xref: /netbsd-src/sys/kern/subr_kmem.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$NetBSD: subr_kmem.c,v 1.60 2014/07/22 07:38:41 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * Allocator of kernel wired memory. This allocator has some debug features
60  * enabled with "option DIAGNOSTIC" and "option DEBUG".
61  */
62 
63 /*
64  * KMEM_SIZE: detect alloc/free size mismatch bugs.
65  *	Prefix each allocations with a fixed-sized, aligned header and record
66  *	the exact user-requested allocation size in it. When freeing, compare
67  *	it with kmem_free's "size" argument.
68  *
69  * KMEM_REDZONE: detect overrun bugs.
70  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
71  *	end of each allocated buffer. Check this pattern on kmem_free.
72  *
73  * These options are enabled on DIAGNOSTIC.
74  *
75  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
76  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
77  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
78  *  |/HSZ/|     |     |     |     |     |     |     |     |   |*|**|UU|
79  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
80  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
81  *  |Size |    Buffer usable by the caller (requested size)   |RedZ|Unused\
82  */
83 
84 /*
85  * KMEM_POISON: detect modify-after-free bugs.
86  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
87  *	Check the pattern on allocation.
88  *
89  * KMEM_GUARD
90  *	A kernel with "option DEBUG" has "kmguard" debugging feature compiled
91  *	in. See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries
92  *	to detect.  Even if compiled in, it's disabled by default because it's
93  *	very expensive.  You can enable it on boot by:
94  *		boot -d
95  *		db> w kmem_guard_depth 0t30000
96  *		db> c
97  *
98  *	The default value of kmem_guard_depth is 0, which means disabled.
99  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
100  */
101 
102 #include <sys/cdefs.h>
103 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.60 2014/07/22 07:38:41 maxv Exp $");
104 
105 #include <sys/param.h>
106 #include <sys/callback.h>
107 #include <sys/kmem.h>
108 #include <sys/pool.h>
109 #include <sys/debug.h>
110 #include <sys/lockdebug.h>
111 #include <sys/cpu.h>
112 
113 #include <uvm/uvm_extern.h>
114 #include <uvm/uvm_map.h>
115 #include <uvm/uvm_kmguard.h>
116 
117 #include <lib/libkern/libkern.h>
118 
119 struct kmem_cache_info {
120 	size_t		kc_size;
121 	const char *	kc_name;
122 };
123 
124 static const struct kmem_cache_info kmem_cache_sizes[] = {
125 	{  8, "kmem-8" },
126 	{ 16, "kmem-16" },
127 	{ 24, "kmem-24" },
128 	{ 32, "kmem-32" },
129 	{ 40, "kmem-40" },
130 	{ 48, "kmem-48" },
131 	{ 56, "kmem-56" },
132 	{ 64, "kmem-64" },
133 	{ 80, "kmem-80" },
134 	{ 96, "kmem-96" },
135 	{ 112, "kmem-112" },
136 	{ 128, "kmem-128" },
137 	{ 160, "kmem-160" },
138 	{ 192, "kmem-192" },
139 	{ 224, "kmem-224" },
140 	{ 256, "kmem-256" },
141 	{ 320, "kmem-320" },
142 	{ 384, "kmem-384" },
143 	{ 448, "kmem-448" },
144 	{ 512, "kmem-512" },
145 	{ 768, "kmem-768" },
146 	{ 1024, "kmem-1024" },
147 	{ 0, NULL }
148 };
149 
150 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
151 	{ 2048, "kmem-2048" },
152 	{ 4096, "kmem-4096" },
153 	{ 8192, "kmem-8192" },
154 	{ 16384, "kmem-16384" },
155 	{ 0, NULL }
156 };
157 
158 /*
159  * KMEM_ALIGN is the smallest guaranteed alignment and also the
160  * smallest allocateable quantum.
161  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
162  */
163 #define	KMEM_ALIGN		8
164 #define	KMEM_SHIFT		3
165 #define	KMEM_MAXSIZE		1024
166 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
167 
168 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
169 static size_t kmem_cache_maxidx __read_mostly;
170 
171 #define	KMEM_BIG_ALIGN		2048
172 #define	KMEM_BIG_SHIFT		11
173 #define	KMEM_BIG_MAXSIZE	16384
174 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
175 
176 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
177 static size_t kmem_cache_big_maxidx __read_mostly;
178 
179 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
180 #define	KMEM_SIZE
181 #define	KMEM_REDZONE
182 #endif /* defined(DIAGNOSTIC) */
183 
184 #if defined(DEBUG) && defined(_HARDKERNEL)
185 #define	KMEM_POISON
186 #define	KMEM_GUARD
187 #endif /* defined(DEBUG) */
188 
189 #if defined(KMEM_POISON)
190 static int kmem_poison_ctor(void *, void *, int);
191 static void kmem_poison_fill(void *, size_t);
192 static void kmem_poison_check(void *, size_t);
193 #else /* defined(KMEM_POISON) */
194 #define	kmem_poison_fill(p, sz)		/* nothing */
195 #define	kmem_poison_check(p, sz)	/* nothing */
196 #endif /* defined(KMEM_POISON) */
197 
198 #if defined(KMEM_REDZONE)
199 #define	REDZONE_SIZE	2
200 static void kmem_redzone_fill(void *, size_t);
201 static void kmem_redzone_check(void *, size_t);
202 #else /* defined(KMEM_REDZONE) */
203 #define	REDZONE_SIZE	0
204 #define	kmem_redzone_fill(p, sz)		/* nothing */
205 #define	kmem_redzone_check(p, sz)	/* nothing */
206 #endif /* defined(KMEM_REDZONE) */
207 
208 #if defined(KMEM_SIZE)
209 struct kmem_header {
210 	size_t		size;
211 } __aligned(KMEM_ALIGN);
212 #define	SIZE_SIZE	sizeof(struct kmem_header)
213 static void kmem_size_set(void *, size_t);
214 static void kmem_size_check(void *, size_t);
215 #else
216 #define	SIZE_SIZE	0
217 #define	kmem_size_set(p, sz)	/* nothing */
218 #define	kmem_size_check(p, sz)	/* nothing */
219 #endif
220 
221 #if defined(KMEM_GUARD)
222 #ifndef KMEM_GUARD_DEPTH
223 #define KMEM_GUARD_DEPTH 0
224 #endif
225 int kmem_guard_depth = KMEM_GUARD_DEPTH;
226 size_t kmem_guard_size;
227 static struct uvm_kmguard kmem_guard;
228 static void *kmem_freecheck;
229 #endif /* defined(KMEM_GUARD) */
230 
231 CTASSERT(KM_SLEEP == PR_WAITOK);
232 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
233 
234 /*
235  * kmem_intr_alloc: allocate wired memory.
236  */
237 
238 void *
239 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
240 {
241 	size_t allocsz, index;
242 	size_t size;
243 	pool_cache_t pc;
244 	uint8_t *p;
245 
246 	KASSERT(requested_size > 0);
247 
248 #ifdef KMEM_GUARD
249 	if (requested_size <= kmem_guard_size) {
250 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
251 		    (kmflags & KM_SLEEP) != 0);
252 	}
253 #endif
254 	size = kmem_roundup_size(requested_size);
255 	allocsz = size + SIZE_SIZE;
256 
257 #ifdef KMEM_REDZONE
258 	if (size - requested_size < REDZONE_SIZE) {
259 		/* If there isn't enough space in the padding, allocate
260 		 * one more memory chunk for the red zone. */
261 		allocsz += kmem_roundup_size(REDZONE_SIZE);
262 	}
263 #endif
264 
265 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
266 	    < kmem_cache_maxidx) {
267 		pc = kmem_cache[index];
268 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
269 	    < kmem_cache_big_maxidx) {
270 		pc = kmem_cache_big[index];
271 	} else {
272 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
273 		    (vsize_t)round_page(size),
274 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
275 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
276 		if (ret) {
277 			return NULL;
278 		}
279 		FREECHECK_OUT(&kmem_freecheck, p);
280 		return p;
281 	}
282 
283 	p = pool_cache_get(pc, kmflags);
284 
285 	if (__predict_true(p != NULL)) {
286 		kmem_poison_check(p, allocsz);
287 		FREECHECK_OUT(&kmem_freecheck, p);
288 		kmem_size_set(p, requested_size);
289 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
290 
291 		return p + SIZE_SIZE;
292 	}
293 	return p;
294 }
295 
296 /*
297  * kmem_intr_zalloc: allocate zeroed wired memory.
298  */
299 
300 void *
301 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
302 {
303 	void *p;
304 
305 	p = kmem_intr_alloc(size, kmflags);
306 	if (p != NULL) {
307 		memset(p, 0, size);
308 	}
309 	return p;
310 }
311 
312 /*
313  * kmem_intr_free: free wired memory allocated by kmem_alloc.
314  */
315 
316 void
317 kmem_intr_free(void *p, size_t requested_size)
318 {
319 	size_t allocsz, index;
320 	size_t size;
321 	pool_cache_t pc;
322 
323 	KASSERT(p != NULL);
324 	KASSERT(requested_size > 0);
325 
326 #ifdef KMEM_GUARD
327 	if (requested_size <= kmem_guard_size) {
328 		uvm_kmguard_free(&kmem_guard, requested_size, p);
329 		return;
330 	}
331 #endif
332 
333 	size = kmem_roundup_size(requested_size);
334 	allocsz = size + SIZE_SIZE;
335 
336 #ifdef KMEM_REDZONE
337 	if (size - requested_size < REDZONE_SIZE) {
338 		allocsz += kmem_roundup_size(REDZONE_SIZE);
339 	}
340 #endif
341 
342 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
343 	    < kmem_cache_maxidx) {
344 		pc = kmem_cache[index];
345 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
346 	    < kmem_cache_big_maxidx) {
347 		pc = kmem_cache_big[index];
348 	} else {
349 		FREECHECK_IN(&kmem_freecheck, p);
350 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
351 		    round_page(size));
352 		return;
353 	}
354 
355 	p = (uint8_t *)p - SIZE_SIZE;
356 	kmem_size_check(p, requested_size);
357 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
358 	FREECHECK_IN(&kmem_freecheck, p);
359 	LOCKDEBUG_MEM_CHECK(p, size);
360 	kmem_poison_fill(p, allocsz);
361 
362 	pool_cache_put(pc, p);
363 }
364 
365 /* ---- kmem API */
366 
367 /*
368  * kmem_alloc: allocate wired memory.
369  * => must not be called from interrupt context.
370  */
371 
372 void *
373 kmem_alloc(size_t size, km_flag_t kmflags)
374 {
375 
376 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
377 	    "kmem(9) should not be used from the interrupt context");
378 	return kmem_intr_alloc(size, kmflags);
379 }
380 
381 /*
382  * kmem_zalloc: allocate zeroed wired memory.
383  * => must not be called from interrupt context.
384  */
385 
386 void *
387 kmem_zalloc(size_t size, km_flag_t kmflags)
388 {
389 
390 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
391 	    "kmem(9) should not be used from the interrupt context");
392 	return kmem_intr_zalloc(size, kmflags);
393 }
394 
395 /*
396  * kmem_free: free wired memory allocated by kmem_alloc.
397  * => must not be called from interrupt context.
398  */
399 
400 void
401 kmem_free(void *p, size_t size)
402 {
403 
404 	KASSERT(!cpu_intr_p());
405 	KASSERT(!cpu_softintr_p());
406 	kmem_intr_free(p, size);
407 }
408 
409 static size_t
410 kmem_create_caches(const struct kmem_cache_info *array,
411     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
412 {
413 	size_t maxidx = 0;
414 	size_t table_unit = (1 << shift);
415 	size_t size = table_unit;
416 	int i;
417 
418 	for (i = 0; array[i].kc_size != 0 ; i++) {
419 		const char *name = array[i].kc_name;
420 		size_t cache_size = array[i].kc_size;
421 		struct pool_allocator *pa;
422 		int flags = PR_NOALIGN;
423 		pool_cache_t pc;
424 		size_t align;
425 
426 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
427 			align = CACHE_LINE_SIZE;
428 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
429 			align = PAGE_SIZE;
430 		else
431 			align = KMEM_ALIGN;
432 
433 		if (cache_size < CACHE_LINE_SIZE)
434 			flags |= PR_NOTOUCH;
435 
436 		/* check if we reached the requested size */
437 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
438 			break;
439 		}
440 		if ((cache_size >> shift) > maxidx) {
441 			maxidx = cache_size >> shift;
442 		}
443 
444 		if ((cache_size >> shift) > maxidx) {
445 			maxidx = cache_size >> shift;
446 		}
447 
448 		pa = &pool_allocator_kmem;
449 #if defined(KMEM_POISON)
450 		pc = pool_cache_init(cache_size, align, 0, flags,
451 		    name, pa, ipl, kmem_poison_ctor,
452 		    NULL, (void *)cache_size);
453 #else /* defined(KMEM_POISON) */
454 		pc = pool_cache_init(cache_size, align, 0, flags,
455 		    name, pa, ipl, NULL, NULL, NULL);
456 #endif /* defined(KMEM_POISON) */
457 
458 		while (size <= cache_size) {
459 			alloc_table[(size - 1) >> shift] = pc;
460 			size += table_unit;
461 		}
462 	}
463 	return maxidx;
464 }
465 
466 void
467 kmem_init(void)
468 {
469 
470 #ifdef KMEM_GUARD
471 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
472 	    kmem_va_arena);
473 #endif
474 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
475 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
476 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
477 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
478 }
479 
480 size_t
481 kmem_roundup_size(size_t size)
482 {
483 
484 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
485 }
486 
487 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
488 
489 #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
490 #if defined(_LP64)
491 #define PRIME 0x9e37fffffffc0000UL
492 #else /* defined(_LP64) */
493 #define PRIME 0x9e3779b1
494 #endif /* defined(_LP64) */
495 
496 static inline uint8_t
497 kmem_pattern_generate(const void *p)
498 {
499 	return (uint8_t)(((uintptr_t)p) * PRIME
500 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
501 }
502 #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
503 
504 #if defined(KMEM_POISON)
505 static int
506 kmem_poison_ctor(void *arg, void *obj, int flag)
507 {
508 	size_t sz = (size_t)arg;
509 
510 	kmem_poison_fill(obj, sz);
511 
512 	return 0;
513 }
514 
515 static void
516 kmem_poison_fill(void *p, size_t sz)
517 {
518 	uint8_t *cp;
519 	const uint8_t *ep;
520 
521 	cp = p;
522 	ep = cp + sz;
523 	while (cp < ep) {
524 		*cp = kmem_pattern_generate(cp);
525 		cp++;
526 	}
527 }
528 
529 static void
530 kmem_poison_check(void *p, size_t sz)
531 {
532 	uint8_t *cp;
533 	const uint8_t *ep;
534 
535 	cp = p;
536 	ep = cp + sz;
537 	while (cp < ep) {
538 		const uint8_t expected = kmem_pattern_generate(cp);
539 
540 		if (*cp != expected) {
541 			panic("%s: %p: 0x%02x != 0x%02x\n",
542 			   __func__, cp, *cp, expected);
543 		}
544 		cp++;
545 	}
546 }
547 #endif /* defined(KMEM_POISON) */
548 
549 #if defined(KMEM_SIZE)
550 static void
551 kmem_size_set(void *p, size_t sz)
552 {
553 	struct kmem_header *hd;
554 	hd = (struct kmem_header *)p;
555 	hd->size = sz;
556 }
557 
558 static void
559 kmem_size_check(void *p, size_t sz)
560 {
561 	struct kmem_header *hd;
562 	size_t hsz;
563 
564 	hd = (struct kmem_header *)p;
565 	hsz = hd->size;
566 
567 	if (hsz != sz) {
568 		panic("kmem_free(%p, %zu) != allocated size %zu",
569 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
570 	}
571 }
572 #endif /* defined(KMEM_SIZE) */
573 
574 #if defined(KMEM_REDZONE)
575 #define STATIC_BYTE	0xFE
576 CTASSERT(REDZONE_SIZE > 1);
577 static void
578 kmem_redzone_fill(void *p, size_t sz)
579 {
580 	uint8_t *cp, pat;
581 	const uint8_t *ep;
582 
583 	cp = (uint8_t *)p + sz;
584 	ep = cp + REDZONE_SIZE;
585 
586 	/*
587 	 * We really don't want the first byte of the red zone to be '\0';
588 	 * an off-by-one in a string may not be properly detected.
589 	 */
590 	pat = kmem_pattern_generate(cp);
591 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
592 	cp++;
593 
594 	while (cp < ep) {
595 		*cp = kmem_pattern_generate(cp);
596 		cp++;
597 	}
598 }
599 
600 static void
601 kmem_redzone_check(void *p, size_t sz)
602 {
603 	uint8_t *cp, pat, expected;
604 	const uint8_t *ep;
605 
606 	cp = (uint8_t *)p + sz;
607 	ep = cp + REDZONE_SIZE;
608 
609 	pat = kmem_pattern_generate(cp);
610 	expected = (pat == '\0') ? STATIC_BYTE: pat;
611 	if (expected != *cp) {
612 		panic("%s: %p: 0x%02x != 0x%02x\n",
613 		   __func__, cp, *cp, expected);
614 	}
615 	cp++;
616 
617 	while (cp < ep) {
618 		expected = kmem_pattern_generate(cp);
619 		if (*cp != expected) {
620 			panic("%s: %p: 0x%02x != 0x%02x\n",
621 			   __func__, cp, *cp, expected);
622 		}
623 		cp++;
624 	}
625 }
626 #endif /* defined(KMEM_REDZONE) */
627 
628 
629 /*
630  * Used to dynamically allocate string with kmem accordingly to format.
631  */
632 char *
633 kmem_asprintf(const char *fmt, ...)
634 {
635 	int size __diagused, len;
636 	va_list va;
637 	char *str;
638 
639 	va_start(va, fmt);
640 	len = vsnprintf(NULL, 0, fmt, va);
641 	va_end(va);
642 
643 	str = kmem_alloc(len + 1, KM_SLEEP);
644 
645 	va_start(va, fmt);
646 	size = vsnprintf(str, len + 1, fmt, va);
647 	va_end(va);
648 
649 	KASSERT(size == len);
650 
651 	return str;
652 }
653