xref: /netbsd-src/sys/kern/subr_percpu.c (revision 33881f779a77dce6440bdc44610d94de75bebefe)
1 /*	$NetBSD: subr_percpu.c,v 1.24 2020/02/07 11:55:22 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * per-cpu storage.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.24 2020/02/07 11:55:22 thorpej Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/cpu.h>
38 #include <sys/kernel.h>
39 #include <sys/kmem.h>
40 #include <sys/mutex.h>
41 #include <sys/percpu.h>
42 #include <sys/rwlock.h>
43 #include <sys/vmem.h>
44 #include <sys/xcall.h>
45 
46 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
47 #define	PERCPU_QCACHE_MAX	0
48 #define	PERCPU_IMPORT_SIZE	2048
49 
50 struct percpu {
51 	unsigned		pc_offset;
52 	size_t			pc_size;
53 	percpu_callback_t	pc_dtor;
54 	void			*pc_cookie;
55 };
56 
57 static krwlock_t	percpu_swap_lock	__cacheline_aligned;
58 static vmem_t *		percpu_offset_arena	__read_mostly;
59 static struct {
60 	kmutex_t	lock;
61 	unsigned int	nextoff;
62 } percpu_allocation __cacheline_aligned;
63 
64 static percpu_cpu_t *
65 cpu_percpu(struct cpu_info *ci)
66 {
67 
68 	return &ci->ci_data.cpu_percpu;
69 }
70 
71 static unsigned int
72 percpu_offset(percpu_t *pc)
73 {
74 	const unsigned int off = pc->pc_offset;
75 
76 	KASSERT(off < percpu_allocation.nextoff);
77 	return off;
78 }
79 
80 /*
81  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
82  */
83 __noubsan
84 static void
85 percpu_cpu_swap(void *p1, void *p2)
86 {
87 	struct cpu_info * const ci = p1;
88 	percpu_cpu_t * const newpcc = p2;
89 	percpu_cpu_t * const pcc = cpu_percpu(ci);
90 
91 	KASSERT(ci == curcpu() || !mp_online);
92 
93 	/*
94 	 * swap *pcc and *newpcc unless anyone has beaten us.
95 	 */
96 	rw_enter(&percpu_swap_lock, RW_WRITER);
97 	if (newpcc->pcc_size > pcc->pcc_size) {
98 		percpu_cpu_t tmp;
99 		int s;
100 
101 		tmp = *pcc;
102 
103 		/*
104 		 * block interrupts so that we don't lose their modifications.
105 		 */
106 
107 		s = splhigh();
108 
109 		/*
110 		 * copy data to new storage.
111 		 */
112 
113 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
114 
115 		/*
116 		 * this assignment needs to be atomic for percpu_getptr_remote.
117 		 */
118 
119 		pcc->pcc_data = newpcc->pcc_data;
120 
121 		splx(s);
122 
123 		pcc->pcc_size = newpcc->pcc_size;
124 		*newpcc = tmp;
125 	}
126 	rw_exit(&percpu_swap_lock);
127 }
128 
129 /*
130  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
131  */
132 
133 static void
134 percpu_cpu_enlarge(size_t size)
135 {
136 	CPU_INFO_ITERATOR cii;
137 	struct cpu_info *ci;
138 
139 	for (CPU_INFO_FOREACH(cii, ci)) {
140 		percpu_cpu_t pcc;
141 
142 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
143 		pcc.pcc_size = size;
144 		if (!mp_online) {
145 			percpu_cpu_swap(ci, &pcc);
146 		} else {
147 			uint64_t where;
148 
149 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
150 			xc_wait(where);
151 		}
152 		KASSERT(pcc.pcc_size <= size);
153 		if (pcc.pcc_data != NULL) {
154 			kmem_free(pcc.pcc_data, pcc.pcc_size);
155 		}
156 	}
157 }
158 
159 /*
160  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
161  */
162 
163 static int
164 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
165     vm_flag_t vmflags, vmem_addr_t *addrp)
166 {
167 	unsigned int offset;
168 	unsigned int nextoff;
169 
170 	ASSERT_SLEEPABLE();
171 	KASSERT(dummy == NULL);
172 
173 	if ((vmflags & VM_NOSLEEP) != 0)
174 		return ENOMEM;
175 
176 	size = roundup(size, PERCPU_IMPORT_SIZE);
177 	mutex_enter(&percpu_allocation.lock);
178 	offset = percpu_allocation.nextoff;
179 	percpu_allocation.nextoff = nextoff = percpu_allocation.nextoff + size;
180 	mutex_exit(&percpu_allocation.lock);
181 
182 	percpu_cpu_enlarge(nextoff);
183 
184 	*resultsize = size;
185 	*addrp = (vmem_addr_t)offset;
186 	return 0;
187 }
188 
189 static void
190 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
191 {
192 	size_t sz = (uintptr_t)vp2;
193 
194 	memset(vp, 0, sz);
195 }
196 
197 /*
198  * percpu_zero: initialize percpu storage with zero.
199  */
200 
201 static void
202 percpu_zero(percpu_t *pc, size_t sz)
203 {
204 
205 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
206 }
207 
208 /*
209  * percpu_init: subsystem initialization
210  */
211 
212 void
213 percpu_init(void)
214 {
215 
216 	ASSERT_SLEEPABLE();
217 	rw_init(&percpu_swap_lock);
218 	mutex_init(&percpu_allocation.lock, MUTEX_DEFAULT, IPL_NONE);
219 	percpu_allocation.nextoff = PERCPU_QUANTUM_SIZE;
220 
221 	percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
222 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
223 	    IPL_NONE);
224 }
225 
226 /*
227  * percpu_init_cpu: cpu initialization
228  *
229  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
230  */
231 
232 void
233 percpu_init_cpu(struct cpu_info *ci)
234 {
235 	percpu_cpu_t * const pcc = cpu_percpu(ci);
236 	size_t size = percpu_allocation.nextoff; /* XXX racy */
237 
238 	ASSERT_SLEEPABLE();
239 	pcc->pcc_size = size;
240 	if (size) {
241 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
242 	}
243 }
244 
245 /*
246  * percpu_alloc: allocate percpu storage
247  *
248  * => called in thread context.
249  * => considered as an expensive and rare operation.
250  * => allocated storage is initialized with zeros.
251  */
252 
253 percpu_t *
254 percpu_alloc(size_t size)
255 {
256 
257 	return percpu_create(size, NULL, NULL, NULL);
258 }
259 
260 /*
261  * percpu_create: allocate percpu storage and associate ctor/dtor with it
262  *
263  * => called in thread context.
264  * => considered as an expensive and rare operation.
265  * => allocated storage is initialized by ctor, or zeros if ctor is null
266  * => percpu_free will call dtor first, if dtor is nonnull
267  * => ctor or dtor may sleep, even on allocation
268  */
269 
270 percpu_t *
271 percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor,
272     void *cookie)
273 {
274 	vmem_addr_t offset;
275 	percpu_t *pc;
276 
277 	ASSERT_SLEEPABLE();
278 	(void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
279 	    &offset);
280 
281 	pc = kmem_alloc(sizeof(*pc), KM_SLEEP);
282 	pc->pc_offset = offset;
283 	pc->pc_size = size;
284 	pc->pc_dtor = dtor;
285 	pc->pc_cookie = cookie;
286 
287 	if (ctor) {
288 		CPU_INFO_ITERATOR cii;
289 		struct cpu_info *ci;
290 		void *buf;
291 
292 		buf = kmem_alloc(size, KM_SLEEP);
293 		for (CPU_INFO_FOREACH(cii, ci)) {
294 			memset(buf, 0, size);
295 			(*ctor)(buf, cookie, ci);
296 			percpu_traverse_enter();
297 			memcpy(percpu_getptr_remote(pc, ci), buf, size);
298 			percpu_traverse_exit();
299 		}
300 		explicit_memset(buf, 0, size);
301 		kmem_free(buf, size);
302 	} else {
303 		percpu_zero(pc, size);
304 	}
305 
306 	return pc;
307 }
308 
309 /*
310  * percpu_free: free percpu storage
311  *
312  * => called in thread context.
313  * => considered as an expensive and rare operation.
314  */
315 
316 void
317 percpu_free(percpu_t *pc, size_t size)
318 {
319 
320 	ASSERT_SLEEPABLE();
321 	KASSERT(size == pc->pc_size);
322 
323 	if (pc->pc_dtor) {
324 		CPU_INFO_ITERATOR cii;
325 		struct cpu_info *ci;
326 		void *buf;
327 
328 		buf = kmem_alloc(size, KM_SLEEP);
329 		for (CPU_INFO_FOREACH(cii, ci)) {
330 			percpu_traverse_enter();
331 			memcpy(buf, percpu_getptr_remote(pc, ci), size);
332 			explicit_memset(percpu_getptr_remote(pc, ci), 0, size);
333 			percpu_traverse_exit();
334 			(*pc->pc_dtor)(buf, pc->pc_cookie, ci);
335 		}
336 		explicit_memset(buf, 0, size);
337 		kmem_free(buf, size);
338 	}
339 
340 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
341 	kmem_free(pc, sizeof(*pc));
342 }
343 
344 /*
345  * percpu_getref:
346  *
347  * => safe to be used in either thread or interrupt context
348  * => disables preemption; must be bracketed with a percpu_putref()
349  */
350 
351 void *
352 percpu_getref(percpu_t *pc)
353 {
354 
355 	kpreempt_disable();
356 	return percpu_getptr_remote(pc, curcpu());
357 }
358 
359 /*
360  * percpu_putref:
361  *
362  * => drops the preemption-disabled count after caller is done with per-cpu
363  *    data
364  */
365 
366 void
367 percpu_putref(percpu_t *pc)
368 {
369 
370 	kpreempt_enable();
371 }
372 
373 /*
374  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
375  * helpers to access remote cpu's percpu data.
376  *
377  * => called in thread context.
378  * => percpu_traverse_enter can block low-priority xcalls.
379  * => typical usage would be:
380  *
381  *	sum = 0;
382  *	percpu_traverse_enter();
383  *	for (CPU_INFO_FOREACH(cii, ci)) {
384  *		unsigned int *p = percpu_getptr_remote(pc, ci);
385  *		sum += *p;
386  *	}
387  *	percpu_traverse_exit();
388  */
389 
390 void
391 percpu_traverse_enter(void)
392 {
393 
394 	ASSERT_SLEEPABLE();
395 	rw_enter(&percpu_swap_lock, RW_READER);
396 }
397 
398 void
399 percpu_traverse_exit(void)
400 {
401 
402 	rw_exit(&percpu_swap_lock);
403 }
404 
405 void *
406 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
407 {
408 
409 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
410 }
411 
412 /*
413  * percpu_foreach: call the specified callback function for each cpus.
414  *
415  * => must be called from thread context.
416  * => callback executes on **current** CPU (or, really, arbitrary CPU,
417  *    in case of preemption)
418  * => caller should not rely on the cpu iteration order.
419  * => the callback function should be minimum because it is executed with
420  *    holding a global lock, which can block low-priority xcalls.
421  *    eg. it's illegal for a callback function to sleep for memory allocation.
422  */
423 void
424 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
425 {
426 	CPU_INFO_ITERATOR cii;
427 	struct cpu_info *ci;
428 
429 	percpu_traverse_enter();
430 	for (CPU_INFO_FOREACH(cii, ci)) {
431 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
432 	}
433 	percpu_traverse_exit();
434 }
435 
436 struct percpu_xcall_ctx {
437 	percpu_callback_t  ctx_cb;
438 	void		  *ctx_arg;
439 };
440 
441 static void
442 percpu_xcfunc(void * const v1, void * const v2)
443 {
444 	percpu_t * const pc = v1;
445 	struct percpu_xcall_ctx * const ctx = v2;
446 
447 	(*ctx->ctx_cb)(percpu_getref(pc), ctx->ctx_arg, curcpu());
448 	percpu_putref(pc);
449 }
450 
451 /*
452  * percpu_foreach_xcall: call the specified callback function for each
453  * cpu.  This version uses an xcall to run the callback on each cpu.
454  *
455  * => must be called from thread context.
456  * => callback executes on **remote** CPU in soft-interrupt context
457  *    (at the specified soft interrupt priority).
458  * => caller should not rely on the cpu iteration order.
459  * => the callback function should be minimum because it may be
460  *    executed in soft-interrupt context.  eg. it's illegal for
461  *    a callback function to sleep for memory allocation.
462  */
463 void
464 percpu_foreach_xcall(percpu_t *pc, u_int xcflags, percpu_callback_t cb,
465 		     void *arg)
466 {
467 	struct percpu_xcall_ctx ctx = {
468 		.ctx_cb = cb,
469 		.ctx_arg = arg,
470 	};
471 	CPU_INFO_ITERATOR cii;
472 	struct cpu_info *ci;
473 
474 	for (CPU_INFO_FOREACH(cii, ci)) {
475 		xc_wait(xc_unicast(xcflags, percpu_xcfunc, pc, &ctx, ci));
476 	}
477 }
478