xref: /netbsd-src/sys/kern/subr_kmem.c (revision 500db002748d9818288e46e10f026a2b09548086)
1 /*	$NetBSD: subr_kmem.c,v 1.26 2009/02/18 13:04:59 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * allocator of kernel wired memory.
60  *
61  * TODO:
62  * -	worth to have "intrsafe" version?  maybe..
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.26 2009/02/18 13:04:59 yamt Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/callback.h>
70 #include <sys/kmem.h>
71 #include <sys/vmem.h>
72 #include <sys/debug.h>
73 #include <sys/lockdebug.h>
74 #include <sys/cpu.h>
75 
76 #include <uvm/uvm_extern.h>
77 #include <uvm/uvm_map.h>
78 
79 #include <lib/libkern/libkern.h>
80 
81 #define	KMEM_QUANTUM_SIZE	(ALIGNBYTES + 1)
82 #define	KMEM_QCACHE_MAX		(KMEM_QUANTUM_SIZE * 32)
83 #define	KMEM_CACHE_COUNT	16
84 
85 typedef struct kmem_cache {
86 	pool_cache_t		kc_cache;
87 	struct pool_allocator	kc_pa;
88 	char			kc_name[12];
89 } kmem_cache_t;
90 
91 static vmem_t *kmem_arena;
92 static struct callback_entry kmem_kva_reclaim_entry;
93 
94 static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
95 static size_t kmem_cache_max;
96 static size_t kmem_cache_min;
97 static size_t kmem_cache_mask;
98 static int kmem_cache_shift;
99 
100 #if defined(DEBUG)
101 static void *kmem_freecheck;
102 #define	KMEM_POISON
103 #define	KMEM_REDZONE
104 #define	KMEM_SIZE
105 #endif /* defined(DEBUG) */
106 
107 #if defined(KMEM_POISON)
108 static void kmem_poison_fill(void *, size_t);
109 static void kmem_poison_check(void *, size_t);
110 #else /* defined(KMEM_POISON) */
111 #define	kmem_poison_fill(p, sz)		/* nothing */
112 #define	kmem_poison_check(p, sz)	/* nothing */
113 #endif /* defined(KMEM_POISON) */
114 
115 #if defined(KMEM_REDZONE)
116 #define	REDZONE_SIZE	1
117 #else /* defined(KMEM_REDZONE) */
118 #define	REDZONE_SIZE	0
119 #endif /* defined(KMEM_REDZONE) */
120 
121 #if defined(KMEM_SIZE)
122 #define	SIZE_SIZE	(max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
123 static void kmem_size_set(void *, size_t);
124 static void kmem_size_check(void *, size_t);
125 #else
126 #define	SIZE_SIZE	0
127 #define	kmem_size_set(p, sz)	/* nothing */
128 #define	kmem_size_check(p, sz)	/* nothing */
129 #endif
130 
131 static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
132     vm_flag_t);
133 static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
134 static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
135 
136 static inline vm_flag_t
137 kmf_to_vmf(km_flag_t kmflags)
138 {
139 	vm_flag_t vmflags;
140 
141 	KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
142 	KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
143 
144 	vmflags = 0;
145 	if ((kmflags & KM_SLEEP) != 0) {
146 		vmflags |= VM_SLEEP;
147 	}
148 	if ((kmflags & KM_NOSLEEP) != 0) {
149 		vmflags |= VM_NOSLEEP;
150 	}
151 
152 	return vmflags;
153 }
154 
155 static void *
156 kmem_poolpage_alloc(struct pool *pool, int prflags)
157 {
158 
159 	KASSERT(KM_SLEEP == PR_WAITOK);
160 	KASSERT(KM_NOSLEEP == PR_NOWAIT);
161 
162 	return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
163 	    kmf_to_vmf(prflags) | VM_INSTANTFIT);
164 
165 }
166 
167 static void
168 kmem_poolpage_free(struct pool *pool, void *addr)
169 {
170 
171 	vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
172 }
173 
174 /* ---- kmem API */
175 
176 /*
177  * kmem_alloc: allocate wired memory.
178  *
179  * => must not be called from interrupt context.
180  */
181 
182 void *
183 kmem_alloc(size_t size, km_flag_t kmflags)
184 {
185 	kmem_cache_t *kc;
186 	uint8_t *p;
187 
188 	KASSERT(!cpu_intr_p());
189 	KASSERT((curlwp->l_pflag & LP_INTR) == 0);
190 
191 	size += REDZONE_SIZE + SIZE_SIZE;
192 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
193 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
194 		KASSERT(size <= kc->kc_pa.pa_pagesz);
195 		KASSERT(KM_SLEEP == PR_WAITOK);
196 		KASSERT(KM_NOSLEEP == PR_NOWAIT);
197 		kmflags &= (KM_SLEEP | KM_NOSLEEP);
198 		p = pool_cache_get(kc->kc_cache, kmflags);
199 	} else {
200 		p = (void *)vmem_alloc(kmem_arena, size,
201 		    kmf_to_vmf(kmflags) | VM_INSTANTFIT);
202 	}
203 	if (__predict_true(p != NULL)) {
204 		kmem_poison_check(p, kmem_roundup_size(size));
205 		FREECHECK_OUT(&kmem_freecheck, p);
206 		kmem_size_set(p, size);
207 		p = (uint8_t *)p + SIZE_SIZE;
208 	}
209 	return p;
210 }
211 
212 /*
213  * kmem_zalloc: allocate wired memory.
214  *
215  * => must not be called from interrupt context.
216  */
217 
218 void *
219 kmem_zalloc(size_t size, km_flag_t kmflags)
220 {
221 	void *p;
222 
223 	p = kmem_alloc(size, kmflags);
224 	if (p != NULL) {
225 		memset(p, 0, size);
226 	}
227 	return p;
228 }
229 
230 /*
231  * kmem_free: free wired memory allocated by kmem_alloc.
232  *
233  * => must not be called from interrupt context.
234  */
235 
236 void
237 kmem_free(void *p, size_t size)
238 {
239 	kmem_cache_t *kc;
240 
241 	KASSERT(!cpu_intr_p());
242 	KASSERT((curlwp->l_pflag & LP_INTR) == 0);
243 
244 	size += SIZE_SIZE;
245 	p = (uint8_t *)p - SIZE_SIZE;
246 	kmem_size_check(p, size + REDZONE_SIZE);
247 
248 	FREECHECK_IN(&kmem_freecheck, p);
249 	LOCKDEBUG_MEM_CHECK(p, size);
250 	kmem_poison_check((char *)p + size,
251 	    kmem_roundup_size(size + REDZONE_SIZE) - size);
252 	kmem_poison_fill(p, size);
253 	size += REDZONE_SIZE;
254 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
255 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
256 		KASSERT(size <= kc->kc_pa.pa_pagesz);
257 		pool_cache_put(kc->kc_cache, p);
258 	} else {
259 		vmem_free(kmem_arena, (vmem_addr_t)p, size);
260 	}
261 }
262 
263 
264 void
265 kmem_init(void)
266 {
267 	kmem_cache_t *kc;
268 	size_t sz;
269 	int i;
270 
271 	kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
272 	    kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
273 	    VM_SLEEP, IPL_NONE);
274 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
275 	    &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
276 
277 	/*
278 	 * kmem caches start at twice the size of the largest vmem qcache
279 	 * and end at PAGE_SIZE or earlier.  assert that KMEM_QCACHE_MAX
280 	 * is a power of two.
281 	 */
282 	KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
283 	KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
284 	kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
285 	kmem_cache_min = 1 << kmem_cache_shift;
286 	kmem_cache_mask = kmem_cache_min - 1;
287 	for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
288 		sz = i << kmem_cache_shift;
289 		if (sz > PAGE_SIZE) {
290 			break;
291 		}
292 		kmem_cache_max = sz;
293 		kc = &kmem_cache[i];
294 		kc->kc_pa.pa_pagesz = sz;
295 		kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
296 		kc->kc_pa.pa_free = kmem_poolpage_free;
297 		sprintf(kc->kc_name, "kmem-%zu", sz);
298 		kc->kc_cache = pool_cache_init(sz,
299 		    KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
300 		    kc->kc_name, &kc->kc_pa, IPL_NONE,
301 		    NULL, NULL, NULL);
302 		KASSERT(kc->kc_cache != NULL);
303 	}
304 }
305 
306 size_t
307 kmem_roundup_size(size_t size)
308 {
309 
310 	return vmem_roundup_size(kmem_arena, size);
311 }
312 
313 /* ---- uvm glue */
314 
315 static vmem_addr_t
316 kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
317     vm_flag_t vmflags)
318 {
319 	uvm_flag_t uflags;
320 	vaddr_t va;
321 
322 	KASSERT(dummy == NULL);
323 	KASSERT(size != 0);
324 	KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
325 	KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
326 
327 	if ((vmflags & VM_NOSLEEP) != 0) {
328 		uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
329 	} else {
330 		uflags = UVM_KMF_WAITVA;
331 	}
332 	*resultsize = size = round_page(size);
333 	va = uvm_km_alloc(kernel_map, size, 0,
334 	    uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
335 	if (va != 0) {
336 		kmem_poison_fill((void *)va, size);
337 	}
338 	return (vmem_addr_t)va;
339 }
340 
341 static void
342 kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
343 {
344 
345 	KASSERT(dummy == NULL);
346 	KASSERT(addr != 0);
347 	KASSERT(size != 0);
348 	KASSERT(size == round_page(size));
349 
350 	kmem_poison_check((void *)addr, size);
351 	uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
352 }
353 
354 static int
355 kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
356 {
357 	vmem_t *vm = obj;
358 
359 	vmem_reap(vm);
360 	return CALLBACK_CHAIN_CONTINUE;
361 }
362 
363 /* ---- debug */
364 
365 #if defined(KMEM_POISON)
366 
367 #if defined(_LP64)
368 #define	PRIME	0x9e37fffffffc0001UL
369 #else /* defined(_LP64) */
370 #define	PRIME	0x9e3779b1
371 #endif /* defined(_LP64) */
372 
373 static inline uint8_t
374 kmem_poison_pattern(const void *p)
375 {
376 
377 	return (uint8_t)((((uintptr_t)p) * PRIME)
378 	    >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
379 }
380 
381 static void
382 kmem_poison_fill(void *p, size_t sz)
383 {
384 	uint8_t *cp;
385 	const uint8_t *ep;
386 
387 	cp = p;
388 	ep = cp + sz;
389 	while (cp < ep) {
390 		*cp = kmem_poison_pattern(cp);
391 		cp++;
392 	}
393 }
394 
395 static void
396 kmem_poison_check(void *p, size_t sz)
397 {
398 	uint8_t *cp;
399 	const uint8_t *ep;
400 
401 	cp = p;
402 	ep = cp + sz;
403 	while (cp < ep) {
404 		const uint8_t expected = kmem_poison_pattern(cp);
405 
406 		if (*cp != expected) {
407 			panic("%s: %p: 0x%02x != 0x%02x\n",
408 			    __func__, cp, *cp, expected);
409 		}
410 		cp++;
411 	}
412 }
413 
414 #endif /* defined(KMEM_POISON) */
415 
416 #if defined(KMEM_SIZE)
417 static void
418 kmem_size_set(void *p, size_t sz)
419 {
420 
421 	memcpy(p, &sz, sizeof(sz));
422 }
423 
424 static void
425 kmem_size_check(void *p, size_t sz)
426 {
427 	size_t psz;
428 
429 	memcpy(&psz, p, sizeof(psz));
430 	if (psz != sz) {
431 		panic("kmem_free(%p, %zu) != allocated size %zu",
432 		    (uint8_t*)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
433 	}
434 }
435 #endif	/* defined(KMEM_SIZE) */
436