xref: /netbsd-src/sys/kern/subr_kcpuset.c (revision e39ef1d61eee3ccba837ee281f1e098c864487aa)
1 /*	$NetBSD: subr_kcpuset.c,v 1.3 2011/08/07 21:38:32 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2011 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel CPU set implementation.
34  *
35  * Interface can be used by kernel subsystems as a unified dynamic CPU
36  * bitset implementation handling many CPUs.  Facility also supports early
37  * use by MD code on boot, as it fixups bitsets on further boot.
38  *
39  * TODO:
40  * - Handle "reverse" bitset on fixup/grow.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.3 2011/08/07 21:38:32 rmind Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/types.h>
48 
49 #include <sys/atomic.h>
50 #include <sys/sched.h>
51 #include <sys/kcpuset.h>
52 #include <sys/pool.h>
53 
54 /* Number of CPUs to support. */
55 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
56 
57 /*
58  * Structure of dynamic CPU set in the kernel.
59  */
60 struct kcpuset {
61 	uint32_t		bits[0];
62 };
63 
64 typedef struct kcpuset_impl {
65 	/* Reference count. */
66 	u_int			kc_refcnt;
67 	/* Next to free, if non-NULL (used when multiple references). */
68 	struct kcpuset *	kc_next;
69 	/* Actual variable-sized field of bits. */
70 	struct kcpuset		kc_field;
71 } kcpuset_impl_t;
72 
73 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
74 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75 
76 /* Sizes of a single bitset. */
77 #define	KC_SHIFT		5
78 #define	KC_MASK			31
79 
80 /* An array of noted early kcpuset creations and data. */
81 #define	KC_SAVE_NITEMS		8
82 
83 /* Structures for early boot mechanism (must be statically initialised). */
84 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
85 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
86 static int			kc_last_idx = 0;
87 static bool			kc_initialised = false;
88 
89 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
90 #define	KC_NFIELDS_EARLY	(KC_BITSIZE_EARLY >> KC_SHIFT)
91 
92 /*
93  * The size of whole bitset fields and amount of fields.
94  * The whole size must statically initialise for early case.
95  */
96 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
97 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
98 
99 static pool_cache_t		kc_cache __read_mostly;
100 
101 static kcpuset_t *		kcpuset_create_raw(bool);
102 
103 /*
104  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
105  * to dynamically allocated sets.
106  */
107 void
108 kcpuset_sysinit(void)
109 {
110 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
111 	int i, s;
112 
113 	/* Set a kcpuset_t sizes. */
114 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
115 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
116 
117 	kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
118 	    coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
119 
120 	/* First, pre-allocate kcpuset entries. */
121 	for (i = 0; i < kc_last_idx; i++) {
122 		kcp = kcpuset_create_raw(true);
123 		kc_dynamic[i] = kcp;
124 	}
125 
126 	/*
127 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
128 	 * All processors, except the one we are currently running (primary),
129 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
130 	 * raise the IPL to high.
131 	 */
132 	KASSERT(mp_online == false);
133 
134 	s = splhigh();
135 	for (i = 0; i < kc_last_idx; i++) {
136 		/*
137 		 * Transfer the bits from early static storage to the kcpuset.
138 		 */
139 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
140 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
141 
142 		/*
143 		 * Store the new pointer, pointing to the allocated kcpuset.
144 		 * Note: we are not in an interrupt context and it is the only
145 		 * CPU running - thus store is safe (e.g. no need for pointer
146 		 * variable to be volatile).
147 		 */
148 		*kc_noted_early[i] = kc_dynamic[i];
149 	}
150 	kc_initialised = true;
151 	kc_last_idx = 0;
152 	splx(s);
153 }
154 
155 /*
156  * kcpuset_early_ptr: note an early boot use by saving the pointer and
157  * returning a pointer to a static, temporary bit field.
158  */
159 static kcpuset_t *
160 kcpuset_early_ptr(kcpuset_t **kcptr)
161 {
162 	kcpuset_t *kcp;
163 	int s;
164 
165 	s = splhigh();
166 	if (kc_last_idx < KC_SAVE_NITEMS) {
167 		/*
168 		 * Save the pointer, return pointer to static early field.
169 		 * Need to zero it out.
170 		 */
171 		kc_noted_early[kc_last_idx++] = kcptr;
172 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
173 		memset(kcp, 0, KC_BITSIZE_EARLY);
174 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
175 	} else {
176 		panic("kcpuset(9): all early-use entries exhausted; "
177 		    "increase KC_SAVE_NITEMS\n");
178 	}
179 	splx(s);
180 
181 	return kcp;
182 }
183 
184 /*
185  * Routines to create or destroy the CPU set.
186  * Early boot case is handled.
187  */
188 
189 static kcpuset_t *
190 kcpuset_create_raw(bool zero)
191 {
192 	kcpuset_impl_t *kc;
193 
194 	kc = pool_cache_get(kc_cache, PR_WAITOK);
195 	kc->kc_refcnt = 1;
196 	kc->kc_next = NULL;
197 
198 	if (zero) {
199 		memset(&kc->kc_field, 0, kc_bitsize);
200 	}
201 
202 	/* Note: return pointer to the actual field of bits. */
203 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
204 	return &kc->kc_field;
205 }
206 
207 void
208 kcpuset_create(kcpuset_t **retkcp, bool zero)
209 {
210 
211 	if (__predict_false(!kc_initialised)) {
212 		/* Early boot use - special case. */
213 		*retkcp = kcpuset_early_ptr(retkcp);
214 		return;
215 	}
216 	*retkcp = kcpuset_create_raw(zero);
217 }
218 
219 void
220 kcpuset_destroy(kcpuset_t *kcp)
221 {
222 	kcpuset_impl_t *kc;
223 
224 	KASSERT(kc_initialised);
225 	KASSERT(kcp != NULL);
226 
227 	do {
228 		kc = KC_GETSTRUCT(kcp);
229 		kcp = kc->kc_next;
230 		pool_cache_put(kc_cache, kc);
231 	} while (kcp);
232 }
233 
234 /*
235  * Routines to copy or reference/unreference the CPU set.
236  * Note: early boot case is not supported by these routines.
237  */
238 
239 void
240 kcpuset_copy(kcpuset_t *dkcp, kcpuset_t *skcp)
241 {
242 
243 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt == 1);
244 	memcpy(dkcp, skcp, kc_bitsize);
245 }
246 
247 void
248 kcpuset_use(kcpuset_t *kcp)
249 {
250 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
251 
252 	KASSERT(kc_initialised);
253 	atomic_inc_uint(&kc->kc_refcnt);
254 }
255 
256 void
257 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
258 {
259 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
260 
261 	KASSERT(kc_initialised);
262 	KASSERT(kc->kc_refcnt > 0);
263 
264 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
265 		return;
266 	}
267 	KASSERT(kc->kc_next == NULL);
268 	if (lst == NULL) {
269 		kcpuset_destroy(kcp);
270 		return;
271 	}
272 	kc->kc_next = *lst;
273 	*lst = kcp;
274 }
275 
276 /*
277  * Routines to transfer the CPU set from / to userspace.
278  * Note: early boot case is not supported by these routines.
279  */
280 
281 int
282 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
283 {
284 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
285 
286 	KASSERT(kc_initialised);
287 	KASSERT(kc->kc_refcnt > 0);
288 	KASSERT(kc->kc_next == NULL);
289 	(void)kc;
290 
291 	if (len != kc_bitsize) { /* XXX */
292 		return EINVAL;
293 	}
294 	return copyin(ucp, kcp, kc_bitsize);
295 }
296 
297 int
298 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
299 {
300 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
301 
302 	KASSERT(kc_initialised);
303 	KASSERT(kc->kc_refcnt > 0);
304 	KASSERT(kc->kc_next == NULL);
305 	(void)kc;
306 
307 	if (len != kc_bitsize) { /* XXX */
308 		return EINVAL;
309 	}
310 	return copyout(kcp, ucp, kc_bitsize);
311 }
312 
313 /*
314  * Routines to change bit field - zero, fill, set, unset, etc.
315  */
316 
317 void
318 kcpuset_zero(kcpuset_t *kcp)
319 {
320 
321 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
322 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
323 	memset(kcp, 0, kc_bitsize);
324 }
325 
326 void
327 kcpuset_fill(kcpuset_t *kcp)
328 {
329 
330 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
331 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
332 	memset(kcp, ~0, kc_bitsize);
333 }
334 
335 void
336 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
337 {
338 	const size_t j = i >> KC_SHIFT;
339 
340 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
341 	KASSERT(j < kc_nfields);
342 
343 	kcp->bits[j] |= 1 << (i & KC_MASK);
344 }
345 
346 void
347 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
348 {
349 	const size_t j = i >> KC_SHIFT;
350 
351 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
352 	KASSERT(j < kc_nfields);
353 
354 	kcp->bits[j] &= ~(1 << (i & KC_MASK));
355 }
356 
357 int
358 kcpuset_isset(kcpuset_t *kcp, cpuid_t i)
359 {
360 	const size_t j = i >> KC_SHIFT;
361 
362 	KASSERT(kcp != NULL);
363 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
364 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
365 	KASSERT(j < kc_nfields);
366 
367 	return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
368 }
369 
370 bool
371 kcpuset_iszero(kcpuset_t *kcp)
372 {
373 
374 	for (size_t j = 0; j < kc_nfields; j++) {
375 		if (kcp->bits[j] != 0) {
376 			return false;
377 		}
378 	}
379 	return true;
380 }
381 
382 bool
383 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
384 {
385 
386 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
387 }
388 
389 void
390 kcpuset_merge(kcpuset_t *kcp1, kcpuset_t *kcp2)
391 {
392 
393 	for (size_t j = 0; j < kc_nfields; j++) {
394 		kcp1->bits[j] |= kcp2->bits[j];
395 	}
396 }
397 
398 /*
399  * Routines to set/clear the flags atomically.
400  */
401 
402 void
403 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
404 {
405 	const size_t j = i >> KC_SHIFT;
406 
407 	KASSERT(j < kc_nfields);
408 	atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
409 }
410 
411 void
412 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
413 {
414 	const size_t j = i >> KC_SHIFT;
415 
416 	KASSERT(j < kc_nfields);
417 	atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
418 }
419