xref: /netbsd-src/sys/kern/subr_disk.c (revision e4d7c2e329d54c97e0c0bd3016bbe74f550c3d5e)
1 /*	$NetBSD: subr_disk.c,v 1.28 2000/02/07 20:16:58 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1988, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
78  */
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/malloc.h>
84 #include <sys/buf.h>
85 #include <sys/syslog.h>
86 #include <sys/time.h>
87 #include <sys/disklabel.h>
88 #include <sys/disk.h>
89 
90 /*
91  * A global list of all disks attached to the system.  May grow or
92  * shrink over time.
93  */
94 struct	disklist_head disklist;	/* TAILQ_HEAD */
95 int	disk_count;		/* number of drives in global disklist */
96 
97 /*
98  * Seek sort for disks.  We depend on the driver which calls us using b_resid
99  * as the current cylinder number.
100  *
101  * The argument bufq is an I/O queue for the device, on which there are
102  * actually two queues, sorted in ascending cylinder order.  The first
103  * queue holds those requests which are positioned after the current
104  * cylinder (in the first request); the second holds requests which came
105  * in after their cylinder number was passed.  Thus we implement a one-way
106  * scan, retracting after reaching the end of the drive to the first request
107  * on the second queue, at which time it becomes the first queue.
108  *
109  * A one-way scan is natural because of the way UNIX read-ahead blocks are
110  * allocated.
111  *
112  * This is further adjusted by any `barriers' which may exist in the queue.
113  * The bufq points to the last such ordered request.
114  */
115 void
116 disksort_cylinder(bufq, bp)
117 	struct buf_queue *bufq;
118 	struct buf *bp;
119 {
120 	struct buf *bq, *nbq;
121 
122 	/*
123 	 * If there are ordered requests on the queue, we must start
124 	 * the elevator sort after the last of these.
125 	 */
126 	if ((bq = bufq->bq_barrier) == NULL)
127 		bq = BUFQ_FIRST(bufq);
128 
129 	/*
130 	 * If the queue is empty, of if it's an ordered request,
131 	 * it's easy; we just go on the end.
132 	 */
133 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
134 		BUFQ_INSERT_TAIL(bufq, bp);
135 		return;
136 	}
137 
138 	/*
139 	 * If we lie after the first (currently active) request, then we
140 	 * must locate the second request list and add ourselves to it.
141 	 */
142 	if (bp->b_cylinder < bq->b_cylinder ||
143 	    (bp->b_cylinder == bq->b_cylinder &&
144 	     bp->b_rawblkno < bq->b_rawblkno)) {
145 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
146 			/*
147 			 * Check for an ``inversion'' in the normally ascending
148 			 * cylinder numbers, indicating the start of the second
149 			 * request list.
150 			 */
151 			if (nbq->b_cylinder < bq->b_cylinder) {
152 				/*
153 				 * Search the second request list for the first
154 				 * request at a larger cylinder number.  We go
155 				 * before that; if there is no such request, we
156 				 * go at end.
157 				 */
158 				do {
159 					if (bp->b_cylinder < nbq->b_cylinder)
160 						goto insert;
161 					if (bp->b_cylinder == nbq->b_cylinder &&
162 					    bp->b_rawblkno < nbq->b_rawblkno)
163 						goto insert;
164 					bq = nbq;
165 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
166 				goto insert;		/* after last */
167 			}
168 			bq = BUFQ_NEXT(bq);
169 		}
170 		/*
171 		 * No inversions... we will go after the last, and
172 		 * be the first request in the second request list.
173 		 */
174 		goto insert;
175 	}
176 	/*
177 	 * Request is at/after the current request...
178 	 * sort in the first request list.
179 	 */
180 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
181 		/*
182 		 * We want to go after the current request if there is an
183 		 * inversion after it (i.e. it is the end of the first
184 		 * request list), or if the next request is a larger cylinder
185 		 * than our request.
186 		 */
187 		if (nbq->b_cylinder < bq->b_cylinder ||
188 		    bp->b_cylinder < nbq->b_cylinder ||
189 		    (bp->b_cylinder == nbq->b_cylinder &&
190 		     bp->b_rawblkno < nbq->b_rawblkno))
191 			goto insert;
192 		bq = nbq;
193 	}
194 	/*
195 	 * Neither a second list nor a larger request... we go at the end of
196 	 * the first list, which is the same as the end of the whole schebang.
197 	 */
198 insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
199 }
200 
201 /*
202  * Seek sort for disks.  This version sorts based on b_rawblkno, which
203  * indicates the block number.
204  *
205  * As before, there are actually two queues, sorted in ascendening block
206  * order.  The first queue holds those requests which are positioned after
207  * the current block (in the first request); the second holds requests which
208  * came in after their block number was passed.  Thus we implement a one-way
209  * scan, retracting after reaching the end of the driver to the first request
210  * on the second queue, at which time it becomes the first queue.
211  *
212  * A one-way scan is natural because of the way UNIX read-ahead blocks are
213  * allocated.
214  *
215  * This is further adjusted by any `barriers' which may exist in the queue.
216  * The bufq points to the last such ordered request.
217  */
218 void
219 disksort_blkno(bufq, bp)
220 	struct buf_queue *bufq;
221 	struct buf *bp;
222 {
223 	struct buf *bq, *nbq;
224 
225 	/*
226 	 * If there are ordered requests on the queue, we must start
227 	 * the elevator sort after the last of these.
228 	 */
229 	if ((bq = bufq->bq_barrier) == NULL)
230 		bq = BUFQ_FIRST(bufq);
231 
232 	/*
233 	 * If the queue is empty, or if it's an ordered request,
234 	 * it's easy; we just go on the end.
235 	 */
236 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
237 		BUFQ_INSERT_TAIL(bufq, bp);
238 		return;
239 	}
240 
241 	/*
242 	 * If we lie after the first (currently active) request, then we
243 	 * must locate the second request list and add ourselves to it.
244 	 */
245 	if (bp->b_rawblkno < bq->b_rawblkno) {
246 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
247 			/*
248 			 * Check for an ``inversion'' in the normally ascending
249 			 * block numbers, indicating the start of the second
250 			 * request list.
251 			 */
252 			if (nbq->b_rawblkno < bq->b_rawblkno) {
253 				/*
254 				 * Search the second request list for the first
255 				 * request at a larger block number.  We go
256 				 * after that; if there is no such request, we
257 				 * go at the end.
258 				 */
259 				do {
260 					if (bp->b_rawblkno < nbq->b_rawblkno)
261 						goto insert;
262 					bq = nbq;
263 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
264 				goto insert;		/* after last */
265 			}
266 			bq = BUFQ_NEXT(bq);
267 		}
268 		/*
269 		 * No inversions... we will go after the last, and
270 		 * be the first request in the second request list.
271 		 */
272 		goto insert;
273 	}
274 	/*
275 	 * Request is at/after the current request...
276 	 * sort in the first request list.
277 	 */
278 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
279 		/*
280 		 * We want to go after the current request if there is an
281 		 * inversion after it (i.e. it is the end of the first
282 		 * request list), or if the next request is a larger cylinder
283 		 * than our request.
284 		 */
285 		if (nbq->b_rawblkno < bq->b_rawblkno ||
286 		    bp->b_rawblkno < nbq->b_rawblkno)
287 			goto insert;
288 		bq = nbq;
289 	}
290 	/*
291 	 * Neither a second list nor a larger request... we go at the end of
292 	 * the first list, which is the same as the end of the whole schebang.
293 	 */
294 insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
295 }
296 
297 /*
298  * Seek non-sort for disks.  This version simply inserts requests at
299  * the tail of the queue.
300  */
301 void
302 disksort_tail(bufq, bp)
303 	struct buf_queue *bufq;
304 	struct buf *bp;
305 {
306 
307 	BUFQ_INSERT_TAIL(bufq, bp);
308 }
309 
310 /*
311  * Compute checksum for disk label.
312  */
313 u_int
314 dkcksum(lp)
315 	register struct disklabel *lp;
316 {
317 	register u_short *start, *end;
318 	register u_short sum = 0;
319 
320 	start = (u_short *)lp;
321 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
322 	while (start < end)
323 		sum ^= *start++;
324 	return (sum);
325 }
326 
327 /*
328  * Disk error is the preface to plaintive error messages
329  * about failing disk transfers.  It prints messages of the form
330 
331 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
332 
333  * if the offset of the error in the transfer and a disk label
334  * are both available.  blkdone should be -1 if the position of the error
335  * is unknown; the disklabel pointer may be null from drivers that have not
336  * been converted to use them.  The message is printed with printf
337  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
338  * The message should be completed (with at least a newline) with printf
339  * or addlog, respectively.  There is no trailing space.
340  */
341 void
342 diskerr(bp, dname, what, pri, blkdone, lp)
343 	register struct buf *bp;
344 	char *dname, *what;
345 	int pri, blkdone;
346 	register struct disklabel *lp;
347 {
348 	int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
349 	register void (*pr) __P((const char *, ...));
350 	char partname = 'a' + part;
351 	int sn;
352 
353 	if (pri != LOG_PRINTF) {
354 		static const char fmt[] = "";
355 		log(pri, fmt);
356 		pr = addlog;
357 	} else
358 		pr = printf;
359 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
360 	    bp->b_flags & B_READ ? "read" : "writ");
361 	sn = bp->b_blkno;
362 	if (bp->b_bcount <= DEV_BSIZE)
363 		(*pr)("%d", sn);
364 	else {
365 		if (blkdone >= 0) {
366 			sn += blkdone;
367 			(*pr)("%d of ", sn);
368 		}
369 		(*pr)("%d-%d", bp->b_blkno,
370 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
371 	}
372 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
373 		sn += lp->d_partitions[part].p_offset;
374 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
375 		    sn / lp->d_secpercyl);
376 		sn %= lp->d_secpercyl;
377 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors, sn % lp->d_nsectors);
378 	}
379 }
380 
381 /*
382  * Initialize the disklist.  Called by main() before autoconfiguration.
383  */
384 void
385 disk_init()
386 {
387 
388 	TAILQ_INIT(&disklist);
389 	disk_count = 0;
390 }
391 
392 /*
393  * Searches the disklist for the disk corresponding to the
394  * name provided.
395  */
396 struct disk *
397 disk_find(name)
398 	char *name;
399 {
400 	struct disk *diskp;
401 
402 	if ((name == NULL) || (disk_count <= 0))
403 		return (NULL);
404 
405 	for (diskp = disklist.tqh_first; diskp != NULL;
406 	    diskp = diskp->dk_link.tqe_next)
407 		if (strcmp(diskp->dk_name, name) == 0)
408 			return (diskp);
409 
410 	return (NULL);
411 }
412 
413 /*
414  * Attach a disk.
415  */
416 void
417 disk_attach(diskp)
418 	struct disk *diskp;
419 {
420 	int s;
421 
422 	/*
423 	 * Allocate and initialize the disklabel structures.  Note that
424 	 * it's not safe to sleep here, since we're probably going to be
425 	 * called during autoconfiguration.
426 	 */
427 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
428 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
429 	    M_NOWAIT);
430 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
431 		panic("disk_attach: can't allocate storage for disklabel");
432 
433 	memset(diskp->dk_label, 0, sizeof(struct disklabel));
434 	memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
435 
436 	/*
437 	 * Set the attached timestamp.
438 	 */
439 	s = splclock();
440 	diskp->dk_attachtime = mono_time;
441 	splx(s);
442 
443 	/*
444 	 * Link into the disklist.
445 	 */
446 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
447 	++disk_count;
448 }
449 
450 /*
451  * Detach a disk.
452  */
453 void
454 disk_detach(diskp)
455 	struct disk *diskp;
456 {
457 
458 	/*
459 	 * Remove from the disklist.
460 	 */
461 	if (--disk_count < 0)
462 		panic("disk_detach: disk_count < 0");
463 	TAILQ_REMOVE(&disklist, diskp, dk_link);
464 
465 	/*
466 	 * Free the space used by the disklabel structures.
467 	 */
468 	free(diskp->dk_label, M_DEVBUF);
469 	free(diskp->dk_cpulabel, M_DEVBUF);
470 }
471 
472 /*
473  * Increment a disk's busy counter.  If the counter is going from
474  * 0 to 1, set the timestamp.
475  */
476 void
477 disk_busy(diskp)
478 	struct disk *diskp;
479 {
480 	int s;
481 
482 	/*
483 	 * XXX We'd like to use something as accurate as microtime(),
484 	 * but that doesn't depend on the system TOD clock.
485 	 */
486 	if (diskp->dk_busy++ == 0) {
487 		s = splclock();
488 		diskp->dk_timestamp = mono_time;
489 		splx(s);
490 	}
491 }
492 
493 /*
494  * Decrement a disk's busy counter, increment the byte count, total busy
495  * time, and reset the timestamp.
496  */
497 void
498 disk_unbusy(diskp, bcount)
499 	struct disk *diskp;
500 	long bcount;
501 {
502 	int s;
503 	struct timeval dv_time, diff_time;
504 
505 	if (diskp->dk_busy-- == 0) {
506 		printf("%s: dk_busy < 0\n", diskp->dk_name);
507 		panic("disk_unbusy");
508 	}
509 
510 	s = splclock();
511 	dv_time = mono_time;
512 	splx(s);
513 
514 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
515 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
516 
517 	diskp->dk_timestamp = dv_time;
518 	if (bcount > 0) {
519 		diskp->dk_bytes += bcount;
520 		diskp->dk_xfer++;
521 	}
522 }
523 
524 /*
525  * Reset the metrics counters on the given disk.  Note that we cannot
526  * reset the busy counter, as it may case a panic in disk_unbusy().
527  * We also must avoid playing with the timestamp information, as it
528  * may skew any pending transfer results.
529  */
530 void
531 disk_resetstat(diskp)
532 	struct disk *diskp;
533 {
534 	int s = splbio(), t;
535 
536 	diskp->dk_xfer = 0;
537 	diskp->dk_bytes = 0;
538 
539 	t = splclock();
540 	diskp->dk_attachtime = mono_time;
541 	splx(t);
542 
543 	timerclear(&diskp->dk_time);
544 
545 	splx(s);
546 }
547