xref: /netbsd-src/sys/kern/subr_disk.c (revision 1ca5c1b28139779176bd5c13ad7c5f25c0bcd5f8)
1 /*	$NetBSD: subr_disk.c,v 1.32 2001/11/30 01:31:30 enami Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1988, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
78  */
79 
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.32 2001/11/30 01:31:30 enami Exp $");
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/buf.h>
88 #include <sys/syslog.h>
89 #include <sys/time.h>
90 #include <sys/disklabel.h>
91 #include <sys/disk.h>
92 
93 /*
94  * A global list of all disks attached to the system.  May grow or
95  * shrink over time.
96  */
97 struct	disklist_head disklist;	/* TAILQ_HEAD */
98 int	disk_count;		/* number of drives in global disklist */
99 
100 /*
101  * Seek sort for disks.  We depend on the driver which calls us using b_resid
102  * as the current cylinder number.
103  *
104  * The argument bufq is an I/O queue for the device, on which there are
105  * actually two queues, sorted in ascending cylinder order.  The first
106  * queue holds those requests which are positioned after the current
107  * cylinder (in the first request); the second holds requests which came
108  * in after their cylinder number was passed.  Thus we implement a one-way
109  * scan, retracting after reaching the end of the drive to the first request
110  * on the second queue, at which time it becomes the first queue.
111  *
112  * A one-way scan is natural because of the way UNIX read-ahead blocks are
113  * allocated.
114  *
115  * This is further adjusted by any `barriers' which may exist in the queue.
116  * The bufq points to the last such ordered request.
117  */
118 void
119 disksort_cylinder(struct buf_queue *bufq, struct buf *bp)
120 {
121 	struct buf *bq, *nbq;
122 
123 	/*
124 	 * If there are ordered requests on the queue, we must start
125 	 * the elevator sort after the last of these.
126 	 */
127 	if ((bq = bufq->bq_barrier) == NULL)
128 		bq = BUFQ_FIRST(bufq);
129 
130 	/*
131 	 * If the queue is empty, of if it's an ordered request,
132 	 * it's easy; we just go on the end.
133 	 */
134 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
135 		BUFQ_INSERT_TAIL(bufq, bp);
136 		return;
137 	}
138 
139 	/*
140 	 * If we lie after the first (currently active) request, then we
141 	 * must locate the second request list and add ourselves to it.
142 	 */
143 	if (bp->b_cylinder < bq->b_cylinder ||
144 	    (bp->b_cylinder == bq->b_cylinder &&
145 	     bp->b_rawblkno < bq->b_rawblkno)) {
146 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
147 			/*
148 			 * Check for an ``inversion'' in the normally ascending
149 			 * cylinder numbers, indicating the start of the second
150 			 * request list.
151 			 */
152 			if (nbq->b_cylinder < bq->b_cylinder) {
153 				/*
154 				 * Search the second request list for the first
155 				 * request at a larger cylinder number.  We go
156 				 * before that; if there is no such request, we
157 				 * go at end.
158 				 */
159 				do {
160 					if (bp->b_cylinder < nbq->b_cylinder)
161 						goto insert;
162 					if (bp->b_cylinder == nbq->b_cylinder &&
163 					    bp->b_rawblkno < nbq->b_rawblkno)
164 						goto insert;
165 					bq = nbq;
166 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
167 				goto insert;		/* after last */
168 			}
169 			bq = nbq;
170 		}
171 		/*
172 		 * No inversions... we will go after the last, and
173 		 * be the first request in the second request list.
174 		 */
175 		goto insert;
176 	}
177 	/*
178 	 * Request is at/after the current request...
179 	 * sort in the first request list.
180 	 */
181 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
182 		/*
183 		 * We want to go after the current request if there is an
184 		 * inversion after it (i.e. it is the end of the first
185 		 * request list), or if the next request is a larger cylinder
186 		 * than our request.
187 		 */
188 		if (nbq->b_cylinder < bq->b_cylinder ||
189 		    bp->b_cylinder < nbq->b_cylinder ||
190 		    (bp->b_cylinder == nbq->b_cylinder &&
191 		     bp->b_rawblkno < nbq->b_rawblkno))
192 			goto insert;
193 		bq = nbq;
194 	}
195 	/*
196 	 * Neither a second list nor a larger request... we go at the end of
197 	 * the first list, which is the same as the end of the whole schebang.
198 	 */
199 insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
200 }
201 
202 /*
203  * Seek sort for disks.  This version sorts based on b_rawblkno, which
204  * indicates the block number.
205  *
206  * As before, there are actually two queues, sorted in ascendening block
207  * order.  The first queue holds those requests which are positioned after
208  * the current block (in the first request); the second holds requests which
209  * came in after their block number was passed.  Thus we implement a one-way
210  * scan, retracting after reaching the end of the driver to the first request
211  * on the second queue, at which time it becomes the first queue.
212  *
213  * A one-way scan is natural because of the way UNIX read-ahead blocks are
214  * allocated.
215  *
216  * This is further adjusted by any `barriers' which may exist in the queue.
217  * The bufq points to the last such ordered request.
218  */
219 void
220 disksort_blkno(struct buf_queue *bufq, struct buf *bp)
221 {
222 	struct buf *bq, *nbq;
223 
224 	/*
225 	 * If there are ordered requests on the queue, we must start
226 	 * the elevator sort after the last of these.
227 	 */
228 	if ((bq = bufq->bq_barrier) == NULL)
229 		bq = BUFQ_FIRST(bufq);
230 
231 	/*
232 	 * If the queue is empty, or if it's an ordered request,
233 	 * it's easy; we just go on the end.
234 	 */
235 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
236 		BUFQ_INSERT_TAIL(bufq, bp);
237 		return;
238 	}
239 
240 	/*
241 	 * If we lie after the first (currently active) request, then we
242 	 * must locate the second request list and add ourselves to it.
243 	 */
244 	if (bp->b_rawblkno < bq->b_rawblkno) {
245 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
246 			/*
247 			 * Check for an ``inversion'' in the normally ascending
248 			 * block numbers, indicating the start of the second
249 			 * request list.
250 			 */
251 			if (nbq->b_rawblkno < bq->b_rawblkno) {
252 				/*
253 				 * Search the second request list for the first
254 				 * request at a larger block number.  We go
255 				 * after that; if there is no such request, we
256 				 * go at the end.
257 				 */
258 				do {
259 					if (bp->b_rawblkno < nbq->b_rawblkno)
260 						goto insert;
261 					bq = nbq;
262 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
263 				goto insert;		/* after last */
264 			}
265 			bq = nbq;
266 		}
267 		/*
268 		 * No inversions... we will go after the last, and
269 		 * be the first request in the second request list.
270 		 */
271 		goto insert;
272 	}
273 	/*
274 	 * Request is at/after the current request...
275 	 * sort in the first request list.
276 	 */
277 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
278 		/*
279 		 * We want to go after the current request if there is an
280 		 * inversion after it (i.e. it is the end of the first
281 		 * request list), or if the next request is a larger cylinder
282 		 * than our request.
283 		 */
284 		if (nbq->b_rawblkno < bq->b_rawblkno ||
285 		    bp->b_rawblkno < nbq->b_rawblkno)
286 			goto insert;
287 		bq = nbq;
288 	}
289 	/*
290 	 * Neither a second list nor a larger request... we go at the end of
291 	 * the first list, which is the same as the end of the whole schebang.
292 	 */
293 insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
294 }
295 
296 /*
297  * Seek non-sort for disks.  This version simply inserts requests at
298  * the tail of the queue.
299  */
300 void
301 disksort_tail(struct buf_queue *bufq, struct buf *bp)
302 {
303 
304 	BUFQ_INSERT_TAIL(bufq, bp);
305 }
306 
307 /*
308  * Compute checksum for disk label.
309  */
310 u_int
311 dkcksum(struct disklabel *lp)
312 {
313 	u_short *start, *end;
314 	u_short sum = 0;
315 
316 	start = (u_short *)lp;
317 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
318 	while (start < end)
319 		sum ^= *start++;
320 	return (sum);
321 }
322 
323 /*
324  * Disk error is the preface to plaintive error messages
325  * about failing disk transfers.  It prints messages of the form
326 
327 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
328 
329  * if the offset of the error in the transfer and a disk label
330  * are both available.  blkdone should be -1 if the position of the error
331  * is unknown; the disklabel pointer may be null from drivers that have not
332  * been converted to use them.  The message is printed with printf
333  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
334  * The message should be completed (with at least a newline) with printf
335  * or addlog, respectively.  There is no trailing space.
336  */
337 void
338 diskerr(struct buf *bp, char *dname, char *what, int pri, int blkdone,
339     struct disklabel *lp)
340 {
341 	int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
342 	void (*pr)(const char *, ...);
343 	char partname = 'a' + part;
344 	int sn;
345 
346 	if (pri != LOG_PRINTF) {
347 		static const char fmt[] = "";
348 		log(pri, fmt);
349 		pr = addlog;
350 	} else
351 		pr = printf;
352 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
353 	    bp->b_flags & B_READ ? "read" : "writ");
354 	sn = bp->b_blkno;
355 	if (bp->b_bcount <= DEV_BSIZE)
356 		(*pr)("%d", sn);
357 	else {
358 		if (blkdone >= 0) {
359 			sn += blkdone;
360 			(*pr)("%d of ", sn);
361 		}
362 		(*pr)("%d-%d", bp->b_blkno,
363 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
364 	}
365 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
366 		sn += lp->d_partitions[part].p_offset;
367 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
368 		    sn / lp->d_secpercyl);
369 		sn %= lp->d_secpercyl;
370 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors, sn % lp->d_nsectors);
371 	}
372 }
373 
374 /*
375  * Initialize the disklist.  Called by main() before autoconfiguration.
376  */
377 void
378 disk_init(void)
379 {
380 
381 	TAILQ_INIT(&disklist);
382 	disk_count = 0;
383 }
384 
385 /*
386  * Searches the disklist for the disk corresponding to the
387  * name provided.
388  */
389 struct disk *
390 disk_find(char *name)
391 {
392 	struct disk *diskp;
393 
394 	if ((name == NULL) || (disk_count <= 0))
395 		return (NULL);
396 
397 	for (diskp = disklist.tqh_first; diskp != NULL;
398 	    diskp = diskp->dk_link.tqe_next)
399 		if (strcmp(diskp->dk_name, name) == 0)
400 			return (diskp);
401 
402 	return (NULL);
403 }
404 
405 /*
406  * Attach a disk.
407  */
408 void
409 disk_attach(struct disk *diskp)
410 {
411 	int s;
412 
413 	/*
414 	 * Allocate and initialize the disklabel structures.  Note that
415 	 * it's not safe to sleep here, since we're probably going to be
416 	 * called during autoconfiguration.
417 	 */
418 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
419 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
420 	    M_NOWAIT);
421 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
422 		panic("disk_attach: can't allocate storage for disklabel");
423 
424 	memset(diskp->dk_label, 0, sizeof(struct disklabel));
425 	memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
426 
427 	/*
428 	 * Set the attached timestamp.
429 	 */
430 	s = splclock();
431 	diskp->dk_attachtime = mono_time;
432 	splx(s);
433 
434 	/*
435 	 * Link into the disklist.
436 	 */
437 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
438 	++disk_count;
439 }
440 
441 /*
442  * Detach a disk.
443  */
444 void
445 disk_detach(struct disk *diskp)
446 {
447 
448 	/*
449 	 * Remove from the disklist.
450 	 */
451 	if (--disk_count < 0)
452 		panic("disk_detach: disk_count < 0");
453 	TAILQ_REMOVE(&disklist, diskp, dk_link);
454 
455 	/*
456 	 * Free the space used by the disklabel structures.
457 	 */
458 	free(diskp->dk_label, M_DEVBUF);
459 	free(diskp->dk_cpulabel, M_DEVBUF);
460 }
461 
462 /*
463  * Increment a disk's busy counter.  If the counter is going from
464  * 0 to 1, set the timestamp.
465  */
466 void
467 disk_busy(struct disk *diskp)
468 {
469 	int s;
470 
471 	/*
472 	 * XXX We'd like to use something as accurate as microtime(),
473 	 * but that doesn't depend on the system TOD clock.
474 	 */
475 	if (diskp->dk_busy++ == 0) {
476 		s = splclock();
477 		diskp->dk_timestamp = mono_time;
478 		splx(s);
479 	}
480 }
481 
482 /*
483  * Decrement a disk's busy counter, increment the byte count, total busy
484  * time, and reset the timestamp.
485  */
486 void
487 disk_unbusy(struct disk *diskp, long bcount)
488 {
489 	int s;
490 	struct timeval dv_time, diff_time;
491 
492 	if (diskp->dk_busy-- == 0) {
493 		printf("%s: dk_busy < 0\n", diskp->dk_name);
494 		panic("disk_unbusy");
495 	}
496 
497 	s = splclock();
498 	dv_time = mono_time;
499 	splx(s);
500 
501 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
502 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
503 
504 	diskp->dk_timestamp = dv_time;
505 	if (bcount > 0) {
506 		diskp->dk_bytes += bcount;
507 		diskp->dk_xfer++;
508 	}
509 }
510 
511 /*
512  * Reset the metrics counters on the given disk.  Note that we cannot
513  * reset the busy counter, as it may case a panic in disk_unbusy().
514  * We also must avoid playing with the timestamp information, as it
515  * may skew any pending transfer results.
516  */
517 void
518 disk_resetstat(struct disk *diskp)
519 {
520 	int s = splbio(), t;
521 
522 	diskp->dk_xfer = 0;
523 	diskp->dk_bytes = 0;
524 
525 	t = splclock();
526 	diskp->dk_attachtime = mono_time;
527 	splx(t);
528 
529 	timerclear(&diskp->dk_time);
530 
531 	splx(s);
532 }
533