xref: /netbsd-src/sys/kern/subr_kmem.c (revision 9ac63422b666fbe53a067de74d8af2aa4e45a08b)
1 /*	$NetBSD: subr_kmem.c,v 1.44 2012/04/13 06:27:02 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * allocator of kernel wired memory.
60  *
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.44 2012/04/13 06:27:02 mrg Exp $");
65 
66 #include <sys/param.h>
67 #include <sys/callback.h>
68 #include <sys/kmem.h>
69 #include <sys/pool.h>
70 #include <sys/debug.h>
71 #include <sys/lockdebug.h>
72 #include <sys/cpu.h>
73 
74 #include <uvm/uvm_extern.h>
75 #include <uvm/uvm_map.h>
76 #include <uvm/uvm_kmguard.h>
77 
78 #include <lib/libkern/libkern.h>
79 
80 static const struct kmem_cache_info {
81 	size_t		kc_size;
82 	const char *	kc_name;
83 } kmem_cache_sizes[] = {
84 	{  8, "kmem-8" },
85 	{ 16, "kmem-16" },
86 	{ 24, "kmem-24" },
87 	{ 32, "kmem-32" },
88 	{ 40, "kmem-40" },
89 	{ 48, "kmem-48" },
90 	{ 56, "kmem-56" },
91 	{ 64, "kmem-64" },
92 	{ 80, "kmem-80" },
93 	{ 96, "kmem-96" },
94 	{ 112, "kmem-112" },
95 	{ 128, "kmem-128" },
96 	{ 160, "kmem-160" },
97 	{ 192, "kmem-192" },
98 	{ 224, "kmem-224" },
99 	{ 256, "kmem-256" },
100 	{ 320, "kmem-320" },
101 	{ 384, "kmem-384" },
102 	{ 448, "kmem-448" },
103 	{ 512, "kmem-512" },
104 	{ 768, "kmem-768" },
105 	{ 1024, "kmem-1024" },
106 	{ 2048, "kmem-2048" },
107 	{ 4096, "kmem-4096" },
108 	{ 0, NULL }
109 };
110 
111 /*
112  * KMEM_ALIGN is the smallest guaranteed alignment and also the
113  * smallest allocateable quantum.  Every cache size is a multiply
114  * of CACHE_LINE_SIZE and gets CACHE_LINE_SIZE alignment.
115  */
116 #define	KMEM_ALIGN		8
117 #define	KMEM_SHIFT		3
118 #define	KMEM_MAXSIZE		4096
119 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
120 
121 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
122 static size_t kmem_cache_maxidx __read_mostly;
123 
124 #if defined(DEBUG)
125 #ifndef KMEM_GUARD_DEPTH
126 #define KMEM_GUARD_DEPTH 0
127 #endif
128 int kmem_guard_depth = KMEM_GUARD_DEPTH;
129 size_t kmem_guard_size;
130 static struct uvm_kmguard kmem_guard;
131 static void *kmem_freecheck;
132 #define	KMEM_POISON
133 #define	KMEM_REDZONE
134 #define	KMEM_SIZE
135 #define	KMEM_GUARD
136 #endif /* defined(DEBUG) */
137 
138 #if defined(KMEM_POISON)
139 static int kmem_poison_ctor(void *, void *, int);
140 static void kmem_poison_fill(void *, size_t);
141 static void kmem_poison_check(void *, size_t);
142 #else /* defined(KMEM_POISON) */
143 #define	kmem_poison_fill(p, sz)		/* nothing */
144 #define	kmem_poison_check(p, sz)	/* nothing */
145 #endif /* defined(KMEM_POISON) */
146 
147 #if defined(KMEM_REDZONE)
148 #define	REDZONE_SIZE	1
149 #else /* defined(KMEM_REDZONE) */
150 #define	REDZONE_SIZE	0
151 #endif /* defined(KMEM_REDZONE) */
152 
153 #if defined(KMEM_SIZE)
154 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
155 static void kmem_size_set(void *, size_t);
156 static void kmem_size_check(void *, size_t);
157 #else
158 #define	SIZE_SIZE	0
159 #define	kmem_size_set(p, sz)	/* nothing */
160 #define	kmem_size_check(p, sz)	/* nothing */
161 #endif
162 
163 CTASSERT(KM_SLEEP == PR_WAITOK);
164 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
165 
166 void *
167 kmem_intr_alloc(size_t size, km_flag_t kmflags)
168 {
169 	size_t allocsz, index;
170 	pool_cache_t pc;
171 	uint8_t *p;
172 
173 	KASSERT(size > 0);
174 
175 #ifdef KMEM_GUARD
176 	if (size <= kmem_guard_size) {
177 		return uvm_kmguard_alloc(&kmem_guard, size,
178 		    (kmflags & KM_SLEEP) != 0);
179 	}
180 #endif
181 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
182 	index = (allocsz - 1) >> KMEM_SHIFT;
183 
184 	if (index >= kmem_cache_maxidx) {
185 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
186 		    (vsize_t)round_page(size),
187 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
188 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
189 		return ret ? NULL : p;
190 	}
191 
192 	pc = kmem_cache[index];
193 	p = pool_cache_get(pc, kmflags);
194 
195 	if (__predict_true(p != NULL)) {
196 		kmem_poison_check(p, kmem_roundup_size(size));
197 		FREECHECK_OUT(&kmem_freecheck, p);
198 		kmem_size_set(p, allocsz);
199 	}
200 	return p;
201 }
202 
203 void *
204 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
205 {
206 	void *p;
207 
208 	p = kmem_intr_alloc(size, kmflags);
209 	if (p != NULL) {
210 		memset(p, 0, size);
211 	}
212 	return p;
213 }
214 
215 void
216 kmem_intr_free(void *p, size_t size)
217 {
218 	size_t allocsz, index;
219 	pool_cache_t pc;
220 
221 	KASSERT(p != NULL);
222 	KASSERT(size > 0);
223 
224 #ifdef KMEM_GUARD
225 	if (size <= kmem_guard_size) {
226 		uvm_kmguard_free(&kmem_guard, size, p);
227 		return;
228 	}
229 #endif
230 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
231 	index = (allocsz - 1) >> KMEM_SHIFT;
232 
233 	if (index >= kmem_cache_maxidx) {
234 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
235 		    round_page(size));
236 		return;
237 	}
238 
239 	kmem_size_check(p, allocsz);
240 	FREECHECK_IN(&kmem_freecheck, p);
241 	LOCKDEBUG_MEM_CHECK(p, allocsz - (REDZONE_SIZE + SIZE_SIZE));
242 	kmem_poison_check((uint8_t *)p + size, allocsz - size - SIZE_SIZE);
243 	kmem_poison_fill(p, allocsz);
244 
245 	pc = kmem_cache[index];
246 	pool_cache_put(pc, p);
247 }
248 
249 /* ---- kmem API */
250 
251 /*
252  * kmem_alloc: allocate wired memory.
253  * => must not be called from interrupt context.
254  */
255 
256 void *
257 kmem_alloc(size_t size, km_flag_t kmflags)
258 {
259 
260 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
261 	    "kmem(9) should not be used from the interrupt context");
262 	return kmem_intr_alloc(size, kmflags);
263 }
264 
265 /*
266  * kmem_zalloc: allocate zeroed wired memory.
267  * => must not be called from interrupt context.
268  */
269 
270 void *
271 kmem_zalloc(size_t size, km_flag_t kmflags)
272 {
273 
274 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
275 	    "kmem(9) should not be used from the interrupt context");
276 	return kmem_intr_zalloc(size, kmflags);
277 }
278 
279 /*
280  * kmem_free: free wired memory allocated by kmem_alloc.
281  * => must not be called from interrupt context.
282  */
283 
284 void
285 kmem_free(void *p, size_t size)
286 {
287 
288 	KASSERT(!cpu_intr_p());
289 	KASSERT(!cpu_softintr_p());
290 	kmem_intr_free(p, size);
291 }
292 
293 static void
294 kmem_create_caches(const struct kmem_cache_info *array,
295     pool_cache_t alloc_table[], size_t maxsize)
296 {
297 	size_t table_unit = (1 << KMEM_SHIFT);
298 	size_t size = table_unit;
299 	int i;
300 
301 	for (i = 0; array[i].kc_size != 0 ; i++) {
302 		const char *name = array[i].kc_name;
303 		size_t cache_size = array[i].kc_size;
304 		int flags = PR_NOALIGN;
305 		pool_cache_t pc;
306 		size_t align;
307 
308 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
309 			align = CACHE_LINE_SIZE;
310 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
311 			align = PAGE_SIZE;
312 		else
313 			align = KMEM_ALIGN;
314 
315 		if (cache_size < CACHE_LINE_SIZE)
316 			flags |= PR_NOTOUCH;
317 
318 		/* check if we reached the requested size */
319 		if (cache_size > maxsize) {
320 			break;
321 		}
322 		if ((cache_size >> KMEM_SHIFT) > kmem_cache_maxidx) {
323 			kmem_cache_maxidx = cache_size >> KMEM_SHIFT;
324 		}
325 
326 #if defined(KMEM_POISON)
327 		pc = pool_cache_init(cache_size, align, 0, flags,
328 		    name, &pool_allocator_kmem, IPL_VM, kmem_poison_ctor,
329 		    NULL, (void *)cache_size);
330 #else /* defined(KMEM_POISON) */
331 		pc = pool_cache_init(cache_size, align, 0, flags,
332 		    name, &pool_allocator_kmem, IPL_VM, NULL, NULL, NULL);
333 #endif /* defined(KMEM_POISON) */
334 
335 		while (size <= cache_size) {
336 			alloc_table[(size - 1) >> KMEM_SHIFT] = pc;
337 			size += table_unit;
338 		}
339 	}
340 }
341 
342 void
343 kmem_init(void)
344 {
345 
346 #ifdef KMEM_GUARD
347 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
348 	    kmem_va_arena);
349 #endif
350 	kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE);
351 }
352 
353 size_t
354 kmem_roundup_size(size_t size)
355 {
356 
357 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
358 }
359 
360 /* ---- debug */
361 
362 #if defined(KMEM_POISON)
363 
364 #if defined(_LP64)
365 #define PRIME 0x9e37fffffffc0000UL
366 #else /* defined(_LP64) */
367 #define PRIME 0x9e3779b1
368 #endif /* defined(_LP64) */
369 
370 static inline uint8_t
371 kmem_poison_pattern(const void *p)
372 {
373 
374 	return (uint8_t)(((uintptr_t)p) * PRIME
375 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
376 }
377 
378 static int
379 kmem_poison_ctor(void *arg, void *obj, int flag)
380 {
381 	size_t sz = (size_t)arg;
382 
383 	kmem_poison_fill(obj, sz);
384 
385 	return 0;
386 }
387 
388 static void
389 kmem_poison_fill(void *p, size_t sz)
390 {
391 	uint8_t *cp;
392 	const uint8_t *ep;
393 
394 	cp = p;
395 	ep = cp + sz;
396 	while (cp < ep) {
397 		*cp = kmem_poison_pattern(cp);
398 		cp++;
399 	}
400 }
401 
402 static void
403 kmem_poison_check(void *p, size_t sz)
404 {
405 	uint8_t *cp;
406 	const uint8_t *ep;
407 
408 	cp = p;
409 	ep = cp + sz;
410 	while (cp < ep) {
411 		const uint8_t expected = kmem_poison_pattern(cp);
412 
413 		if (*cp != expected) {
414 			panic("%s: %p: 0x%02x != 0x%02x\n",
415 			   __func__, cp, *cp, expected);
416 		}
417 		cp++;
418 	}
419 }
420 
421 #endif /* defined(KMEM_POISON) */
422 
423 #if defined(KMEM_SIZE)
424 static void
425 kmem_size_set(void *p, size_t sz)
426 {
427 	void *szp;
428 
429 	szp = (uint8_t *)p + sz - SIZE_SIZE;
430 	memcpy(szp, &sz, sizeof(sz));
431 }
432 
433 static void
434 kmem_size_check(void *p, size_t sz)
435 {
436 	uint8_t *szp;
437 	size_t psz;
438 
439 	szp = (uint8_t *)p + sz - SIZE_SIZE;
440 	memcpy(&psz, szp, sizeof(psz));
441 	if (psz != sz) {
442 		panic("kmem_free(%p, %zu) != allocated size %zu",
443 		    (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
444 	}
445 }
446 #endif	/* defined(KMEM_SIZE) */
447 
448 /*
449  * Used to dynamically allocate string with kmem accordingly to format.
450  */
451 char *
452 kmem_asprintf(const char *fmt, ...)
453 {
454 	int size, len;
455 	va_list va;
456 	char *str;
457 
458 	va_start(va, fmt);
459 	len = vsnprintf(NULL, 0, fmt, va);
460 	va_end(va);
461 
462 	str = kmem_alloc(len + 1, KM_SLEEP);
463 
464 	va_start(va, fmt);
465 	size = vsnprintf(str, len + 1, fmt, va);
466 	va_end(va);
467 
468 	KASSERT(size == len);
469 
470 	return str;
471 }
472