1 /* $NetBSD: subr_ipi.c,v 1.8 2020/09/08 16:00:35 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2014 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Mindaugas Rasiukevicius. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Inter-processor interrupt (IPI) interface: asynchronous IPIs to 34 * invoke functions with a constant argument and synchronous IPIs 35 * with the cross-call support. 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.8 2020/09/08 16:00:35 riastradh Exp $"); 40 41 #include <sys/param.h> 42 #include <sys/types.h> 43 44 #include <sys/atomic.h> 45 #include <sys/evcnt.h> 46 #include <sys/cpu.h> 47 #include <sys/ipi.h> 48 #include <sys/intr.h> 49 #include <sys/kcpuset.h> 50 #include <sys/kmem.h> 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 54 /* 55 * An array of the IPI handlers used for asynchronous invocation. 56 * The lock protects the slot allocation. 57 */ 58 59 typedef struct { 60 ipi_func_t func; 61 void * arg; 62 } ipi_intr_t; 63 64 static kmutex_t ipi_mngmt_lock; 65 static ipi_intr_t ipi_intrs[IPI_MAXREG] __cacheline_aligned; 66 67 /* 68 * Per-CPU mailbox for IPI messages: it is a single cache line storing 69 * up to IPI_MSG_MAX messages. This interface is built on top of the 70 * synchronous IPIs. 71 */ 72 73 #define IPI_MSG_SLOTS (CACHE_LINE_SIZE / sizeof(ipi_msg_t *)) 74 #define IPI_MSG_MAX IPI_MSG_SLOTS 75 76 typedef struct { 77 ipi_msg_t * msg[IPI_MSG_SLOTS]; 78 } ipi_mbox_t; 79 80 81 /* Mailboxes for the synchronous IPIs. */ 82 static ipi_mbox_t * ipi_mboxes __read_mostly; 83 static struct evcnt ipi_mboxfull_ev __cacheline_aligned; 84 static void ipi_msg_cpu_handler(void *); 85 86 /* Handler for the synchronous IPIs - it must be zero. */ 87 #define IPI_SYNCH_ID 0 88 89 #ifndef MULTIPROCESSOR 90 #define cpu_ipi(ci) KASSERT(ci == NULL) 91 #endif 92 93 void 94 ipi_sysinit(void) 95 { 96 97 mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE); 98 memset(ipi_intrs, 0, sizeof(ipi_intrs)); 99 100 /* 101 * Register the handler for synchronous IPIs. This mechanism 102 * is built on top of the asynchronous interface. Slot zero is 103 * reserved permanently; it is also handy to use zero as a failure 104 * for other registers (as it is potentially less error-prone). 105 */ 106 ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler; 107 108 evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL, 109 "ipi", "full"); 110 } 111 112 void 113 ipi_percpu_init(void) 114 { 115 const size_t len = ncpu * sizeof(ipi_mbox_t); 116 117 /* Initialise the per-CPU bit fields. */ 118 for (u_int i = 0; i < ncpu; i++) { 119 struct cpu_info *ci = cpu_lookup(i); 120 memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend)); 121 } 122 123 /* Allocate per-CPU IPI mailboxes. */ 124 ipi_mboxes = kmem_zalloc(len, KM_SLEEP); 125 KASSERT(ipi_mboxes != NULL); 126 } 127 128 /* 129 * ipi_register: register an asynchronous IPI handler. 130 * 131 * => Returns IPI ID which is greater than zero; on failure - zero. 132 */ 133 u_int 134 ipi_register(ipi_func_t func, void *arg) 135 { 136 mutex_enter(&ipi_mngmt_lock); 137 for (u_int i = 0; i < IPI_MAXREG; i++) { 138 if (ipi_intrs[i].func == NULL) { 139 /* Register the function. */ 140 ipi_intrs[i].func = func; 141 ipi_intrs[i].arg = arg; 142 mutex_exit(&ipi_mngmt_lock); 143 144 KASSERT(i != IPI_SYNCH_ID); 145 return i; 146 } 147 } 148 mutex_exit(&ipi_mngmt_lock); 149 printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n"); 150 return 0; 151 } 152 153 /* 154 * ipi_unregister: release the IPI handler given the ID. 155 */ 156 void 157 ipi_unregister(u_int ipi_id) 158 { 159 ipi_msg_t ipimsg = { .func = __FPTRCAST(ipi_func_t, nullop) }; 160 161 KASSERT(ipi_id != IPI_SYNCH_ID); 162 KASSERT(ipi_id < IPI_MAXREG); 163 164 /* Release the slot. */ 165 mutex_enter(&ipi_mngmt_lock); 166 KASSERT(ipi_intrs[ipi_id].func != NULL); 167 ipi_intrs[ipi_id].func = NULL; 168 169 /* Ensure that there are no IPIs in flight. */ 170 kpreempt_disable(); 171 ipi_broadcast(&ipimsg, false); 172 ipi_wait(&ipimsg); 173 kpreempt_enable(); 174 mutex_exit(&ipi_mngmt_lock); 175 } 176 177 /* 178 * ipi_mark_pending: internal routine to mark an IPI pending on the 179 * specified CPU (which might be curcpu()). 180 */ 181 static bool 182 ipi_mark_pending(u_int ipi_id, struct cpu_info *ci) 183 { 184 const u_int i = ipi_id >> IPI_BITW_SHIFT; 185 const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK); 186 187 KASSERT(ipi_id < IPI_MAXREG); 188 KASSERT(kpreempt_disabled()); 189 190 /* Mark as pending and send an IPI. */ 191 if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) { 192 atomic_or_32(&ci->ci_ipipend[i], bitm); 193 return true; 194 } 195 return false; 196 } 197 198 /* 199 * ipi_trigger: asynchronously send an IPI to the specified CPU. 200 */ 201 void 202 ipi_trigger(u_int ipi_id, struct cpu_info *ci) 203 { 204 205 KASSERT(curcpu() != ci); 206 if (ipi_mark_pending(ipi_id, ci)) { 207 cpu_ipi(ci); 208 } 209 } 210 211 /* 212 * ipi_trigger_multi_internal: the guts of ipi_trigger_multi() and 213 * ipi_trigger_broadcast(). 214 */ 215 static void 216 ipi_trigger_multi_internal(u_int ipi_id, const kcpuset_t *target, 217 bool skip_self) 218 { 219 const cpuid_t selfid = cpu_index(curcpu()); 220 CPU_INFO_ITERATOR cii; 221 struct cpu_info *ci; 222 223 KASSERT(kpreempt_disabled()); 224 KASSERT(target != NULL); 225 226 for (CPU_INFO_FOREACH(cii, ci)) { 227 const cpuid_t cpuid = cpu_index(ci); 228 229 if (!kcpuset_isset(target, cpuid) || cpuid == selfid) { 230 continue; 231 } 232 ipi_trigger(ipi_id, ci); 233 } 234 if (!skip_self && kcpuset_isset(target, selfid)) { 235 ipi_mark_pending(ipi_id, curcpu()); 236 int s = splhigh(); 237 ipi_cpu_handler(); 238 splx(s); 239 } 240 } 241 242 /* 243 * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple 244 * CPUs given the target CPU set. 245 */ 246 void 247 ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target) 248 { 249 ipi_trigger_multi_internal(ipi_id, target, false); 250 } 251 252 /* 253 * ipi_trigger_broadcast: same as ipi_trigger_multi() to kcpuset_attached, 254 * optionally skipping the sending CPU. 255 */ 256 void 257 ipi_trigger_broadcast(u_int ipi_id, bool skip_self) 258 { 259 ipi_trigger_multi_internal(ipi_id, kcpuset_attached, skip_self); 260 } 261 262 /* 263 * put_msg: insert message into the mailbox. 264 */ 265 static inline void 266 put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg) 267 { 268 int count = SPINLOCK_BACKOFF_MIN; 269 again: 270 for (u_int i = 0; i < IPI_MSG_MAX; i++) { 271 if (__predict_true(mbox->msg[i] == NULL) && 272 atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) { 273 return; 274 } 275 } 276 277 /* All slots are full: we have to spin-wait. */ 278 ipi_mboxfull_ev.ev_count++; 279 SPINLOCK_BACKOFF(count); 280 goto again; 281 } 282 283 /* 284 * ipi_cpu_handler: the IPI handler. 285 */ 286 void 287 ipi_cpu_handler(void) 288 { 289 struct cpu_info * const ci = curcpu(); 290 291 /* 292 * Handle asynchronous IPIs: inspect per-CPU bit field, extract 293 * IPI ID numbers and execute functions in those slots. 294 */ 295 for (u_int i = 0; i < IPI_BITWORDS; i++) { 296 uint32_t pending, bit; 297 298 if (ci->ci_ipipend[i] == 0) { 299 continue; 300 } 301 pending = atomic_swap_32(&ci->ci_ipipend[i], 0); 302 #ifndef __HAVE_ATOMIC_AS_MEMBAR 303 membar_producer(); 304 #endif 305 while ((bit = ffs(pending)) != 0) { 306 const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit; 307 ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id]; 308 309 pending &= ~(1U << bit); 310 KASSERT(ipi_hdl->func != NULL); 311 ipi_hdl->func(ipi_hdl->arg); 312 } 313 } 314 } 315 316 /* 317 * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox, 318 * execute the passed functions and acknowledge the messages. 319 */ 320 static void 321 ipi_msg_cpu_handler(void *arg __unused) 322 { 323 const struct cpu_info * const ci = curcpu(); 324 ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)]; 325 326 for (u_int i = 0; i < IPI_MSG_MAX; i++) { 327 ipi_msg_t *msg; 328 329 /* Get the message. */ 330 if ((msg = mbox->msg[i]) == NULL) { 331 continue; 332 } 333 mbox->msg[i] = NULL; 334 335 /* Execute the handler. */ 336 KASSERT(msg->func); 337 msg->func(msg->arg); 338 339 /* Ack the request. */ 340 #ifndef __HAVE_ATOMIC_AS_MEMBAR 341 membar_producer(); 342 #endif 343 atomic_dec_uint(&msg->_pending); 344 } 345 } 346 347 /* 348 * ipi_unicast: send an IPI to a single CPU. 349 * 350 * => The CPU must be remote; must not be local. 351 * => The caller must ipi_wait() on the message for completion. 352 */ 353 void 354 ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci) 355 { 356 const cpuid_t id = cpu_index(ci); 357 358 KASSERT(msg->func != NULL); 359 KASSERT(kpreempt_disabled()); 360 KASSERT(curcpu() != ci); 361 362 msg->_pending = 1; 363 membar_producer(); 364 365 put_msg(&ipi_mboxes[id], msg); 366 ipi_trigger(IPI_SYNCH_ID, ci); 367 } 368 369 /* 370 * ipi_multicast: send an IPI to each CPU in the specified set. 371 * 372 * => The caller must ipi_wait() on the message for completion. 373 */ 374 void 375 ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target) 376 { 377 const struct cpu_info * const self = curcpu(); 378 CPU_INFO_ITERATOR cii; 379 struct cpu_info *ci; 380 u_int local; 381 382 KASSERT(msg->func != NULL); 383 KASSERT(kpreempt_disabled()); 384 385 local = !!kcpuset_isset(target, cpu_index(self)); 386 msg->_pending = kcpuset_countset(target) - local; 387 membar_producer(); 388 389 for (CPU_INFO_FOREACH(cii, ci)) { 390 cpuid_t id; 391 392 if (__predict_false(ci == self)) { 393 continue; 394 } 395 id = cpu_index(ci); 396 if (!kcpuset_isset(target, id)) { 397 continue; 398 } 399 put_msg(&ipi_mboxes[id], msg); 400 ipi_trigger(IPI_SYNCH_ID, ci); 401 } 402 if (local) { 403 msg->func(msg->arg); 404 } 405 } 406 407 /* 408 * ipi_broadcast: send an IPI to all CPUs. 409 * 410 * => The caller must ipi_wait() on the message for completion. 411 */ 412 void 413 ipi_broadcast(ipi_msg_t *msg, bool skip_self) 414 { 415 const struct cpu_info * const self = curcpu(); 416 CPU_INFO_ITERATOR cii; 417 struct cpu_info *ci; 418 419 KASSERT(msg->func != NULL); 420 KASSERT(kpreempt_disabled()); 421 422 msg->_pending = ncpu - 1; 423 membar_producer(); 424 425 /* Broadcast IPIs for remote CPUs. */ 426 for (CPU_INFO_FOREACH(cii, ci)) { 427 cpuid_t id; 428 429 if (__predict_false(ci == self)) { 430 continue; 431 } 432 id = cpu_index(ci); 433 put_msg(&ipi_mboxes[id], msg); 434 ipi_trigger(IPI_SYNCH_ID, ci); 435 } 436 437 if (!skip_self) { 438 /* Finally, execute locally. */ 439 msg->func(msg->arg); 440 } 441 } 442 443 /* 444 * ipi_wait: spin-wait until the message is processed. 445 */ 446 void 447 ipi_wait(ipi_msg_t *msg) 448 { 449 int count = SPINLOCK_BACKOFF_MIN; 450 451 while (msg->_pending) { 452 KASSERT(msg->_pending < ncpu); 453 SPINLOCK_BACKOFF(count); 454 } 455 } 456