat = pp->pr_npages;
1204 }
1205 
1206 /*
1207  * Used by pool_get() when nitems drops below the low water mark.  This
1208  * is used to catch up pr_nitems with the low water mark.
1209  *
1210  * Note 1, we never wait for memory here, we let the caller decide what to do.
1211  *
1212  * Note 2, we must be called with the pool already locked, and we return
1213  * with it locked.
1214  */
1215 static int
1216 pool_catchup(struct pool *pp)
1217 {
1218 	int error = 0;
1219 
1220 	while (POOL_NEEDS_CATCHUP(pp)) {
1221 		error = pool_grow(pp, PR_NOWAIT);
1222 		if (error) {
1223 			break;
1224 		}
1225 	}
1226 	return error;
1227 }
1228 
1229 static void
1230 pool_update_curpage(struct pool *pp)
1231 {
1232 
1233 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1234 	if (pp->pr_curpage == NULL) {
1235 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1236 	}
1237 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1238 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1239 }
1240 
1241 void
1242 pool_setlowat(struct pool *pp, int n)
1243 {
1244 
1245 	mutex_enter(&pp->pr_lock);
1246 
1247 	pp->pr_minitems = n;
1248 	pp->pr_minpages = (n == 0)
1249 		? 0
1250 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1251 
1252 	/* Make sure we're caught up with the newly-set low water mark. */
1253 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1254 		/*
1255 		 * XXX: Should we log a warning?  Should we set up a timeout
1256 		 * to try again in a second or so?  The latter could break
1257 		 * a caller's assumptions about interrupt protection, etc.
1258 		 */
1259 	}
1260 
1261 	mutex_exit(&pp->pr_lock);
1262 }
1263 
1264 void
1265 pool_sethiwat(struct pool *pp, int n)
1266 {
1267 
1268 	mutex_enter(&pp->pr_lock);
1269 
1270 	pp->pr_maxpages = (n == 0)
1271 		? 0
1272 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1273 
1274 	mutex_exit(&pp->pr_lock);
1275 }
1276 
1277 void
1278 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1279 {
1280 
1281 	mutex_enter(&pp->pr_lock);
1282 
1283 	pp->pr_hardlimit = n;
1284 	pp->pr_hardlimit_warning = warnmess;
1285 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1286 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1287 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1288 
1289 	/*
1290 	 * In-line version of pool_sethiwat(), because we don't want to
1291 	 * release the lock.
1292 	 */
1293 	pp->pr_maxpages = (n == 0)
1294 		? 0
1295 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1296 
1297 	mutex_exit(&pp->pr_lock);
1298 }
1299 
1300 /*
1301  * Release all complete pages that have not been used recently.
1302  *
1303  * Must not be called from interrupt context.
1304  */
1305 int
1306 pool_reclaim(struct pool *pp)
1307 {
1308 	struct pool_item_header *ph, *phnext;
1309 	struct pool_pagelist pq;
1310 	uint32_t curtime;
1311 	bool klock;
1312 	int rv;
1313 
1314 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1315 
1316 	if (pp->pr_drain_hook != NULL) {
1317 		/*
1318 		 * The drain hook must be called with the pool unlocked.
1319 		 */
1320 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1321 	}
1322 
1323 	/*
1324 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1325 	 * to block.
1326 	 */
1327 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1328 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1329 		KERNEL_LOCK(1, NULL);
1330 		klock = true;
1331 	} else
1332 		klock = false;
1333 
1334 	/* Reclaim items from the pool's cache (if any). */
1335 	if (pp->pr_cache != NULL)
1336 		pool_cache_invalidate(pp->pr_cache);
1337 
1338 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1339 		if (klock) {
1340 			KERNEL_UNLOCK_ONE(NULL);
1341 		}
1342 		return (0);
1343 	}
1344 
1345 	LIST_INIT(&pq);
1346 
1347 	curtime = time_uptime;
1348 
1349 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1350 		phnext = LIST_NEXT(ph, ph_pagelist);
1351 
1352 		/* Check our minimum page claim */
1353 		if (pp->pr_npages <= pp->pr_minpages)
1354 			break;
1355 
1356 		KASSERT(ph->ph_nmissing == 0);
1357 		if (curtime - ph->ph_time < pool_inactive_time)
1358 			continue;
1359 
1360 		/*
1361 		 * If freeing this page would put us below
1362 		 * the low water mark, stop now.
1363 		 */
1364 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1365 		    pp->pr_minitems)
1366 			break;
1367 
1368 		pr_rmpage(pp, ph, &pq);
1369 	}
1370 
1371 	mutex_exit(&pp->pr_lock);
1372 
1373 	if (LIST_EMPTY(&pq))
1374 		rv = 0;
1375 	else {
1376 		pr_pagelist_free(pp, &pq);
1377 		rv = 1;
1378 	}
1379 
1380 	if (klock) {
1381 		KERNEL_UNLOCK_ONE(NULL);
1382 	}
1383 
1384 	return (rv);
1385 }
1386 
1387 /*
1388  * Drain pools, one at a time. The drained pool is returned within ppp.
1389  *
1390  * Note, must never be called from interrupt context.
1391  */
1392 bool
1393 pool_drain(struct pool **ppp)
1394 {
1395 	bool reclaimed;
1396 	struct pool *pp;
1397 
1398 	KASSERT(!TAILQ_EMPTY(&pool_head));
1399 
1400 	pp = NULL;
1401 
1402 	/* Find next pool to drain, and add a reference. */
1403 	mutex_enter(&pool_head_lock);
1404 	do {
1405 		if (drainpp == NULL) {
1406 			drainpp = TAILQ_FIRST(&pool_head);
1407 		}
1408 		if (drainpp != NULL) {
1409 			pp = drainpp;
1410 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1411 		}
1412 		/*
1413 		 * Skip completely idle pools.  We depend on at least
1414 		 * one pool in the system being active.
1415 		 */
1416 	} while (pp == NULL || pp->pr_npages == 0);
1417 	pp->pr_refcnt++;
1418 	mutex_exit(&pool_head_lock);
1419 
1420 	/* Drain the cache (if any) and pool.. */
1421 	reclaimed = pool_reclaim(pp);
1422 
1423 	/* Finally, unlock the pool. */
1424 	mutex_enter(&pool_head_lock);
1425 	pp->pr_refcnt--;
1426 	cv_broadcast(&pool_busy);
1427 	mutex_exit(&pool_head_lock);
1428 
1429 	if (ppp != NULL)
1430 		*ppp = pp;
1431 
1432 	return reclaimed;
1433 }
1434 
1435 /*
1436  * Diagnostic helpers.
1437  */
1438 
1439 void
1440 pool_printall(const char *modif, void (*pr)(const char *, ...))
1441 {
1442 	struct pool *pp;
1443 
1444 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1445 		pool_printit(pp, modif, pr);
1446 	}
1447 }
1448 
1449 void
1450 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1451 {
1452 
1453 	if (pp == NULL) {
1454 		(*pr)("Must specify a pool to print.\n");
1455 		return;
1456 	}
1457 
1458 	pool_print1(pp, modif, pr);
1459 }
1460 
1461 static void
1462 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1463     void (*pr)(const char *, ...))
1464 {
1465 	struct pool_item_header *ph;
1466 #ifdef DIAGNOSTIC
1467 	struct pool_item *pi;
1468 #endif
1469 
1470 	LIST_FOREACH(ph, pl, ph_pagelist) {
1471 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1472 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1473 #ifdef DIAGNOSTIC
1474 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1475 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1476 				if (pi->pi_magic != PI_MAGIC) {
1477 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1478 					    pi, pi->pi_magic);
1479 				}
1480 			}
1481 		}
1482 #endif
1483 	}
1484 }
1485 
1486 static void
1487 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1488 {
1489 	struct pool_item_header *ph;
1490 	pool_cache_t pc;
1491 	pcg_t *pcg;
1492 	pool_cache_cpu_t *cc;
1493 	uint64_t cpuhit, cpumiss;
1494 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1495 	char c;
1496 
1497 	while ((c = *modif++) != '\0') {
1498 		if (c == 'l')
1499 			print_log = 1;
1500 		if (c == 'p')
1501 			print_pagelist = 1;
1502 		if (c == 'c')
1503 			print_cache = 1;
1504 	}
1505 
1506 	if ((pc = pp->pr_cache) != NULL) {
1507 		(*pr)("POOL CACHE");
1508 	} else {
1509 		(*pr)("POOL");
1510 	}
1511 
1512 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1513 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1514 	    pp->pr_roflags);
1515 	(*pr)("\talloc %p\n", pp->pr_alloc);
1516 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1517 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1518 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1519 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1520 
1521 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1522 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1523 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1524 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1525 
1526 	if (print_pagelist == 0)
1527 		goto skip_pagelist;
1528 
1529 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1530 		(*pr)("\n\tempty page list:\n");
1531 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1532 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1533 		(*pr)("\n\tfull page list:\n");
1534 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1535 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1536 		(*pr)("\n\tpartial-page list:\n");
1537 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1538 
1539 	if (pp->pr_curpage == NULL)
1540 		(*pr)("\tno current page\n");
1541 	else
1542 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1543 
1544  skip_pagelist:
1545 	if (print_log == 0)
1546 		goto skip_log;
1547 
1548 	(*pr)("\n");
1549 
1550  skip_log:
1551 
1552 #define PR_GROUPLIST(pcg)						\
1553 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1554 	for (i = 0; i < pcg->pcg_size; i++) {				\
1555 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1556 		    POOL_PADDR_INVALID) {				\
1557 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1558 			    pcg->pcg_objects[i].pcgo_va,		\
1559 			    (unsigned long long)			\
1560 			    pcg->pcg_objects[i].pcgo_pa);		\
1561 		} else {						\
1562 			(*pr)("\t\t\t%p\n",				\
1563 			    pcg->pcg_objects[i].pcgo_va);		\
1564 		}							\
1565 	}
1566 
1567 	if (pc != NULL) {
1568 		cpuhit = 0;
1569 		cpumiss = 0;
1570 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1571 			if ((cc = pc->pc_cpus[i]) == NULL)
1572 				continue;
1573 			cpuhit += cc->cc_hits;
1574 			cpumiss += cc->cc_misses;
1575 		}
1576 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1577 		(*pr)("\tcache layer hits %llu misses %llu\n",
1578 		    pc->pc_hits, pc->pc_misses);
1579 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1580 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1581 		    pc->pc_contended);
1582 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1583 		    pc->pc_nempty, pc->pc_nfull);
1584 		if (print_cache) {
1585 			(*pr)("\tfull cache groups:\n");
1586 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1587 			    pcg = pcg->pcg_next) {
1588 				PR_GROUPLIST(pcg);
1589 			}
1590 			(*pr)("\tempty cache groups:\n");
1591 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1592 			    pcg = pcg->pcg_next) {
1593 				PR_GROUPLIST(pcg);
1594 			}
1595 		}
1596 	}
1597 #undef PR_GROUPLIST
1598 }
1599 
1600 static int
1601 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1602 {
1603 	struct pool_item *pi;
1604 	void *page;
1605 	int n;
1606 
1607 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1608 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1609 		if (page != ph->ph_page &&
1610 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1611 			if (label != NULL)
1612 				printf("%s: ", label);
1613 			printf("pool(%p:%s): page inconsistency: page %p;"
1614 			       " at page head addr %p (p %p)\n", pp,
1615 				pp->pr_wchan, ph->ph_page,
1616 				ph, page);
1617 			return 1;
1618 		}
1619 	}
1620 
1621 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1622 		return 0;
1623 
1624 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1625 	     pi != NULL;
1626 	     pi = LIST_NEXT(pi,pi_list), n++) {
1627 
1628 #ifdef DIAGNOSTIC
1629 		if (pi->pi_magic != PI_MAGIC) {
1630 			if (label != NULL)
1631 				printf("%s: ", label);
1632 			printf("pool(%s): free list modified: magic=%x;"
1633 			       " page %p; item ordinal %d; addr %p\n",
1634 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1635 				n, pi);
1636 			panic("pool");
1637 		}
1638 #endif
1639 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1640 			continue;
1641 		}
1642 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1643 		if (page == ph->ph_page)
1644 			continue;
1645 
1646 		if (label != NULL)
1647 			printf("%s: ", label);
1648 		printf("pool(%p:%s): page inconsistency: page %p;"
1649 		       " item ordinal %d; addr %p (p %p)\n", pp,
1650 			pp->pr_wchan, ph->ph_page,
1651 			n, pi, page);
1652 		return 1;
1653 	}
1654 	return 0;
1655 }
1656 
1657 
1658 int
1659 pool_chk(struct pool *pp, const char *label)
1660 {
1661 	struct pool_item_header *ph;
1662 	int r = 0;
1663 
1664 	mutex_enter(&pp->pr_lock);
1665 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1666 		r = pool_chk_page(pp, label, ph);
1667 		if (r) {
1668 			goto out;
1669 		}
1670 	}
1671 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1672 		r = pool_chk_page(pp, label, ph);
1673 		if (r) {
1674 			goto out;
1675 		}
1676 	}
1677 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1678 		r = pool_chk_page(pp, label, ph);
1679 		if (r) {
1680 			goto out;
1681 		}
1682 	}
1683 
1684 out:
1685 	mutex_exit(&pp->pr_lock);
1686 	return (r);
1687 }
1688 
1689 /*
1690  * pool_cache_init:
1691  *
1692  *	Initialize a pool cache.
1693  */
1694 pool_cache_t
1695 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1696     const char *wchan, struct pool_allocator *palloc, int ipl,
1697     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1698 {
1699 	pool_cache_t pc;
1700 
1701 	pc = pool_get(&cache_pool, PR_WAITOK);
1702 	if (pc == NULL)
1703 		return NULL;
1704 
1705 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1706 	   palloc, ipl, ctor, dtor, arg);
1707 
1708 	return pc;
1709 }
1710 
1711 /*
1712  * pool_cache_bootstrap:
1713  *
1714  *	Kernel-private version of pool_cache_init().  The caller
1715  *	provides initial storage.
1716  */
1717 void
1718 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1719     u_int align_offset, u_int flags, const char *wchan,
1720     struct pool_allocator *palloc, int ipl,
1721     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1722     void *arg)
1723 {
1724 	CPU_INFO_ITERATOR cii;
1725 	pool_cache_t pc1;
1726 	struct cpu_info *ci;
1727 	struct pool *pp;
1728 
1729 	pp = &pc->pc_pool;
1730 	if (palloc == NULL && ipl == IPL_NONE)
1731 		palloc = &pool_allocator_nointr;
1732 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1733 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1734 
1735 	if (ctor == NULL) {
1736 		ctor = (int (*)(void *, void *, int))nullop;
1737 	}
1738 	if (dtor == NULL) {
1739 		dtor = (void (*)(void *, void *))nullop;
1740 	}
1741 
1742 	pc->pc_emptygroups = NULL;
1743 	pc->pc_fullgroups = NULL;
1744 	pc->pc_partgroups = NULL;
1745 	pc->pc_ctor = ctor;
1746 	pc->pc_dtor = dtor;
1747 	pc->pc_arg  = arg;
1748 	pc->pc_hits  = 0;
1749 	pc->pc_misses = 0;
1750 	pc->pc_nempty = 0;
1751 	pc->pc_npart = 0;
1752 	pc->pc_nfull = 0;
1753 	pc->pc_contended = 0;
1754 	pc->pc_refcnt = 0;
1755 	pc->pc_freecheck = NULL;
1756 
1757 	if ((flags & PR_LARGECACHE) != 0) {
1758 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1759 		pc->pc_pcgpool = &pcg_large_pool;
1760 	} else {
1761 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1762 		pc->pc_pcgpool = &pcg_normal_pool;
1763 	}
1764 
1765 	/* Allocate per-CPU caches. */
1766 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1767 	pc->pc_ncpu = 0;
1768 	if (ncpu < 2) {
1769 		/* XXX For sparc: boot CPU is not attached yet. */
1770 		pool_cache_cpu_init1(curcpu(), pc);
1771 	} else {
1772 		for (CPU_INFO_FOREACH(cii, ci)) {
1773 			pool_cache_cpu_init1(ci, pc);
1774 		}
1775 	}
1776 
1777 	/* Add to list of all pools. */
1778 	if (__predict_true(!cold))
1779 		mutex_enter(&pool_head_lock);
1780 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1781 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1782 			break;
1783 	}
1784 	if (pc1 == NULL)
1785 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1786 	else
1787 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1788 	if (__predict_true(!cold))
1789 		mutex_exit(&pool_head_lock);
1790 
1791 	membar_sync();
1792 	pp->pr_cache = pc;
1793 }
1794 
1795 /*
1796  * pool_cache_destroy:
1797  *
1798  *	Destroy a pool cache.
1799  */
1800 void
1801 pool_cache_destroy(pool_cache_t pc)
1802 {
1803 
1804 	pool_cache_bootstrap_destroy(pc);
1805 	pool_put(&cache_pool, pc);
1806 }
1807 
1808 /*
1809  * pool_cache_bootstrap_destroy:
1810  *
1811  *	Destroy a pool cache.
1812  */
1813 void
1814 pool_cache_bootstrap_destroy(pool_cache_t pc)
1815 {
1816 	struct pool *pp = &pc->pc_pool;
1817 	u_int i;
1818 
1819 	/* Remove it from the global list. */
1820 	mutex_enter(&pool_head_lock);
1821 	while (pc->pc_refcnt != 0)
1822 		cv_wait(&pool_busy, &pool_head_lock);
1823 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1824 	mutex_exit(&pool_head_lock);
1825 
1826 	/* First, invalidate the entire cache. */
1827 	pool_cache_invalidate(pc);
1828 
1829 	/* Disassociate it from the pool. */
1830 	mutex_enter(&pp->pr_lock);
1831 	pp->pr_cache = NULL;
1832 	mutex_exit(&pp->pr_lock);
1833 
1834 	/* Destroy per-CPU data */
1835 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1836 		pool_cache_invalidate_cpu(pc, i);
1837 
1838 	/* Finally, destroy it. */
1839 	mutex_destroy(&pc->pc_lock);
1840 	pool_destroy(pp);
1841 }
1842 
1843 /*
1844  * pool_cache_cpu_init1:
1845  *
1846  *	Called for each pool_cache whenever a new CPU is attached.
1847  */
1848 static void
1849 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1850 {
1851 	pool_cache_cpu_t *cc;
1852 	int index;
1853 
1854 	index = ci->ci_index;
1855 
1856 	KASSERT(index < __arraycount(pc->pc_cpus));
1857 
1858 	if ((cc = pc->pc_cpus[index]) != NULL) {
1859 		KASSERT(cc->cc_cpuindex == index);
1860 		return;
1861 	}
1862 
1863 	/*
1864 	 * The first CPU is 'free'.  This needs to be the case for
1865 	 * bootstrap - we may not be able to allocate yet.
1866 	 */
1867 	if (pc->pc_ncpu == 0) {
1868 		cc = &pc->pc_cpu0;
1869 		pc->pc_ncpu = 1;
1870 	} else {
1871 		mutex_enter(&pc->pc_lock);
1872 		pc->pc_ncpu++;
1873 		mutex_exit(&pc->pc_lock);
1874 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1875 	}
1876 
1877 	cc->cc_ipl = pc->pc_pool.pr_ipl;
1878 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1879 	cc->cc_cache = pc;
1880 	cc->cc_cpuindex = index;
1881 	cc->cc_hits = 0;
1882 	cc->cc_misses = 0;
1883 	cc->cc_current = __UNCONST(&pcg_dummy);
1884 	cc->cc_previous = __UNCONST(&pcg_dummy);
1885 
1886 	pc->pc_cpus[index] = cc;
1887 }
1888 
1889 /*
1890  * pool_cache_cpu_init:
1891  *
1892  *	Called whenever a new CPU is attached.
1893  */
1894 void
1895 pool_cache_cpu_init(struct cpu_info *ci)
1896 {
1897 	pool_cache_t pc;
1898 
1899 	mutex_enter(&pool_head_lock);
1900 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1901 		pc->pc_refcnt++;
1902 		mutex_exit(&pool_head_lock);
1903 
1904 		pool_cache_cpu_init1(ci, pc);
1905 
1906 		mutex_enter(&pool_head_lock);
1907 		pc->pc_refcnt--;
1908 		cv_broadcast(&pool_busy);
1909 	}
1910 	mutex_exit(&pool_head_lock);
1911 }
1912 
1913 /*
1914  * pool_cache_reclaim:
1915  *
1916  *	Reclaim memory from a pool cache.
1917  */
1918 bool
1919 pool_cache_reclaim(pool_cache_t pc)
1920 {
1921 
1922 	return pool_reclaim(&pc->pc_pool);
1923 }
1924 
1925 static void
1926 pool_cache_destruct_object1(pool_cache_t pc, void *object)
1927 {
1928 
1929 	(*pc->pc_dtor)(pc->pc_arg, object);
1930 	pool_put(&pc->pc_pool, object);
1931 }
1932 
1933 /*
1934  * pool_cache_destruct_object:
1935  *
1936  *	Force destruction of an object and its release back into
1937  *	the pool.
1938  */
1939 void
1940 pool_cache_destruct_object(pool_cache_t pc, void *object)
1941 {
1942 
1943 	FREECHECK_IN(&pc->pc_freecheck, object);
1944 
1945 	pool_cache_destruct_object1(pc, object);
1946 }
1947 
1948 /*
1949  * pool_cache_invalidate_groups:
1950  *
1951  *	Invalidate a chain of groups and destruct all objects.
1952  */
1953 static void
1954 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
1955 {
1956 	void *object;
1957 	pcg_t *next;
1958 	int i;
1959 
1960 	for (; pcg != NULL; pcg = next) {
1961 		next = pcg->pcg_next;
1962 
1963 		for (i = 0; i < pcg->pcg_avail; i++) {
1964 			object = pcg->pcg_objects[i].pcgo_va;
1965 			pool_cache_destruct_object1(pc, object);
1966 		}
1967 
1968 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
1969 			pool_put(&pcg_large_pool, pcg);
1970 		} else {
1971 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
1972 			pool_put(&pcg_normal_pool, pcg);
1973 		}
1974 	}
1975 }
1976 
1977 /*
1978  * pool_cache_invalidate:
1979  *
1980  *	Invalidate a pool cache (destruct and release all of the
1981  *	cached objects).  Does not reclaim objects from the pool.
1982  *
1983  *	Note: For pool caches that provide constructed objects, there
1984  *	is an assumption that another level of synchronization is occurring
1985  *	between the input to the constructor and the cache invalidation.
1986  *
1987  *	Invalidation is a costly process and should not be called from
1988  *	interrupt context.
1989  */
1990 void
1991 pool_cache_invalidate(pool_cache_t pc)
1992 {
1993 	uint64_t where;
1994 	pcg_t *full, *empty, *part;
1995 
1996 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1997 
1998 	if (ncpu < 2 || !mp_online) {
1999 		/*
2000 		 * We might be called early enough in the boot process
2001 		 * for the CPU data structures to not be fully initialized.
2002 		 * In this case, transfer the content of the local CPU's
2003 		 * cache back into global cache as only this CPU is currently
2004 		 * running.
2005 		 */
2006 		pool_cache_transfer(pc);
2007 	} else {
2008 		/*
2009 		 * Signal all CPUs that they must transfer their local
2010 		 * cache back to the global pool then wait for the xcall to
2011 		 * complete.
2012 		 */
2013 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2014 		    pc, NULL);
2015 		xc_wait(where);
2016 	}
2017 
2018 	/* Empty pool caches, then invalidate objects */
2019 	mutex_enter(&pc->pc_lock);
2020 	full = pc->pc_fullgroups;
2021 	empty = pc->pc_emptygroups;
2022 	part = pc->pc_partgroups;
2023 	pc->pc_fullgroups = NULL;
2024 	pc->pc_emptygroups = NULL;
2025 	pc->pc_partgroups = NULL;
2026 	pc->pc_nfull = 0;
2027 	pc->pc_nempty = 0;
2028 	pc->pc_npart = 0;
2029 	mutex_exit(&pc->pc_lock);
2030 
2031 	pool_cache_invalidate_groups(pc, full);
2032 	pool_cache_invalidate_groups(pc, empty);
2033 	pool_cache_invalidate_groups(pc, part);
2034 }
2035 
2036 /*
2037  * pool_cache_invalidate_cpu:
2038  *
2039  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2040  *	identified by its associated index.
2041  *	It is caller's responsibility to ensure that no operation is
2042  *	taking place on this pool cache while doing this invalidation.
2043  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2044  *	pool cached objects from a CPU different from the one currently running
2045  *	may result in an undefined behaviour.
2046  */
2047 static void
2048 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2049 {
2050 	pool_cache_cpu_t *cc;
2051 	pcg_t *pcg;
2052 
2053 	if ((cc = pc->pc_cpus[index]) == NULL)
2054 		return;
2055 
2056 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2057 		pcg->pcg_next = NULL;
2058 		pool_cache_invalidate_groups(pc, pcg);
2059 	}
2060 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2061 		pcg->pcg_next = NULL;
2062 		pool_cache_invalidate_groups(pc, pcg);
2063 	}
2064 	if (cc != &pc->pc_cpu0)
2065 		pool_put(&cache_cpu_pool, cc);
2066 
2067 }
2068 
2069 void
2070 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2071 {
2072 
2073 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2074 }
2075 
2076 void
2077 pool_cache_setlowat(pool_cache_t pc, int n)
2078 {
2079 
2080 	pool_setlowat(&pc->pc_pool, n);
2081 }
2082 
2083 void
2084 pool_cache_sethiwat(pool_cache_t pc, int n)
2085 {
2086 
2087 	pool_sethiwat(&pc->pc_pool, n);
2088 }
2089 
2090 void
2091 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2092 {
2093 
2094 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2095 }
2096 
2097 static bool __noinline
2098 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2099 		    paddr_t *pap, int flags)
2100 {
2101 	pcg_t *pcg, *cur;
2102 	uint64_t ncsw;
2103 	pool_cache_t pc;
2104 	void *object;
2105 
2106 	KASSERT(cc->cc_current->pcg_avail == 0);
2107 	KASSERT(cc->cc_previous->pcg_avail == 0);
2108 
2109 	pc = cc->cc_cache;
2110 	cc->cc_misses++;
2111 
2112 	/*
2113 	 * Nothing was available locally.  Try and grab a group
2114 	 * from the cache.
2115 	 */
2116 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2117 		ncsw = curlwp->l_ncsw;
2118 		mutex_enter(&pc->pc_lock);
2119 		pc->pc_contended++;
2120 
2121 		/*
2122 		 * If we context switched while locking, then
2123 		 * our view of the per-CPU data is invalid:
2124 		 * retry.
2125 		 */
2126 		if (curlwp->l_ncsw != ncsw) {
2127 			mutex_exit(&pc->pc_lock);
2128 			return true;
2129 		}
2130 	}
2131 
2132 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2133 		/*
2134 		 * If there's a full group, release our empty
2135 		 * group back to the cache.  Install the full
2136 		 * group as cc_current and return.
2137 		 */
2138 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2139 			KASSERT(cur->pcg_avail == 0);
2140 			cur->pcg_next = pc->pc_emptygroups;
2141 			pc->pc_emptygroups = cur;
2142 			pc->pc_nempty++;
2143 		}
2144 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2145 		cc->cc_current = pcg;
2146 		pc->pc_fullgroups = pcg->pcg_next;
2147 		pc->pc_hits++;
2148 		pc->pc_nfull--;
2149 		mutex_exit(&pc->pc_lock);
2150 		return true;
2151 	}
2152 
2153 	/*
2154 	 * Nothing available locally or in cache.  Take the slow
2155 	 * path: fetch a new object from the pool and construct
2156 	 * it.
2157 	 */
2158 	pc->pc_misses++;
2159 	mutex_exit(&pc->pc_lock);
2160 	splx(s);
2161 
2162 	object = pool_get(&pc->pc_pool, flags);
2163 	*objectp = object;
2164 	if (__predict_false(object == NULL))
2165 		return false;
2166 
2167 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2168 		pool_put(&pc->pc_pool, object);
2169 		*objectp = NULL;
2170 		return false;
2171 	}
2172 
2173 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2174 	    (pc->pc_pool.pr_align - 1)) == 0);
2175 
2176 	if (pap != NULL) {
2177 #ifdef POOL_VTOPHYS
2178 		*pap = POOL_VTOPHYS(object);
2179 #else
2180 		*pap = POOL_PADDR_INVALID;
2181 #endif
2182 	}
2183 
2184 	FREECHECK_OUT(&pc->pc_freecheck, object);
2185 	return false;
2186 }
2187 
2188 /*
2189  * pool_cache_get{,_paddr}:
2190  *
2191  *	Get an object from a pool cache (optionally returning
2192  *	the physical address of the object).
2193  */
2194 void *
2195 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2196 {
2197 	pool_cache_cpu_t *cc;
2198 	pcg_t *pcg;
2199 	void *object;
2200 	int s;
2201 
2202 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2203 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2204 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
2205 	    pc->pc_pool.pr_wchan);
2206 
2207 	if (flags & PR_WAITOK) {
2208 		ASSERT_SLEEPABLE();
2209 	}
2210 
2211 	/* Lock out interrupts and disable preemption. */
2212 	s = splvm();
2213 	while (/* CONSTCOND */ true) {
2214 		/* Try and allocate an object from the current group. */
2215 		cc = pc->pc_cpus[curcpu()->ci_index];
2216 		KASSERT(cc->cc_cache == pc);
2217 	 	pcg = cc->cc_current;
2218 		if (__predict_true(pcg->pcg_avail > 0)) {
2219 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2220 			if (__predict_false(pap != NULL))
2221 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2222 #if defined(DIAGNOSTIC)
2223 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2224 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2225 			KASSERT(object != NULL);
2226 #endif
2227 			cc->cc_hits++;
2228 			splx(s);
2229 			FREECHECK_OUT(&pc->pc_freecheck, object);
2230 			return object;
2231 		}
2232 
2233 		/*
2234 		 * That failed.  If the previous group isn't empty, swap
2235 		 * it with the current group and allocate from there.
2236 		 */
2237 		pcg = cc->cc_previous;
2238 		if (__predict_true(pcg->pcg_avail > 0)) {
2239 			cc->cc_previous = cc->cc_current;
2240 			cc->cc_current = pcg;
2241 			continue;
2242 		}
2243 
2244 		/*
2245 		 * Can't allocate from either group: try the slow path.
2246 		 * If get_slow() allocated an object for us, or if
2247 		 * no more objects are available, it will return false.
2248 		 * Otherwise, we need to retry.
2249 		 */
2250 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2251 			break;
2252 	}
2253 
2254 	return object;
2255 }
2256 
2257 static bool __noinline
2258 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2259 {
2260 	pcg_t *pcg, *cur;
2261 	uint64_t ncsw;
2262 	pool_cache_t pc;
2263 
2264 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2265 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2266 
2267 	pc = cc->cc_cache;
2268 	pcg = NULL;
2269 	cc->cc_misses++;
2270 
2271 	/*
2272 	 * If there are no empty groups in the cache then allocate one
2273 	 * while still unlocked.
2274 	 */
2275 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2276 		if (__predict_true(!pool_cache_disable)) {
2277 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2278 		}
2279 		if (__predict_true(pcg != NULL)) {
2280 			pcg->pcg_avail = 0;
2281 			pcg->pcg_size = pc->pc_pcgsize;
2282 		}
2283 	}
2284 
2285 	/* Lock the cache. */
2286 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2287 		ncsw = curlwp->l_ncsw;
2288 		mutex_enter(&pc->pc_lock);
2289 		pc->pc_contended++;
2290 
2291 		/*
2292 		 * If we context switched while locking, then our view of
2293 		 * the per-CPU data is invalid: retry.
2294 		 */
2295 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
2296 			mutex_exit(&pc->pc_lock);
2297 			if (pcg != NULL) {
2298 				pool_put(pc->pc_pcgpool, pcg);
2299 			}
2300 			return true;
2301 		}
2302 	}
2303 
2304 	/* If there are no empty groups in the cache then allocate one. */
2305 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2306 		pcg = pc->pc_emptygroups;
2307 		pc->pc_emptygroups = pcg->pcg_next;
2308 		pc->pc_nempty--;
2309 	}
2310 
2311 	/*
2312 	 * If there's a empty group, release our full group back
2313 	 * to the cache.  Install the empty group to the local CPU
2314 	 * and return.
2315 	 */
2316 	if (pcg != NULL) {
2317 		KASSERT(pcg->pcg_avail == 0);
2318 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2319 			cc->cc_previous = pcg;
2320 		} else {
2321 			cur = cc->cc_current;
2322 			if (__predict_true(cur != &pcg_dummy)) {
2323 				KASSERT(cur->pcg_avail == cur->pcg_size);
2324 				cur->pcg_next = pc->pc_fullgroups;
2325 				pc->pc_fullgroups = cur;
2326 				pc->pc_nfull++;
2327 			}
2328 			cc->cc_current = pcg;
2329 		}
2330 		pc->pc_hits++;
2331 		mutex_exit(&pc->pc_lock);
2332 		return true;
2333 	}
2334 
2335 	/*
2336 	 * Nothing available locally or in cache, and we didn't
2337 	 * allocate an empty group.  Take the slow path and destroy
2338 	 * the object here and now.
2339 	 */
2340 	pc->pc_misses++;
2341 	mutex_exit(&pc->pc_lock);
2342 	splx(s);
2343 	pool_cache_destruct_object(pc, object);
2344 
2345 	return false;
2346 }
2347 
2348 /*
2349  * pool_cache_put{,_paddr}:
2350  *
2351  *	Put an object back to the pool cache (optionally caching the
2352  *	physical address of the object).
2353  */
2354 void
2355 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2356 {
2357 	pool_cache_cpu_t *cc;
2358 	pcg_t *pcg;
2359 	int s;
2360 
2361 	KASSERT(object != NULL);
2362 	FREECHECK_IN(&pc->pc_freecheck, object);
2363 
2364 	/* Lock out interrupts and disable preemption. */
2365 	s = splvm();
2366 	while (/* CONSTCOND */ true) {
2367 		/* If the current group isn't full, release it there. */
2368 		cc = pc->pc_cpus[curcpu()->ci_index];
2369 		KASSERT(cc->cc_cache == pc);
2370 	 	pcg = cc->cc_current;
2371 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2372 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2373 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2374 			pcg->pcg_avail++;
2375 			cc->cc_hits++;
2376 			splx(s);
2377 			return;
2378 		}
2379 
2380 		/*
2381 		 * That failed.  If the previous group isn't full, swap
2382 		 * it with the current group and try again.
2383 		 */
2384 		pcg = cc->cc_previous;
2385 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2386 			cc->cc_previous = cc->cc_current;
2387 			cc->cc_current = pcg;
2388 			continue;
2389 		}
2390 
2391 		/*
2392 		 * Can't free to either group: try the slow path.
2393 		 * If put_slow() releases the object for us, it
2394 		 * will return false.  Otherwise we need to retry.
2395 		 */
2396 		if (!pool_cache_put_slow(cc, s, object))
2397 			break;
2398 	}
2399 }
2400 
2401 /*
2402  * pool_cache_transfer:
2403  *
2404  *	Transfer objects from the per-CPU cache to the global cache.
2405  *	Run within a cross-call thread.
2406  */
2407 static void
2408 pool_cache_transfer(pool_cache_t pc)
2409 {
2410 	pool_cache_cpu_t *cc;
2411 	pcg_t *prev, *cur, **list;
2412 	int s;
2413 
2414 	s = splvm();
2415 	mutex_enter(&pc->pc_lock);
2416 	cc = pc->pc_cpus[curcpu()->ci_index];
2417 	cur = cc->cc_current;
2418 	cc->cc_current = __UNCONST(&pcg_dummy);
2419 	prev = cc->cc_previous;
2420 	cc->cc_previous = __UNCONST(&pcg_dummy);
2421 	if (cur != &pcg_dummy) {
2422 		if (cur->pcg_avail == cur->pcg_size) {
2423 			list = &pc->pc_fullgroups;
2424 			pc->pc_nfull++;
2425 		} else if (cur->pcg_avail == 0) {
2426 			list = &pc->pc_emptygroups;
2427 			pc->pc_nempty++;
2428 		} else {
2429 			list = &pc->pc_partgroups;
2430 			pc->pc_npart++;
2431 		}
2432 		cur->pcg_next = *list;
2433 		*list = cur;
2434 	}
2435 	if (prev != &pcg_dummy) {
2436 		if (prev->pcg_avail == prev->pcg_size) {
2437 			list = &pc->pc_fullgroups;
2438 			pc->pc_nfull++;
2439 		} else if (prev->pcg_avail == 0) {
2440 			list = &pc->pc_emptygroups;
2441 			pc->pc_nempty++;
2442 		} else {
2443 			list = &pc->pc_partgroups;
2444 			pc->pc_npart++;
2445 		}
2446 		prev->pcg_next = *list;
2447 		*list = prev;
2448 	}
2449 	mutex_exit(&pc->pc_lock);
2450 	splx(s);
2451 }
2452 
2453 /*
2454  * Pool backend allocators.
2455  *
2456  * Each pool has a backend allocator that handles allocation, deallocation,
2457  * and any additional draining that might be needed.
2458  *
2459  * We provide two standard allocators:
2460  *
2461  *	pool_allocator_kmem - the default when no allocator is specified
2462  *
2463  *	pool_allocator_nointr - used for pools that will not be accessed
2464  *	in interrupt context.
2465  */
2466 void	*pool_page_alloc(struct pool *, int);
2467 void	pool_page_free(struct pool *, void *);
2468 
2469 #ifdef POOL_SUBPAGE
2470 struct pool_allocator pool_allocator_kmem_fullpage = {
2471 	.pa_alloc = pool_page_alloc,
2472 	.pa_free = pool_page_free,
2473 	.pa_pagesz = 0
2474 };
2475 #else
2476 struct pool_allocator pool_allocator_kmem = {
2477 	.pa_alloc = pool_page_alloc,
2478 	.pa_free = pool_page_free,
2479 	.pa_pagesz = 0
2480 };
2481 #endif
2482 
2483 #ifdef POOL_SUBPAGE
2484 struct pool_allocator pool_allocator_nointr_fullpage = {
2485 	.pa_alloc = pool_page_alloc,
2486 	.pa_free = pool_page_free,
2487 	.pa_pagesz = 0
2488 };
2489 #else
2490 struct pool_allocator pool_allocator_nointr = {
2491 	.pa_alloc = pool_page_alloc,
2492 	.pa_free = pool_page_free,
2493 	.pa_pagesz = 0
2494 };
2495 #endif
2496 
2497 #ifdef POOL_SUBPAGE
2498 void	*pool_subpage_alloc(struct pool *, int);
2499 void	pool_subpage_free(struct pool *, void *);
2500 
2501 struct pool_allocator pool_allocator_kmem = {
2502 	.pa_alloc = pool_subpage_alloc,
2503 	.pa_free = pool_subpage_free,
2504 	.pa_pagesz = POOL_SUBPAGE
2505 };
2506 
2507 struct pool_allocator pool_allocator_nointr = {
2508 	.pa_alloc = pool_subpage_alloc,
2509 	.pa_free = pool_subpage_free,
2510 	.pa_pagesz = POOL_SUBPAGE
2511 };
2512 #endif /* POOL_SUBPAGE */
2513 
2514 static void *
2515 pool_allocator_alloc(struct pool *pp, int flags)
2516 {
2517 	struct pool_allocator *pa = pp->pr_alloc;
2518 	void *res;
2519 
2520 	res = (*pa->pa_alloc)(pp, flags);
2521 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2522 		/*
2523 		 * We only run the drain hook here if PR_NOWAIT.
2524 		 * In other cases, the hook will be run in
2525 		 * pool_reclaim().
2526 		 */
2527 		if (pp->pr_drain_hook != NULL) {
2528 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2529 			res = (*pa->pa_alloc)(pp, flags);
2530 		}
2531 	}
2532 	return res;
2533 }
2534 
2535 static void
2536 pool_allocator_free(struct pool *pp, void *v)
2537 {
2538 	struct pool_allocator *pa = pp->pr_alloc;
2539 
2540 	(*pa->pa_free)(pp, v);
2541 }
2542 
2543 void *
2544 pool_page_alloc(struct pool *pp, int flags)
2545 {
2546 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2547 	vmem_addr_t va;
2548 	int ret;
2549 
2550 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2551 	    vflags | VM_INSTANTFIT, &va);
2552 
2553 	return ret ? NULL : (void *)va;
2554 }
2555 
2556 void
2557 pool_page_free(struct pool *pp, void *v)
2558 {
2559 
2560 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2561 }
2562 
2563 static void *
2564 pool_page_alloc_meta(struct pool *pp, int flags)
2565 {
2566 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2567 	vmem_addr_t va;
2568 	int ret;
2569 
2570 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2571 	    vflags | VM_INSTANTFIT, &va);
2572 
2573 	return ret ? NULL : (void *)va;
2574 }
2575 
2576 static void
2577 pool_page_free_meta(struct pool *pp, void *v)
2578 {
2579 
2580 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2581 }
2582 
2583 #ifdef POOL_SUBPAGE
2584 /* Sub-page allocator, for machines with large hardware pages. */
2585 void *
2586 pool_subpage_alloc(struct pool *pp, int flags)
2587 {
2588 	return pool_get(&psppool, flags);
2589 }
2590 
2591 void
2592 pool_subpage_free(struct pool *pp, void *v)
2593 {
2594 	pool_put(&psppool, v);
2595 }
2596 
2597 #endif /* POOL_SUBPAGE */
2598 
2599 #if defined(DDB)
2600 static bool
2601 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2602 {
2603 
2604 	return (uintptr_t)ph->ph_page <= addr &&
2605 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2606 }
2607 
2608 static bool
2609 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2610 {
2611 
2612 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2613 }
2614 
2615 static bool
2616 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2617 {
2618 	int i;
2619 
2620 	if (pcg == NULL) {
2621 		return false;
2622 	}
2623 	for (i = 0; i < pcg->pcg_avail; i++) {
2624 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2625 			return true;
2626 		}
2627 	}
2628 	return false;
2629 }
2630 
2631 static bool
2632 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2633 {
2634 
2635 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2636 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2637 		pool_item_bitmap_t *bitmap =
2638 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2639 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2640 
2641 		return (*bitmap & mask) == 0;
2642 	} else {
2643 		struct pool_item *pi;
2644 
2645 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2646 			if (pool_in_item(pp, pi, addr)) {
2647 				return false;
2648 			}
2649 		}
2650 		return true;
2651 	}
2652 }
2653 
2654 void
2655 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2656 {
2657 	struct pool *pp;
2658 
2659 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2660 		struct pool_item_header *ph;
2661 		uintptr_t item;
2662 		bool allocated = true;
2663 		bool incache = false;
2664 		bool incpucache = false;
2665 		char cpucachestr[32];
2666 
2667 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2668 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2669 				if (pool_in_page(pp, ph, addr)) {
2670 					goto found;
2671 				}
2672 			}
2673 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2674 				if (pool_in_page(pp, ph, addr)) {
2675 					allocated =
2676 					    pool_allocated(pp, ph, addr);
2677 					goto found;
2678 				}
2679 			}
2680 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2681 				if (pool_in_page(pp, ph, addr)) {
2682 					allocated = false;
2683 					goto found;
2684 				}
2685 			}
2686 			continue;
2687 		} else {
2688 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
2689 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2690 				continue;
2691 			}
2692 			allocated = pool_allocated(pp, ph, addr);
2693 		}
2694 found:
2695 		if (allocated && pp->pr_cache) {
2696 			pool_cache_t pc = pp->pr_cache;
2697 			struct pool_cache_group *pcg;
2698 			int i;
2699 
2700 			for (pcg = pc->pc_fullgroups; pcg != NULL;
2701 			    pcg = pcg->pcg_next) {
2702 				if (pool_in_cg(pp, pcg, addr)) {
2703 					incache = true;
2704 					goto print;
2705 				}
2706 			}
2707 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2708 				pool_cache_cpu_t *cc;
2709 
2710 				if ((cc = pc->pc_cpus[i]) == NULL) {
2711 					continue;
2712 				}
2713 				if (pool_in_cg(pp, cc->cc_current, addr) ||
2714 				    pool_in_cg(pp, cc->cc_previous, addr)) {
2715 					struct cpu_info *ci =
2716 					    cpu_lookup(i);
2717 
2718 					incpucache = true;
2719 					snprintf(cpucachestr,
2720 					    sizeof(cpucachestr),
2721 					    "cached by CPU %u",
2722 					    ci->ci_index);
2723 					goto print;
2724 				}
2725 			}
2726 		}
2727 print:
2728 		item = (uintptr_t)ph->ph_page + ph->ph_off;
2729 		item = item + rounddown(addr - item, pp->pr_size);
2730 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2731 		    (void *)addr, item, (size_t)(addr - item),
2732 		    pp->pr_wchan,
2733 		    incpucache ? cpucachestr :
2734 		    incache ? "cached" : allocated ? "allocated" : "free");
2735 	}
2736 }
2737 #endif /* defined(DDB) */
2738