xref: /netbsd-src/sys/kern/subr_percpu.c (revision f32144615845cc98528c78d4f24930c3b8fe6a8f)
1 /*	$NetBSD: subr_percpu.c,v 1.11 2011/04/14 05:53:53 matt Exp $	*/
2 
3 /*-
4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * per-cpu storage.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.11 2011/04/14 05:53:53 matt Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/cpu.h>
38 #include <sys/kmem.h>
39 #include <sys/kernel.h>
40 #include <sys/mutex.h>
41 #include <sys/percpu.h>
42 #include <sys/rwlock.h>
43 #include <sys/vmem.h>
44 #include <sys/xcall.h>
45 
46 #include <uvm/uvm_extern.h>
47 
48 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
49 #define	PERCPU_QCACHE_MAX	0
50 #define	PERCPU_IMPORT_SIZE	2048
51 
52 #if defined(DIAGNOSTIC)
53 #define	MAGIC	0x50435055	/* "PCPU" */
54 #define	percpu_encrypt(pc)	((pc) ^ MAGIC)
55 #define	percpu_decrypt(pc)	((pc) ^ MAGIC)
56 #else /* defined(DIAGNOSTIC) */
57 #define	percpu_encrypt(pc)	(pc)
58 #define	percpu_decrypt(pc)	(pc)
59 #endif /* defined(DIAGNOSTIC) */
60 
61 static krwlock_t percpu_swap_lock;
62 static kmutex_t percpu_allocation_lock;
63 static vmem_t *percpu_offset_arena;
64 static unsigned int percpu_nextoff = PERCPU_QUANTUM_SIZE;
65 
66 static percpu_cpu_t *
67 cpu_percpu(struct cpu_info *ci)
68 {
69 
70 	return &ci->ci_data.cpu_percpu;
71 }
72 
73 static unsigned int
74 percpu_offset(percpu_t *pc)
75 {
76 	const unsigned int off = percpu_decrypt((uintptr_t)pc);
77 
78 	KASSERT(off < percpu_nextoff);
79 	return off;
80 }
81 
82 /*
83  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
84  */
85 
86 static void
87 percpu_cpu_swap(void *p1, void *p2)
88 {
89 	struct cpu_info * const ci = p1;
90 	percpu_cpu_t * const newpcc = p2;
91 	percpu_cpu_t * const pcc = cpu_percpu(ci);
92 
93 	KASSERT(ci == curcpu());
94 
95 	/*
96 	 * swap *pcc and *newpcc unless anyone has beaten us.
97 	 */
98 	rw_enter(&percpu_swap_lock, RW_WRITER);
99 	if (newpcc->pcc_size > pcc->pcc_size) {
100 		percpu_cpu_t tmp;
101 		int s;
102 
103 		tmp = *pcc;
104 
105 		/*
106 		 * block interrupts so that we don't lose their modifications.
107 		 */
108 
109 		s = splhigh();
110 
111 		/*
112 		 * copy data to new storage.
113 		 */
114 
115 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
116 
117 		/*
118 		 * this assignment needs to be atomic for percpu_getptr_remote.
119 		 */
120 
121 		pcc->pcc_data = newpcc->pcc_data;
122 
123 		splx(s);
124 
125 		pcc->pcc_size = newpcc->pcc_size;
126 		*newpcc = tmp;
127 	}
128 	rw_exit(&percpu_swap_lock);
129 }
130 
131 /*
132  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
133  */
134 
135 static void
136 percpu_cpu_enlarge(size_t size)
137 {
138 	CPU_INFO_ITERATOR cii;
139 	struct cpu_info *ci;
140 
141 	for (CPU_INFO_FOREACH(cii, ci)) {
142 		percpu_cpu_t pcc;
143 
144 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
145 		pcc.pcc_size = size;
146 		if (!mp_online) {
147 			percpu_cpu_swap(ci, &pcc);
148 		} else {
149 			uint64_t where;
150 
151 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
152 			xc_wait(where);
153 		}
154 		KASSERT(pcc.pcc_size < size);
155 		if (pcc.pcc_data != NULL) {
156 			kmem_free(pcc.pcc_data, pcc.pcc_size);
157 		}
158 	}
159 }
160 
161 /*
162  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
163  */
164 
165 static vmem_addr_t
166 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
167     vm_flag_t vmflags)
168 {
169 	unsigned int offset;
170 	unsigned int nextoff;
171 
172 	ASSERT_SLEEPABLE();
173 	KASSERT(dummy == NULL);
174 
175 	if ((vmflags & VM_NOSLEEP) != 0)
176 		return VMEM_ADDR_NULL;
177 
178 	size = roundup(size, PERCPU_IMPORT_SIZE);
179 	mutex_enter(&percpu_allocation_lock);
180 	offset = percpu_nextoff;
181 	percpu_nextoff = nextoff = percpu_nextoff + size;
182 	mutex_exit(&percpu_allocation_lock);
183 
184 	percpu_cpu_enlarge(nextoff);
185 
186 	*resultsize = size;
187 	return (vmem_addr_t)offset;
188 }
189 
190 static void
191 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
192 {
193 	size_t sz = (uintptr_t)vp2;
194 
195 	memset(vp, 0, sz);
196 }
197 
198 /*
199  * percpu_zero: initialize percpu storage with zero.
200  */
201 
202 static void
203 percpu_zero(percpu_t *pc, size_t sz)
204 {
205 
206 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
207 }
208 
209 /*
210  * percpu_init: subsystem initialization
211  */
212 
213 void
214 percpu_init(void)
215 {
216 
217 	ASSERT_SLEEPABLE();
218 	rw_init(&percpu_swap_lock);
219 	mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
220 
221 	percpu_offset_arena = vmem_create("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
222 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
223 	    IPL_NONE);
224 }
225 
226 /*
227  * percpu_init_cpu: cpu initialization
228  *
229  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
230  */
231 
232 void
233 percpu_init_cpu(struct cpu_info *ci)
234 {
235 	percpu_cpu_t * const pcc = cpu_percpu(ci);
236 	size_t size = percpu_nextoff; /* XXX racy */
237 
238 	ASSERT_SLEEPABLE();
239 	pcc->pcc_size = size;
240 	if (size) {
241 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
242 	}
243 }
244 
245 /*
246  * percpu_alloc: allocate percpu storage
247  *
248  * => called in thread context.
249  * => considered as an expensive and rare operation.
250  * => allocated storage is initialized with zeros.
251  */
252 
253 percpu_t *
254 percpu_alloc(size_t size)
255 {
256 	unsigned int offset;
257 	percpu_t *pc;
258 
259 	ASSERT_SLEEPABLE();
260 	offset = vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT);
261 	pc = (percpu_t *)percpu_encrypt((uintptr_t)offset);
262 	percpu_zero(pc, size);
263 	return pc;
264 }
265 
266 /*
267  * percpu_free: free percpu storage
268  *
269  * => called in thread context.
270  * => considered as an expensive and rare operation.
271  */
272 
273 void
274 percpu_free(percpu_t *pc, size_t size)
275 {
276 
277 	ASSERT_SLEEPABLE();
278 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
279 }
280 
281 /*
282  * percpu_getref:
283  *
284  * => safe to be used in either thread or interrupt context
285  * => disables preemption; must be bracketed with a percpu_putref()
286  */
287 
288 void *
289 percpu_getref(percpu_t *pc)
290 {
291 
292 	KPREEMPT_DISABLE(curlwp);
293 	return percpu_getptr_remote(pc, curcpu());
294 }
295 
296 /*
297  * percpu_putref:
298  *
299  * => drops the preemption-disabled count after caller is done with per-cpu
300  *    data
301  */
302 
303 void
304 percpu_putref(percpu_t *pc)
305 {
306 
307 	KPREEMPT_ENABLE(curlwp);
308 }
309 
310 /*
311  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
312  * helpers to access remote cpu's percpu data.
313  *
314  * => called in thread context.
315  * => percpu_traverse_enter can block low-priority xcalls.
316  * => typical usage would be:
317  *
318  *	sum = 0;
319  *	percpu_traverse_enter();
320  *	for (CPU_INFO_FOREACH(cii, ci)) {
321  *		unsigned int *p = percpu_getptr_remote(pc, ci);
322  *		sum += *p;
323  *	}
324  *	percpu_traverse_exit();
325  */
326 
327 void
328 percpu_traverse_enter(void)
329 {
330 
331 	ASSERT_SLEEPABLE();
332 	rw_enter(&percpu_swap_lock, RW_READER);
333 }
334 
335 void
336 percpu_traverse_exit(void)
337 {
338 
339 	rw_exit(&percpu_swap_lock);
340 }
341 
342 void *
343 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
344 {
345 
346 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
347 }
348 
349 /*
350  * percpu_foreach: call the specified callback function for each cpus.
351  *
352  * => called in thread context.
353  * => caller should not rely on the cpu iteration order.
354  * => the callback function should be minimum because it is executed with
355  *    holding a global lock, which can block low-priority xcalls.
356  *    eg. it's illegal for a callback function to sleep for memory allocation.
357  */
358 void
359 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
360 {
361 	CPU_INFO_ITERATOR cii;
362 	struct cpu_info *ci;
363 
364 	percpu_traverse_enter();
365 	for (CPU_INFO_FOREACH(cii, ci)) {
366 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
367 	}
368 	percpu_traverse_exit();
369 }
370