xref: /netbsd-src/sys/kern/subr_kmem.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*	$NetBSD: subr_kmem.c,v 1.28 2009/06/03 22:54:51 jnemeth Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * allocator of kernel wired memory.
60  *
61  * TODO:
62  * -	worth to have "intrsafe" version?  maybe..
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.28 2009/06/03 22:54:51 jnemeth Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/callback.h>
70 #include <sys/kmem.h>
71 #include <sys/vmem.h>
72 #include <sys/debug.h>
73 #include <sys/lockdebug.h>
74 #include <sys/cpu.h>
75 
76 #include <uvm/uvm_extern.h>
77 #include <uvm/uvm_map.h>
78 #include <uvm/uvm_kmguard.h>
79 
80 #include <lib/libkern/libkern.h>
81 
82 #define	KMEM_QUANTUM_SIZE	(ALIGNBYTES + 1)
83 #define	KMEM_QCACHE_MAX		(KMEM_QUANTUM_SIZE * 32)
84 #define	KMEM_CACHE_COUNT	16
85 
86 typedef struct kmem_cache {
87 	pool_cache_t		kc_cache;
88 	struct pool_allocator	kc_pa;
89 	char			kc_name[12];
90 } kmem_cache_t;
91 
92 static vmem_t *kmem_arena;
93 static struct callback_entry kmem_kva_reclaim_entry;
94 
95 static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
96 static size_t kmem_cache_max;
97 static size_t kmem_cache_min;
98 static size_t kmem_cache_mask;
99 static int kmem_cache_shift;
100 
101 #if defined(DEBUG)
102 int kmem_guard_depth;
103 size_t kmem_guard_size;
104 static struct uvm_kmguard kmem_guard;
105 static void *kmem_freecheck;
106 #define	KMEM_POISON
107 #define	KMEM_REDZONE
108 #define	KMEM_SIZE
109 #define	KMEM_GUARD
110 #endif /* defined(DEBUG) */
111 
112 #if defined(KMEM_POISON)
113 static void kmem_poison_fill(void *, size_t);
114 static void kmem_poison_check(void *, size_t);
115 #else /* defined(KMEM_POISON) */
116 #define	kmem_poison_fill(p, sz)		/* nothing */
117 #define	kmem_poison_check(p, sz)	/* nothing */
118 #endif /* defined(KMEM_POISON) */
119 
120 #if defined(KMEM_REDZONE)
121 #define	REDZONE_SIZE	1
122 #else /* defined(KMEM_REDZONE) */
123 #define	REDZONE_SIZE	0
124 #endif /* defined(KMEM_REDZONE) */
125 
126 #if defined(KMEM_SIZE)
127 #define	SIZE_SIZE	(max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
128 static void kmem_size_set(void *, size_t);
129 static void kmem_size_check(void *, size_t);
130 #else
131 #define	SIZE_SIZE	0
132 #define	kmem_size_set(p, sz)	/* nothing */
133 #define	kmem_size_check(p, sz)	/* nothing */
134 #endif
135 
136 static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
137     vm_flag_t);
138 static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
139 static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
140 
141 static inline vm_flag_t
142 kmf_to_vmf(km_flag_t kmflags)
143 {
144 	vm_flag_t vmflags;
145 
146 	KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
147 	KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
148 
149 	vmflags = 0;
150 	if ((kmflags & KM_SLEEP) != 0) {
151 		vmflags |= VM_SLEEP;
152 	}
153 	if ((kmflags & KM_NOSLEEP) != 0) {
154 		vmflags |= VM_NOSLEEP;
155 	}
156 
157 	return vmflags;
158 }
159 
160 static void *
161 kmem_poolpage_alloc(struct pool *pool, int prflags)
162 {
163 
164 	KASSERT(KM_SLEEP == PR_WAITOK);
165 	KASSERT(KM_NOSLEEP == PR_NOWAIT);
166 
167 	return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
168 	    kmf_to_vmf(prflags) | VM_INSTANTFIT);
169 
170 }
171 
172 static void
173 kmem_poolpage_free(struct pool *pool, void *addr)
174 {
175 
176 	vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
177 }
178 
179 /* ---- kmem API */
180 
181 /*
182  * kmem_alloc: allocate wired memory.
183  *
184  * => must not be called from interrupt context.
185  */
186 
187 void *
188 kmem_alloc(size_t size, km_flag_t kmflags)
189 {
190 	kmem_cache_t *kc;
191 	uint8_t *p;
192 
193 	KASSERT(!cpu_intr_p());
194 	KASSERT(!cpu_softintr_p());
195 	KASSERT(size > 0);
196 
197 #ifdef KMEM_GUARD
198 	if (size <= kmem_guard_size) {
199 		return uvm_kmguard_alloc(&kmem_guard, size,
200 		    (kmflags & KM_SLEEP) != 0);
201 	}
202 #endif
203 
204 	size += REDZONE_SIZE + SIZE_SIZE;
205 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
206 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
207 		KASSERT(size <= kc->kc_pa.pa_pagesz);
208 		KASSERT(KM_SLEEP == PR_WAITOK);
209 		KASSERT(KM_NOSLEEP == PR_NOWAIT);
210 		kmflags &= (KM_SLEEP | KM_NOSLEEP);
211 		p = pool_cache_get(kc->kc_cache, kmflags);
212 	} else {
213 		p = (void *)vmem_alloc(kmem_arena, size,
214 		    kmf_to_vmf(kmflags) | VM_INSTANTFIT);
215 	}
216 	if (__predict_true(p != NULL)) {
217 		kmem_poison_check(p, kmem_roundup_size(size));
218 		FREECHECK_OUT(&kmem_freecheck, p);
219 		kmem_size_set(p, size);
220 		p = (uint8_t *)p + SIZE_SIZE;
221 	}
222 	return p;
223 }
224 
225 /*
226  * kmem_zalloc: allocate wired memory.
227  *
228  * => must not be called from interrupt context.
229  */
230 
231 void *
232 kmem_zalloc(size_t size, km_flag_t kmflags)
233 {
234 	void *p;
235 
236 	p = kmem_alloc(size, kmflags);
237 	if (p != NULL) {
238 		memset(p, 0, size);
239 	}
240 	return p;
241 }
242 
243 /*
244  * kmem_free: free wired memory allocated by kmem_alloc.
245  *
246  * => must not be called from interrupt context.
247  */
248 
249 void
250 kmem_free(void *p, size_t size)
251 {
252 	kmem_cache_t *kc;
253 
254 	KASSERT(!cpu_intr_p());
255 	KASSERT(!cpu_softintr_p());
256 	KASSERT(p != NULL);
257 	KASSERT(size > 0);
258 
259 	size += SIZE_SIZE;
260 	p = (uint8_t *)p - SIZE_SIZE;
261 	kmem_size_check(p, size + REDZONE_SIZE);
262 
263 #ifdef KMEM_GUARD
264 	if (size <= kmem_guard_size) {
265 		uvm_kmguard_free(&kmem_guard, size, p);
266 		return;
267 	}
268 #endif
269 
270 	FREECHECK_IN(&kmem_freecheck, p);
271 	LOCKDEBUG_MEM_CHECK(p, size);
272 	kmem_poison_check((char *)p + size,
273 	    kmem_roundup_size(size + REDZONE_SIZE) - size);
274 	kmem_poison_fill(p, size);
275 	size += REDZONE_SIZE;
276 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
277 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
278 		KASSERT(size <= kc->kc_pa.pa_pagesz);
279 		pool_cache_put(kc->kc_cache, p);
280 	} else {
281 		vmem_free(kmem_arena, (vmem_addr_t)p, size);
282 	}
283 }
284 
285 
286 void
287 kmem_init(void)
288 {
289 	kmem_cache_t *kc;
290 	size_t sz;
291 	int i;
292 
293 #ifdef KMEM_GUARD
294 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
295 	    kernel_map);
296 #endif
297 
298 	kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
299 	    kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
300 	    VM_SLEEP, IPL_NONE);
301 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
302 	    &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
303 
304 	/*
305 	 * kmem caches start at twice the size of the largest vmem qcache
306 	 * and end at PAGE_SIZE or earlier.  assert that KMEM_QCACHE_MAX
307 	 * is a power of two.
308 	 */
309 	KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
310 	KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
311 	kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
312 	kmem_cache_min = 1 << kmem_cache_shift;
313 	kmem_cache_mask = kmem_cache_min - 1;
314 	for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
315 		sz = i << kmem_cache_shift;
316 		if (sz > PAGE_SIZE) {
317 			break;
318 		}
319 		kmem_cache_max = sz;
320 		kc = &kmem_cache[i];
321 		kc->kc_pa.pa_pagesz = sz;
322 		kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
323 		kc->kc_pa.pa_free = kmem_poolpage_free;
324 		sprintf(kc->kc_name, "kmem-%zu", sz);
325 		kc->kc_cache = pool_cache_init(sz,
326 		    KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
327 		    kc->kc_name, &kc->kc_pa, IPL_NONE,
328 		    NULL, NULL, NULL);
329 		KASSERT(kc->kc_cache != NULL);
330 	}
331 }
332 
333 size_t
334 kmem_roundup_size(size_t size)
335 {
336 
337 	return vmem_roundup_size(kmem_arena, size);
338 }
339 
340 /* ---- uvm glue */
341 
342 static vmem_addr_t
343 kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
344     vm_flag_t vmflags)
345 {
346 	uvm_flag_t uflags;
347 	vaddr_t va;
348 
349 	KASSERT(dummy == NULL);
350 	KASSERT(size != 0);
351 	KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
352 	KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
353 
354 	if ((vmflags & VM_NOSLEEP) != 0) {
355 		uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
356 	} else {
357 		uflags = UVM_KMF_WAITVA;
358 	}
359 	*resultsize = size = round_page(size);
360 	va = uvm_km_alloc(kernel_map, size, 0,
361 	    uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
362 	if (va != 0) {
363 		kmem_poison_fill((void *)va, size);
364 	}
365 	return (vmem_addr_t)va;
366 }
367 
368 static void
369 kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
370 {
371 
372 	KASSERT(dummy == NULL);
373 	KASSERT(addr != 0);
374 	KASSERT(size != 0);
375 	KASSERT(size == round_page(size));
376 
377 	kmem_poison_check((void *)addr, size);
378 	uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
379 }
380 
381 static int
382 kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
383 {
384 	vmem_t *vm = obj;
385 
386 	vmem_reap(vm);
387 	return CALLBACK_CHAIN_CONTINUE;
388 }
389 
390 /* ---- debug */
391 
392 #if defined(KMEM_POISON)
393 
394 #if defined(_LP64)
395 #define	PRIME	0x9e37fffffffc0001UL
396 #else /* defined(_LP64) */
397 #define	PRIME	0x9e3779b1
398 #endif /* defined(_LP64) */
399 
400 static inline uint8_t
401 kmem_poison_pattern(const void *p)
402 {
403 
404 	return (uint8_t)((((uintptr_t)p) * PRIME)
405 	    >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
406 }
407 
408 static void
409 kmem_poison_fill(void *p, size_t sz)
410 {
411 	uint8_t *cp;
412 	const uint8_t *ep;
413 
414 	cp = p;
415 	ep = cp + sz;
416 	while (cp < ep) {
417 		*cp = kmem_poison_pattern(cp);
418 		cp++;
419 	}
420 }
421 
422 static void
423 kmem_poison_check(void *p, size_t sz)
424 {
425 	uint8_t *cp;
426 	const uint8_t *ep;
427 
428 	cp = p;
429 	ep = cp + sz;
430 	while (cp < ep) {
431 		const uint8_t expected = kmem_poison_pattern(cp);
432 
433 		if (*cp != expected) {
434 			panic("%s: %p: 0x%02x != 0x%02x\n",
435 			    __func__, cp, *cp, expected);
436 		}
437 		cp++;
438 	}
439 }
440 
441 #endif /* defined(KMEM_POISON) */
442 
443 #if defined(KMEM_SIZE)
444 static void
445 kmem_size_set(void *p, size_t sz)
446 {
447 
448 	memcpy(p, &sz, sizeof(sz));
449 }
450 
451 static void
452 kmem_size_check(void *p, size_t sz)
453 {
454 	size_t psz;
455 
456 	memcpy(&psz, p, sizeof(psz));
457 	if (psz != sz) {
458 		panic("kmem_free(%p, %zu) != allocated size %zu",
459 		    (uint8_t*)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
460 	}
461 }
462 #endif	/* defined(KMEM_SIZE) */
463