xref: /netbsd-src/sys/kern/subr_kmem.c (revision 9ddb6ab554e70fb9bbd90c3d96b812bc57755a14)
1 /*	$NetBSD: subr_kmem.c,v 1.42 2012/02/05 03:40:08 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * allocator of kernel wired memory.
60  *
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.42 2012/02/05 03:40:08 rmind Exp $");
65 
66 #include <sys/param.h>
67 #include <sys/callback.h>
68 #include <sys/kmem.h>
69 #include <sys/pool.h>
70 #include <sys/debug.h>
71 #include <sys/lockdebug.h>
72 #include <sys/cpu.h>
73 
74 #include <uvm/uvm_extern.h>
75 #include <uvm/uvm_map.h>
76 #include <uvm/uvm_kmguard.h>
77 
78 #include <lib/libkern/libkern.h>
79 
80 static const struct kmem_cache_info {
81 	size_t		kc_size;
82 	const char *	kc_name;
83 } kmem_cache_sizes[] = {
84 	{  8, "kmem-8" },
85 	{ 16, "kmem-16" },
86 	{ 24, "kmem-24" },
87 	{ 32, "kmem-32" },
88 	{ 40, "kmem-40" },
89 	{ 48, "kmem-48" },
90 	{ 56, "kmem-56" },
91 	{ 64, "kmem-64" },
92 	{ 80, "kmem-80" },
93 	{ 96, "kmem-96" },
94 	{ 112, "kmem-112" },
95 	{ 128, "kmem-128" },
96 	{ 160, "kmem-160" },
97 	{ 192, "kmem-192" },
98 	{ 224, "kmem-224" },
99 	{ 256, "kmem-256" },
100 	{ 320, "kmem-320" },
101 	{ 384, "kmem-384" },
102 	{ 448, "kmem-448" },
103 	{ 512, "kmem-512" },
104 	{ 768, "kmem-768" },
105 	{ 1024, "kmem-1024" },
106 	{ 2048, "kmem-2048" },
107 	{ 4096, "kmem-4096" },
108 	{ 0, NULL }
109 };
110 
111 /*
112  * KMEM_ALIGN is the smallest guaranteed alignment and also the
113  * smallest allocateable quantum.  Every cache size is a multiply
114  * of CACHE_LINE_SIZE and gets CACHE_LINE_SIZE alignment.
115  */
116 #define	KMEM_ALIGN		8
117 #define	KMEM_SHIFT		3
118 #define	KMEM_MAXSIZE		4096
119 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
120 
121 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
122 static size_t kmem_cache_maxidx __read_mostly;
123 
124 #if defined(DEBUG)
125 int kmem_guard_depth = 0;
126 size_t kmem_guard_size;
127 static struct uvm_kmguard kmem_guard;
128 static void *kmem_freecheck;
129 #define	KMEM_POISON
130 #define	KMEM_REDZONE
131 #define	KMEM_SIZE
132 #define	KMEM_GUARD
133 #endif /* defined(DEBUG) */
134 
135 #if defined(KMEM_POISON)
136 static int kmem_poison_ctor(void *, void *, int);
137 static void kmem_poison_fill(void *, size_t);
138 static void kmem_poison_check(void *, size_t);
139 #else /* defined(KMEM_POISON) */
140 #define	kmem_poison_fill(p, sz)		/* nothing */
141 #define	kmem_poison_check(p, sz)	/* nothing */
142 #endif /* defined(KMEM_POISON) */
143 
144 #if defined(KMEM_REDZONE)
145 #define	REDZONE_SIZE	1
146 #else /* defined(KMEM_REDZONE) */
147 #define	REDZONE_SIZE	0
148 #endif /* defined(KMEM_REDZONE) */
149 
150 #if defined(KMEM_SIZE)
151 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
152 static void kmem_size_set(void *, size_t);
153 static void kmem_size_check(void *, size_t);
154 #else
155 #define	SIZE_SIZE	0
156 #define	kmem_size_set(p, sz)	/* nothing */
157 #define	kmem_size_check(p, sz)	/* nothing */
158 #endif
159 
160 CTASSERT(KM_SLEEP == PR_WAITOK);
161 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
162 
163 void *
164 kmem_intr_alloc(size_t size, km_flag_t kmflags)
165 {
166 	size_t allocsz, index;
167 	pool_cache_t pc;
168 	uint8_t *p;
169 
170 	KASSERT(size > 0);
171 
172 #ifdef KMEM_GUARD
173 	if (size <= kmem_guard_size) {
174 		return uvm_kmguard_alloc(&kmem_guard, size,
175 		    (kmflags & KM_SLEEP) != 0);
176 	}
177 #endif
178 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
179 	index = (allocsz - 1) >> KMEM_SHIFT;
180 
181 	if (index >= kmem_cache_maxidx) {
182 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
183 		    (vsize_t)round_page(allocsz),
184 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
185 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
186 		return ret ? NULL : p;
187 	}
188 
189 	pc = kmem_cache[index];
190 	p = pool_cache_get(pc, kmflags);
191 
192 	if (__predict_true(p != NULL)) {
193 		kmem_poison_check(p, kmem_roundup_size(size));
194 		FREECHECK_OUT(&kmem_freecheck, p);
195 		kmem_size_set(p, allocsz);
196 	}
197 	return p;
198 }
199 
200 void *
201 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
202 {
203 	void *p;
204 
205 	p = kmem_intr_alloc(size, kmflags);
206 	if (p != NULL) {
207 		memset(p, 0, size);
208 	}
209 	return p;
210 }
211 
212 void
213 kmem_intr_free(void *p, size_t size)
214 {
215 	size_t allocsz, index;
216 	pool_cache_t pc;
217 
218 	KASSERT(p != NULL);
219 	KASSERT(size > 0);
220 
221 #ifdef KMEM_GUARD
222 	if (size <= kmem_guard_size) {
223 		uvm_kmguard_free(&kmem_guard, size, p);
224 		return;
225 	}
226 #endif
227 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
228 	index = (allocsz - 1) >> KMEM_SHIFT;
229 
230 	if (index >= kmem_cache_maxidx) {
231 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
232 		    round_page(allocsz));
233 		return;
234 	}
235 
236 	kmem_size_check(p, allocsz);
237 	FREECHECK_IN(&kmem_freecheck, p);
238 	LOCKDEBUG_MEM_CHECK(p, allocsz - (REDZONE_SIZE + SIZE_SIZE));
239 	kmem_poison_check((uint8_t *)p + size, allocsz - size - SIZE_SIZE);
240 	kmem_poison_fill(p, allocsz);
241 
242 	pc = kmem_cache[index];
243 	pool_cache_put(pc, p);
244 }
245 
246 /* ---- kmem API */
247 
248 /*
249  * kmem_alloc: allocate wired memory.
250  * => must not be called from interrupt context.
251  */
252 
253 void *
254 kmem_alloc(size_t size, km_flag_t kmflags)
255 {
256 
257 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
258 	    "kmem(9) should not be used from the interrupt context");
259 	return kmem_intr_alloc(size, kmflags);
260 }
261 
262 /*
263  * kmem_zalloc: allocate zeroed wired memory.
264  * => must not be called from interrupt context.
265  */
266 
267 void *
268 kmem_zalloc(size_t size, km_flag_t kmflags)
269 {
270 
271 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
272 	    "kmem(9) should not be used from the interrupt context");
273 	return kmem_intr_zalloc(size, kmflags);
274 }
275 
276 /*
277  * kmem_free: free wired memory allocated by kmem_alloc.
278  * => must not be called from interrupt context.
279  */
280 
281 void
282 kmem_free(void *p, size_t size)
283 {
284 
285 	KASSERT(!cpu_intr_p());
286 	KASSERT(!cpu_softintr_p());
287 	kmem_intr_free(p, size);
288 }
289 
290 static void
291 kmem_create_caches(const struct kmem_cache_info *array,
292     pool_cache_t alloc_table[], size_t maxsize)
293 {
294 	size_t table_unit = (1 << KMEM_SHIFT);
295 	size_t size = table_unit;
296 	int i;
297 
298 	for (i = 0; array[i].kc_size != 0 ; i++) {
299 		const char *name = array[i].kc_name;
300 		size_t cache_size = array[i].kc_size;
301 		int flags = PR_NOALIGN;
302 		pool_cache_t pc;
303 		size_t align;
304 
305 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
306 			align = CACHE_LINE_SIZE;
307 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
308 			align = PAGE_SIZE;
309 		else
310 			align = KMEM_ALIGN;
311 
312 		if (cache_size < CACHE_LINE_SIZE)
313 			flags |= PR_NOTOUCH;
314 
315 		/* check if we reached the requested size */
316 		if (cache_size > maxsize) {
317 			break;
318 		}
319 		if ((cache_size >> KMEM_SHIFT) > kmem_cache_maxidx) {
320 			kmem_cache_maxidx = cache_size >> KMEM_SHIFT;
321 		}
322 
323 #if defined(KMEM_POISON)
324 		pc = pool_cache_init(cache_size, align, 0, flags,
325 		    name, &pool_allocator_kmem, IPL_VM, kmem_poison_ctor,
326 		    NULL, (void *)cache_size);
327 #else /* defined(KMEM_POISON) */
328 		pc = pool_cache_init(cache_size, align, 0, flags,
329 		    name, &pool_allocator_kmem, IPL_VM, NULL, NULL, NULL);
330 #endif /* defined(KMEM_POISON) */
331 
332 		while (size <= cache_size) {
333 			alloc_table[(size - 1) >> KMEM_SHIFT] = pc;
334 			size += table_unit;
335 		}
336 	}
337 }
338 
339 void
340 kmem_init(void)
341 {
342 
343 #ifdef KMEM_GUARD
344 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
345 	    kmem_va_arena);
346 #endif
347 	kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE);
348 }
349 
350 size_t
351 kmem_roundup_size(size_t size)
352 {
353 
354 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
355 }
356 
357 /* ---- debug */
358 
359 #if defined(KMEM_POISON)
360 
361 #if defined(_LP64)
362 #define PRIME 0x9e37fffffffc0000UL
363 #else /* defined(_LP64) */
364 #define PRIME 0x9e3779b1
365 #endif /* defined(_LP64) */
366 
367 static inline uint8_t
368 kmem_poison_pattern(const void *p)
369 {
370 
371 	return (uint8_t)(((uintptr_t)p) * PRIME
372 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
373 }
374 
375 static int
376 kmem_poison_ctor(void *arg, void *obj, int flag)
377 {
378 	size_t sz = (size_t)arg;
379 
380 	kmem_poison_fill(obj, sz);
381 
382 	return 0;
383 }
384 
385 static void
386 kmem_poison_fill(void *p, size_t sz)
387 {
388 	uint8_t *cp;
389 	const uint8_t *ep;
390 
391 	cp = p;
392 	ep = cp + sz;
393 	while (cp < ep) {
394 		*cp = kmem_poison_pattern(cp);
395 		cp++;
396 	}
397 }
398 
399 static void
400 kmem_poison_check(void *p, size_t sz)
401 {
402 	uint8_t *cp;
403 	const uint8_t *ep;
404 
405 	cp = p;
406 	ep = cp + sz;
407 	while (cp < ep) {
408 		const uint8_t expected = kmem_poison_pattern(cp);
409 
410 		if (*cp != expected) {
411 			panic("%s: %p: 0x%02x != 0x%02x\n",
412 			   __func__, cp, *cp, expected);
413 		}
414 		cp++;
415 	}
416 }
417 
418 #endif /* defined(KMEM_POISON) */
419 
420 #if defined(KMEM_SIZE)
421 static void
422 kmem_size_set(void *p, size_t sz)
423 {
424 	void *szp;
425 
426 	szp = (uint8_t *)p + sz - SIZE_SIZE;
427 	memcpy(szp, &sz, sizeof(sz));
428 }
429 
430 static void
431 kmem_size_check(void *p, size_t sz)
432 {
433 	uint8_t *szp;
434 	size_t psz;
435 
436 	szp = (uint8_t *)p + sz - SIZE_SIZE;
437 	memcpy(&psz, szp, sizeof(psz));
438 	if (psz != sz) {
439 		panic("kmem_free(%p, %zu) != allocated size %zu",
440 		    (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
441 	}
442 }
443 #endif	/* defined(KMEM_SIZE) */
444 
445 /*
446  * Used to dynamically allocate string with kmem accordingly to format.
447  */
448 char *
449 kmem_asprintf(const char *fmt, ...)
450 {
451 	int size, len;
452 	va_list va;
453 	char *str;
454 
455 	va_start(va, fmt);
456 	len = vsnprintf(NULL, 0, fmt, va);
457 	va_end(va);
458 
459 	str = kmem_alloc(len + 1, KM_SLEEP);
460 
461 	va_start(va, fmt);
462 	size = vsnprintf(str, len + 1, fmt, va);
463 	va_end(va);
464 
465 	KASSERT(size == len);
466 
467 	return str;
468 }
469