1 /* $NetBSD: subr_kmem.c,v 1.46 2012/07/21 11:45:04 para Exp $ */ 2 3 /*- 4 * Copyright (c) 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c)2006 YAMAMOTO Takashi, 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 /* 59 * allocator of kernel wired memory. 60 * 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.46 2012/07/21 11:45:04 para Exp $"); 65 66 #include <sys/param.h> 67 #include <sys/callback.h> 68 #include <sys/kmem.h> 69 #include <sys/pool.h> 70 #include <sys/debug.h> 71 #include <sys/lockdebug.h> 72 #include <sys/cpu.h> 73 74 #include <uvm/uvm_extern.h> 75 #include <uvm/uvm_map.h> 76 #include <uvm/uvm_kmguard.h> 77 78 #include <lib/libkern/libkern.h> 79 80 struct kmem_cache_info { 81 size_t kc_size; 82 const char * kc_name; 83 }; 84 85 static const struct kmem_cache_info kmem_cache_sizes[] = { 86 { 8, "kmem-8" }, 87 { 16, "kmem-16" }, 88 { 24, "kmem-24" }, 89 { 32, "kmem-32" }, 90 { 40, "kmem-40" }, 91 { 48, "kmem-48" }, 92 { 56, "kmem-56" }, 93 { 64, "kmem-64" }, 94 { 80, "kmem-80" }, 95 { 96, "kmem-96" }, 96 { 112, "kmem-112" }, 97 { 128, "kmem-128" }, 98 { 160, "kmem-160" }, 99 { 192, "kmem-192" }, 100 { 224, "kmem-224" }, 101 { 256, "kmem-256" }, 102 { 320, "kmem-320" }, 103 { 384, "kmem-384" }, 104 { 448, "kmem-448" }, 105 { 512, "kmem-512" }, 106 { 768, "kmem-768" }, 107 { 1024, "kmem-1024" }, 108 { 0, NULL } 109 }; 110 111 static const struct kmem_cache_info kmem_cache_big_sizes[] = { 112 { 2048, "kmem-2048" }, 113 { 4096, "kmem-4096" }, 114 { 8192, "kmem-8192" }, 115 { 16384, "kmem-16384" }, 116 { 0, NULL } 117 }; 118 119 /* 120 * KMEM_ALIGN is the smallest guaranteed alignment and also the 121 * smallest allocateable quantum. 122 * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment. 123 */ 124 #define KMEM_ALIGN 8 125 #define KMEM_SHIFT 3 126 #define KMEM_MAXSIZE 1024 127 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT) 128 129 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned; 130 static size_t kmem_cache_maxidx __read_mostly; 131 132 #define KMEM_BIG_ALIGN 2048 133 #define KMEM_BIG_SHIFT 11 134 #define KMEM_BIG_MAXSIZE 16384 135 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT) 136 137 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned; 138 static size_t kmem_cache_big_maxidx __read_mostly; 139 140 141 #if defined(DEBUG) && defined(_HARDKERNEL) 142 #ifndef KMEM_GUARD_DEPTH 143 #define KMEM_GUARD_DEPTH 0 144 #endif 145 int kmem_guard_depth = KMEM_GUARD_DEPTH; 146 size_t kmem_guard_size; 147 static struct uvm_kmguard kmem_guard; 148 static void *kmem_freecheck; 149 #define KMEM_POISON 150 #define KMEM_REDZONE 151 #define KMEM_SIZE 152 #define KMEM_GUARD 153 #endif /* defined(DEBUG) */ 154 155 #if defined(KMEM_POISON) 156 static int kmem_poison_ctor(void *, void *, int); 157 static void kmem_poison_fill(void *, size_t); 158 static void kmem_poison_check(void *, size_t); 159 #else /* defined(KMEM_POISON) */ 160 #define kmem_poison_fill(p, sz) /* nothing */ 161 #define kmem_poison_check(p, sz) /* nothing */ 162 #endif /* defined(KMEM_POISON) */ 163 164 #if defined(KMEM_REDZONE) 165 #define REDZONE_SIZE 1 166 #else /* defined(KMEM_REDZONE) */ 167 #define REDZONE_SIZE 0 168 #endif /* defined(KMEM_REDZONE) */ 169 170 #if defined(KMEM_SIZE) 171 #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t))) 172 static void kmem_size_set(void *, size_t); 173 static void kmem_size_check(void *, size_t); 174 #else 175 #define SIZE_SIZE 0 176 #define kmem_size_set(p, sz) /* nothing */ 177 #define kmem_size_check(p, sz) /* nothing */ 178 #endif 179 180 CTASSERT(KM_SLEEP == PR_WAITOK); 181 CTASSERT(KM_NOSLEEP == PR_NOWAIT); 182 183 /* 184 * kmem_intr_alloc: allocate wired memory. 185 */ 186 187 void * 188 kmem_intr_alloc(size_t size, km_flag_t kmflags) 189 { 190 size_t allocsz, index; 191 pool_cache_t pc; 192 uint8_t *p; 193 194 KASSERT(size > 0); 195 196 #ifdef KMEM_GUARD 197 if (size <= kmem_guard_size) { 198 return uvm_kmguard_alloc(&kmem_guard, size, 199 (kmflags & KM_SLEEP) != 0); 200 } 201 #endif 202 size = kmem_roundup_size(size); 203 allocsz = size + REDZONE_SIZE + SIZE_SIZE; 204 205 if ((index = ((allocsz -1) >> KMEM_SHIFT)) 206 < kmem_cache_maxidx) { 207 pc = kmem_cache[index]; 208 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT)) 209 < kmem_cache_big_maxidx) { 210 pc = kmem_cache_big[index]; 211 } else { 212 int ret = uvm_km_kmem_alloc(kmem_va_arena, 213 (vsize_t)round_page(size), 214 ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP) 215 | VM_INSTANTFIT, (vmem_addr_t *)&p); 216 if (ret) { 217 return NULL; 218 } 219 FREECHECK_OUT(&kmem_freecheck, p); 220 return p; 221 } 222 223 p = pool_cache_get(pc, kmflags); 224 225 if (__predict_true(p != NULL)) { 226 kmem_poison_check(p, size); 227 FREECHECK_OUT(&kmem_freecheck, p); 228 kmem_size_set(p, size); 229 } 230 return p + SIZE_SIZE; 231 } 232 233 /* 234 * kmem_intr_zalloc: allocate zeroed wired memory. 235 */ 236 237 void * 238 kmem_intr_zalloc(size_t size, km_flag_t kmflags) 239 { 240 void *p; 241 242 p = kmem_intr_alloc(size, kmflags); 243 if (p != NULL) { 244 memset(p, 0, size); 245 } 246 return p; 247 } 248 249 /* 250 * kmem_intr_free: free wired memory allocated by kmem_alloc. 251 */ 252 253 void 254 kmem_intr_free(void *p, size_t size) 255 { 256 size_t allocsz, index; 257 pool_cache_t pc; 258 259 KASSERT(p != NULL); 260 KASSERT(size > 0); 261 262 #ifdef KMEM_GUARD 263 if (size <= kmem_guard_size) { 264 uvm_kmguard_free(&kmem_guard, size, p); 265 return; 266 } 267 #endif 268 size = kmem_roundup_size(size); 269 allocsz = size + REDZONE_SIZE + SIZE_SIZE; 270 271 if ((index = ((allocsz -1) >> KMEM_SHIFT)) 272 < kmem_cache_maxidx) { 273 pc = kmem_cache[index]; 274 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT)) 275 < kmem_cache_big_maxidx) { 276 pc = kmem_cache_big[index]; 277 } else { 278 FREECHECK_IN(&kmem_freecheck, p); 279 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p, 280 round_page(size)); 281 return; 282 } 283 284 p = (uint8_t *)p - SIZE_SIZE; 285 kmem_size_check(p, size); 286 FREECHECK_IN(&kmem_freecheck, p); 287 LOCKDEBUG_MEM_CHECK(p, size); 288 kmem_poison_check((uint8_t *)p + SIZE_SIZE + size, 289 allocsz - (SIZE_SIZE + size)); 290 kmem_poison_fill(p, allocsz); 291 292 pool_cache_put(pc, p); 293 } 294 295 /* ---- kmem API */ 296 297 /* 298 * kmem_alloc: allocate wired memory. 299 * => must not be called from interrupt context. 300 */ 301 302 void * 303 kmem_alloc(size_t size, km_flag_t kmflags) 304 { 305 306 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()), 307 "kmem(9) should not be used from the interrupt context"); 308 return kmem_intr_alloc(size, kmflags); 309 } 310 311 /* 312 * kmem_zalloc: allocate zeroed wired memory. 313 * => must not be called from interrupt context. 314 */ 315 316 void * 317 kmem_zalloc(size_t size, km_flag_t kmflags) 318 { 319 320 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()), 321 "kmem(9) should not be used from the interrupt context"); 322 return kmem_intr_zalloc(size, kmflags); 323 } 324 325 /* 326 * kmem_free: free wired memory allocated by kmem_alloc. 327 * => must not be called from interrupt context. 328 */ 329 330 void 331 kmem_free(void *p, size_t size) 332 { 333 334 KASSERT(!cpu_intr_p()); 335 KASSERT(!cpu_softintr_p()); 336 kmem_intr_free(p, size); 337 } 338 339 static size_t 340 kmem_create_caches(const struct kmem_cache_info *array, 341 pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl) 342 { 343 size_t maxidx = 0; 344 size_t table_unit = (1 << shift); 345 size_t size = table_unit; 346 int i; 347 348 for (i = 0; array[i].kc_size != 0 ; i++) { 349 const char *name = array[i].kc_name; 350 size_t cache_size = array[i].kc_size; 351 struct pool_allocator *pa; 352 int flags = PR_NOALIGN; 353 pool_cache_t pc; 354 size_t align; 355 356 if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0) 357 align = CACHE_LINE_SIZE; 358 else if ((cache_size & (PAGE_SIZE - 1)) == 0) 359 align = PAGE_SIZE; 360 else 361 align = KMEM_ALIGN; 362 363 if (cache_size < CACHE_LINE_SIZE) 364 flags |= PR_NOTOUCH; 365 366 /* check if we reached the requested size */ 367 if (cache_size > maxsize || cache_size > PAGE_SIZE) { 368 break; 369 } 370 if ((cache_size >> shift) > maxidx) { 371 maxidx = cache_size >> shift; 372 } 373 374 if ((cache_size >> shift) > maxidx) { 375 maxidx = cache_size >> shift; 376 } 377 378 pa = &pool_allocator_kmem; 379 #if defined(KMEM_POISON) 380 pc = pool_cache_init(cache_size, align, 0, flags, 381 name, pa, ipl,kmem_poison_ctor, 382 NULL, (void *)cache_size); 383 #else /* defined(KMEM_POISON) */ 384 pc = pool_cache_init(cache_size, align, 0, flags, 385 name, pa, ipl, NULL, NULL, NULL); 386 #endif /* defined(KMEM_POISON) */ 387 388 while (size <= cache_size) { 389 alloc_table[(size - 1) >> shift] = pc; 390 size += table_unit; 391 } 392 } 393 return maxidx; 394 } 395 396 void 397 kmem_init(void) 398 { 399 400 #ifdef KMEM_GUARD 401 uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size, 402 kmem_va_arena); 403 #endif 404 kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes, 405 kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM); 406 kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes, 407 kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM); 408 } 409 410 size_t 411 kmem_roundup_size(size_t size) 412 { 413 414 return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1); 415 } 416 417 /* ---- debug */ 418 419 #if defined(KMEM_POISON) 420 421 #if defined(_LP64) 422 #define PRIME 0x9e37fffffffc0000UL 423 #else /* defined(_LP64) */ 424 #define PRIME 0x9e3779b1 425 #endif /* defined(_LP64) */ 426 427 static inline uint8_t 428 kmem_poison_pattern(const void *p) 429 { 430 431 return (uint8_t)(((uintptr_t)p) * PRIME 432 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 433 } 434 435 static int 436 kmem_poison_ctor(void *arg, void *obj, int flag) 437 { 438 size_t sz = (size_t)arg; 439 440 kmem_poison_fill(obj, sz); 441 442 return 0; 443 } 444 445 static void 446 kmem_poison_fill(void *p, size_t sz) 447 { 448 uint8_t *cp; 449 const uint8_t *ep; 450 451 cp = p; 452 ep = cp + sz; 453 while (cp < ep) { 454 *cp = kmem_poison_pattern(cp); 455 cp++; 456 } 457 } 458 459 static void 460 kmem_poison_check(void *p, size_t sz) 461 { 462 uint8_t *cp; 463 const uint8_t *ep; 464 465 cp = p; 466 ep = cp + sz; 467 while (cp < ep) { 468 const uint8_t expected = kmem_poison_pattern(cp); 469 470 if (*cp != expected) { 471 panic("%s: %p: 0x%02x != 0x%02x\n", 472 __func__, cp, *cp, expected); 473 } 474 cp++; 475 } 476 } 477 478 #endif /* defined(KMEM_POISON) */ 479 480 #if defined(KMEM_SIZE) 481 static void 482 kmem_size_set(void *p, size_t sz) 483 { 484 485 memcpy(p, &sz, sizeof(sz)); 486 } 487 488 static void 489 kmem_size_check(void *p, size_t sz) 490 { 491 size_t psz; 492 493 memcpy(&psz, p, sizeof(psz)); 494 if (psz != sz) { 495 panic("kmem_free(%p, %zu) != allocated size %zu", 496 (const uint8_t *)p + SIZE_SIZE, sz, psz); 497 } 498 } 499 #endif /* defined(KMEM_SIZE) */ 500 501 /* 502 * Used to dynamically allocate string with kmem accordingly to format. 503 */ 504 char * 505 kmem_asprintf(const char *fmt, ...) 506 { 507 int size, len; 508 va_list va; 509 char *str; 510 511 va_start(va, fmt); 512 len = vsnprintf(NULL, 0, fmt, va); 513 va_end(va); 514 515 str = kmem_alloc(len + 1, KM_SLEEP); 516 517 va_start(va, fmt); 518 size = vsnprintf(str, len + 1, fmt, va); 519 va_end(va); 520 521 KASSERT(size == len); 522 523 return str; 524 } 525