xref: /netbsd-src/sys/kern/subr_kcpuset.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: subr_kcpuset.c,v 1.8 2012/09/16 22:09:33 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2011 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel CPU set implementation.
34  *
35  * Interface can be used by kernel subsystems as a unified dynamic CPU
36  * bitset implementation handling many CPUs.  Facility also supports early
37  * use by MD code on boot, as it fixups bitsets on further boot.
38  *
39  * TODO:
40  * - Handle "reverse" bitset on fixup/grow.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.8 2012/09/16 22:09:33 rmind Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/types.h>
48 
49 #include <sys/atomic.h>
50 #include <sys/sched.h>
51 #include <sys/kcpuset.h>
52 #include <sys/pool.h>
53 
54 /* Number of CPUs to support. */
55 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
56 
57 /*
58  * Structure of dynamic CPU set in the kernel.
59  */
60 struct kcpuset {
61 	uint32_t		bits[0];
62 };
63 
64 typedef struct kcpuset_impl {
65 	/* Reference count. */
66 	u_int			kc_refcnt;
67 	/* Next to free, if non-NULL (used when multiple references). */
68 	struct kcpuset *	kc_next;
69 	/* Actual variable-sized field of bits. */
70 	struct kcpuset		kc_field;
71 } kcpuset_impl_t;
72 
73 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
74 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75 
76 /* Sizes of a single bitset. */
77 #define	KC_SHIFT		5
78 #define	KC_MASK			31
79 
80 /* An array of noted early kcpuset creations and data. */
81 #define	KC_SAVE_NITEMS		8
82 
83 /* Structures for early boot mechanism (must be statically initialised). */
84 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
85 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
86 static int			kc_last_idx = 0;
87 static bool			kc_initialised = false;
88 
89 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
90 #define	KC_NFIELDS_EARLY	1
91 
92 /*
93  * The size of whole bitset fields and amount of fields.
94  * The whole size must statically initialise for early case.
95  */
96 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
97 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
98 
99 static pool_cache_t		kc_cache __read_mostly;
100 
101 static kcpuset_t *		kcpuset_create_raw(bool);
102 
103 /*
104  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
105  * to dynamically allocated sets.
106  */
107 void
108 kcpuset_sysinit(void)
109 {
110 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
111 	int i, s;
112 
113 	/* Set a kcpuset_t sizes. */
114 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
115 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
116 	KASSERT(kc_nfields != 0 && kc_bitsize != 0);
117 
118 	kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
119 	    coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
120 
121 	/* First, pre-allocate kcpuset entries. */
122 	for (i = 0; i < kc_last_idx; i++) {
123 		kcp = kcpuset_create_raw(true);
124 		kc_dynamic[i] = kcp;
125 	}
126 
127 	/*
128 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
129 	 * All processors, except the one we are currently running (primary),
130 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
131 	 * raise the IPL to high.
132 	 */
133 	KASSERT(mp_online == false);
134 
135 	s = splhigh();
136 	for (i = 0; i < kc_last_idx; i++) {
137 		/*
138 		 * Transfer the bits from early static storage to the kcpuset.
139 		 */
140 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
141 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
142 
143 		/*
144 		 * Store the new pointer, pointing to the allocated kcpuset.
145 		 * Note: we are not in an interrupt context and it is the only
146 		 * CPU running - thus store is safe (e.g. no need for pointer
147 		 * variable to be volatile).
148 		 */
149 		*kc_noted_early[i] = kc_dynamic[i];
150 	}
151 	kc_initialised = true;
152 	kc_last_idx = 0;
153 	splx(s);
154 }
155 
156 /*
157  * kcpuset_early_ptr: note an early boot use by saving the pointer and
158  * returning a pointer to a static, temporary bit field.
159  */
160 static kcpuset_t *
161 kcpuset_early_ptr(kcpuset_t **kcptr)
162 {
163 	kcpuset_t *kcp;
164 	int s;
165 
166 	s = splhigh();
167 	if (kc_last_idx < KC_SAVE_NITEMS) {
168 		/*
169 		 * Save the pointer, return pointer to static early field.
170 		 * Need to zero it out.
171 		 */
172 		kc_noted_early[kc_last_idx] = kcptr;
173 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
174 		kc_last_idx++;
175 		memset(kcp, 0, KC_BITSIZE_EARLY);
176 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
177 	} else {
178 		panic("kcpuset(9): all early-use entries exhausted; "
179 		    "increase KC_SAVE_NITEMS\n");
180 	}
181 	splx(s);
182 
183 	return kcp;
184 }
185 
186 /*
187  * Routines to create or destroy the CPU set.
188  * Early boot case is handled.
189  */
190 
191 static kcpuset_t *
192 kcpuset_create_raw(bool zero)
193 {
194 	kcpuset_impl_t *kc;
195 
196 	kc = pool_cache_get(kc_cache, PR_WAITOK);
197 	kc->kc_refcnt = 1;
198 	kc->kc_next = NULL;
199 
200 	if (zero) {
201 		memset(&kc->kc_field, 0, kc_bitsize);
202 	}
203 
204 	/* Note: return pointer to the actual field of bits. */
205 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
206 	return &kc->kc_field;
207 }
208 
209 void
210 kcpuset_create(kcpuset_t **retkcp, bool zero)
211 {
212 	if (__predict_false(!kc_initialised)) {
213 		/* Early boot use - special case. */
214 		*retkcp = kcpuset_early_ptr(retkcp);
215 		return;
216 	}
217 	*retkcp = kcpuset_create_raw(zero);
218 }
219 
220 void
221 kcpuset_destroy(kcpuset_t *kcp)
222 {
223 	kcpuset_impl_t *kc;
224 
225 	KASSERT(kc_initialised);
226 	KASSERT(kcp != NULL);
227 
228 	do {
229 		kc = KC_GETSTRUCT(kcp);
230 		kcp = kc->kc_next;
231 		pool_cache_put(kc_cache, kc);
232 	} while (kcp);
233 }
234 
235 /*
236  * Routines to reference/unreference the CPU set.
237  * Note: early boot case is not supported by these routines.
238  */
239 
240 void
241 kcpuset_use(kcpuset_t *kcp)
242 {
243 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
244 
245 	KASSERT(kc_initialised);
246 	atomic_inc_uint(&kc->kc_refcnt);
247 }
248 
249 void
250 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
251 {
252 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
253 
254 	KASSERT(kc_initialised);
255 	KASSERT(kc->kc_refcnt > 0);
256 
257 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
258 		return;
259 	}
260 	KASSERT(kc->kc_next == NULL);
261 	if (lst == NULL) {
262 		kcpuset_destroy(kcp);
263 		return;
264 	}
265 	kc->kc_next = *lst;
266 	*lst = kcp;
267 }
268 
269 /*
270  * Routines to transfer the CPU set from / to userspace.
271  * Note: early boot case is not supported by these routines.
272  */
273 
274 int
275 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
276 {
277 	kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
278 
279 	KASSERT(kc_initialised);
280 	KASSERT(kc->kc_refcnt > 0);
281 	KASSERT(kc->kc_next == NULL);
282 
283 	if (len > kc_bitsize) { /* XXX */
284 		return EINVAL;
285 	}
286 	return copyin(ucp, kcp, len);
287 }
288 
289 int
290 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
291 {
292 	kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
293 
294 	KASSERT(kc_initialised);
295 	KASSERT(kc->kc_refcnt > 0);
296 	KASSERT(kc->kc_next == NULL);
297 
298 	if (len > kc_bitsize) { /* XXX */
299 		return EINVAL;
300 	}
301 	return copyout(kcp, ucp, len);
302 }
303 
304 void
305 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
306 {
307 	size_t rlen = MIN(kc_bitsize, len);
308 
309 	KASSERT(kcp != NULL);
310 	memcpy(bitfield, kcp->bits, rlen);
311 }
312 
313 /*
314  * Routines to change bit field - zero, fill, copy, set, unset, etc.
315  */
316 
317 void
318 kcpuset_zero(kcpuset_t *kcp)
319 {
320 
321 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
322 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
323 	memset(kcp, 0, kc_bitsize);
324 }
325 
326 void
327 kcpuset_fill(kcpuset_t *kcp)
328 {
329 
330 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
331 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
332 	memset(kcp, ~0, kc_bitsize);
333 }
334 
335 void
336 kcpuset_copy(kcpuset_t *dkcp, kcpuset_t *skcp)
337 {
338 
339 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
340 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
341 	memcpy(dkcp, skcp, kc_bitsize);
342 }
343 
344 void
345 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
346 {
347 	const size_t j = i >> KC_SHIFT;
348 
349 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
350 	KASSERT(j < kc_nfields);
351 
352 	kcp->bits[j] |= 1 << (i & KC_MASK);
353 }
354 
355 void
356 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
357 {
358 	const size_t j = i >> KC_SHIFT;
359 
360 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
361 	KASSERT(j < kc_nfields);
362 
363 	kcp->bits[j] &= ~(1 << (i & KC_MASK));
364 }
365 
366 bool
367 kcpuset_isset(kcpuset_t *kcp, cpuid_t i)
368 {
369 	const size_t j = i >> KC_SHIFT;
370 
371 	KASSERT(kcp != NULL);
372 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
373 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
374 	KASSERT(j < kc_nfields);
375 
376 	return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
377 }
378 
379 bool
380 kcpuset_isotherset(kcpuset_t *kcp, cpuid_t i)
381 {
382 	const size_t j2 = i >> KC_SHIFT;
383 	const uint32_t mask = ~(1 << (i & KC_MASK));
384 
385 	for (size_t j = 0; j < kc_nfields; j++) {
386 		const uint32_t bits = kcp->bits[j];
387 		if (bits && (j != j2 || (bits & mask) != 0)) {
388 			return true;
389 		}
390 	}
391 	return false;
392 }
393 
394 bool
395 kcpuset_iszero(kcpuset_t *kcp)
396 {
397 
398 	for (size_t j = 0; j < kc_nfields; j++) {
399 		if (kcp->bits[j] != 0) {
400 			return false;
401 		}
402 	}
403 	return true;
404 }
405 
406 bool
407 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
408 {
409 
410 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
411 }
412 
413 void
414 kcpuset_merge(kcpuset_t *kcp1, kcpuset_t *kcp2)
415 {
416 
417 	for (size_t j = 0; j < kc_nfields; j++) {
418 		kcp1->bits[j] |= kcp2->bits[j];
419 	}
420 }
421 
422 void
423 kcpuset_intersect(kcpuset_t *kcp1, kcpuset_t *kcp2)
424 {
425 
426 	for (size_t j = 0; j < kc_nfields; j++) {
427 		kcp1->bits[j] &= kcp2->bits[j];
428 	}
429 }
430 
431 int
432 kcpuset_countset(kcpuset_t *kcp)
433 {
434 	int count = 0;
435 
436 	for (size_t j = 0; j < kc_nfields; j++) {
437 		count += popcount32(kcp->bits[j]);
438 	}
439 	return count;
440 }
441 
442 /*
443  * Routines to set/clear the flags atomically.
444  */
445 
446 void
447 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
448 {
449 	const size_t j = i >> KC_SHIFT;
450 
451 	KASSERT(j < kc_nfields);
452 	atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
453 }
454 
455 void
456 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
457 {
458 	const size_t j = i >> KC_SHIFT;
459 
460 	KASSERT(j < kc_nfields);
461 	atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
462 }
463