xref: /netbsd-src/sys/kern/subr_disk.c (revision 81b108b45f75f89f1e3ffad9fb6f074e771c0935)
1 /*	$NetBSD: subr_disk.c,v 1.18 1996/07/12 22:00:44 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Jason R. Thorpe.  All rights reserved.
5  * Copyright (c) 1982, 1986, 1988, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/buf.h>
49 #include <sys/syslog.h>
50 #include <sys/time.h>
51 #include <sys/disklabel.h>
52 #include <sys/disk.h>
53 
54 /*
55  * A global list of all disks attached to the system.  May grow or
56  * shrink over time.
57  */
58 struct	disklist_head disklist;	/* TAILQ_HEAD */
59 int	disk_count;		/* number of drives in global disklist */
60 
61 /*
62  * Seek sort for disks.  We depend on the driver which calls us using b_resid
63  * as the current cylinder number.
64  *
65  * The argument ap structure holds a b_actf activity chain pointer on which we
66  * keep two queues, sorted in ascending cylinder order.  The first queue holds
67  * those requests which are positioned after the current cylinder (in the first
68  * request); the second holds requests which came in after their cylinder number
69  * was passed.  Thus we implement a one way scan, retracting after reaching the
70  * end of the drive to the first request on the second queue, at which time it
71  * becomes the first queue.
72  *
73  * A one-way scan is natural because of the way UNIX read-ahead blocks are
74  * allocated.
75  */
76 
77 void
78 disksort(ap, bp)
79 	register struct buf *ap, *bp;
80 {
81 	register struct buf *bq;
82 
83 	/* If the queue is empty, then it's easy. */
84 	if (ap->b_actf == NULL) {
85 		bp->b_actf = NULL;
86 		ap->b_actf = bp;
87 		return;
88 	}
89 
90 	/*
91 	 * If we lie after the first (currently active) request, then we
92 	 * must locate the second request list and add ourselves to it.
93 	 */
94 	bq = ap->b_actf;
95 	if (bp->b_cylinder < bq->b_cylinder) {
96 		while (bq->b_actf) {
97 			/*
98 			 * Check for an ``inversion'' in the normally ascending
99 			 * cylinder numbers, indicating the start of the second
100 			 * request list.
101 			 */
102 			if (bq->b_actf->b_cylinder < bq->b_cylinder) {
103 				/*
104 				 * Search the second request list for the first
105 				 * request at a larger cylinder number.  We go
106 				 * before that; if there is no such request, we
107 				 * go at end.
108 				 */
109 				do {
110 					if (bp->b_cylinder <
111 					    bq->b_actf->b_cylinder)
112 						goto insert;
113 					if (bp->b_cylinder ==
114 					    bq->b_actf->b_cylinder &&
115 					    bp->b_blkno < bq->b_actf->b_blkno)
116 						goto insert;
117 					bq = bq->b_actf;
118 				} while (bq->b_actf);
119 				goto insert;		/* after last */
120 			}
121 			bq = bq->b_actf;
122 		}
123 		/*
124 		 * No inversions... we will go after the last, and
125 		 * be the first request in the second request list.
126 		 */
127 		goto insert;
128 	}
129 	/*
130 	 * Request is at/after the current request...
131 	 * sort in the first request list.
132 	 */
133 	while (bq->b_actf) {
134 		/*
135 		 * We want to go after the current request if there is an
136 		 * inversion after it (i.e. it is the end of the first
137 		 * request list), or if the next request is a larger cylinder
138 		 * than our request.
139 		 */
140 		if (bq->b_actf->b_cylinder < bq->b_cylinder ||
141 		    bp->b_cylinder < bq->b_actf->b_cylinder ||
142 		    (bp->b_cylinder == bq->b_actf->b_cylinder &&
143 		    bp->b_blkno < bq->b_actf->b_blkno))
144 			goto insert;
145 		bq = bq->b_actf;
146 	}
147 	/*
148 	 * Neither a second list nor a larger request... we go at the end of
149 	 * the first list, which is the same as the end of the whole schebang.
150 	 */
151 insert:	bp->b_actf = bq->b_actf;
152 	bq->b_actf = bp;
153 }
154 
155 /* encoding of disk minor numbers, should be elsewhere... */
156 #define dkunit(dev)		(minor(dev) >> 3)
157 #define dkpart(dev)		(minor(dev) & 07)
158 #define dkminor(unit, part)	(((unit) << 3) | (part))
159 
160 /*
161  * Compute checksum for disk label.
162  */
163 u_int
164 dkcksum(lp)
165 	register struct disklabel *lp;
166 {
167 	register u_short *start, *end;
168 	register u_short sum = 0;
169 
170 	start = (u_short *)lp;
171 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
172 	while (start < end)
173 		sum ^= *start++;
174 	return (sum);
175 }
176 
177 /*
178  * Disk error is the preface to plaintive error messages
179  * about failing disk transfers.  It prints messages of the form
180 
181 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
182 
183  * if the offset of the error in the transfer and a disk label
184  * are both available.  blkdone should be -1 if the position of the error
185  * is unknown; the disklabel pointer may be null from drivers that have not
186  * been converted to use them.  The message is printed with printf
187  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
188  * The message should be completed (with at least a newline) with printf
189  * or addlog, respectively.  There is no trailing space.
190  */
191 void
192 diskerr(bp, dname, what, pri, blkdone, lp)
193 	register struct buf *bp;
194 	char *dname, *what;
195 	int pri, blkdone;
196 	register struct disklabel *lp;
197 {
198 	int unit = dkunit(bp->b_dev), part = dkpart(bp->b_dev);
199 	register void (*pr) __P((const char *, ...));
200 	char partname = 'a' + part;
201 	int sn;
202 
203 	if (pri != LOG_PRINTF) {
204 		static const char fmt[] = "";
205 		log(pri, fmt);
206 		pr = addlog;
207 	} else
208 		pr = printf;
209 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
210 	    bp->b_flags & B_READ ? "read" : "writ");
211 	sn = bp->b_blkno;
212 	if (bp->b_bcount <= DEV_BSIZE)
213 		(*pr)("%d", sn);
214 	else {
215 		if (blkdone >= 0) {
216 			sn += blkdone;
217 			(*pr)("%d of ", sn);
218 		}
219 		(*pr)("%d-%d", bp->b_blkno,
220 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
221 	}
222 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
223 #ifdef tahoe
224 		sn *= DEV_BSIZE / lp->d_secsize;		/* XXX */
225 #endif
226 		sn += lp->d_partitions[part].p_offset;
227 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
228 		    sn / lp->d_secpercyl);
229 		sn %= lp->d_secpercyl;
230 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors, sn % lp->d_nsectors);
231 	}
232 }
233 
234 /*
235  * Initialize the disklist.  Called by main() before autoconfiguration.
236  */
237 void
238 disk_init()
239 {
240 
241 	TAILQ_INIT(&disklist);
242 	disk_count = 0;
243 }
244 
245 /*
246  * Searches the disklist for the disk corresponding to the
247  * name provided.
248  */
249 struct disk *
250 disk_find(name)
251 	char *name;
252 {
253 	struct disk *diskp;
254 
255 	if ((name == NULL) || (disk_count <= 0))
256 		return (NULL);
257 
258 	for (diskp = disklist.tqh_first; diskp != NULL;
259 	    diskp = diskp->dk_link.tqe_next)
260 		if (strcmp(diskp->dk_name, name) == 0)
261 			return (diskp);
262 
263 	return (NULL);
264 }
265 
266 /*
267  * Attach a disk.
268  */
269 void
270 disk_attach(diskp)
271 	struct disk *diskp;
272 {
273 	int s;
274 
275 	/*
276 	 * Allocate and initialize the disklabel structures.  Note that
277 	 * it's not safe to sleep here, since we're probably going to be
278 	 * called during autoconfiguration.
279 	 */
280 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
281 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
282 	    M_NOWAIT);
283 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
284 		panic("disk_attach: can't allocate storage for disklabel");
285 
286 	bzero(diskp->dk_label, sizeof(struct disklabel));
287 	bzero(diskp->dk_cpulabel, sizeof(struct cpu_disklabel));
288 
289 	/*
290 	 * Set the attached timestamp.
291 	 */
292 	s = splclock();
293 	diskp->dk_attachtime = mono_time;
294 	splx(s);
295 
296 	/*
297 	 * Link into the disklist.
298 	 */
299 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
300 	++disk_count;
301 }
302 
303 /*
304  * Detach a disk.
305  */
306 void
307 disk_detach(diskp)
308 	struct disk *diskp;
309 {
310 
311 	/*
312 	 * Free the space used by the disklabel structures.
313 	 */
314 	free(diskp->dk_label, M_DEVBUF);
315 	free(diskp->dk_cpulabel, M_DEVBUF);
316 
317 	/*
318 	 * Remove from the disklist.
319 	 */
320 	TAILQ_REMOVE(&disklist, diskp, dk_link);
321 	if (--disk_count < 0)
322 		panic("disk_detach: disk_count < 0");
323 }
324 
325 /*
326  * Increment a disk's busy counter.  If the counter is going from
327  * 0 to 1, set the timestamp.
328  */
329 void
330 disk_busy(diskp)
331 	struct disk *diskp;
332 {
333 	int s;
334 
335 	/*
336 	 * XXX We'd like to use something as accurate as microtime(),
337 	 * but that doesn't depend on the system TOD clock.
338 	 */
339 	if (diskp->dk_busy++ == 0) {
340 		s = splclock();
341 		diskp->dk_timestamp = mono_time;
342 		splx(s);
343 	}
344 }
345 
346 /*
347  * Decrement a disk's busy counter, increment the byte count, total busy
348  * time, and reset the timestamp.
349  */
350 void
351 disk_unbusy(diskp, bcount)
352 	struct disk *diskp;
353 	long bcount;
354 {
355 	int s;
356 	struct timeval dv_time, diff_time;
357 
358 	if (diskp->dk_busy-- == 0)
359 		panic("disk_unbusy: %s: dk_busy < 0", diskp->dk_name);
360 
361 	s = splclock();
362 	dv_time = mono_time;
363 	splx(s);
364 
365 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
366 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
367 
368 	diskp->dk_timestamp = dv_time;
369 	if (bcount > 0) {
370 		diskp->dk_bytes += bcount;
371 		diskp->dk_xfer++;
372 	}
373 }
374 
375 /*
376  * Reset the metrics counters on the given disk.  Note that we cannot
377  * reset the busy counter, as it may case a panic in disk_unbusy().
378  * We also must avoid playing with the timestamp information, as it
379  * may skew any pending transfer results.
380  */
381 void
382 disk_resetstat(diskp)
383 	struct disk *diskp;
384 {
385 	int s = splbio(), t;
386 
387 	diskp->dk_xfer = 0;
388 	diskp->dk_bytes = 0;
389 
390 	t = splclock();
391 	diskp->dk_attachtime = mono_time;
392 	splx(t);
393 
394 	timerclear(&diskp->dk_time);
395 
396 	splx(s);
397 }
398