xref: /netbsd-src/sys/kern/subr_autoconf.c (revision f983e71d70cfccf7b3de601eb4d998b2d886ede4)
1 /* $NetBSD: subr_autoconf.c,v 1.145 2008/04/22 11:45:28 ad Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.145 2008/04/22 11:45:28 ad Exp $");
81 
82 #include "opt_multiprocessor.h"
83 #include "opt_ddb.h"
84 
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/systm.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/proc.h>
95 #include <sys/reboot.h>
96 #include <sys/kthread.h>
97 #include <sys/buf.h>
98 #include <sys/dirent.h>
99 #include <sys/vnode.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/mutex.h>
107 #include <sys/condvar.h>
108 
109 #include <sys/disk.h>
110 
111 #include <machine/limits.h>
112 
113 #include "opt_userconf.h"
114 #ifdef USERCONF
115 #include <sys/userconf.h>
116 #endif
117 
118 #ifdef __i386__
119 #include "opt_splash.h"
120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
121 #include <dev/splash/splash.h>
122 extern struct splash_progress *splash_progress_state;
123 #endif
124 #endif
125 
126 /*
127  * Autoconfiguration subroutines.
128  */
129 
130 typedef struct pmf_private {
131 	int		pp_nwait;
132 	int		pp_nlock;
133 	lwp_t		*pp_holder;
134 	kmutex_t	pp_mtx;
135 	kcondvar_t	pp_cv;
136 } pmf_private_t;
137 
138 /*
139  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
140  * devices and drivers are found via these tables.
141  */
142 extern struct cfdata cfdata[];
143 extern const short cfroots[];
144 
145 /*
146  * List of all cfdriver structures.  We use this to detect duplicates
147  * when other cfdrivers are loaded.
148  */
149 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
150 extern struct cfdriver * const cfdriver_list_initial[];
151 
152 /*
153  * Initial list of cfattach's.
154  */
155 extern const struct cfattachinit cfattachinit[];
156 
157 /*
158  * List of cfdata tables.  We always have one such list -- the one
159  * built statically when the kernel was configured.
160  */
161 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
162 static struct cftable initcftable;
163 
164 #define	ROOT ((device_t)NULL)
165 
166 struct matchinfo {
167 	cfsubmatch_t fn;
168 	struct	device *parent;
169 	const int *locs;
170 	void	*aux;
171 	struct	cfdata *match;
172 	int	pri;
173 };
174 
175 static char *number(char *, int);
176 static void mapply(struct matchinfo *, cfdata_t);
177 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
178 static void config_devdealloc(device_t);
179 static void config_makeroom(int, struct cfdriver *);
180 static void config_devlink(device_t);
181 static void config_devunlink(device_t);
182 
183 static void pmflock_debug(device_t, const char *, int);
184 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
185 
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188 
189 struct deferred_config {
190 	TAILQ_ENTRY(deferred_config) dc_queue;
191 	device_t dc_dev;
192 	void (*dc_func)(device_t);
193 };
194 
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196 
197 struct deferred_config_head deferred_config_queue =
198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202 
203 static void config_process_deferred(struct deferred_config_head *, device_t);
204 
205 /* Hooks to finalize configuration once all real devices have been found. */
206 struct finalize_hook {
207 	TAILQ_ENTRY(finalize_hook) f_list;
208 	int (*f_func)(device_t);
209 	device_t f_dev;
210 };
211 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
212 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
213 static int config_finalize_done;
214 
215 /* list of all devices */
216 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
217 kcondvar_t alldevs_cv;
218 kmutex_t alldevs_mtx;
219 static int alldevs_nread = 0;
220 static int alldevs_nwrite = 0;
221 static lwp_t *alldevs_writer = NULL;
222 
223 volatile int config_pending;		/* semaphore for mountroot */
224 
225 #define	STREQ(s1, s2)			\
226 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
227 
228 static int config_initialized;		/* config_init() has been called. */
229 
230 static int config_do_twiddle;
231 
232 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
233 
234 struct vnode *
235 opendisk(struct device *dv)
236 {
237 	int bmajor, bminor;
238 	struct vnode *tmpvn;
239 	int error;
240 	dev_t dev;
241 
242 	/*
243 	 * Lookup major number for disk block device.
244 	 */
245 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
246 	if (bmajor == -1)
247 		return NULL;
248 
249 	bminor = minor(device_unit(dv));
250 	/*
251 	 * Fake a temporary vnode for the disk, open it, and read
252 	 * and hash the sectors.
253 	 */
254 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
255 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
256 	if (bdevvp(dev, &tmpvn))
257 		panic("%s: can't alloc vnode for %s", __func__,
258 		    device_xname(dv));
259 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
260 	if (error) {
261 #ifndef DEBUG
262 		/*
263 		 * Ignore errors caused by missing device, partition,
264 		 * or medium.
265 		 */
266 		if (error != ENXIO && error != ENODEV)
267 #endif
268 			printf("%s: can't open dev %s (%d)\n",
269 			    __func__, device_xname(dv), error);
270 		vput(tmpvn);
271 		return NULL;
272 	}
273 
274 	return tmpvn;
275 }
276 
277 int
278 config_handle_wedges(struct device *dv, int par)
279 {
280 	struct dkwedge_list wl;
281 	struct dkwedge_info *wi;
282 	struct vnode *vn;
283 	char diskname[16];
284 	int i, error;
285 
286 	if ((vn = opendisk(dv)) == NULL)
287 		return -1;
288 
289 	wl.dkwl_bufsize = sizeof(*wi) * 16;
290 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
291 
292 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
293 	VOP_CLOSE(vn, FREAD, NOCRED);
294 	vput(vn);
295 	if (error) {
296 #ifdef DEBUG_WEDGE
297 		printf("%s: List wedges returned %d\n",
298 		    device_xname(dv), error);
299 #endif
300 		free(wi, M_TEMP);
301 		return -1;
302 	}
303 
304 #ifdef DEBUG_WEDGE
305 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
306 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
307 #endif
308 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
309 	    par + 'a');
310 
311 	for (i = 0; i < wl.dkwl_ncopied; i++) {
312 #ifdef DEBUG_WEDGE
313 		printf("%s: Looking for %s in %s\n",
314 		    device_xname(dv), diskname, wi[i].dkw_wname);
315 #endif
316 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
317 			break;
318 	}
319 
320 	if (i == wl.dkwl_ncopied) {
321 #ifdef DEBUG_WEDGE
322 		printf("%s: Cannot find wedge with parent %s\n",
323 		    device_xname(dv), diskname);
324 #endif
325 		free(wi, M_TEMP);
326 		return -1;
327 	}
328 
329 #ifdef DEBUG_WEDGE
330 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
331 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
332 		(unsigned long long)wi[i].dkw_offset,
333 		(unsigned long long)wi[i].dkw_size);
334 #endif
335 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
336 	free(wi, M_TEMP);
337 	return 0;
338 }
339 
340 /*
341  * Initialize the autoconfiguration data structures.  Normally this
342  * is done by configure(), but some platforms need to do this very
343  * early (to e.g. initialize the console).
344  */
345 void
346 config_init(void)
347 {
348 	const struct cfattachinit *cfai;
349 	int i, j;
350 
351 	if (config_initialized)
352 		return;
353 
354 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
355 	cv_init(&alldevs_cv, "alldevs");
356 
357 	/* allcfdrivers is statically initialized. */
358 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
359 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
360 			panic("configure: duplicate `%s' drivers",
361 			    cfdriver_list_initial[i]->cd_name);
362 	}
363 
364 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
365 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
366 			if (config_cfattach_attach(cfai->cfai_name,
367 						   cfai->cfai_list[j]) != 0)
368 				panic("configure: duplicate `%s' attachment "
369 				    "of `%s' driver",
370 				    cfai->cfai_list[j]->ca_name,
371 				    cfai->cfai_name);
372 		}
373 	}
374 
375 	initcftable.ct_cfdata = cfdata;
376 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
377 
378 	config_initialized = 1;
379 }
380 
381 void
382 config_deferred(device_t dev)
383 {
384 	config_process_deferred(&deferred_config_queue, dev);
385 	config_process_deferred(&interrupt_config_queue, dev);
386 }
387 
388 static void
389 config_interrupts_thread(void *cookie)
390 {
391 	struct deferred_config *dc;
392 
393 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
394 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
395 		(*dc->dc_func)(dc->dc_dev);
396 		free(dc, M_DEVBUF);
397 		config_pending_decr();
398 	}
399 	kthread_exit(0);
400 }
401 
402 /*
403  * Configure the system's hardware.
404  */
405 void
406 configure(void)
407 {
408 	extern void ssp_init(void);
409 	int i;
410 
411 	/* Initialize data structures. */
412 	config_init();
413 	pmf_init();
414 
415 #ifdef USERCONF
416 	if (boothowto & RB_USERCONF)
417 		user_config();
418 #endif
419 
420 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
421 		config_do_twiddle = 1;
422 		printf_nolog("Detecting hardware...");
423 	}
424 
425 	/*
426 	 * Do the machine-dependent portion of autoconfiguration.  This
427 	 * sets the configuration machinery here in motion by "finding"
428 	 * the root bus.  When this function returns, we expect interrupts
429 	 * to be enabled.
430 	 */
431 	cpu_configure();
432 
433 	/* Initialize SSP. */
434 	ssp_init();
435 
436 	/*
437 	 * Now that we've found all the hardware, start the real time
438 	 * and statistics clocks.
439 	 */
440 	initclocks();
441 
442 	cold = 0;	/* clocks are running, we're warm now! */
443 
444 	/* Boot the secondary processors. */
445 	mp_online = true;
446 #if defined(MULTIPROCESSOR)
447 	cpu_boot_secondary_processors();
448 #endif
449 
450 	/* Setup the scheduler. */
451 	sched_init();
452 
453 	/*
454 	 * Create threads to call back and finish configuration for
455 	 * devices that want interrupts enabled.
456 	 */
457 	for (i = 0; i < interrupt_config_threads; i++) {
458 		(void)kthread_create(PRI_NONE, 0, NULL,
459 		    config_interrupts_thread, NULL, NULL, "config");
460 	}
461 
462 	/* Get the threads going and into any sleeps before continuing. */
463 	yield();
464 
465 	/* Lock the kernel on behalf of lwp0. */
466 	KERNEL_LOCK(1, NULL);
467 }
468 
469 /*
470  * Add a cfdriver to the system.
471  */
472 int
473 config_cfdriver_attach(struct cfdriver *cd)
474 {
475 	struct cfdriver *lcd;
476 
477 	/* Make sure this driver isn't already in the system. */
478 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
479 		if (STREQ(lcd->cd_name, cd->cd_name))
480 			return (EEXIST);
481 	}
482 
483 	LIST_INIT(&cd->cd_attach);
484 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
485 
486 	return (0);
487 }
488 
489 /*
490  * Remove a cfdriver from the system.
491  */
492 int
493 config_cfdriver_detach(struct cfdriver *cd)
494 {
495 	int i;
496 
497 	/* Make sure there are no active instances. */
498 	for (i = 0; i < cd->cd_ndevs; i++) {
499 		if (cd->cd_devs[i] != NULL)
500 			return (EBUSY);
501 	}
502 
503 	/* ...and no attachments loaded. */
504 	if (LIST_EMPTY(&cd->cd_attach) == 0)
505 		return (EBUSY);
506 
507 	LIST_REMOVE(cd, cd_list);
508 
509 	KASSERT(cd->cd_devs == NULL);
510 
511 	return (0);
512 }
513 
514 /*
515  * Look up a cfdriver by name.
516  */
517 struct cfdriver *
518 config_cfdriver_lookup(const char *name)
519 {
520 	struct cfdriver *cd;
521 
522 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
523 		if (STREQ(cd->cd_name, name))
524 			return (cd);
525 	}
526 
527 	return (NULL);
528 }
529 
530 /*
531  * Add a cfattach to the specified driver.
532  */
533 int
534 config_cfattach_attach(const char *driver, struct cfattach *ca)
535 {
536 	struct cfattach *lca;
537 	struct cfdriver *cd;
538 
539 	cd = config_cfdriver_lookup(driver);
540 	if (cd == NULL)
541 		return (ESRCH);
542 
543 	/* Make sure this attachment isn't already on this driver. */
544 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
545 		if (STREQ(lca->ca_name, ca->ca_name))
546 			return (EEXIST);
547 	}
548 
549 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
550 
551 	return (0);
552 }
553 
554 /*
555  * Remove a cfattach from the specified driver.
556  */
557 int
558 config_cfattach_detach(const char *driver, struct cfattach *ca)
559 {
560 	struct cfdriver *cd;
561 	device_t dev;
562 	int i;
563 
564 	cd = config_cfdriver_lookup(driver);
565 	if (cd == NULL)
566 		return (ESRCH);
567 
568 	/* Make sure there are no active instances. */
569 	for (i = 0; i < cd->cd_ndevs; i++) {
570 		if ((dev = cd->cd_devs[i]) == NULL)
571 			continue;
572 		if (dev->dv_cfattach == ca)
573 			return (EBUSY);
574 	}
575 
576 	LIST_REMOVE(ca, ca_list);
577 
578 	return (0);
579 }
580 
581 /*
582  * Look up a cfattach by name.
583  */
584 static struct cfattach *
585 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
586 {
587 	struct cfattach *ca;
588 
589 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
590 		if (STREQ(ca->ca_name, atname))
591 			return (ca);
592 	}
593 
594 	return (NULL);
595 }
596 
597 /*
598  * Look up a cfattach by driver/attachment name.
599  */
600 struct cfattach *
601 config_cfattach_lookup(const char *name, const char *atname)
602 {
603 	struct cfdriver *cd;
604 
605 	cd = config_cfdriver_lookup(name);
606 	if (cd == NULL)
607 		return (NULL);
608 
609 	return (config_cfattach_lookup_cd(cd, atname));
610 }
611 
612 /*
613  * Apply the matching function and choose the best.  This is used
614  * a few times and we want to keep the code small.
615  */
616 static void
617 mapply(struct matchinfo *m, cfdata_t cf)
618 {
619 	int pri;
620 
621 	if (m->fn != NULL) {
622 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
623 	} else {
624 		pri = config_match(m->parent, cf, m->aux);
625 	}
626 	if (pri > m->pri) {
627 		m->match = cf;
628 		m->pri = pri;
629 	}
630 }
631 
632 int
633 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
634 {
635 	const struct cfiattrdata *ci;
636 	const struct cflocdesc *cl;
637 	int nlocs, i;
638 
639 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
640 	KASSERT(ci);
641 	nlocs = ci->ci_loclen;
642 	for (i = 0; i < nlocs; i++) {
643 		cl = &ci->ci_locdesc[i];
644 		/* !cld_defaultstr means no default value */
645 		if ((!(cl->cld_defaultstr)
646 		     || (cf->cf_loc[i] != cl->cld_default))
647 		    && cf->cf_loc[i] != locs[i])
648 			return (0);
649 	}
650 
651 	return (config_match(parent, cf, aux));
652 }
653 
654 /*
655  * Helper function: check whether the driver supports the interface attribute
656  * and return its descriptor structure.
657  */
658 static const struct cfiattrdata *
659 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
660 {
661 	const struct cfiattrdata * const *cpp;
662 
663 	if (cd->cd_attrs == NULL)
664 		return (0);
665 
666 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
667 		if (STREQ((*cpp)->ci_name, ia)) {
668 			/* Match. */
669 			return (*cpp);
670 		}
671 	}
672 	return (0);
673 }
674 
675 /*
676  * Lookup an interface attribute description by name.
677  * If the driver is given, consider only its supported attributes.
678  */
679 const struct cfiattrdata *
680 cfiattr_lookup(const char *name, const struct cfdriver *cd)
681 {
682 	const struct cfdriver *d;
683 	const struct cfiattrdata *ia;
684 
685 	if (cd)
686 		return (cfdriver_get_iattr(cd, name));
687 
688 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
689 		ia = cfdriver_get_iattr(d, name);
690 		if (ia)
691 			return (ia);
692 	}
693 	return (0);
694 }
695 
696 /*
697  * Determine if `parent' is a potential parent for a device spec based
698  * on `cfp'.
699  */
700 static int
701 cfparent_match(const device_t parent, const struct cfparent *cfp)
702 {
703 	struct cfdriver *pcd;
704 
705 	/* We don't match root nodes here. */
706 	if (cfp == NULL)
707 		return (0);
708 
709 	pcd = parent->dv_cfdriver;
710 	KASSERT(pcd != NULL);
711 
712 	/*
713 	 * First, ensure this parent has the correct interface
714 	 * attribute.
715 	 */
716 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
717 		return (0);
718 
719 	/*
720 	 * If no specific parent device instance was specified (i.e.
721 	 * we're attaching to the attribute only), we're done!
722 	 */
723 	if (cfp->cfp_parent == NULL)
724 		return (1);
725 
726 	/*
727 	 * Check the parent device's name.
728 	 */
729 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
730 		return (0);	/* not the same parent */
731 
732 	/*
733 	 * Make sure the unit number matches.
734 	 */
735 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
736 	    cfp->cfp_unit == parent->dv_unit)
737 		return (1);
738 
739 	/* Unit numbers don't match. */
740 	return (0);
741 }
742 
743 /*
744  * Helper for config_cfdata_attach(): check all devices whether it could be
745  * parent any attachment in the config data table passed, and rescan.
746  */
747 static void
748 rescan_with_cfdata(const struct cfdata *cf)
749 {
750 	device_t d;
751 	const struct cfdata *cf1;
752 	deviter_t di;
753 
754 
755 	/*
756 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
757 	 * the outer loop.
758 	 */
759 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
760 
761 		if (!(d->dv_cfattach->ca_rescan))
762 			continue;
763 
764 		for (cf1 = cf; cf1->cf_name; cf1++) {
765 
766 			if (!cfparent_match(d, cf1->cf_pspec))
767 				continue;
768 
769 			(*d->dv_cfattach->ca_rescan)(d,
770 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
771 		}
772 	}
773 	deviter_release(&di);
774 }
775 
776 /*
777  * Attach a supplemental config data table and rescan potential
778  * parent devices if required.
779  */
780 int
781 config_cfdata_attach(cfdata_t cf, int scannow)
782 {
783 	struct cftable *ct;
784 
785 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
786 	ct->ct_cfdata = cf;
787 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
788 
789 	if (scannow)
790 		rescan_with_cfdata(cf);
791 
792 	return (0);
793 }
794 
795 /*
796  * Helper for config_cfdata_detach: check whether a device is
797  * found through any attachment in the config data table.
798  */
799 static int
800 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
801 {
802 	const struct cfdata *cf1;
803 
804 	for (cf1 = cf; cf1->cf_name; cf1++)
805 		if (d->dv_cfdata == cf1)
806 			return (1);
807 
808 	return (0);
809 }
810 
811 /*
812  * Detach a supplemental config data table. Detach all devices found
813  * through that table (and thus keeping references to it) before.
814  */
815 int
816 config_cfdata_detach(cfdata_t cf)
817 {
818 	device_t d;
819 	int error = 0;
820 	struct cftable *ct;
821 	deviter_t di;
822 
823 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
824 	     d = deviter_next(&di)) {
825 		if (!dev_in_cfdata(d, cf))
826 			continue;
827 		if ((error = config_detach(d, 0)) != 0)
828 			break;
829 	}
830 	deviter_release(&di);
831 	if (error) {
832 		aprint_error_dev(d, "unable to detach instance\n");
833 		return error;
834 	}
835 
836 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
837 		if (ct->ct_cfdata == cf) {
838 			TAILQ_REMOVE(&allcftables, ct, ct_list);
839 			free(ct, M_DEVBUF);
840 			return (0);
841 		}
842 	}
843 
844 	/* not found -- shouldn't happen */
845 	return (EINVAL);
846 }
847 
848 /*
849  * Invoke the "match" routine for a cfdata entry on behalf of
850  * an external caller, usually a "submatch" routine.
851  */
852 int
853 config_match(device_t parent, cfdata_t cf, void *aux)
854 {
855 	struct cfattach *ca;
856 
857 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
858 	if (ca == NULL) {
859 		/* No attachment for this entry, oh well. */
860 		return (0);
861 	}
862 
863 	return ((*ca->ca_match)(parent, cf, aux));
864 }
865 
866 /*
867  * Iterate over all potential children of some device, calling the given
868  * function (default being the child's match function) for each one.
869  * Nonzero returns are matches; the highest value returned is considered
870  * the best match.  Return the `found child' if we got a match, or NULL
871  * otherwise.  The `aux' pointer is simply passed on through.
872  *
873  * Note that this function is designed so that it can be used to apply
874  * an arbitrary function to all potential children (its return value
875  * can be ignored).
876  */
877 cfdata_t
878 config_search_loc(cfsubmatch_t fn, device_t parent,
879 		  const char *ifattr, const int *locs, void *aux)
880 {
881 	struct cftable *ct;
882 	cfdata_t cf;
883 	struct matchinfo m;
884 
885 	KASSERT(config_initialized);
886 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
887 
888 	m.fn = fn;
889 	m.parent = parent;
890 	m.locs = locs;
891 	m.aux = aux;
892 	m.match = NULL;
893 	m.pri = 0;
894 
895 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
896 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
897 
898 			/* We don't match root nodes here. */
899 			if (!cf->cf_pspec)
900 				continue;
901 
902 			/*
903 			 * Skip cf if no longer eligible, otherwise scan
904 			 * through parents for one matching `parent', and
905 			 * try match function.
906 			 */
907 			if (cf->cf_fstate == FSTATE_FOUND)
908 				continue;
909 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
910 			    cf->cf_fstate == FSTATE_DSTAR)
911 				continue;
912 
913 			/*
914 			 * If an interface attribute was specified,
915 			 * consider only children which attach to
916 			 * that attribute.
917 			 */
918 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
919 				continue;
920 
921 			if (cfparent_match(parent, cf->cf_pspec))
922 				mapply(&m, cf);
923 		}
924 	}
925 	return (m.match);
926 }
927 
928 cfdata_t
929 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
930     void *aux)
931 {
932 
933 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
934 }
935 
936 /*
937  * Find the given root device.
938  * This is much like config_search, but there is no parent.
939  * Don't bother with multiple cfdata tables; the root node
940  * must always be in the initial table.
941  */
942 cfdata_t
943 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
944 {
945 	cfdata_t cf;
946 	const short *p;
947 	struct matchinfo m;
948 
949 	m.fn = fn;
950 	m.parent = ROOT;
951 	m.aux = aux;
952 	m.match = NULL;
953 	m.pri = 0;
954 	m.locs = 0;
955 	/*
956 	 * Look at root entries for matching name.  We do not bother
957 	 * with found-state here since only one root should ever be
958 	 * searched (and it must be done first).
959 	 */
960 	for (p = cfroots; *p >= 0; p++) {
961 		cf = &cfdata[*p];
962 		if (strcmp(cf->cf_name, rootname) == 0)
963 			mapply(&m, cf);
964 	}
965 	return (m.match);
966 }
967 
968 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
969 
970 /*
971  * The given `aux' argument describes a device that has been found
972  * on the given parent, but not necessarily configured.  Locate the
973  * configuration data for that device (using the submatch function
974  * provided, or using candidates' cd_match configuration driver
975  * functions) and attach it, and return true.  If the device was
976  * not configured, call the given `print' function and return 0.
977  */
978 device_t
979 config_found_sm_loc(device_t parent,
980 		const char *ifattr, const int *locs, void *aux,
981 		cfprint_t print, cfsubmatch_t submatch)
982 {
983 	cfdata_t cf;
984 
985 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
986 	if (splash_progress_state)
987 		splash_progress_update(splash_progress_state);
988 #endif
989 
990 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
991 		return(config_attach_loc(parent, cf, locs, aux, print));
992 	if (print) {
993 		if (config_do_twiddle)
994 			twiddle();
995 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
996 	}
997 
998 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
999 	if (splash_progress_state)
1000 		splash_progress_update(splash_progress_state);
1001 #endif
1002 
1003 	return (NULL);
1004 }
1005 
1006 device_t
1007 config_found_ia(device_t parent, const char *ifattr, void *aux,
1008     cfprint_t print)
1009 {
1010 
1011 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1012 }
1013 
1014 device_t
1015 config_found(device_t parent, void *aux, cfprint_t print)
1016 {
1017 
1018 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1019 }
1020 
1021 /*
1022  * As above, but for root devices.
1023  */
1024 device_t
1025 config_rootfound(const char *rootname, void *aux)
1026 {
1027 	cfdata_t cf;
1028 
1029 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1030 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1031 	aprint_error("root device %s not configured\n", rootname);
1032 	return (NULL);
1033 }
1034 
1035 /* just like sprintf(buf, "%d") except that it works from the end */
1036 static char *
1037 number(char *ep, int n)
1038 {
1039 
1040 	*--ep = 0;
1041 	while (n >= 10) {
1042 		*--ep = (n % 10) + '0';
1043 		n /= 10;
1044 	}
1045 	*--ep = n + '0';
1046 	return (ep);
1047 }
1048 
1049 /*
1050  * Expand the size of the cd_devs array if necessary.
1051  */
1052 static void
1053 config_makeroom(int n, struct cfdriver *cd)
1054 {
1055 	int old, new;
1056 	void **nsp;
1057 
1058 	if (n < cd->cd_ndevs)
1059 		return;
1060 
1061 	/*
1062 	 * Need to expand the array.
1063 	 */
1064 	old = cd->cd_ndevs;
1065 	if (old == 0)
1066 		new = 4;
1067 	else
1068 		new = old * 2;
1069 	while (new <= n)
1070 		new *= 2;
1071 	cd->cd_ndevs = new;
1072 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
1073 	    cold ? M_NOWAIT : M_WAITOK);
1074 	if (nsp == NULL)
1075 		panic("config_attach: %sing dev array",
1076 		    old != 0 ? "expand" : "creat");
1077 	memset(nsp + old, 0, (new - old) * sizeof(void *));
1078 	if (old != 0) {
1079 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
1080 		free(cd->cd_devs, M_DEVBUF);
1081 	}
1082 	cd->cd_devs = nsp;
1083 }
1084 
1085 static void
1086 config_devlink(device_t dev)
1087 {
1088 	struct cfdriver *cd = dev->dv_cfdriver;
1089 
1090 	/* put this device in the devices array */
1091 	config_makeroom(dev->dv_unit, cd);
1092 	if (cd->cd_devs[dev->dv_unit])
1093 		panic("config_attach: duplicate %s", device_xname(dev));
1094 	cd->cd_devs[dev->dv_unit] = dev;
1095 
1096 	/* It is safe to add a device to the tail of the list while
1097 	 * readers are in the list, but not while a writer is in
1098 	 * the list.  Wait for any writer to complete.
1099 	 */
1100 	mutex_enter(&alldevs_mtx);
1101 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1102 		cv_wait(&alldevs_cv, &alldevs_mtx);
1103 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
1104 	cv_signal(&alldevs_cv);
1105 	mutex_exit(&alldevs_mtx);
1106 }
1107 
1108 static void
1109 config_devunlink(device_t dev)
1110 {
1111 	struct cfdriver *cd = dev->dv_cfdriver;
1112 	int i;
1113 
1114 	/* Unlink from device list. */
1115 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1116 
1117 	/* Remove from cfdriver's array. */
1118 	cd->cd_devs[dev->dv_unit] = NULL;
1119 
1120 	/*
1121 	 * If the device now has no units in use, deallocate its softc array.
1122 	 */
1123 	for (i = 0; i < cd->cd_ndevs; i++)
1124 		if (cd->cd_devs[i] != NULL)
1125 			break;
1126 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
1127 		free(cd->cd_devs, M_DEVBUF);
1128 		cd->cd_devs = NULL;
1129 		cd->cd_ndevs = 0;
1130 	}
1131 }
1132 
1133 static device_t
1134 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1135 {
1136 	struct cfdriver *cd;
1137 	struct cfattach *ca;
1138 	size_t lname, lunit;
1139 	const char *xunit;
1140 	int myunit;
1141 	char num[10];
1142 	device_t dev;
1143 	void *dev_private;
1144 	const struct cfiattrdata *ia;
1145 
1146 	cd = config_cfdriver_lookup(cf->cf_name);
1147 	if (cd == NULL)
1148 		return (NULL);
1149 
1150 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1151 	if (ca == NULL)
1152 		return (NULL);
1153 
1154 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1155 	    ca->ca_devsize < sizeof(struct device))
1156 		panic("config_devalloc: %s", cf->cf_atname);
1157 
1158 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1159 	if (cf->cf_fstate == FSTATE_STAR) {
1160 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1161 			if (cd->cd_devs[myunit] == NULL)
1162 				break;
1163 		/*
1164 		 * myunit is now the unit of the first NULL device pointer,
1165 		 * or max(cd->cd_ndevs,cf->cf_unit).
1166 		 */
1167 	} else {
1168 		myunit = cf->cf_unit;
1169 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1170 			return (NULL);
1171 	}
1172 #else
1173 	myunit = cf->cf_unit;
1174 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1175 
1176 	/* compute length of name and decimal expansion of unit number */
1177 	lname = strlen(cd->cd_name);
1178 	xunit = number(&num[sizeof(num)], myunit);
1179 	lunit = &num[sizeof(num)] - xunit;
1180 	if (lname + lunit > sizeof(dev->dv_xname))
1181 		panic("config_devalloc: device name too long");
1182 
1183 	/* get memory for all device vars */
1184 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1185 	if (ca->ca_devsize > 0) {
1186 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
1187 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1188 		if (dev_private == NULL)
1189 			panic("config_devalloc: memory allocation for device softc failed");
1190 	} else {
1191 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1192 		dev_private = NULL;
1193 	}
1194 
1195 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1196 		dev = malloc(sizeof(struct device), M_DEVBUF,
1197 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1198 	} else {
1199 		dev = dev_private;
1200 	}
1201 	if (dev == NULL)
1202 		panic("config_devalloc: memory allocation for device_t failed");
1203 
1204 	dev->dv_class = cd->cd_class;
1205 	dev->dv_cfdata = cf;
1206 	dev->dv_cfdriver = cd;
1207 	dev->dv_cfattach = ca;
1208 	dev->dv_unit = myunit;
1209 	dev->dv_activity_count = 0;
1210 	dev->dv_activity_handlers = NULL;
1211 	dev->dv_private = dev_private;
1212 	memcpy(dev->dv_xname, cd->cd_name, lname);
1213 	memcpy(dev->dv_xname + lname, xunit, lunit);
1214 	dev->dv_parent = parent;
1215 	if (parent != NULL)
1216 		dev->dv_depth = parent->dv_depth + 1;
1217 	else
1218 		dev->dv_depth = 0;
1219 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1220 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1221 	if (locs) {
1222 		KASSERT(parent); /* no locators at root */
1223 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1224 				    parent->dv_cfdriver);
1225 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
1226 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1227 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
1228 	}
1229 	dev->dv_properties = prop_dictionary_create();
1230 	KASSERT(dev->dv_properties != NULL);
1231 
1232 	return (dev);
1233 }
1234 
1235 static void
1236 config_devdealloc(device_t dev)
1237 {
1238 
1239 	KASSERT(dev->dv_properties != NULL);
1240 	prop_object_release(dev->dv_properties);
1241 
1242 	if (dev->dv_activity_handlers)
1243 		panic("config_devdealloc with registered handlers");
1244 
1245 	if (dev->dv_locators)
1246 		free(dev->dv_locators, M_DEVBUF);
1247 
1248 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
1249 		free(dev->dv_private, M_DEVBUF);
1250 
1251 	free(dev, M_DEVBUF);
1252 }
1253 
1254 /*
1255  * Attach a found device.
1256  */
1257 device_t
1258 config_attach_loc(device_t parent, cfdata_t cf,
1259 	const int *locs, void *aux, cfprint_t print)
1260 {
1261 	device_t dev;
1262 	struct cftable *ct;
1263 	const char *drvname;
1264 
1265 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1266 	if (splash_progress_state)
1267 		splash_progress_update(splash_progress_state);
1268 #endif
1269 
1270 	dev = config_devalloc(parent, cf, locs);
1271 	if (!dev)
1272 		panic("config_attach: allocation of device softc failed");
1273 
1274 	/* XXX redundant - see below? */
1275 	if (cf->cf_fstate != FSTATE_STAR) {
1276 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1277 		cf->cf_fstate = FSTATE_FOUND;
1278 	}
1279 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1280 	  else
1281 		cf->cf_unit++;
1282 #endif
1283 
1284 	config_devlink(dev);
1285 
1286 	if (config_do_twiddle)
1287 		twiddle();
1288 	else
1289 		aprint_naive("Found ");
1290 	/*
1291 	 * We want the next two printfs for normal, verbose, and quiet,
1292 	 * but not silent (in which case, we're twiddling, instead).
1293 	 */
1294 	if (parent == ROOT) {
1295 		aprint_naive("%s (root)", device_xname(dev));
1296 		aprint_normal("%s (root)", device_xname(dev));
1297 	} else {
1298 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1299 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1300 		if (print)
1301 			(void) (*print)(aux, NULL);
1302 	}
1303 
1304 	/*
1305 	 * Before attaching, clobber any unfound devices that are
1306 	 * otherwise identical.
1307 	 * XXX code above is redundant?
1308 	 */
1309 	drvname = dev->dv_cfdriver->cd_name;
1310 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1311 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1312 			if (STREQ(cf->cf_name, drvname) &&
1313 			    cf->cf_unit == dev->dv_unit) {
1314 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1315 					cf->cf_fstate = FSTATE_FOUND;
1316 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1317 				/*
1318 				 * Bump the unit number on all starred cfdata
1319 				 * entries for this device.
1320 				 */
1321 				if (cf->cf_fstate == FSTATE_STAR)
1322 					cf->cf_unit++;
1323 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1324 			}
1325 		}
1326 	}
1327 #ifdef __HAVE_DEVICE_REGISTER
1328 	device_register(dev, aux);
1329 #endif
1330 
1331 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1332 	if (splash_progress_state)
1333 		splash_progress_update(splash_progress_state);
1334 #endif
1335 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1336 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1337 	if (splash_progress_state)
1338 		splash_progress_update(splash_progress_state);
1339 #endif
1340 
1341 	if (!device_pmf_is_registered(dev))
1342 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1343 
1344 	config_process_deferred(&deferred_config_queue, dev);
1345 	return (dev);
1346 }
1347 
1348 device_t
1349 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1350 {
1351 
1352 	return (config_attach_loc(parent, cf, NULL, aux, print));
1353 }
1354 
1355 /*
1356  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1357  * way are silently inserted into the device tree, and their children
1358  * attached.
1359  *
1360  * Note that because pseudo-devices are attached silently, any information
1361  * the attach routine wishes to print should be prefixed with the device
1362  * name by the attach routine.
1363  */
1364 device_t
1365 config_attach_pseudo(cfdata_t cf)
1366 {
1367 	device_t dev;
1368 
1369 	dev = config_devalloc(ROOT, cf, NULL);
1370 	if (!dev)
1371 		return (NULL);
1372 
1373 	/* XXX mark busy in cfdata */
1374 
1375 	config_devlink(dev);
1376 
1377 #if 0	/* XXXJRT not yet */
1378 #ifdef __HAVE_DEVICE_REGISTER
1379 	device_register(dev, NULL);	/* like a root node */
1380 #endif
1381 #endif
1382 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1383 	config_process_deferred(&deferred_config_queue, dev);
1384 	return (dev);
1385 }
1386 
1387 /*
1388  * Detach a device.  Optionally forced (e.g. because of hardware
1389  * removal) and quiet.  Returns zero if successful, non-zero
1390  * (an error code) otherwise.
1391  *
1392  * Note that this code wants to be run from a process context, so
1393  * that the detach can sleep to allow processes which have a device
1394  * open to run and unwind their stacks.
1395  */
1396 int
1397 config_detach(device_t dev, int flags)
1398 {
1399 	struct cftable *ct;
1400 	cfdata_t cf;
1401 	const struct cfattach *ca;
1402 	struct cfdriver *cd;
1403 #ifdef DIAGNOSTIC
1404 	device_t d;
1405 #endif
1406 	int rv = 0;
1407 
1408 #ifdef DIAGNOSTIC
1409 	if (dev->dv_cfdata != NULL &&
1410 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1411 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1412 		panic("config_detach: bad device fstate");
1413 #endif
1414 	cd = dev->dv_cfdriver;
1415 	KASSERT(cd != NULL);
1416 
1417 	ca = dev->dv_cfattach;
1418 	KASSERT(ca != NULL);
1419 
1420 	KASSERT(curlwp != NULL);
1421 	mutex_enter(&alldevs_mtx);
1422 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1423 		;
1424 	else while (alldevs_nread != 0 ||
1425 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1426 		cv_wait(&alldevs_cv, &alldevs_mtx);
1427 	if (alldevs_nwrite++ == 0)
1428 		alldevs_writer = curlwp;
1429 	mutex_exit(&alldevs_mtx);
1430 
1431 	/*
1432 	 * Ensure the device is deactivated.  If the device doesn't
1433 	 * have an activation entry point, we allow DVF_ACTIVE to
1434 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1435 	 * device is busy, and the detach fails.
1436 	 */
1437 	if (ca->ca_activate != NULL)
1438 		rv = config_deactivate(dev);
1439 
1440 	/*
1441 	 * Try to detach the device.  If that's not possible, then
1442 	 * we either panic() (for the forced but failed case), or
1443 	 * return an error.
1444 	 */
1445 	if (rv == 0) {
1446 		if (ca->ca_detach != NULL)
1447 			rv = (*ca->ca_detach)(dev, flags);
1448 		else
1449 			rv = EOPNOTSUPP;
1450 	}
1451 	if (rv != 0) {
1452 		if ((flags & DETACH_FORCE) == 0)
1453 			goto out;
1454 		else
1455 			panic("config_detach: forced detach of %s failed (%d)",
1456 			    device_xname(dev), rv);
1457 	}
1458 
1459 	/*
1460 	 * The device has now been successfully detached.
1461 	 */
1462 
1463 #ifdef DIAGNOSTIC
1464 	/*
1465 	 * Sanity: If you're successfully detached, you should have no
1466 	 * children.  (Note that because children must be attached
1467 	 * after parents, we only need to search the latter part of
1468 	 * the list.)
1469 	 */
1470 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1471 	    d = TAILQ_NEXT(d, dv_list)) {
1472 		if (d->dv_parent == dev) {
1473 			printf("config_detach: detached device %s"
1474 			    " has children %s\n", device_xname(dev), device_xname(d));
1475 			panic("config_detach");
1476 		}
1477 	}
1478 #endif
1479 
1480 	/* notify the parent that the child is gone */
1481 	if (dev->dv_parent) {
1482 		device_t p = dev->dv_parent;
1483 		if (p->dv_cfattach->ca_childdetached)
1484 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1485 	}
1486 
1487 	/*
1488 	 * Mark cfdata to show that the unit can be reused, if possible.
1489 	 */
1490 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1491 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1492 			if (STREQ(cf->cf_name, cd->cd_name)) {
1493 				if (cf->cf_fstate == FSTATE_FOUND &&
1494 				    cf->cf_unit == dev->dv_unit)
1495 					cf->cf_fstate = FSTATE_NOTFOUND;
1496 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1497 				/*
1498 				 * Note that we can only re-use a starred
1499 				 * unit number if the unit being detached
1500 				 * had the last assigned unit number.
1501 				 */
1502 				if (cf->cf_fstate == FSTATE_STAR &&
1503 				    cf->cf_unit == dev->dv_unit + 1)
1504 					cf->cf_unit--;
1505 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1506 			}
1507 		}
1508 	}
1509 
1510 	config_devunlink(dev);
1511 
1512 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1513 		aprint_normal_dev(dev, "detached\n");
1514 
1515 	config_devdealloc(dev);
1516 
1517 out:
1518 	mutex_enter(&alldevs_mtx);
1519 	if (--alldevs_nwrite == 0)
1520 		alldevs_writer = NULL;
1521 	cv_signal(&alldevs_cv);
1522 	mutex_exit(&alldevs_mtx);
1523 	return rv;
1524 }
1525 
1526 int
1527 config_detach_children(device_t parent, int flags)
1528 {
1529 	device_t dv;
1530 	deviter_t di;
1531 	int error = 0;
1532 
1533 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1534 	     dv = deviter_next(&di)) {
1535 		if (device_parent(dv) != parent)
1536 			continue;
1537 		if ((error = config_detach(dv, flags)) != 0)
1538 			break;
1539 	}
1540 	deviter_release(&di);
1541 	return error;
1542 }
1543 
1544 int
1545 config_activate(device_t dev)
1546 {
1547 	const struct cfattach *ca = dev->dv_cfattach;
1548 	int rv = 0, oflags = dev->dv_flags;
1549 
1550 	if (ca->ca_activate == NULL)
1551 		return (EOPNOTSUPP);
1552 
1553 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1554 		dev->dv_flags |= DVF_ACTIVE;
1555 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1556 		if (rv)
1557 			dev->dv_flags = oflags;
1558 	}
1559 	return (rv);
1560 }
1561 
1562 int
1563 config_deactivate(device_t dev)
1564 {
1565 	const struct cfattach *ca = dev->dv_cfattach;
1566 	int rv = 0, oflags = dev->dv_flags;
1567 
1568 	if (ca->ca_activate == NULL)
1569 		return (EOPNOTSUPP);
1570 
1571 	if (dev->dv_flags & DVF_ACTIVE) {
1572 		dev->dv_flags &= ~DVF_ACTIVE;
1573 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1574 		if (rv)
1575 			dev->dv_flags = oflags;
1576 	}
1577 	return (rv);
1578 }
1579 
1580 /*
1581  * Defer the configuration of the specified device until all
1582  * of its parent's devices have been attached.
1583  */
1584 void
1585 config_defer(device_t dev, void (*func)(device_t))
1586 {
1587 	struct deferred_config *dc;
1588 
1589 	if (dev->dv_parent == NULL)
1590 		panic("config_defer: can't defer config of a root device");
1591 
1592 #ifdef DIAGNOSTIC
1593 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1594 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1595 		if (dc->dc_dev == dev)
1596 			panic("config_defer: deferred twice");
1597 	}
1598 #endif
1599 
1600 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1601 	if (dc == NULL)
1602 		panic("config_defer: unable to allocate callback");
1603 
1604 	dc->dc_dev = dev;
1605 	dc->dc_func = func;
1606 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1607 	config_pending_incr();
1608 }
1609 
1610 /*
1611  * Defer some autoconfiguration for a device until after interrupts
1612  * are enabled.
1613  */
1614 void
1615 config_interrupts(device_t dev, void (*func)(device_t))
1616 {
1617 	struct deferred_config *dc;
1618 
1619 	/*
1620 	 * If interrupts are enabled, callback now.
1621 	 */
1622 	if (cold == 0) {
1623 		(*func)(dev);
1624 		return;
1625 	}
1626 
1627 #ifdef DIAGNOSTIC
1628 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1629 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1630 		if (dc->dc_dev == dev)
1631 			panic("config_interrupts: deferred twice");
1632 	}
1633 #endif
1634 
1635 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1636 	if (dc == NULL)
1637 		panic("config_interrupts: unable to allocate callback");
1638 
1639 	dc->dc_dev = dev;
1640 	dc->dc_func = func;
1641 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1642 	config_pending_incr();
1643 }
1644 
1645 /*
1646  * Process a deferred configuration queue.
1647  */
1648 static void
1649 config_process_deferred(struct deferred_config_head *queue,
1650     device_t parent)
1651 {
1652 	struct deferred_config *dc, *ndc;
1653 
1654 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1655 		ndc = TAILQ_NEXT(dc, dc_queue);
1656 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1657 			TAILQ_REMOVE(queue, dc, dc_queue);
1658 			(*dc->dc_func)(dc->dc_dev);
1659 			free(dc, M_DEVBUF);
1660 			config_pending_decr();
1661 		}
1662 	}
1663 }
1664 
1665 /*
1666  * Manipulate the config_pending semaphore.
1667  */
1668 void
1669 config_pending_incr(void)
1670 {
1671 
1672 	config_pending++;
1673 }
1674 
1675 void
1676 config_pending_decr(void)
1677 {
1678 
1679 #ifdef DIAGNOSTIC
1680 	if (config_pending == 0)
1681 		panic("config_pending_decr: config_pending == 0");
1682 #endif
1683 	config_pending--;
1684 	if (config_pending == 0)
1685 		wakeup(&config_pending);
1686 }
1687 
1688 /*
1689  * Register a "finalization" routine.  Finalization routines are
1690  * called iteratively once all real devices have been found during
1691  * autoconfiguration, for as long as any one finalizer has done
1692  * any work.
1693  */
1694 int
1695 config_finalize_register(device_t dev, int (*fn)(device_t))
1696 {
1697 	struct finalize_hook *f;
1698 
1699 	/*
1700 	 * If finalization has already been done, invoke the
1701 	 * callback function now.
1702 	 */
1703 	if (config_finalize_done) {
1704 		while ((*fn)(dev) != 0)
1705 			/* loop */ ;
1706 	}
1707 
1708 	/* Ensure this isn't already on the list. */
1709 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1710 		if (f->f_func == fn && f->f_dev == dev)
1711 			return (EEXIST);
1712 	}
1713 
1714 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
1715 	f->f_func = fn;
1716 	f->f_dev = dev;
1717 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1718 
1719 	return (0);
1720 }
1721 
1722 void
1723 config_finalize(void)
1724 {
1725 	struct finalize_hook *f;
1726 	struct pdevinit *pdev;
1727 	extern struct pdevinit pdevinit[];
1728 	int errcnt, rv;
1729 
1730 	/*
1731 	 * Now that device driver threads have been created, wait for
1732 	 * them to finish any deferred autoconfiguration.
1733 	 */
1734 	while (config_pending)
1735 		(void) tsleep(&config_pending, PWAIT, "cfpend", hz);
1736 
1737 	/* Attach pseudo-devices. */
1738 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1739 		(*pdev->pdev_attach)(pdev->pdev_count);
1740 
1741 	/* Run the hooks until none of them does any work. */
1742 	do {
1743 		rv = 0;
1744 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1745 			rv |= (*f->f_func)(f->f_dev);
1746 	} while (rv != 0);
1747 
1748 	config_finalize_done = 1;
1749 
1750 	/* Now free all the hooks. */
1751 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1752 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1753 		free(f, M_TEMP);
1754 	}
1755 
1756 	errcnt = aprint_get_error_count();
1757 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1758 	    (boothowto & AB_VERBOSE) == 0) {
1759 		if (config_do_twiddle) {
1760 			config_do_twiddle = 0;
1761 			printf_nolog("done.\n");
1762 		}
1763 		if (errcnt != 0) {
1764 			printf("WARNING: %d error%s while detecting hardware; "
1765 			    "check system log.\n", errcnt,
1766 			    errcnt == 1 ? "" : "s");
1767 		}
1768 	}
1769 }
1770 
1771 /*
1772  * device_lookup:
1773  *
1774  *	Look up a device instance for a given driver.
1775  */
1776 void *
1777 device_lookup(cfdriver_t cd, int unit)
1778 {
1779 
1780 	if (unit < 0 || unit >= cd->cd_ndevs)
1781 		return (NULL);
1782 
1783 	return (cd->cd_devs[unit]);
1784 }
1785 
1786 /*
1787  * device_lookup:
1788  *
1789  *	Look up a device instance for a given driver.
1790  */
1791 void *
1792 device_lookup_private(cfdriver_t cd, int unit)
1793 {
1794 	device_t dv;
1795 
1796 	if (unit < 0 || unit >= cd->cd_ndevs)
1797 		return NULL;
1798 
1799 	if ((dv = cd->cd_devs[unit]) == NULL)
1800 		return NULL;
1801 
1802 	return dv->dv_private;
1803 }
1804 
1805 /*
1806  * Accessor functions for the device_t type.
1807  */
1808 devclass_t
1809 device_class(device_t dev)
1810 {
1811 
1812 	return (dev->dv_class);
1813 }
1814 
1815 cfdata_t
1816 device_cfdata(device_t dev)
1817 {
1818 
1819 	return (dev->dv_cfdata);
1820 }
1821 
1822 cfdriver_t
1823 device_cfdriver(device_t dev)
1824 {
1825 
1826 	return (dev->dv_cfdriver);
1827 }
1828 
1829 cfattach_t
1830 device_cfattach(device_t dev)
1831 {
1832 
1833 	return (dev->dv_cfattach);
1834 }
1835 
1836 int
1837 device_unit(device_t dev)
1838 {
1839 
1840 	return (dev->dv_unit);
1841 }
1842 
1843 const char *
1844 device_xname(device_t dev)
1845 {
1846 
1847 	return (dev->dv_xname);
1848 }
1849 
1850 device_t
1851 device_parent(device_t dev)
1852 {
1853 
1854 	return (dev->dv_parent);
1855 }
1856 
1857 bool
1858 device_is_active(device_t dev)
1859 {
1860 	int active_flags;
1861 
1862 	active_flags = DVF_ACTIVE;
1863 	active_flags |= DVF_CLASS_SUSPENDED;
1864 	active_flags |= DVF_DRIVER_SUSPENDED;
1865 	active_flags |= DVF_BUS_SUSPENDED;
1866 
1867 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1868 }
1869 
1870 bool
1871 device_is_enabled(device_t dev)
1872 {
1873 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1874 }
1875 
1876 bool
1877 device_has_power(device_t dev)
1878 {
1879 	int active_flags;
1880 
1881 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1882 
1883 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1884 }
1885 
1886 int
1887 device_locator(device_t dev, u_int locnum)
1888 {
1889 
1890 	KASSERT(dev->dv_locators != NULL);
1891 	return (dev->dv_locators[locnum]);
1892 }
1893 
1894 void *
1895 device_private(device_t dev)
1896 {
1897 
1898 	/*
1899 	 * The reason why device_private(NULL) is allowed is to simplify the
1900 	 * work of a lot of userspace request handlers (i.e., c/bdev
1901 	 * handlers) which grab cfdriver_t->cd_units[n].
1902 	 * It avoids having them test for it to be NULL and only then calling
1903 	 * device_private.
1904 	 */
1905 	return dev == NULL ? NULL : dev->dv_private;
1906 }
1907 
1908 prop_dictionary_t
1909 device_properties(device_t dev)
1910 {
1911 
1912 	return (dev->dv_properties);
1913 }
1914 
1915 /*
1916  * device_is_a:
1917  *
1918  *	Returns true if the device is an instance of the specified
1919  *	driver.
1920  */
1921 bool
1922 device_is_a(device_t dev, const char *dname)
1923 {
1924 
1925 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1926 }
1927 
1928 /*
1929  * device_find_by_xname:
1930  *
1931  *	Returns the device of the given name or NULL if it doesn't exist.
1932  */
1933 device_t
1934 device_find_by_xname(const char *name)
1935 {
1936 	device_t dv;
1937 	deviter_t di;
1938 
1939 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1940 		if (strcmp(device_xname(dv), name) == 0)
1941 			break;
1942 	}
1943 	deviter_release(&di);
1944 
1945 	return dv;
1946 }
1947 
1948 /*
1949  * device_find_by_driver_unit:
1950  *
1951  *	Returns the device of the given driver name and unit or
1952  *	NULL if it doesn't exist.
1953  */
1954 device_t
1955 device_find_by_driver_unit(const char *name, int unit)
1956 {
1957 	struct cfdriver *cd;
1958 
1959 	if ((cd = config_cfdriver_lookup(name)) == NULL)
1960 		return NULL;
1961 	return device_lookup(cd, unit);
1962 }
1963 
1964 /*
1965  * Power management related functions.
1966  */
1967 
1968 bool
1969 device_pmf_is_registered(device_t dev)
1970 {
1971 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
1972 }
1973 
1974 bool
1975 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
1976 {
1977 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
1978 		return true;
1979 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
1980 		return false;
1981 	if (*dev->dv_driver_suspend != NULL &&
1982 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
1983 		return false;
1984 
1985 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
1986 	return true;
1987 }
1988 
1989 bool
1990 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
1991 {
1992 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1993 		return true;
1994 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1995 		return false;
1996 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
1997 		return false;
1998 	if (*dev->dv_driver_resume != NULL &&
1999 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2000 		return false;
2001 
2002 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2003 	return true;
2004 }
2005 
2006 bool
2007 device_pmf_driver_shutdown(device_t dev, int how)
2008 {
2009 
2010 	if (*dev->dv_driver_shutdown != NULL &&
2011 	    !(*dev->dv_driver_shutdown)(dev, how))
2012 		return false;
2013 	return true;
2014 }
2015 
2016 bool
2017 device_pmf_driver_register(device_t dev,
2018     bool (*suspend)(device_t PMF_FN_PROTO),
2019     bool (*resume)(device_t PMF_FN_PROTO),
2020     bool (*shutdown)(device_t, int))
2021 {
2022 	pmf_private_t *pp;
2023 
2024 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
2025 		return false;
2026 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2027 	cv_init(&pp->pp_cv, "pmfsusp");
2028 	dev->dv_pmf_private = pp;
2029 
2030 	dev->dv_driver_suspend = suspend;
2031 	dev->dv_driver_resume = resume;
2032 	dev->dv_driver_shutdown = shutdown;
2033 	dev->dv_flags |= DVF_POWER_HANDLERS;
2034 	return true;
2035 }
2036 
2037 static const char *
2038 curlwp_name(void)
2039 {
2040 	if (curlwp->l_name != NULL)
2041 		return curlwp->l_name;
2042 	else
2043 		return curlwp->l_proc->p_comm;
2044 }
2045 
2046 void
2047 device_pmf_driver_deregister(device_t dev)
2048 {
2049 	pmf_private_t *pp = dev->dv_pmf_private;
2050 
2051 	dev->dv_driver_suspend = NULL;
2052 	dev->dv_driver_resume = NULL;
2053 
2054 	dev->dv_pmf_private = NULL;
2055 
2056 	mutex_enter(&pp->pp_mtx);
2057 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2058 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2059 		/* Wake a thread that waits for the lock.  That
2060 		 * thread will fail to acquire the lock, and then
2061 		 * it will wake the next thread that waits for the
2062 		 * lock, or else it will wake us.
2063 		 */
2064 		cv_signal(&pp->pp_cv);
2065 		pmflock_debug(dev, __func__, __LINE__);
2066 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2067 		pmflock_debug(dev, __func__, __LINE__);
2068 	}
2069 	mutex_exit(&pp->pp_mtx);
2070 
2071 	cv_destroy(&pp->pp_cv);
2072 	mutex_destroy(&pp->pp_mtx);
2073 	free(pp, M_PMFPRIV);
2074 }
2075 
2076 bool
2077 device_pmf_driver_child_register(device_t dev)
2078 {
2079 	device_t parent = device_parent(dev);
2080 
2081 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2082 		return true;
2083 	return (*parent->dv_driver_child_register)(dev);
2084 }
2085 
2086 void
2087 device_pmf_driver_set_child_register(device_t dev,
2088     bool (*child_register)(device_t))
2089 {
2090 	dev->dv_driver_child_register = child_register;
2091 }
2092 
2093 void
2094 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2095 {
2096 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2097 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2098 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2099 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2100 }
2101 
2102 bool
2103 device_is_self_suspended(device_t dev)
2104 {
2105 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2106 }
2107 
2108 void
2109 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2110 {
2111 	bool self = (flags & PMF_F_SELF) != 0;
2112 
2113 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2114 
2115 	if (!self)
2116 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2117 	else if (device_is_active(dev))
2118 		dev->dv_flags |= DVF_SELF_SUSPENDED;
2119 
2120 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2121 }
2122 
2123 static void
2124 pmflock_debug(device_t dev, const char *func, int line)
2125 {
2126 	pmf_private_t *pp = device_pmf_private(dev);
2127 
2128 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2129 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2130 	    dev->dv_flags);
2131 }
2132 
2133 static void
2134 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2135 {
2136 	pmf_private_t *pp = device_pmf_private(dev);
2137 
2138 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2139 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2140 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2141 }
2142 
2143 static bool
2144 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2145 {
2146 	pmf_private_t *pp = device_pmf_private(dev);
2147 
2148 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
2149 	       device_pmf_is_registered(dev)) {
2150 		pp->pp_nwait++;
2151 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2152 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2153 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2154 		pp->pp_nwait--;
2155 	}
2156 	if (!device_pmf_is_registered(dev)) {
2157 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2158 		/* We could not acquire the lock, but some other thread may
2159 		 * wait for it, also.  Wake that thread.
2160 		 */
2161 		cv_signal(&pp->pp_cv);
2162 		return false;
2163 	}
2164 	pp->pp_nlock++;
2165 	pp->pp_holder = curlwp;
2166 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2167 	return true;
2168 }
2169 
2170 bool
2171 device_pmf_lock(device_t dev PMF_FN_ARGS)
2172 {
2173 	bool rc;
2174 	pmf_private_t *pp = device_pmf_private(dev);
2175 
2176 	mutex_enter(&pp->pp_mtx);
2177 	rc = device_pmf_lock1(dev PMF_FN_CALL);
2178 	mutex_exit(&pp->pp_mtx);
2179 
2180 	return rc;
2181 }
2182 
2183 void
2184 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2185 {
2186 	pmf_private_t *pp = device_pmf_private(dev);
2187 
2188 	KASSERT(pp->pp_nlock > 0);
2189 	mutex_enter(&pp->pp_mtx);
2190 	if (--pp->pp_nlock == 0)
2191 		pp->pp_holder = NULL;
2192 	cv_signal(&pp->pp_cv);
2193 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2194 	mutex_exit(&pp->pp_mtx);
2195 }
2196 
2197 void *
2198 device_pmf_private(device_t dev)
2199 {
2200 	return dev->dv_pmf_private;
2201 }
2202 
2203 void *
2204 device_pmf_bus_private(device_t dev)
2205 {
2206 	return dev->dv_bus_private;
2207 }
2208 
2209 bool
2210 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2211 {
2212 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2213 		return true;
2214 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2215 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2216 		return false;
2217 	if (*dev->dv_bus_suspend != NULL &&
2218 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2219 		return false;
2220 
2221 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2222 	return true;
2223 }
2224 
2225 bool
2226 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2227 {
2228 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2229 		return true;
2230 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2231 		return false;
2232 	if (*dev->dv_bus_resume != NULL &&
2233 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2234 		return false;
2235 
2236 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2237 	return true;
2238 }
2239 
2240 bool
2241 device_pmf_bus_shutdown(device_t dev, int how)
2242 {
2243 
2244 	if (*dev->dv_bus_shutdown != NULL &&
2245 	    !(*dev->dv_bus_shutdown)(dev, how))
2246 		return false;
2247 	return true;
2248 }
2249 
2250 void
2251 device_pmf_bus_register(device_t dev, void *priv,
2252     bool (*suspend)(device_t PMF_FN_PROTO),
2253     bool (*resume)(device_t PMF_FN_PROTO),
2254     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2255 {
2256 	dev->dv_bus_private = priv;
2257 	dev->dv_bus_resume = resume;
2258 	dev->dv_bus_suspend = suspend;
2259 	dev->dv_bus_shutdown = shutdown;
2260 	dev->dv_bus_deregister = deregister;
2261 }
2262 
2263 void
2264 device_pmf_bus_deregister(device_t dev)
2265 {
2266 	if (dev->dv_bus_deregister == NULL)
2267 		return;
2268 	(*dev->dv_bus_deregister)(dev);
2269 	dev->dv_bus_private = NULL;
2270 	dev->dv_bus_suspend = NULL;
2271 	dev->dv_bus_resume = NULL;
2272 	dev->dv_bus_deregister = NULL;
2273 }
2274 
2275 void *
2276 device_pmf_class_private(device_t dev)
2277 {
2278 	return dev->dv_class_private;
2279 }
2280 
2281 bool
2282 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2283 {
2284 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2285 		return true;
2286 	if (*dev->dv_class_suspend != NULL &&
2287 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2288 		return false;
2289 
2290 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2291 	return true;
2292 }
2293 
2294 bool
2295 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2296 {
2297 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2298 		return true;
2299 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2300 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2301 		return false;
2302 	if (*dev->dv_class_resume != NULL &&
2303 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2304 		return false;
2305 
2306 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2307 	return true;
2308 }
2309 
2310 void
2311 device_pmf_class_register(device_t dev, void *priv,
2312     bool (*suspend)(device_t PMF_FN_PROTO),
2313     bool (*resume)(device_t PMF_FN_PROTO),
2314     void (*deregister)(device_t))
2315 {
2316 	dev->dv_class_private = priv;
2317 	dev->dv_class_suspend = suspend;
2318 	dev->dv_class_resume = resume;
2319 	dev->dv_class_deregister = deregister;
2320 }
2321 
2322 void
2323 device_pmf_class_deregister(device_t dev)
2324 {
2325 	if (dev->dv_class_deregister == NULL)
2326 		return;
2327 	(*dev->dv_class_deregister)(dev);
2328 	dev->dv_class_private = NULL;
2329 	dev->dv_class_suspend = NULL;
2330 	dev->dv_class_resume = NULL;
2331 	dev->dv_class_deregister = NULL;
2332 }
2333 
2334 bool
2335 device_active(device_t dev, devactive_t type)
2336 {
2337 	size_t i;
2338 
2339 	if (dev->dv_activity_count == 0)
2340 		return false;
2341 
2342 	for (i = 0; i < dev->dv_activity_count; ++i)
2343 		(*dev->dv_activity_handlers[i])(dev, type);
2344 
2345 	return true;
2346 }
2347 
2348 bool
2349 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2350 {
2351 	void (**new_handlers)(device_t, devactive_t);
2352 	void (**old_handlers)(device_t, devactive_t);
2353 	size_t i, new_size;
2354 	int s;
2355 
2356 	old_handlers = dev->dv_activity_handlers;
2357 
2358 	for (i = 0; i < dev->dv_activity_count; ++i) {
2359 		if (old_handlers[i] == handler)
2360 			panic("Double registering of idle handlers");
2361 	}
2362 
2363 	new_size = dev->dv_activity_count + 1;
2364 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
2365 
2366 	memcpy(new_handlers, old_handlers,
2367 	    sizeof(void *) * dev->dv_activity_count);
2368 	new_handlers[new_size - 1] = handler;
2369 
2370 	s = splhigh();
2371 	dev->dv_activity_count = new_size;
2372 	dev->dv_activity_handlers = new_handlers;
2373 	splx(s);
2374 
2375 	if (old_handlers != NULL)
2376 		free(old_handlers, M_DEVBUF);
2377 
2378 	return true;
2379 }
2380 
2381 void
2382 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2383 {
2384 	void (**new_handlers)(device_t, devactive_t);
2385 	void (**old_handlers)(device_t, devactive_t);
2386 	size_t i, new_size;
2387 	int s;
2388 
2389 	old_handlers = dev->dv_activity_handlers;
2390 
2391 	for (i = 0; i < dev->dv_activity_count; ++i) {
2392 		if (old_handlers[i] == handler)
2393 			break;
2394 	}
2395 
2396 	if (i == dev->dv_activity_count)
2397 		return; /* XXX panic? */
2398 
2399 	new_size = dev->dv_activity_count - 1;
2400 
2401 	if (new_size == 0) {
2402 		new_handlers = NULL;
2403 	} else {
2404 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
2405 		    M_WAITOK);
2406 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
2407 		memcpy(new_handlers + i, old_handlers + i + 1,
2408 		    sizeof(void *) * (new_size - i));
2409 	}
2410 
2411 	s = splhigh();
2412 	dev->dv_activity_count = new_size;
2413 	dev->dv_activity_handlers = new_handlers;
2414 	splx(s);
2415 
2416 	free(old_handlers, M_DEVBUF);
2417 }
2418 
2419 /*
2420  * Device Iteration
2421  *
2422  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2423  *     each device_t's in the device tree.
2424  *
2425  * deviter_init(di, flags): initialize the device iterator `di'
2426  *     to "walk" the device tree.  deviter_next(di) will return
2427  *     the first device_t in the device tree, or NULL if there are
2428  *     no devices.
2429  *
2430  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2431  *     caller intends to modify the device tree by calling
2432  *     config_detach(9) on devices in the order that the iterator
2433  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2434  *     nearest the "root" of the device tree to be returned, first;
2435  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2436  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2437  *     indicating both that deviter_init() should not respect any
2438  *     locks on the device tree, and that deviter_next(di) may run
2439  *     in more than one LWP before the walk has finished.
2440  *
2441  *     Only one DEVITER_F_RW iterator may be in the device tree at
2442  *     once.
2443  *
2444  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2445  *
2446  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2447  *     DEVITER_F_LEAVES_FIRST are used in combination.
2448  *
2449  * deviter_first(di, flags): initialize the device iterator `di'
2450  *     and return the first device_t in the device tree, or NULL
2451  *     if there are no devices.  The statement
2452  *
2453  *         dv = deviter_first(di);
2454  *
2455  *     is shorthand for
2456  *
2457  *         deviter_init(di);
2458  *         dv = deviter_next(di);
2459  *
2460  * deviter_next(di): return the next device_t in the device tree,
2461  *     or NULL if there are no more devices.  deviter_next(di)
2462  *     is undefined if `di' was not initialized with deviter_init() or
2463  *     deviter_first().
2464  *
2465  * deviter_release(di): stops iteration (subsequent calls to
2466  *     deviter_next() will return NULL), releases any locks and
2467  *     resources held by the device iterator.
2468  *
2469  * Device iteration does not return device_t's in any particular
2470  * order.  An iterator will never return the same device_t twice.
2471  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2472  * is called repeatedly on the same `di', it will eventually return
2473  * NULL.  It is ok to attach/detach devices during device iteration.
2474  */
2475 void
2476 deviter_init(deviter_t *di, deviter_flags_t flags)
2477 {
2478 	device_t dv;
2479 	bool rw;
2480 
2481 	mutex_enter(&alldevs_mtx);
2482 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2483 		flags |= DEVITER_F_RW;
2484 		alldevs_nwrite++;
2485 		alldevs_writer = NULL;
2486 		alldevs_nread = 0;
2487 	} else {
2488 		rw = (flags & DEVITER_F_RW) != 0;
2489 
2490 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2491 			;
2492 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2493 		       (rw && alldevs_nread != 0))
2494 			cv_wait(&alldevs_cv, &alldevs_mtx);
2495 
2496 		if (rw) {
2497 			if (alldevs_nwrite++ == 0)
2498 				alldevs_writer = curlwp;
2499 		} else
2500 			alldevs_nread++;
2501 	}
2502 	mutex_exit(&alldevs_mtx);
2503 
2504 	memset(di, 0, sizeof(*di));
2505 
2506 	di->di_flags = flags;
2507 
2508 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2509 	case DEVITER_F_LEAVES_FIRST:
2510 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2511 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2512 		break;
2513 	case DEVITER_F_ROOT_FIRST:
2514 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2515 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2516 		break;
2517 	default:
2518 		break;
2519 	}
2520 
2521 	deviter_reinit(di);
2522 }
2523 
2524 static void
2525 deviter_reinit(deviter_t *di)
2526 {
2527 	if ((di->di_flags & DEVITER_F_RW) != 0)
2528 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2529 	else
2530 		di->di_prev = TAILQ_FIRST(&alldevs);
2531 }
2532 
2533 device_t
2534 deviter_first(deviter_t *di, deviter_flags_t flags)
2535 {
2536 	deviter_init(di, flags);
2537 	return deviter_next(di);
2538 }
2539 
2540 static device_t
2541 deviter_next1(deviter_t *di)
2542 {
2543 	device_t dv;
2544 
2545 	dv = di->di_prev;
2546 
2547 	if (dv == NULL)
2548 		;
2549 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2550 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2551 	else
2552 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2553 
2554 	return dv;
2555 }
2556 
2557 device_t
2558 deviter_next(deviter_t *di)
2559 {
2560 	device_t dv = NULL;
2561 
2562 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2563 	case 0:
2564 		return deviter_next1(di);
2565 	case DEVITER_F_LEAVES_FIRST:
2566 		while (di->di_curdepth >= 0) {
2567 			if ((dv = deviter_next1(di)) == NULL) {
2568 				di->di_curdepth--;
2569 				deviter_reinit(di);
2570 			} else if (dv->dv_depth == di->di_curdepth)
2571 				break;
2572 		}
2573 		return dv;
2574 	case DEVITER_F_ROOT_FIRST:
2575 		while (di->di_curdepth <= di->di_maxdepth) {
2576 			if ((dv = deviter_next1(di)) == NULL) {
2577 				di->di_curdepth++;
2578 				deviter_reinit(di);
2579 			} else if (dv->dv_depth == di->di_curdepth)
2580 				break;
2581 		}
2582 		return dv;
2583 	default:
2584 		return NULL;
2585 	}
2586 }
2587 
2588 void
2589 deviter_release(deviter_t *di)
2590 {
2591 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2592 
2593 	mutex_enter(&alldevs_mtx);
2594 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2595 		--alldevs_nwrite;
2596 	else {
2597 
2598 		if (rw) {
2599 			if (--alldevs_nwrite == 0)
2600 				alldevs_writer = NULL;
2601 		} else
2602 			--alldevs_nread;
2603 
2604 		cv_signal(&alldevs_cv);
2605 	}
2606 	mutex_exit(&alldevs_mtx);
2607 }
2608