xref: /netbsd-src/sys/kern/subr_kmem.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: subr_kmem.c,v 1.46 2012/07/21 11:45:04 para Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * allocator of kernel wired memory.
60  *
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.46 2012/07/21 11:45:04 para Exp $");
65 
66 #include <sys/param.h>
67 #include <sys/callback.h>
68 #include <sys/kmem.h>
69 #include <sys/pool.h>
70 #include <sys/debug.h>
71 #include <sys/lockdebug.h>
72 #include <sys/cpu.h>
73 
74 #include <uvm/uvm_extern.h>
75 #include <uvm/uvm_map.h>
76 #include <uvm/uvm_kmguard.h>
77 
78 #include <lib/libkern/libkern.h>
79 
80 struct kmem_cache_info {
81 	size_t		kc_size;
82 	const char *	kc_name;
83 };
84 
85 static const struct kmem_cache_info kmem_cache_sizes[] = {
86 	{  8, "kmem-8" },
87 	{ 16, "kmem-16" },
88 	{ 24, "kmem-24" },
89 	{ 32, "kmem-32" },
90 	{ 40, "kmem-40" },
91 	{ 48, "kmem-48" },
92 	{ 56, "kmem-56" },
93 	{ 64, "kmem-64" },
94 	{ 80, "kmem-80" },
95 	{ 96, "kmem-96" },
96 	{ 112, "kmem-112" },
97 	{ 128, "kmem-128" },
98 	{ 160, "kmem-160" },
99 	{ 192, "kmem-192" },
100 	{ 224, "kmem-224" },
101 	{ 256, "kmem-256" },
102 	{ 320, "kmem-320" },
103 	{ 384, "kmem-384" },
104 	{ 448, "kmem-448" },
105 	{ 512, "kmem-512" },
106 	{ 768, "kmem-768" },
107 	{ 1024, "kmem-1024" },
108 	{ 0, NULL }
109 };
110 
111 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
112 	{ 2048, "kmem-2048" },
113 	{ 4096, "kmem-4096" },
114 	{ 8192, "kmem-8192" },
115 	{ 16384, "kmem-16384" },
116 	{ 0, NULL }
117 };
118 
119 /*
120  * KMEM_ALIGN is the smallest guaranteed alignment and also the
121  * smallest allocateable quantum.
122  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
123  */
124 #define	KMEM_ALIGN		8
125 #define	KMEM_SHIFT		3
126 #define	KMEM_MAXSIZE		1024
127 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
128 
129 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
130 static size_t kmem_cache_maxidx __read_mostly;
131 
132 #define	KMEM_BIG_ALIGN		2048
133 #define	KMEM_BIG_SHIFT		11
134 #define	KMEM_BIG_MAXSIZE	16384
135 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
136 
137 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
138 static size_t kmem_cache_big_maxidx __read_mostly;
139 
140 
141 #if defined(DEBUG) && defined(_HARDKERNEL)
142 #ifndef KMEM_GUARD_DEPTH
143 #define KMEM_GUARD_DEPTH 0
144 #endif
145 int kmem_guard_depth = KMEM_GUARD_DEPTH;
146 size_t kmem_guard_size;
147 static struct uvm_kmguard kmem_guard;
148 static void *kmem_freecheck;
149 #define	KMEM_POISON
150 #define	KMEM_REDZONE
151 #define	KMEM_SIZE
152 #define	KMEM_GUARD
153 #endif /* defined(DEBUG) */
154 
155 #if defined(KMEM_POISON)
156 static int kmem_poison_ctor(void *, void *, int);
157 static void kmem_poison_fill(void *, size_t);
158 static void kmem_poison_check(void *, size_t);
159 #else /* defined(KMEM_POISON) */
160 #define	kmem_poison_fill(p, sz)		/* nothing */
161 #define	kmem_poison_check(p, sz)	/* nothing */
162 #endif /* defined(KMEM_POISON) */
163 
164 #if defined(KMEM_REDZONE)
165 #define	REDZONE_SIZE	1
166 #else /* defined(KMEM_REDZONE) */
167 #define	REDZONE_SIZE	0
168 #endif /* defined(KMEM_REDZONE) */
169 
170 #if defined(KMEM_SIZE)
171 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
172 static void kmem_size_set(void *, size_t);
173 static void kmem_size_check(void *, size_t);
174 #else
175 #define	SIZE_SIZE	0
176 #define	kmem_size_set(p, sz)	/* nothing */
177 #define	kmem_size_check(p, sz)	/* nothing */
178 #endif
179 
180 CTASSERT(KM_SLEEP == PR_WAITOK);
181 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
182 
183 /*
184  * kmem_intr_alloc: allocate wired memory.
185  */
186 
187 void *
188 kmem_intr_alloc(size_t size, km_flag_t kmflags)
189 {
190 	size_t allocsz, index;
191 	pool_cache_t pc;
192 	uint8_t *p;
193 
194 	KASSERT(size > 0);
195 
196 #ifdef KMEM_GUARD
197 	if (size <= kmem_guard_size) {
198 		return uvm_kmguard_alloc(&kmem_guard, size,
199 		    (kmflags & KM_SLEEP) != 0);
200 	}
201 #endif
202 	size = kmem_roundup_size(size);
203 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
204 
205 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
206 	    < kmem_cache_maxidx) {
207 		pc = kmem_cache[index];
208 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
209             < kmem_cache_big_maxidx) {
210 		pc = kmem_cache_big[index];
211 	} else {
212 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
213 		    (vsize_t)round_page(size),
214 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
215 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
216 		if (ret) {
217 			return NULL;
218 		}
219 		FREECHECK_OUT(&kmem_freecheck, p);
220 		return p;
221 	}
222 
223 	p = pool_cache_get(pc, kmflags);
224 
225 	if (__predict_true(p != NULL)) {
226 		kmem_poison_check(p, size);
227 		FREECHECK_OUT(&kmem_freecheck, p);
228 		kmem_size_set(p, size);
229 	}
230 	return p + SIZE_SIZE;
231 }
232 
233 /*
234  * kmem_intr_zalloc: allocate zeroed wired memory.
235  */
236 
237 void *
238 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
239 {
240 	void *p;
241 
242 	p = kmem_intr_alloc(size, kmflags);
243 	if (p != NULL) {
244 		memset(p, 0, size);
245 	}
246 	return p;
247 }
248 
249 /*
250  * kmem_intr_free: free wired memory allocated by kmem_alloc.
251  */
252 
253 void
254 kmem_intr_free(void *p, size_t size)
255 {
256 	size_t allocsz, index;
257 	pool_cache_t pc;
258 
259 	KASSERT(p != NULL);
260 	KASSERT(size > 0);
261 
262 #ifdef KMEM_GUARD
263 	if (size <= kmem_guard_size) {
264 		uvm_kmguard_free(&kmem_guard, size, p);
265 		return;
266 	}
267 #endif
268 	size = kmem_roundup_size(size);
269 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
270 
271 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
272 	    < kmem_cache_maxidx) {
273 		pc = kmem_cache[index];
274 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
275             < kmem_cache_big_maxidx) {
276 		pc = kmem_cache_big[index];
277 	} else {
278 		FREECHECK_IN(&kmem_freecheck, p);
279 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
280 		    round_page(size));
281 		return;
282 	}
283 
284 	p = (uint8_t *)p - SIZE_SIZE;
285 	kmem_size_check(p, size);
286 	FREECHECK_IN(&kmem_freecheck, p);
287 	LOCKDEBUG_MEM_CHECK(p, size);
288 	kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
289       	    allocsz - (SIZE_SIZE + size));
290 	kmem_poison_fill(p, allocsz);
291 
292 	pool_cache_put(pc, p);
293 }
294 
295 /* ---- kmem API */
296 
297 /*
298  * kmem_alloc: allocate wired memory.
299  * => must not be called from interrupt context.
300  */
301 
302 void *
303 kmem_alloc(size_t size, km_flag_t kmflags)
304 {
305 
306 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
307 	    "kmem(9) should not be used from the interrupt context");
308 	return kmem_intr_alloc(size, kmflags);
309 }
310 
311 /*
312  * kmem_zalloc: allocate zeroed wired memory.
313  * => must not be called from interrupt context.
314  */
315 
316 void *
317 kmem_zalloc(size_t size, km_flag_t kmflags)
318 {
319 
320 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
321 	    "kmem(9) should not be used from the interrupt context");
322 	return kmem_intr_zalloc(size, kmflags);
323 }
324 
325 /*
326  * kmem_free: free wired memory allocated by kmem_alloc.
327  * => must not be called from interrupt context.
328  */
329 
330 void
331 kmem_free(void *p, size_t size)
332 {
333 
334 	KASSERT(!cpu_intr_p());
335 	KASSERT(!cpu_softintr_p());
336 	kmem_intr_free(p, size);
337 }
338 
339 static size_t
340 kmem_create_caches(const struct kmem_cache_info *array,
341     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
342 {
343 	size_t maxidx = 0;
344 	size_t table_unit = (1 << shift);
345 	size_t size = table_unit;
346 	int i;
347 
348 	for (i = 0; array[i].kc_size != 0 ; i++) {
349 		const char *name = array[i].kc_name;
350 		size_t cache_size = array[i].kc_size;
351 		struct pool_allocator *pa;
352 		int flags = PR_NOALIGN;
353 		pool_cache_t pc;
354 		size_t align;
355 
356 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
357 			align = CACHE_LINE_SIZE;
358 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
359 			align = PAGE_SIZE;
360 		else
361 			align = KMEM_ALIGN;
362 
363 		if (cache_size < CACHE_LINE_SIZE)
364 			flags |= PR_NOTOUCH;
365 
366 		/* check if we reached the requested size */
367 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
368 			break;
369 		}
370 		if ((cache_size >> shift) > maxidx) {
371 			maxidx = cache_size >> shift;
372 		}
373 
374 		if ((cache_size >> shift) > maxidx) {
375 			maxidx = cache_size >> shift;
376 		}
377 
378 		pa = &pool_allocator_kmem;
379 #if defined(KMEM_POISON)
380 		pc = pool_cache_init(cache_size, align, 0, flags,
381 		    name, pa, ipl,kmem_poison_ctor,
382 		    NULL, (void *)cache_size);
383 #else /* defined(KMEM_POISON) */
384 		pc = pool_cache_init(cache_size, align, 0, flags,
385 		    name, pa, ipl, NULL, NULL, NULL);
386 #endif /* defined(KMEM_POISON) */
387 
388 		while (size <= cache_size) {
389 			alloc_table[(size - 1) >> shift] = pc;
390 			size += table_unit;
391 		}
392 	}
393 	return maxidx;
394 }
395 
396 void
397 kmem_init(void)
398 {
399 
400 #ifdef KMEM_GUARD
401 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
402 	    kmem_va_arena);
403 #endif
404 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
405 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
406        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
407 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
408 }
409 
410 size_t
411 kmem_roundup_size(size_t size)
412 {
413 
414 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
415 }
416 
417 /* ---- debug */
418 
419 #if defined(KMEM_POISON)
420 
421 #if defined(_LP64)
422 #define PRIME 0x9e37fffffffc0000UL
423 #else /* defined(_LP64) */
424 #define PRIME 0x9e3779b1
425 #endif /* defined(_LP64) */
426 
427 static inline uint8_t
428 kmem_poison_pattern(const void *p)
429 {
430 
431 	return (uint8_t)(((uintptr_t)p) * PRIME
432 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
433 }
434 
435 static int
436 kmem_poison_ctor(void *arg, void *obj, int flag)
437 {
438 	size_t sz = (size_t)arg;
439 
440 	kmem_poison_fill(obj, sz);
441 
442 	return 0;
443 }
444 
445 static void
446 kmem_poison_fill(void *p, size_t sz)
447 {
448 	uint8_t *cp;
449 	const uint8_t *ep;
450 
451 	cp = p;
452 	ep = cp + sz;
453 	while (cp < ep) {
454 		*cp = kmem_poison_pattern(cp);
455 		cp++;
456 	}
457 }
458 
459 static void
460 kmem_poison_check(void *p, size_t sz)
461 {
462 	uint8_t *cp;
463 	const uint8_t *ep;
464 
465 	cp = p;
466 	ep = cp + sz;
467 	while (cp < ep) {
468 		const uint8_t expected = kmem_poison_pattern(cp);
469 
470 		if (*cp != expected) {
471 			panic("%s: %p: 0x%02x != 0x%02x\n",
472 			   __func__, cp, *cp, expected);
473 		}
474 		cp++;
475 	}
476 }
477 
478 #endif /* defined(KMEM_POISON) */
479 
480 #if defined(KMEM_SIZE)
481 static void
482 kmem_size_set(void *p, size_t sz)
483 {
484 
485 	memcpy(p, &sz, sizeof(sz));
486 }
487 
488 static void
489 kmem_size_check(void *p, size_t sz)
490 {
491 	size_t psz;
492 
493 	memcpy(&psz, p, sizeof(psz));
494 	if (psz != sz) {
495 		panic("kmem_free(%p, %zu) != allocated size %zu",
496 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
497 	}
498 }
499 #endif	/* defined(KMEM_SIZE) */
500 
501 /*
502  * Used to dynamically allocate string with kmem accordingly to format.
503  */
504 char *
505 kmem_asprintf(const char *fmt, ...)
506 {
507 	int size, len;
508 	va_list va;
509 	char *str;
510 
511 	va_start(va, fmt);
512 	len = vsnprintf(NULL, 0, fmt, va);
513 	va_end(va);
514 
515 	str = kmem_alloc(len + 1, KM_SLEEP);
516 
517 	va_start(va, fmt);
518 	size = vsnprintf(str, len + 1, fmt, va);
519 	va_end(va);
520 
521 	KASSERT(size == len);
522 
523 	return str;
524 }
525