1 /* $NetBSD: subr_percpu.c,v 1.10 2009/10/21 21:12:06 rmind Exp $ */ 2 3 /*- 4 * Copyright (c)2007,2008 YAMAMOTO Takashi, 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * per-cpu storage. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.10 2009/10/21 21:12:06 rmind Exp $"); 35 36 #include <sys/param.h> 37 #include <sys/cpu.h> 38 #include <sys/kmem.h> 39 #include <sys/kernel.h> 40 #include <sys/mutex.h> 41 #include <sys/percpu.h> 42 #include <sys/rwlock.h> 43 #include <sys/vmem.h> 44 #include <sys/xcall.h> 45 46 #include <uvm/uvm_extern.h> 47 48 #define PERCPU_QUANTUM_SIZE (ALIGNBYTES + 1) 49 #define PERCPU_QCACHE_MAX 0 50 #define PERCPU_IMPORT_SIZE 2048 51 52 #if defined(DIAGNOSTIC) 53 #define MAGIC 0x50435055 /* "PCPU" */ 54 #define percpu_encrypt(pc) ((pc) ^ MAGIC) 55 #define percpu_decrypt(pc) ((pc) ^ MAGIC) 56 #else /* defined(DIAGNOSTIC) */ 57 #define percpu_encrypt(pc) (pc) 58 #define percpu_decrypt(pc) (pc) 59 #endif /* defined(DIAGNOSTIC) */ 60 61 static krwlock_t percpu_swap_lock; 62 static kmutex_t percpu_allocation_lock; 63 static vmem_t *percpu_offset_arena; 64 static unsigned int percpu_nextoff = PERCPU_QUANTUM_SIZE; 65 66 static percpu_cpu_t * 67 cpu_percpu(struct cpu_info *ci) 68 { 69 70 return &ci->ci_data.cpu_percpu; 71 } 72 73 static unsigned int 74 percpu_offset(percpu_t *pc) 75 { 76 const unsigned int off = percpu_decrypt((uintptr_t)pc); 77 78 KASSERT(off < percpu_nextoff); 79 return off; 80 } 81 82 /* 83 * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge 84 */ 85 86 static void 87 percpu_cpu_swap(void *p1, void *p2) 88 { 89 struct cpu_info * const ci = p1; 90 percpu_cpu_t * const newpcc = p2; 91 percpu_cpu_t * const pcc = cpu_percpu(ci); 92 93 /* 94 * swap *pcc and *newpcc unless anyone has beaten us. 95 */ 96 97 rw_enter(&percpu_swap_lock, RW_WRITER); 98 if (newpcc->pcc_size > pcc->pcc_size) { 99 percpu_cpu_t tmp; 100 int s; 101 102 tmp = *pcc; 103 104 /* 105 * block interrupts so that we don't lose their modifications. 106 */ 107 108 s = splhigh(); 109 110 /* 111 * copy data to new storage. 112 */ 113 114 memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size); 115 116 /* 117 * this assignment needs to be atomic for percpu_getptr_remote. 118 */ 119 120 pcc->pcc_data = newpcc->pcc_data; 121 122 splx(s); 123 124 pcc->pcc_size = newpcc->pcc_size; 125 *newpcc = tmp; 126 } 127 rw_exit(&percpu_swap_lock); 128 } 129 130 /* 131 * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space 132 */ 133 134 static void 135 percpu_cpu_enlarge(size_t size) 136 { 137 CPU_INFO_ITERATOR cii; 138 struct cpu_info *ci; 139 140 for (CPU_INFO_FOREACH(cii, ci)) { 141 percpu_cpu_t pcc; 142 143 pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */ 144 pcc.pcc_size = size; 145 if (!mp_online) { 146 percpu_cpu_swap(ci, &pcc); 147 } else { 148 uint64_t where; 149 150 where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci); 151 xc_wait(where); 152 } 153 KASSERT(pcc.pcc_size < size); 154 if (pcc.pcc_data != NULL) { 155 kmem_free(pcc.pcc_data, pcc.pcc_size); 156 } 157 } 158 } 159 160 /* 161 * percpu_backend_alloc: vmem import callback for percpu_offset_arena 162 */ 163 164 static vmem_addr_t 165 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize, 166 vm_flag_t vmflags) 167 { 168 unsigned int offset; 169 unsigned int nextoff; 170 171 ASSERT_SLEEPABLE(); 172 KASSERT(dummy == NULL); 173 174 if ((vmflags & VM_NOSLEEP) != 0) 175 return VMEM_ADDR_NULL; 176 177 size = roundup(size, PERCPU_IMPORT_SIZE); 178 mutex_enter(&percpu_allocation_lock); 179 offset = percpu_nextoff; 180 percpu_nextoff = nextoff = percpu_nextoff + size; 181 mutex_exit(&percpu_allocation_lock); 182 183 percpu_cpu_enlarge(nextoff); 184 185 *resultsize = size; 186 return (vmem_addr_t)offset; 187 } 188 189 static void 190 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci) 191 { 192 size_t sz = (uintptr_t)vp2; 193 194 memset(vp, 0, sz); 195 } 196 197 /* 198 * percpu_zero: initialize percpu storage with zero. 199 */ 200 201 static void 202 percpu_zero(percpu_t *pc, size_t sz) 203 { 204 205 percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz); 206 } 207 208 /* 209 * percpu_init: subsystem initialization 210 */ 211 212 void 213 percpu_init(void) 214 { 215 216 ASSERT_SLEEPABLE(); 217 rw_init(&percpu_swap_lock); 218 mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE); 219 220 percpu_offset_arena = vmem_create("percpu", 0, 0, PERCPU_QUANTUM_SIZE, 221 percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP, 222 IPL_NONE); 223 } 224 225 /* 226 * percpu_init_cpu: cpu initialization 227 * 228 * => should be called before the cpu appears on the list for CPU_INFO_FOREACH. 229 */ 230 231 void 232 percpu_init_cpu(struct cpu_info *ci) 233 { 234 percpu_cpu_t * const pcc = cpu_percpu(ci); 235 size_t size = percpu_nextoff; /* XXX racy */ 236 237 ASSERT_SLEEPABLE(); 238 pcc->pcc_size = size; 239 if (size) { 240 pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP); 241 } 242 } 243 244 /* 245 * percpu_alloc: allocate percpu storage 246 * 247 * => called in thread context. 248 * => considered as an expensive and rare operation. 249 * => allocated storage is initialized with zeros. 250 */ 251 252 percpu_t * 253 percpu_alloc(size_t size) 254 { 255 unsigned int offset; 256 percpu_t *pc; 257 258 ASSERT_SLEEPABLE(); 259 offset = vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT); 260 pc = (percpu_t *)percpu_encrypt((uintptr_t)offset); 261 percpu_zero(pc, size); 262 return pc; 263 } 264 265 /* 266 * percpu_free: free percpu storage 267 * 268 * => called in thread context. 269 * => considered as an expensive and rare operation. 270 */ 271 272 void 273 percpu_free(percpu_t *pc, size_t size) 274 { 275 276 ASSERT_SLEEPABLE(); 277 vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size); 278 } 279 280 /* 281 * percpu_getref: 282 * 283 * => safe to be used in either thread or interrupt context 284 * => disables preemption; must be bracketed with a percpu_putref() 285 */ 286 287 void * 288 percpu_getref(percpu_t *pc) 289 { 290 291 KPREEMPT_DISABLE(curlwp); 292 return percpu_getptr_remote(pc, curcpu()); 293 } 294 295 /* 296 * percpu_putref: 297 * 298 * => drops the preemption-disabled count after caller is done with per-cpu 299 * data 300 */ 301 302 void 303 percpu_putref(percpu_t *pc) 304 { 305 306 KPREEMPT_ENABLE(curlwp); 307 } 308 309 /* 310 * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote: 311 * helpers to access remote cpu's percpu data. 312 * 313 * => called in thread context. 314 * => percpu_traverse_enter can block low-priority xcalls. 315 * => typical usage would be: 316 * 317 * sum = 0; 318 * percpu_traverse_enter(); 319 * for (CPU_INFO_FOREACH(cii, ci)) { 320 * unsigned int *p = percpu_getptr_remote(pc, ci); 321 * sum += *p; 322 * } 323 * percpu_traverse_exit(); 324 */ 325 326 void 327 percpu_traverse_enter(void) 328 { 329 330 ASSERT_SLEEPABLE(); 331 rw_enter(&percpu_swap_lock, RW_READER); 332 } 333 334 void 335 percpu_traverse_exit(void) 336 { 337 338 rw_exit(&percpu_swap_lock); 339 } 340 341 void * 342 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci) 343 { 344 345 return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)]; 346 } 347 348 /* 349 * percpu_foreach: call the specified callback function for each cpus. 350 * 351 * => called in thread context. 352 * => caller should not rely on the cpu iteration order. 353 * => the callback function should be minimum because it is executed with 354 * holding a global lock, which can block low-priority xcalls. 355 * eg. it's illegal for a callback function to sleep for memory allocation. 356 */ 357 void 358 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg) 359 { 360 CPU_INFO_ITERATOR cii; 361 struct cpu_info *ci; 362 363 percpu_traverse_enter(); 364 for (CPU_INFO_FOREACH(cii, ci)) { 365 (*cb)(percpu_getptr_remote(pc, ci), arg, ci); 366 } 367 percpu_traverse_exit(); 368 } 369