xref: /netbsd-src/sys/kern/subr_kmem.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: subr_kmem.c,v 1.59 2014/07/03 08:43:49 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * Allocator of kernel wired memory. This allocator has some debug features
60  * enabled with "option DIAGNOSTIC" and "option DEBUG".
61  */
62 
63 /*
64  * KMEM_SIZE: detect alloc/free size mismatch bugs.
65  *	Prefix each allocations with a fixed-sized, aligned header and record
66  *	the exact user-requested allocation size in it. When freeing, compare
67  *	it with kmem_free's "size" argument.
68  */
69 
70 /*
71  * KMEM_REDZONE: detect overrun bugs.
72  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
73  *	end of each allocated buffer. Check this pattern on kmem_free.
74  *
75  * KMEM_POISON: detect modify-after-free bugs.
76  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
77  *	Check the pattern on allocation.
78  *
79  * KMEM_GUARD
80  *	A kernel with "option DEBUG" has "kmguard" debugging feature compiled
81  *	in. See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries
82  *	to detect.  Even if compiled in, it's disabled by default because it's
83  *	very expensive.  You can enable it on boot by:
84  *		boot -d
85  *		db> w kmem_guard_depth 0t30000
86  *		db> c
87  *
88  *	The default value of kmem_guard_depth is 0, which means disabled.
89  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
90  */
91 
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.59 2014/07/03 08:43:49 maxv Exp $");
94 
95 #include <sys/param.h>
96 #include <sys/callback.h>
97 #include <sys/kmem.h>
98 #include <sys/pool.h>
99 #include <sys/debug.h>
100 #include <sys/lockdebug.h>
101 #include <sys/cpu.h>
102 
103 #include <uvm/uvm_extern.h>
104 #include <uvm/uvm_map.h>
105 #include <uvm/uvm_kmguard.h>
106 
107 #include <lib/libkern/libkern.h>
108 
109 struct kmem_cache_info {
110 	size_t		kc_size;
111 	const char *	kc_name;
112 };
113 
114 static const struct kmem_cache_info kmem_cache_sizes[] = {
115 	{  8, "kmem-8" },
116 	{ 16, "kmem-16" },
117 	{ 24, "kmem-24" },
118 	{ 32, "kmem-32" },
119 	{ 40, "kmem-40" },
120 	{ 48, "kmem-48" },
121 	{ 56, "kmem-56" },
122 	{ 64, "kmem-64" },
123 	{ 80, "kmem-80" },
124 	{ 96, "kmem-96" },
125 	{ 112, "kmem-112" },
126 	{ 128, "kmem-128" },
127 	{ 160, "kmem-160" },
128 	{ 192, "kmem-192" },
129 	{ 224, "kmem-224" },
130 	{ 256, "kmem-256" },
131 	{ 320, "kmem-320" },
132 	{ 384, "kmem-384" },
133 	{ 448, "kmem-448" },
134 	{ 512, "kmem-512" },
135 	{ 768, "kmem-768" },
136 	{ 1024, "kmem-1024" },
137 	{ 0, NULL }
138 };
139 
140 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
141 	{ 2048, "kmem-2048" },
142 	{ 4096, "kmem-4096" },
143 	{ 8192, "kmem-8192" },
144 	{ 16384, "kmem-16384" },
145 	{ 0, NULL }
146 };
147 
148 /*
149  * KMEM_ALIGN is the smallest guaranteed alignment and also the
150  * smallest allocateable quantum.
151  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
152  */
153 #define	KMEM_ALIGN		8
154 #define	KMEM_SHIFT		3
155 #define	KMEM_MAXSIZE		1024
156 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
157 
158 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
159 static size_t kmem_cache_maxidx __read_mostly;
160 
161 #define	KMEM_BIG_ALIGN		2048
162 #define	KMEM_BIG_SHIFT		11
163 #define	KMEM_BIG_MAXSIZE	16384
164 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
165 
166 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
167 static size_t kmem_cache_big_maxidx __read_mostly;
168 
169 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
170 #define	KMEM_SIZE
171 #endif /* defined(DIAGNOSTIC) */
172 
173 #if defined(DEBUG) && defined(_HARDKERNEL)
174 #define	KMEM_POISON
175 #define	KMEM_REDZONE
176 #define	KMEM_GUARD
177 #endif /* defined(DEBUG) */
178 
179 #if defined(KMEM_POISON)
180 static int kmem_poison_ctor(void *, void *, int);
181 static void kmem_poison_fill(void *, size_t);
182 static void kmem_poison_check(void *, size_t);
183 #else /* defined(KMEM_POISON) */
184 #define	kmem_poison_fill(p, sz)		/* nothing */
185 #define	kmem_poison_check(p, sz)	/* nothing */
186 #endif /* defined(KMEM_POISON) */
187 
188 #if defined(KMEM_REDZONE)
189 #define	REDZONE_SIZE	2
190 static void kmem_redzone_fill(void *, size_t);
191 static void kmem_redzone_check(void *, size_t);
192 #else /* defined(KMEM_REDZONE) */
193 #define	REDZONE_SIZE	0
194 #define	kmem_redzone_fill(p, sz)		/* nothing */
195 #define	kmem_redzone_check(p, sz)	/* nothing */
196 #endif /* defined(KMEM_REDZONE) */
197 
198 #if defined(KMEM_SIZE)
199 struct kmem_header {
200 	size_t		size;
201 } __aligned(KMEM_ALIGN);
202 #define	SIZE_SIZE	sizeof(struct kmem_header)
203 static void kmem_size_set(void *, size_t);
204 static void kmem_size_check(void *, size_t);
205 #else
206 #define	SIZE_SIZE	0
207 #define	kmem_size_set(p, sz)	/* nothing */
208 #define	kmem_size_check(p, sz)	/* nothing */
209 #endif
210 
211 #if defined(KMEM_GUARD)
212 #ifndef KMEM_GUARD_DEPTH
213 #define KMEM_GUARD_DEPTH 0
214 #endif
215 int kmem_guard_depth = KMEM_GUARD_DEPTH;
216 size_t kmem_guard_size;
217 static struct uvm_kmguard kmem_guard;
218 static void *kmem_freecheck;
219 #endif /* defined(KMEM_GUARD) */
220 
221 CTASSERT(KM_SLEEP == PR_WAITOK);
222 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
223 
224 /*
225  * kmem_intr_alloc: allocate wired memory.
226  */
227 
228 void *
229 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
230 {
231 	size_t allocsz, index;
232 	size_t size;
233 	pool_cache_t pc;
234 	uint8_t *p;
235 
236 	KASSERT(requested_size > 0);
237 
238 #ifdef KMEM_GUARD
239 	if (requested_size <= kmem_guard_size) {
240 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
241 		    (kmflags & KM_SLEEP) != 0);
242 	}
243 #endif
244 	size = kmem_roundup_size(requested_size);
245 	allocsz = size + SIZE_SIZE;
246 
247 #ifdef KMEM_REDZONE
248 	if (size - requested_size < REDZONE_SIZE) {
249 		/* If there isn't enough space in the padding, allocate
250 		 * one more memory chunk for the red zone. */
251 		allocsz += kmem_roundup_size(REDZONE_SIZE);
252 	}
253 #endif
254 
255 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
256 	    < kmem_cache_maxidx) {
257 		pc = kmem_cache[index];
258 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
259 	    < kmem_cache_big_maxidx) {
260 		pc = kmem_cache_big[index];
261 	} else {
262 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
263 		    (vsize_t)round_page(size),
264 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
265 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
266 		if (ret) {
267 			return NULL;
268 		}
269 		FREECHECK_OUT(&kmem_freecheck, p);
270 		return p;
271 	}
272 
273 	p = pool_cache_get(pc, kmflags);
274 
275 	if (__predict_true(p != NULL)) {
276 		kmem_poison_check(p, allocsz);
277 		FREECHECK_OUT(&kmem_freecheck, p);
278 		kmem_size_set(p, requested_size);
279 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
280 
281 		return p + SIZE_SIZE;
282 	}
283 	return p;
284 }
285 
286 /*
287  * kmem_intr_zalloc: allocate zeroed wired memory.
288  */
289 
290 void *
291 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
292 {
293 	void *p;
294 
295 	p = kmem_intr_alloc(size, kmflags);
296 	if (p != NULL) {
297 		memset(p, 0, size);
298 	}
299 	return p;
300 }
301 
302 /*
303  * kmem_intr_free: free wired memory allocated by kmem_alloc.
304  */
305 
306 void
307 kmem_intr_free(void *p, size_t requested_size)
308 {
309 	size_t allocsz, index;
310 	size_t size;
311 	pool_cache_t pc;
312 
313 	KASSERT(p != NULL);
314 	KASSERT(requested_size > 0);
315 
316 #ifdef KMEM_GUARD
317 	if (requested_size <= kmem_guard_size) {
318 		uvm_kmguard_free(&kmem_guard, requested_size, p);
319 		return;
320 	}
321 #endif
322 
323 	size = kmem_roundup_size(requested_size);
324 	allocsz = size + SIZE_SIZE;
325 
326 #ifdef KMEM_REDZONE
327 	if (size - requested_size < REDZONE_SIZE) {
328 		allocsz += kmem_roundup_size(REDZONE_SIZE);
329 	}
330 #endif
331 
332 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
333 	    < kmem_cache_maxidx) {
334 		pc = kmem_cache[index];
335 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
336 	    < kmem_cache_big_maxidx) {
337 		pc = kmem_cache_big[index];
338 	} else {
339 		FREECHECK_IN(&kmem_freecheck, p);
340 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
341 		    round_page(size));
342 		return;
343 	}
344 
345 	p = (uint8_t *)p - SIZE_SIZE;
346 	kmem_size_check(p, requested_size);
347 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
348 	FREECHECK_IN(&kmem_freecheck, p);
349 	LOCKDEBUG_MEM_CHECK(p, size);
350 	kmem_poison_fill(p, allocsz);
351 
352 	pool_cache_put(pc, p);
353 }
354 
355 /* ---- kmem API */
356 
357 /*
358  * kmem_alloc: allocate wired memory.
359  * => must not be called from interrupt context.
360  */
361 
362 void *
363 kmem_alloc(size_t size, km_flag_t kmflags)
364 {
365 
366 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
367 	    "kmem(9) should not be used from the interrupt context");
368 	return kmem_intr_alloc(size, kmflags);
369 }
370 
371 /*
372  * kmem_zalloc: allocate zeroed wired memory.
373  * => must not be called from interrupt context.
374  */
375 
376 void *
377 kmem_zalloc(size_t size, km_flag_t kmflags)
378 {
379 
380 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
381 	    "kmem(9) should not be used from the interrupt context");
382 	return kmem_intr_zalloc(size, kmflags);
383 }
384 
385 /*
386  * kmem_free: free wired memory allocated by kmem_alloc.
387  * => must not be called from interrupt context.
388  */
389 
390 void
391 kmem_free(void *p, size_t size)
392 {
393 
394 	KASSERT(!cpu_intr_p());
395 	KASSERT(!cpu_softintr_p());
396 	kmem_intr_free(p, size);
397 }
398 
399 static size_t
400 kmem_create_caches(const struct kmem_cache_info *array,
401     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
402 {
403 	size_t maxidx = 0;
404 	size_t table_unit = (1 << shift);
405 	size_t size = table_unit;
406 	int i;
407 
408 	for (i = 0; array[i].kc_size != 0 ; i++) {
409 		const char *name = array[i].kc_name;
410 		size_t cache_size = array[i].kc_size;
411 		struct pool_allocator *pa;
412 		int flags = PR_NOALIGN;
413 		pool_cache_t pc;
414 		size_t align;
415 
416 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
417 			align = CACHE_LINE_SIZE;
418 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
419 			align = PAGE_SIZE;
420 		else
421 			align = KMEM_ALIGN;
422 
423 		if (cache_size < CACHE_LINE_SIZE)
424 			flags |= PR_NOTOUCH;
425 
426 		/* check if we reached the requested size */
427 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
428 			break;
429 		}
430 		if ((cache_size >> shift) > maxidx) {
431 			maxidx = cache_size >> shift;
432 		}
433 
434 		if ((cache_size >> shift) > maxidx) {
435 			maxidx = cache_size >> shift;
436 		}
437 
438 		pa = &pool_allocator_kmem;
439 #if defined(KMEM_POISON)
440 		pc = pool_cache_init(cache_size, align, 0, flags,
441 		    name, pa, ipl, kmem_poison_ctor,
442 		    NULL, (void *)cache_size);
443 #else /* defined(KMEM_POISON) */
444 		pc = pool_cache_init(cache_size, align, 0, flags,
445 		    name, pa, ipl, NULL, NULL, NULL);
446 #endif /* defined(KMEM_POISON) */
447 
448 		while (size <= cache_size) {
449 			alloc_table[(size - 1) >> shift] = pc;
450 			size += table_unit;
451 		}
452 	}
453 	return maxidx;
454 }
455 
456 void
457 kmem_init(void)
458 {
459 
460 #ifdef KMEM_GUARD
461 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
462 	    kmem_va_arena);
463 #endif
464 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
465 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
466 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
467 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
468 }
469 
470 size_t
471 kmem_roundup_size(size_t size)
472 {
473 
474 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
475 }
476 
477 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
478 
479 #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
480 #if defined(_LP64)
481 #define PRIME 0x9e37fffffffc0000UL
482 #else /* defined(_LP64) */
483 #define PRIME 0x9e3779b1
484 #endif /* defined(_LP64) */
485 
486 static inline uint8_t
487 kmem_pattern_generate(const void *p)
488 {
489 	return (uint8_t)(((uintptr_t)p) * PRIME
490 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
491 }
492 #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
493 
494 #if defined(KMEM_POISON)
495 static int
496 kmem_poison_ctor(void *arg, void *obj, int flag)
497 {
498 	size_t sz = (size_t)arg;
499 
500 	kmem_poison_fill(obj, sz);
501 
502 	return 0;
503 }
504 
505 static void
506 kmem_poison_fill(void *p, size_t sz)
507 {
508 	uint8_t *cp;
509 	const uint8_t *ep;
510 
511 	cp = p;
512 	ep = cp + sz;
513 	while (cp < ep) {
514 		*cp = kmem_pattern_generate(cp);
515 		cp++;
516 	}
517 }
518 
519 static void
520 kmem_poison_check(void *p, size_t sz)
521 {
522 	uint8_t *cp;
523 	const uint8_t *ep;
524 
525 	cp = p;
526 	ep = cp + sz;
527 	while (cp < ep) {
528 		const uint8_t expected = kmem_pattern_generate(cp);
529 
530 		if (*cp != expected) {
531 			panic("%s: %p: 0x%02x != 0x%02x\n",
532 			   __func__, cp, *cp, expected);
533 		}
534 		cp++;
535 	}
536 }
537 #endif /* defined(KMEM_POISON) */
538 
539 #if defined(KMEM_SIZE)
540 static void
541 kmem_size_set(void *p, size_t sz)
542 {
543 	struct kmem_header *hd;
544 	hd = (struct kmem_header *)p;
545 	hd->size = sz;
546 }
547 
548 static void
549 kmem_size_check(void *p, size_t sz)
550 {
551 	struct kmem_header *hd;
552 	size_t hsz;
553 
554 	hd = (struct kmem_header *)p;
555 	hsz = hd->size;
556 
557 	if (hsz != sz) {
558 		panic("kmem_free(%p, %zu) != allocated size %zu",
559 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
560 	}
561 }
562 #endif /* defined(KMEM_SIZE) */
563 
564 #if defined(KMEM_REDZONE)
565 #define STATIC_BYTE	0xFE
566 CTASSERT(REDZONE_SIZE > 1);
567 static void
568 kmem_redzone_fill(void *p, size_t sz)
569 {
570 	uint8_t *cp, pat;
571 	const uint8_t *ep;
572 
573 	cp = (uint8_t *)p + sz;
574 	ep = cp + REDZONE_SIZE;
575 
576 	/*
577 	 * We really don't want the first byte of the red zone to be '\0';
578 	 * an off-by-one in a string may not be properly detected.
579 	 */
580 	pat = kmem_pattern_generate(cp);
581 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
582 	cp++;
583 
584 	while (cp < ep) {
585 		*cp = kmem_pattern_generate(cp);
586 		cp++;
587 	}
588 }
589 
590 static void
591 kmem_redzone_check(void *p, size_t sz)
592 {
593 	uint8_t *cp, pat, expected;
594 	const uint8_t *ep;
595 
596 	cp = (uint8_t *)p + sz;
597 	ep = cp + REDZONE_SIZE;
598 
599 	pat = kmem_pattern_generate(cp);
600 	expected = (pat == '\0') ? STATIC_BYTE: pat;
601 	if (expected != *cp) {
602 		panic("%s: %p: 0x%02x != 0x%02x\n",
603 		   __func__, cp, *cp, expected);
604 	}
605 	cp++;
606 
607 	while (cp < ep) {
608 		expected = kmem_pattern_generate(cp);
609 		if (*cp != expected) {
610 			panic("%s: %p: 0x%02x != 0x%02x\n",
611 			   __func__, cp, *cp, expected);
612 		}
613 		cp++;
614 	}
615 }
616 #endif /* defined(KMEM_REDZONE) */
617 
618 
619 /*
620  * Used to dynamically allocate string with kmem accordingly to format.
621  */
622 char *
623 kmem_asprintf(const char *fmt, ...)
624 {
625 	int size __diagused, len;
626 	va_list va;
627 	char *str;
628 
629 	va_start(va, fmt);
630 	len = vsnprintf(NULL, 0, fmt, va);
631 	va_end(va);
632 
633 	str = kmem_alloc(len + 1, KM_SLEEP);
634 
635 	va_start(va, fmt);
636 	size = vsnprintf(str, len + 1, fmt, va);
637 	va_end(va);
638 
639 	KASSERT(size == len);
640 
641 	return str;
642 }
643