xref: /netbsd-src/sys/kern/subr_kobj.c (revision 4d12bfcd155352508213ace5ccc59ce930ea2974)
1 /*	$NetBSD: subr_kobj.c,v 1.46 2013/08/09 05:10:14 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software developed for The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998-2000 Doug Rabson
34  * Copyright (c) 2004 Peter Wemm
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  */
58 
59 /*
60  * Kernel loader for ELF objects.
61  *
62  * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.46 2013/08/09 05:10:14 matt Exp $");
67 
68 #include "opt_modular.h"
69 
70 #include <sys/kobj_impl.h>
71 
72 #ifdef MODULAR
73 
74 #include <sys/param.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/proc.h>
78 #include <sys/ksyms.h>
79 #include <sys/module.h>
80 
81 #include <uvm/uvm_extern.h>
82 
83 static int	kobj_relocate(kobj_t, bool);
84 static int	kobj_checksyms(kobj_t, bool);
85 static void	kobj_error(const char *, int, kobj_t, const char *, ...)
86     __printflike(4, 5);
87 static void	kobj_jettison(kobj_t);
88 static void	kobj_free(kobj_t, void *, size_t);
89 static void	kobj_close(kobj_t);
90 static int	kobj_read_mem(kobj_t, void **, size_t, off_t, bool);
91 static void	kobj_close_mem(kobj_t);
92 
93 extern struct vm_map *module_map;
94 
95 /*
96  * kobj_load_mem:
97  *
98  *	Load an object already resident in memory.  If size is not -1,
99  *	the complete size of the object is known.
100  */
101 int
102 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
103 {
104 	kobj_t ko;
105 
106 	ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
107 	if (ko == NULL) {
108 		return ENOMEM;
109 	}
110 
111 	ko->ko_type = KT_MEMORY;
112 	kobj_setname(ko, name);
113 	ko->ko_source = base;
114 	ko->ko_memsize = size;
115 	ko->ko_read = kobj_read_mem;
116 	ko->ko_close = kobj_close_mem;
117 
118 	*kop = ko;
119 	return kobj_load(ko);
120 }
121 
122 /*
123  * kobj_close:
124  *
125  *	Close an open ELF object.
126  */
127 static void
128 kobj_close(kobj_t ko)
129 {
130 
131 	if (ko->ko_source == NULL) {
132 		return;
133 	}
134 
135 	ko->ko_close(ko);
136 	ko->ko_source = NULL;
137 }
138 
139 static void
140 kobj_close_mem(kobj_t ko)
141 {
142 
143 	return;
144 }
145 
146 /*
147  * kobj_load:
148  *
149  *	Load an ELF object and prepare to link into the running kernel
150  *	image.
151  */
152 int
153 kobj_load(kobj_t ko)
154 {
155 	Elf_Ehdr *hdr;
156 	Elf_Shdr *shdr;
157 	Elf_Sym *es;
158 	vaddr_t mapbase;
159 	size_t mapsize;
160 	int error;
161 	int symtabindex;
162 	int symstrindex;
163 	int nsym;
164 	int pb, rl, ra;
165 	int alignmask;
166 	int i, j;
167 	void *addr;
168 
169 	KASSERT(ko->ko_type != KT_UNSET);
170 	KASSERT(ko->ko_source != NULL);
171 
172 	shdr = NULL;
173 	mapsize = 0;
174 	error = 0;
175 	hdr = NULL;
176 
177 	/*
178 	 * Read the elf header from the file.
179 	 */
180 	error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
181 	if (error != 0) {
182 		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
183 		goto out;
184 	}
185 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
186 		kobj_error(__func__, __LINE__, ko, "not an ELF object");
187 		error = ENOEXEC;
188 		goto out;
189 	}
190 
191 	if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
192 	    hdr->e_version != EV_CURRENT) {
193 		kobj_error(__func__, __LINE__, ko,
194 		    "unsupported file version %d", hdr->e_ident[EI_VERSION]);
195 		error = ENOEXEC;
196 		goto out;
197 	}
198 	if (hdr->e_type != ET_REL) {
199 		kobj_error(__func__, __LINE__, ko, "unsupported file type %d",
200 		    hdr->e_type);
201 		error = ENOEXEC;
202 		goto out;
203 	}
204 	switch (hdr->e_machine) {
205 #if ELFSIZE == 32
206 	ELF32_MACHDEP_ID_CASES
207 #elif ELFSIZE == 64
208 	ELF64_MACHDEP_ID_CASES
209 #else
210 #error not defined
211 #endif
212 	default:
213 		kobj_error(__func__, __LINE__, ko, "unsupported machine %d",
214 		    hdr->e_machine);
215 		error = ENOEXEC;
216 		goto out;
217 	}
218 
219 	ko->ko_nprogtab = 0;
220 	ko->ko_shdr = 0;
221 	ko->ko_nrel = 0;
222 	ko->ko_nrela = 0;
223 
224 	/*
225 	 * Allocate and read in the section header.
226 	 */
227 	ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
228 	if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
229 	    hdr->e_shentsize != sizeof(Elf_Shdr)) {
230 		kobj_error(__func__, __LINE__, ko, "bad sizes");
231 		error = ENOEXEC;
232 		goto out;
233 	}
234 	error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
235 	    true);
236 	if (error != 0) {
237 		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
238 		goto out;
239 	}
240 	ko->ko_shdr = shdr;
241 
242 	/*
243 	 * Scan the section header for information and table sizing.
244 	 */
245 	nsym = 0;
246 	symtabindex = -1;
247 	symstrindex = -1;
248 	for (i = 0; i < hdr->e_shnum; i++) {
249 		switch (shdr[i].sh_type) {
250 		case SHT_PROGBITS:
251 		case SHT_NOBITS:
252 			ko->ko_nprogtab++;
253 			break;
254 		case SHT_SYMTAB:
255 			nsym++;
256 			symtabindex = i;
257 			symstrindex = shdr[i].sh_link;
258 			break;
259 		case SHT_REL:
260 			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
261 				continue;
262 			ko->ko_nrel++;
263 			break;
264 		case SHT_RELA:
265 			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
266 				continue;
267 			ko->ko_nrela++;
268 			break;
269 		case SHT_STRTAB:
270 			break;
271 		}
272 	}
273 	if (ko->ko_nprogtab == 0) {
274 		kobj_error(__func__, __LINE__, ko, "file has no contents");
275 		error = ENOEXEC;
276 		goto out;
277 	}
278 	if (nsym != 1) {
279 		/* Only allow one symbol table for now */
280 		kobj_error(__func__, __LINE__, ko,
281 		    "file has no valid symbol table");
282 		error = ENOEXEC;
283 		goto out;
284 	}
285 	if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
286 	    shdr[symstrindex].sh_type != SHT_STRTAB) {
287 		kobj_error(__func__, __LINE__, ko,
288 		    "file has invalid symbol strings");
289 		error = ENOEXEC;
290 		goto out;
291 	}
292 
293 	/*
294 	 * Allocate space for tracking the load chunks.
295 	 */
296 	if (ko->ko_nprogtab != 0) {
297 		ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
298 		    sizeof(*ko->ko_progtab), KM_SLEEP);
299 		if (ko->ko_progtab == NULL) {
300 			error = ENOMEM;
301 			kobj_error(__func__, __LINE__, ko, "out of memory");
302 			goto out;
303 		}
304 	}
305 	if (ko->ko_nrel != 0) {
306 		ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
307 		    sizeof(*ko->ko_reltab), KM_SLEEP);
308 		if (ko->ko_reltab == NULL) {
309 			error = ENOMEM;
310 			kobj_error(__func__, __LINE__, ko, "out of memory");
311 			goto out;
312 		}
313 	}
314 	if (ko->ko_nrela != 0) {
315 		ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
316 		    sizeof(*ko->ko_relatab), KM_SLEEP);
317 		if (ko->ko_relatab == NULL) {
318 			error = ENOMEM;
319 			kobj_error(__func__, __LINE__, ko, "out of memory");
320 			goto out;
321 		}
322 	}
323 	if (symtabindex == -1) {
324 		kobj_error(__func__, __LINE__, ko, "lost symbol table index");
325 		goto out;
326 	}
327 
328 	/*
329 	 * Allocate space for and load the symbol table.
330 	 */
331 	ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
332 	if (ko->ko_symcnt == 0) {
333 		kobj_error(__func__, __LINE__, ko, "no symbol table");
334 		goto out;
335 	}
336 	error = ko->ko_read(ko, (void **)&ko->ko_symtab,
337 	    ko->ko_symcnt * sizeof(Elf_Sym),
338 	    shdr[symtabindex].sh_offset, true);
339 	if (error != 0) {
340 		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
341 		goto out;
342 	}
343 
344 	/*
345 	 * Allocate space for and load the symbol strings.
346 	 */
347 	ko->ko_strtabsz = shdr[symstrindex].sh_size;
348 	if (ko->ko_strtabsz == 0) {
349 		kobj_error(__func__, __LINE__, ko, "no symbol strings");
350 		goto out;
351 	}
352 	error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
353 	    shdr[symstrindex].sh_offset, true);
354 	if (error != 0) {
355 		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
356 		goto out;
357 	}
358 
359 	/*
360 	 * Adjust module symbol namespace, if necessary (e.g. with rump)
361 	 */
362 	error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
363 	    &ko->ko_strtab, &ko->ko_strtabsz);
364 	if (error != 0) {
365 		kobj_error(__func__, __LINE__, ko, "renamespace failed %d",
366 		    error);
367 		goto out;
368 	}
369 
370 	/*
371 	 * Do we have a string table for the section names?
372 	 */
373 	if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
374 	    shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
375 		ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
376 		error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
377 		    shdr[hdr->e_shstrndx].sh_size,
378 		    shdr[hdr->e_shstrndx].sh_offset, true);
379 		if (error != 0) {
380 			kobj_error(__func__, __LINE__, ko, "read failed %d",
381 			    error);
382 			goto out;
383 		}
384 	}
385 
386 	/*
387 	 * Size up code/data(progbits) and bss(nobits).
388 	 */
389 	alignmask = 0;
390 	mapbase = 0;
391 	for (i = 0; i < hdr->e_shnum; i++) {
392 		switch (shdr[i].sh_type) {
393 		case SHT_PROGBITS:
394 		case SHT_NOBITS:
395 			if (mapbase == 0)
396 				mapbase = shdr[i].sh_offset;
397 			alignmask = shdr[i].sh_addralign - 1;
398 			mapsize += alignmask;
399 			mapsize &= ~alignmask;
400 			mapsize += shdr[i].sh_size;
401 			break;
402 		}
403 	}
404 
405 	/*
406 	 * We know how much space we need for the text/data/bss/etc.
407 	 * This stuff needs to be in a single chunk so that profiling etc
408 	 * can get the bounds and gdb can associate offsets with modules.
409 	 */
410 	if (mapsize == 0) {
411 		kobj_error(__func__, __LINE__, ko, "no text/data/bss");
412 		goto out;
413 	}
414 	if (ko->ko_type == KT_MEMORY) {
415 		mapbase += (vaddr_t)ko->ko_source;
416 	} else {
417 		mapbase = uvm_km_alloc(module_map, round_page(mapsize),
418 		    0, UVM_KMF_WIRED | UVM_KMF_EXEC);
419 		if (mapbase == 0) {
420 			kobj_error(__func__, __LINE__, ko, "out of memory");
421 			error = ENOMEM;
422 			goto out;
423 		}
424 	}
425 	ko->ko_address = mapbase;
426 	ko->ko_size = mapsize;
427 
428 	/*
429 	 * Now load code/data(progbits), zero bss(nobits), allocate space
430 	 * for and load relocs
431 	 */
432 	pb = 0;
433 	rl = 0;
434 	ra = 0;
435 	alignmask = 0;
436 	for (i = 0; i < hdr->e_shnum; i++) {
437 		switch (shdr[i].sh_type) {
438 		case SHT_PROGBITS:
439 		case SHT_NOBITS:
440 			alignmask = shdr[i].sh_addralign - 1;
441 			if (ko->ko_type == KT_MEMORY) {
442 				addr = (void *)(shdr[i].sh_offset +
443 				    (vaddr_t)ko->ko_source);
444 				if (((vaddr_t)addr & alignmask) != 0) {
445 					kobj_error(__func__, __LINE__, ko,
446 					    "section %d not aligned",
447 					    i);
448 					goto out;
449 				}
450 			} else {
451 				mapbase += alignmask;
452 				mapbase &= ~alignmask;
453 				addr = (void *)mapbase;
454 				mapbase += shdr[i].sh_size;
455 			}
456 			ko->ko_progtab[pb].addr = addr;
457 			if (shdr[i].sh_type == SHT_PROGBITS) {
458 				ko->ko_progtab[pb].name = "<<PROGBITS>>";
459 				error = ko->ko_read(ko, &addr,
460 				    shdr[i].sh_size, shdr[i].sh_offset, false);
461 				if (error != 0) {
462 					kobj_error(__func__, __LINE__, ko,
463 					    "read failed %d", error);
464 					goto out;
465 				}
466 			} else if (ko->ko_type == KT_MEMORY &&
467 			    shdr[i].sh_size != 0) {
468 			    	kobj_error(__func__, __LINE__, ko,
469 				    "non-loadable BSS "
470 				    "section in pre-loaded module");
471 				error = EINVAL;
472 			    	goto out;
473 			} else {
474 				ko->ko_progtab[pb].name = "<<NOBITS>>";
475 				memset(addr, 0, shdr[i].sh_size);
476 			}
477 			ko->ko_progtab[pb].size = shdr[i].sh_size;
478 			ko->ko_progtab[pb].sec = i;
479 			if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
480 				ko->ko_progtab[pb].name =
481 				    ko->ko_shstrtab + shdr[i].sh_name;
482 			}
483 
484 			/* Update all symbol values with the offset. */
485 			for (j = 0; j < ko->ko_symcnt; j++) {
486 				es = &ko->ko_symtab[j];
487 				if (es->st_shndx != i) {
488 					continue;
489 				}
490 				es->st_value += (Elf_Addr)addr;
491 			}
492 			pb++;
493 			break;
494 		case SHT_REL:
495 			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
496 				break;
497 			ko->ko_reltab[rl].size = shdr[i].sh_size;
498 			ko->ko_reltab[rl].size -=
499 			    shdr[i].sh_size % sizeof(Elf_Rel);
500 			if (ko->ko_reltab[rl].size != 0) {
501 				ko->ko_reltab[rl].nrel =
502 				    shdr[i].sh_size / sizeof(Elf_Rel);
503 				ko->ko_reltab[rl].sec = shdr[i].sh_info;
504 				error = ko->ko_read(ko,
505 				    (void **)&ko->ko_reltab[rl].rel,
506 				    ko->ko_reltab[rl].size,
507 				    shdr[i].sh_offset, true);
508 				if (error != 0) {
509 					kobj_error(__func__, __LINE__, ko,
510 					    "read failed %d", error);
511 					goto out;
512 				}
513 			}
514 			rl++;
515 			break;
516 		case SHT_RELA:
517 			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
518 				break;
519 			ko->ko_relatab[ra].size = shdr[i].sh_size;
520 			ko->ko_relatab[ra].size -=
521 			    shdr[i].sh_size % sizeof(Elf_Rela);
522 			if (ko->ko_relatab[ra].size != 0) {
523 				ko->ko_relatab[ra].nrela =
524 				    shdr[i].sh_size / sizeof(Elf_Rela);
525 				ko->ko_relatab[ra].sec = shdr[i].sh_info;
526 				error = ko->ko_read(ko,
527 				    (void **)&ko->ko_relatab[ra].rela,
528 				    shdr[i].sh_size,
529 				    shdr[i].sh_offset, true);
530 				if (error != 0) {
531 					kobj_error(__func__, __LINE__, ko,
532 					    "read failed %d", error);
533 					goto out;
534 				}
535 			}
536 			ra++;
537 			break;
538 		default:
539 			break;
540 		}
541 	}
542 	if (pb != ko->ko_nprogtab) {
543 		panic("%s:%d: %s: lost progbits", __func__, __LINE__,
544 		   ko->ko_name);
545 	}
546 	if (rl != ko->ko_nrel) {
547 		panic("%s:%d: %s: lost rel", __func__, __LINE__,
548 		   ko->ko_name);
549 	}
550 	if (ra != ko->ko_nrela) {
551 		panic("%s:%d: %s: lost rela", __func__, __LINE__,
552 		   ko->ko_name);
553 	}
554 	if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
555 		panic("%s:%d: %s: "
556 		    "mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
557 		    __func__, __LINE__, ko->ko_name,
558 		    (long)mapbase, (long)ko->ko_address, (long)mapsize,
559 		    (long)ko->ko_address + mapsize);
560 	}
561 
562 	/*
563 	 * Perform local relocations only.  Relocations relating to global
564 	 * symbols will be done by kobj_affix().
565 	 */
566 	error = kobj_checksyms(ko, false);
567 	if (error == 0) {
568 		error = kobj_relocate(ko, true);
569 	}
570  out:
571 	if (hdr != NULL) {
572 		kobj_free(ko, hdr, sizeof(*hdr));
573 	}
574 	kobj_close(ko);
575 	if (error != 0) {
576 		kobj_unload(ko);
577 	}
578 
579 	return error;
580 }
581 
582 /*
583  * kobj_unload:
584  *
585  *	Unload an object previously loaded by kobj_load().
586  */
587 void
588 kobj_unload(kobj_t ko)
589 {
590 	int error;
591 
592 	kobj_close(ko);
593 	kobj_jettison(ko);
594 
595 	/*
596 	 * Notify MD code that a module has been unloaded.
597 	 */
598 	if (ko->ko_loaded) {
599 		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
600 		    false);
601 		if (error != 0)
602 			kobj_error(__func__, __LINE__, ko,
603 			    "machine dependent deinit failed %d", error);
604 	}
605 	if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
606 		uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
607 		    UVM_KMF_WIRED);
608 	}
609 	if (ko->ko_ksyms == true) {
610 		ksyms_modunload(ko->ko_name);
611 	}
612 	if (ko->ko_symtab != NULL) {
613 		kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
614 	}
615 	if (ko->ko_strtab != NULL) {
616 		kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
617 	}
618 	if (ko->ko_progtab != NULL) {
619 		kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
620 		    sizeof(*ko->ko_progtab));
621 		ko->ko_progtab = NULL;
622 	}
623 	if (ko->ko_shstrtab) {
624 		kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
625 		ko->ko_shstrtab = NULL;
626 	}
627 
628 	kmem_free(ko, sizeof(*ko));
629 }
630 
631 /*
632  * kobj_stat:
633  *
634  *	Return size and load address of an object.
635  */
636 int
637 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
638 {
639 
640 	if (address != NULL) {
641 		*address = ko->ko_address;
642 	}
643 	if (size != NULL) {
644 		*size = ko->ko_size;
645 	}
646 	return 0;
647 }
648 
649 /*
650  * kobj_affix:
651  *
652  *	Set an object's name and perform global relocs.  May only be
653  *	called after the module and any requisite modules are loaded.
654  */
655 int
656 kobj_affix(kobj_t ko, const char *name)
657 {
658 	int error;
659 
660 	KASSERT(ko->ko_ksyms == false);
661 	KASSERT(ko->ko_loaded == false);
662 
663 	kobj_setname(ko, name);
664 
665 	/* Cache addresses of undefined symbols. */
666 	error = kobj_checksyms(ko, true);
667 
668 	/* Now do global relocations. */
669 	if (error == 0)
670 		error = kobj_relocate(ko, false);
671 
672 	/*
673 	 * Now that we know the name, register the symbol table.
674 	 * Do after global relocations because ksyms will pack
675 	 * the table.
676 	 */
677 	if (error == 0) {
678 		ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
679 		    sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
680 		ko->ko_ksyms = true;
681 	}
682 
683 	/* Jettison unneeded memory post-link. */
684 	kobj_jettison(ko);
685 
686 	/*
687 	 * Notify MD code that a module has been loaded.
688 	 *
689 	 * Most architectures use this opportunity to flush their caches.
690 	 */
691 	if (error == 0) {
692 		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
693 		    true);
694 		if (error != 0)
695 			kobj_error(__func__, __LINE__, ko,
696 			    "machine dependent init failed %d", error);
697 		ko->ko_loaded = true;
698 	}
699 
700 	/* If there was an error, destroy the whole object. */
701 	if (error != 0) {
702 		kobj_unload(ko);
703 	}
704 
705 	return error;
706 }
707 
708 /*
709  * kobj_find_section:
710  *
711  *	Given a section name, search the loaded object and return
712  *	virtual address if present and loaded.
713  */
714 int
715 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
716 {
717 	int i;
718 
719 	KASSERT(ko->ko_progtab != NULL);
720 
721 	for (i = 0; i < ko->ko_nprogtab; i++) {
722 		if (strcmp(ko->ko_progtab[i].name, name) == 0) {
723 			if (addr != NULL) {
724 				*addr = ko->ko_progtab[i].addr;
725 			}
726 			if (size != NULL) {
727 				*size = ko->ko_progtab[i].size;
728 			}
729 			return 0;
730 		}
731 	}
732 
733 	return ENOENT;
734 }
735 
736 /*
737  * kobj_jettison:
738  *
739  *	Release object data not needed after performing relocations.
740  */
741 static void
742 kobj_jettison(kobj_t ko)
743 {
744 	int i;
745 
746 	if (ko->ko_reltab != NULL) {
747 		for (i = 0; i < ko->ko_nrel; i++) {
748 			if (ko->ko_reltab[i].rel) {
749 				kobj_free(ko, ko->ko_reltab[i].rel,
750 				    ko->ko_reltab[i].size);
751 			}
752 		}
753 		kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
754 		    sizeof(*ko->ko_reltab));
755 		ko->ko_reltab = NULL;
756 		ko->ko_nrel = 0;
757 	}
758 	if (ko->ko_relatab != NULL) {
759 		for (i = 0; i < ko->ko_nrela; i++) {
760 			if (ko->ko_relatab[i].rela) {
761 				kobj_free(ko, ko->ko_relatab[i].rela,
762 				    ko->ko_relatab[i].size);
763 			}
764 		}
765 		kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
766 		    sizeof(*ko->ko_relatab));
767 		ko->ko_relatab = NULL;
768 		ko->ko_nrela = 0;
769 	}
770 	if (ko->ko_shdr != NULL) {
771 		kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
772 		ko->ko_shdr = NULL;
773 	}
774 }
775 
776 /*
777  * kobj_sym_lookup:
778  *
779  *	Symbol lookup function to be used when the symbol index
780  *	is known (ie during relocation).
781  */
782 uintptr_t
783 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
784 {
785 	const Elf_Sym *sym;
786 	const char *symbol;
787 
788 	/* Don't even try to lookup the symbol if the index is bogus. */
789 	if (symidx >= ko->ko_symcnt)
790 		return 0;
791 
792 	sym = ko->ko_symtab + symidx;
793 
794 	/* Quick answer if there is a definition included. */
795 	if (sym->st_shndx != SHN_UNDEF) {
796 		return (uintptr_t)sym->st_value;
797 	}
798 
799 	/* If we get here, then it is undefined and needs a lookup. */
800 	switch (ELF_ST_BIND(sym->st_info)) {
801 	case STB_LOCAL:
802 		/* Local, but undefined? huh? */
803 		kobj_error(__func__, __LINE__, ko, "local symbol undefined");
804 		return 0;
805 
806 	case STB_GLOBAL:
807 		/* Relative to Data or Function name */
808 		symbol = ko->ko_strtab + sym->st_name;
809 
810 		/* Force a lookup failure if the symbol name is bogus. */
811 		if (*symbol == 0) {
812 			kobj_error(__func__, __LINE__, ko, "bad symbol name");
813 			return 0;
814 		}
815 
816 		return (uintptr_t)sym->st_value;
817 
818 	case STB_WEAK:
819 		kobj_error(__func__, __LINE__, ko,
820 		    "weak symbols not supported");
821 		return 0;
822 
823 	default:
824 		return 0;
825 	}
826 }
827 
828 /*
829  * kobj_findbase:
830  *
831  *	Return base address of the given section.
832  */
833 static uintptr_t
834 kobj_findbase(kobj_t ko, int sec)
835 {
836 	int i;
837 
838 	for (i = 0; i < ko->ko_nprogtab; i++) {
839 		if (sec == ko->ko_progtab[i].sec) {
840 			return (uintptr_t)ko->ko_progtab[i].addr;
841 		}
842 	}
843 	return 0;
844 }
845 
846 /*
847  * kobj_checksyms:
848  *
849  *	Scan symbol table for duplicates or resolve references to
850  *	exernal symbols.
851  */
852 static int
853 kobj_checksyms(kobj_t ko, bool undefined)
854 {
855 	unsigned long rval;
856 	Elf_Sym *sym, *ms;
857 	const char *name;
858 	int error;
859 
860 	error = 0;
861 
862 	for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
863 		/* Check validity of the symbol. */
864 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
865 		    sym->st_name == 0)
866 			continue;
867 		if (undefined != (sym->st_shndx == SHN_UNDEF)) {
868 			continue;
869 		}
870 
871 		/*
872 		 * Look it up.  Don't need to lock, as it is known that
873 		 * the symbol tables aren't going to change (we hold
874 		 * module_lock).
875 		 */
876 		name = ko->ko_strtab + sym->st_name;
877 		if (ksyms_getval_unlocked(NULL, name, &rval,
878 		    KSYMS_EXTERN) != 0) {
879 			if (undefined) {
880 				kobj_error(__func__, __LINE__, ko,
881 				    "symbol `%s' not found", name);
882 				error = ENOEXEC;
883 			}
884 			continue;
885 		}
886 
887 		/* Save values of undefined globals. */
888 		if (undefined) {
889 			sym->st_value = (Elf_Addr)rval;
890 			continue;
891 		}
892 
893 		/* Check (and complain) about differing values. */
894 		if (sym->st_value == rval) {
895 			continue;
896 		}
897 		if (strcmp(name, "_bss_start") == 0 ||
898 		    strcmp(name, "__bss_start") == 0 ||
899 		    strcmp(name, "_bss_end__") == 0 ||
900 		    strcmp(name, "__bss_end__") == 0 ||
901 		    strcmp(name, "_edata") == 0 ||
902 		    strcmp(name, "_end") == 0 ||
903 		    strcmp(name, "__end") == 0 ||
904 		    strcmp(name, "__end__") == 0 ||
905 		    strncmp(name, "__start_link_set_", 17) == 0 ||
906 		    strncmp(name, "__stop_link_set_", 16)) {
907 		    	continue;
908 		}
909 		kobj_error(__func__, __LINE__, ko,
910 		    "global symbol `%s' redefined", name);
911 		error = ENOEXEC;
912 	}
913 
914 	return error;
915 }
916 
917 /*
918  * kobj_relocate:
919  *
920  *	Resolve relocations for the loaded object.
921  */
922 static int
923 kobj_relocate(kobj_t ko, bool local)
924 {
925 	const Elf_Rel *rellim;
926 	const Elf_Rel *rel;
927 	const Elf_Rela *relalim;
928 	const Elf_Rela *rela;
929 	const Elf_Sym *sym;
930 	uintptr_t base;
931 	int i, error;
932 	uintptr_t symidx;
933 
934 	/*
935 	 * Perform relocations without addend if there are any.
936 	 */
937 	for (i = 0; i < ko->ko_nrel; i++) {
938 		rel = ko->ko_reltab[i].rel;
939 		if (rel == NULL) {
940 			continue;
941 		}
942 		rellim = rel + ko->ko_reltab[i].nrel;
943 		base = kobj_findbase(ko, ko->ko_reltab[i].sec);
944 		if (base == 0) {
945 			panic("%s:%d: %s: lost base for e_reltab[%d] sec %d",
946 			   __func__, __LINE__, ko->ko_name, i,
947 			   ko->ko_reltab[i].sec);
948 		}
949 		for (; rel < rellim; rel++) {
950 			symidx = ELF_R_SYM(rel->r_info);
951 			if (symidx >= ko->ko_symcnt) {
952 				continue;
953 			}
954 			sym = ko->ko_symtab + symidx;
955 			if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
956 				continue;
957 			}
958 			error = kobj_reloc(ko, base, rel, false, local);
959 			if (error != 0) {
960 				return ENOENT;
961 			}
962 		}
963 	}
964 
965 	/*
966 	 * Perform relocations with addend if there are any.
967 	 */
968 	for (i = 0; i < ko->ko_nrela; i++) {
969 		rela = ko->ko_relatab[i].rela;
970 		if (rela == NULL) {
971 			continue;
972 		}
973 		relalim = rela + ko->ko_relatab[i].nrela;
974 		base = kobj_findbase(ko, ko->ko_relatab[i].sec);
975 		if (base == 0) {
976 			panic("%s:%d: %s: lost base for e_relatab[%d] sec %d",
977 			   __func__, __LINE__, ko->ko_name, i,
978 			   ko->ko_relatab[i].sec);
979 		}
980 		for (; rela < relalim; rela++) {
981 			symidx = ELF_R_SYM(rela->r_info);
982 			if (symidx >= ko->ko_symcnt) {
983 				continue;
984 			}
985 			sym = ko->ko_symtab + symidx;
986 			if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
987 				continue;
988 			}
989 			error = kobj_reloc(ko, base, rela, true, local);
990 			if (error != 0) {
991 				return ENOENT;
992 			}
993 		}
994 	}
995 
996 	return 0;
997 }
998 
999 /*
1000  * kobj_error:
1001  *
1002  *	Utility function: log an error.
1003  */
1004 static void
1005 kobj_error(const char *fname, int lnum, kobj_t ko, const char *fmt, ...)
1006 {
1007 	va_list ap;
1008 
1009 	printf("%s, %d: [%s]: linker error: ", fname, lnum, ko->ko_name);
1010 	va_start(ap, fmt);
1011 	vprintf(fmt, ap);
1012 	va_end(ap);
1013 	printf("\n");
1014 }
1015 
1016 static int
1017 kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off,
1018     bool allocate)
1019 {
1020 	void *base = *basep;
1021 	int error;
1022 
1023 	if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1024 		kobj_error(__func__, __LINE__, ko, "preloaded object short");
1025 		error = EINVAL;
1026 		base = NULL;
1027 	} else if (allocate) {
1028 		base = (uint8_t *)ko->ko_source + off;
1029 		error = 0;
1030 	} else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1031 		kobj_error(__func__, __LINE__, ko, "object not aligned");
1032 		kobj_error(__func__, __LINE__, ko, "source=%p base=%p off=%d "
1033 		    "size=%zu", ko->ko_source, base, (int)off, size);
1034 		error = EINVAL;
1035 	} else {
1036 		/* Nothing to do.  Loading in-situ. */
1037 		error = 0;
1038 	}
1039 
1040 	if (allocate)
1041 		*basep = base;
1042 
1043 	return error;
1044 }
1045 
1046 /*
1047  * kobj_free:
1048  *
1049  *	Utility function: free memory if it was allocated from the heap.
1050  */
1051 static void
1052 kobj_free(kobj_t ko, void *base, size_t size)
1053 {
1054 
1055 	if (ko->ko_type != KT_MEMORY)
1056 		kmem_free(base, size);
1057 }
1058 
1059 extern char module_base[];
1060 
1061 void
1062 kobj_setname(kobj_t ko, const char *name)
1063 {
1064 	const char *d = name, *dots = "";
1065 	size_t len, dlen;
1066 
1067 	for (char *s = module_base; *d == *s; d++, s++)
1068 		continue;
1069 
1070 	if (d == name)
1071 		name = "";
1072 	else
1073 		name = "%M";
1074 	dlen = strlen(d);
1075 	len = dlen + strlen(name);
1076 	if (len >= sizeof(ko->ko_name)) {
1077 		len = (len - sizeof(ko->ko_name)) + 5; /* dots + NUL */
1078 		if (dlen >= len) {
1079 			d += len;
1080 			dots = "/...";
1081 		}
1082 	}
1083 	snprintf(ko->ko_name, sizeof(ko->ko_name), "%s%s%s", name, dots, d);
1084 }
1085 
1086 #else	/* MODULAR */
1087 
1088 int
1089 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
1090 {
1091 
1092 	return ENOSYS;
1093 }
1094 
1095 void
1096 kobj_unload(kobj_t ko)
1097 {
1098 
1099 	panic("not modular");
1100 }
1101 
1102 int
1103 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1104 {
1105 
1106 	return ENOSYS;
1107 }
1108 
1109 int
1110 kobj_affix(kobj_t ko, const char *name)
1111 {
1112 
1113 	panic("not modular");
1114 }
1115 
1116 int
1117 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1118 {
1119 
1120 	panic("not modular");
1121 }
1122 
1123 void
1124 kobj_setname(kobj_t ko, const char *name)
1125 {
1126 
1127 	panic("not modular");
1128 }
1129 
1130 #endif	/* MODULAR */
1131