xref: /netbsd-src/sys/kern/subr_kmem.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: subr_kmem.c,v 1.33 2010/02/11 23:13:46 haad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * allocator of kernel wired memory.
60  *
61  * TODO:
62  * -	worth to have "intrsafe" version?  maybe..
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.33 2010/02/11 23:13:46 haad Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/callback.h>
70 #include <sys/kmem.h>
71 #include <sys/vmem.h>
72 #include <sys/debug.h>
73 #include <sys/lockdebug.h>
74 #include <sys/cpu.h>
75 
76 #include <uvm/uvm_extern.h>
77 #include <uvm/uvm_map.h>
78 #include <uvm/uvm_kmguard.h>
79 
80 #include <lib/libkern/libkern.h>
81 
82 #include <machine/stdarg.h>
83 
84 #define	KMEM_QUANTUM_SIZE	(ALIGNBYTES + 1)
85 #define	KMEM_QCACHE_MAX		(KMEM_QUANTUM_SIZE * 32)
86 #define	KMEM_CACHE_COUNT	16
87 
88 typedef struct kmem_cache {
89 	pool_cache_t		kc_cache;
90 	struct pool_allocator	kc_pa;
91 	char			kc_name[12];
92 } kmem_cache_t;
93 
94 static vmem_t *kmem_arena;
95 static struct callback_entry kmem_kva_reclaim_entry;
96 
97 static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
98 static size_t kmem_cache_max;
99 static size_t kmem_cache_min;
100 static size_t kmem_cache_mask;
101 static int kmem_cache_shift;
102 
103 #if defined(DEBUG)
104 int kmem_guard_depth;
105 size_t kmem_guard_size;
106 static struct uvm_kmguard kmem_guard;
107 static void *kmem_freecheck;
108 #define	KMEM_POISON
109 #define	KMEM_REDZONE
110 #define	KMEM_SIZE
111 #define	KMEM_GUARD
112 #endif /* defined(DEBUG) */
113 
114 #if defined(KMEM_POISON)
115 static void kmem_poison_fill(void *, size_t);
116 static void kmem_poison_check(void *, size_t);
117 #else /* defined(KMEM_POISON) */
118 #define	kmem_poison_fill(p, sz)		/* nothing */
119 #define	kmem_poison_check(p, sz)	/* nothing */
120 #endif /* defined(KMEM_POISON) */
121 
122 #if defined(KMEM_REDZONE)
123 #define	REDZONE_SIZE	1
124 #else /* defined(KMEM_REDZONE) */
125 #define	REDZONE_SIZE	0
126 #endif /* defined(KMEM_REDZONE) */
127 
128 #if defined(KMEM_SIZE)
129 #define	SIZE_SIZE	(max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
130 static void kmem_size_set(void *, size_t);
131 static void kmem_size_check(const void *, size_t);
132 #else
133 #define	SIZE_SIZE	0
134 #define	kmem_size_set(p, sz)	/* nothing */
135 #define	kmem_size_check(p, sz)	/* nothing */
136 #endif
137 
138 static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
139     vm_flag_t);
140 static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
141 static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
142 
143 CTASSERT(KM_SLEEP == PR_WAITOK);
144 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
145 
146 static inline vm_flag_t
147 kmf_to_vmf(km_flag_t kmflags)
148 {
149 	vm_flag_t vmflags;
150 
151 	KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
152 	KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
153 
154 	vmflags = 0;
155 	if ((kmflags & KM_SLEEP) != 0) {
156 		vmflags |= VM_SLEEP;
157 	}
158 	if ((kmflags & KM_NOSLEEP) != 0) {
159 		vmflags |= VM_NOSLEEP;
160 	}
161 
162 	return vmflags;
163 }
164 
165 static void *
166 kmem_poolpage_alloc(struct pool *pool, int prflags)
167 {
168 
169 	return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
170 	    kmf_to_vmf(prflags) | VM_INSTANTFIT);
171 
172 }
173 
174 static void
175 kmem_poolpage_free(struct pool *pool, void *addr)
176 {
177 
178 	vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
179 }
180 
181 /* ---- kmem API */
182 
183 /*
184  * kmem_alloc: allocate wired memory.
185  *
186  * => must not be called from interrupt context.
187  */
188 
189 void *
190 kmem_alloc(size_t size, km_flag_t kmflags)
191 {
192 	kmem_cache_t *kc;
193 	uint8_t *p;
194 
195 	KASSERT(!cpu_intr_p());
196 	KASSERT(!cpu_softintr_p());
197 	KASSERT(size > 0);
198 
199 #ifdef KMEM_GUARD
200 	if (size <= kmem_guard_size) {
201 		return uvm_kmguard_alloc(&kmem_guard, size,
202 		    (kmflags & KM_SLEEP) != 0);
203 	}
204 #endif
205 
206 	size += REDZONE_SIZE + SIZE_SIZE;
207 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
208 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
209 		KASSERT(size <= kc->kc_pa.pa_pagesz);
210 		kmflags &= (KM_SLEEP | KM_NOSLEEP);
211 		p = pool_cache_get(kc->kc_cache, kmflags);
212 	} else {
213 		p = (void *)vmem_alloc(kmem_arena, size,
214 		    kmf_to_vmf(kmflags) | VM_INSTANTFIT);
215 	}
216 	if (__predict_true(p != NULL)) {
217 		kmem_poison_check(p, kmem_roundup_size(size));
218 		FREECHECK_OUT(&kmem_freecheck, p);
219 		kmem_size_set(p, size);
220 		p = (uint8_t *)p + SIZE_SIZE;
221 	}
222 	return p;
223 }
224 
225 /*
226  * kmem_zalloc: allocate wired memory.
227  *
228  * => must not be called from interrupt context.
229  */
230 
231 void *
232 kmem_zalloc(size_t size, km_flag_t kmflags)
233 {
234 	void *p;
235 
236 	p = kmem_alloc(size, kmflags);
237 	if (p != NULL) {
238 		memset(p, 0, size);
239 	}
240 	return p;
241 }
242 
243 /*
244  * kmem_free: free wired memory allocated by kmem_alloc.
245  *
246  * => must not be called from interrupt context.
247  */
248 
249 void
250 kmem_free(void *p, size_t size)
251 {
252 	kmem_cache_t *kc;
253 
254 	KASSERT(!cpu_intr_p());
255 	KASSERT(!cpu_softintr_p());
256 	KASSERT(p != NULL);
257 	KASSERT(size > 0);
258 
259 #ifdef KMEM_GUARD
260 	if (size <= kmem_guard_size) {
261 		uvm_kmguard_free(&kmem_guard, size, p);
262 		return;
263 	}
264 #endif
265 	size += SIZE_SIZE;
266 	p = (uint8_t *)p - SIZE_SIZE;
267 	kmem_size_check(p, size + REDZONE_SIZE);
268 	FREECHECK_IN(&kmem_freecheck, p);
269 	LOCKDEBUG_MEM_CHECK(p, size);
270 	kmem_poison_check((char *)p + size,
271 	    kmem_roundup_size(size + REDZONE_SIZE) - size);
272 	kmem_poison_fill(p, size);
273 	size += REDZONE_SIZE;
274 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
275 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
276 		KASSERT(size <= kc->kc_pa.pa_pagesz);
277 		pool_cache_put(kc->kc_cache, p);
278 	} else {
279 		vmem_free(kmem_arena, (vmem_addr_t)p, size);
280 	}
281 }
282 
283 
284 void
285 kmem_init(void)
286 {
287 	kmem_cache_t *kc;
288 	size_t sz;
289 	int i;
290 
291 #ifdef KMEM_GUARD
292 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
293 	    kernel_map);
294 #endif
295 
296 	kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
297 	    kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
298 	    VM_SLEEP, IPL_NONE);
299 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
300 	    &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
301 
302 	/*
303 	 * kmem caches start at twice the size of the largest vmem qcache
304 	 * and end at PAGE_SIZE or earlier.  assert that KMEM_QCACHE_MAX
305 	 * is a power of two.
306 	 */
307 	KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
308 	KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
309 	kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
310 	kmem_cache_min = 1 << kmem_cache_shift;
311 	kmem_cache_mask = kmem_cache_min - 1;
312 	for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
313 		sz = i << kmem_cache_shift;
314 		if (sz > PAGE_SIZE) {
315 			break;
316 		}
317 		kmem_cache_max = sz;
318 		kc = &kmem_cache[i];
319 		kc->kc_pa.pa_pagesz = sz;
320 		kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
321 		kc->kc_pa.pa_free = kmem_poolpage_free;
322 		sprintf(kc->kc_name, "kmem-%zu", sz);
323 		kc->kc_cache = pool_cache_init(sz,
324 		    KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
325 		    kc->kc_name, &kc->kc_pa, IPL_NONE,
326 		    NULL, NULL, NULL);
327 		KASSERT(kc->kc_cache != NULL);
328 	}
329 }
330 
331 size_t
332 kmem_roundup_size(size_t size)
333 {
334 
335 	return vmem_roundup_size(kmem_arena, size);
336 }
337 
338 /* ---- uvm glue */
339 
340 static vmem_addr_t
341 kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
342     vm_flag_t vmflags)
343 {
344 	uvm_flag_t uflags;
345 	vaddr_t va;
346 
347 	KASSERT(dummy == NULL);
348 	KASSERT(size != 0);
349 	KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
350 	KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
351 
352 	if ((vmflags & VM_NOSLEEP) != 0) {
353 		uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
354 	} else {
355 		uflags = UVM_KMF_WAITVA;
356 	}
357 	*resultsize = size = round_page(size);
358 	va = uvm_km_alloc(kernel_map, size, 0,
359 	    uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
360 	if (va != 0) {
361 		kmem_poison_fill((void *)va, size);
362 	}
363 	return (vmem_addr_t)va;
364 }
365 
366 static void
367 kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
368 {
369 
370 	KASSERT(dummy == NULL);
371 	KASSERT(addr != 0);
372 	KASSERT(size != 0);
373 	KASSERT(size == round_page(size));
374 
375 	kmem_poison_check((void *)addr, size);
376 	uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
377 }
378 
379 static int
380 kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
381 {
382 	vmem_t *vm = obj;
383 
384 	vmem_reap(vm);
385 	return CALLBACK_CHAIN_CONTINUE;
386 }
387 
388 /* ---- debug */
389 
390 #if defined(KMEM_POISON)
391 
392 #if defined(_LP64)
393 #define	PRIME	0x9e37fffffffc0001UL
394 #else /* defined(_LP64) */
395 #define	PRIME	0x9e3779b1
396 #endif /* defined(_LP64) */
397 
398 static inline uint8_t
399 kmem_poison_pattern(const void *p)
400 {
401 
402 	return (uint8_t)((((uintptr_t)p) * PRIME)
403 	    >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
404 }
405 
406 static void
407 kmem_poison_fill(void *p, size_t sz)
408 {
409 	uint8_t *cp;
410 	const uint8_t *ep;
411 
412 	cp = p;
413 	ep = cp + sz;
414 	while (cp < ep) {
415 		*cp = kmem_poison_pattern(cp);
416 		cp++;
417 	}
418 }
419 
420 static void
421 kmem_poison_check(void *p, size_t sz)
422 {
423 	uint8_t *cp;
424 	const uint8_t *ep;
425 
426 	cp = p;
427 	ep = cp + sz;
428 	while (cp < ep) {
429 		const uint8_t expected = kmem_poison_pattern(cp);
430 
431 		if (*cp != expected) {
432 			panic("%s: %p: 0x%02x != 0x%02x\n",
433 			    __func__, cp, *cp, expected);
434 		}
435 		cp++;
436 	}
437 }
438 
439 #endif /* defined(KMEM_POISON) */
440 
441 #if defined(KMEM_SIZE)
442 static void
443 kmem_size_set(void *p, size_t sz)
444 {
445 
446 	memcpy(p, &sz, sizeof(sz));
447 }
448 
449 static void
450 kmem_size_check(const void *p, size_t sz)
451 {
452 	size_t psz;
453 
454 	memcpy(&psz, p, sizeof(psz));
455 	if (psz != sz) {
456 		panic("kmem_free(%p, %zu) != allocated size %zu",
457 		    (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
458 	}
459 }
460 #endif	/* defined(KMEM_SIZE) */
461 
462 /*
463  * Used to dynamically allocate string with kmem accordingly to format.
464  */
465 char *
466 kmem_asprintf(const char *fmt, ...)
467 {
468 	int size, str_len;
469 	va_list va;
470 	char *str;
471 	char buf[1];
472 
473 	va_start(va, fmt);
474 	str_len = vsnprintf(buf, sizeof(buf), fmt, va) + 1;
475 	va_end(va);
476 
477 	str = kmem_alloc(str_len, KM_SLEEP);
478 
479 	if ((size = vsnprintf(str, str_len, fmt, va)) == -1) {
480 		kmem_free(str, str_len);
481 		return NULL;
482 	}
483 
484 	return str;
485 }
486