xref: /netbsd-src/sys/kern/subr_autoconf.c (revision f75f5aae154fcd0572e8889e4fea2a51d67bbf08)
1 /* $NetBSD: subr_autoconf.c,v 1.186 2009/10/12 23:33:02 yamt Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.186 2009/10/12 23:33:02 yamt Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85 
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111 
112 #include <sys/disk.h>
113 
114 #include <machine/limits.h>
115 
116 #if defined(__i386__) && defined(_KERNEL_OPT)
117 #include "opt_splash.h"
118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
119 #include <dev/splash/splash.h>
120 extern struct splash_progress *splash_progress_state;
121 #endif
122 #endif
123 
124 /*
125  * Autoconfiguration subroutines.
126  */
127 
128 /*
129  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
130  * devices and drivers are found via these tables.
131  */
132 extern struct cfdata cfdata[];
133 extern const short cfroots[];
134 
135 /*
136  * List of all cfdriver structures.  We use this to detect duplicates
137  * when other cfdrivers are loaded.
138  */
139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
140 extern struct cfdriver * const cfdriver_list_initial[];
141 
142 /*
143  * Initial list of cfattach's.
144  */
145 extern const struct cfattachinit cfattachinit[];
146 
147 /*
148  * List of cfdata tables.  We always have one such list -- the one
149  * built statically when the kernel was configured.
150  */
151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
152 static struct cftable initcftable;
153 
154 #define	ROOT ((device_t)NULL)
155 
156 struct matchinfo {
157 	cfsubmatch_t fn;
158 	struct	device *parent;
159 	const int *locs;
160 	void	*aux;
161 	struct	cfdata *match;
162 	int	pri;
163 };
164 
165 static char *number(char *, int);
166 static void mapply(struct matchinfo *, cfdata_t);
167 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
168 static void config_devdealloc(device_t);
169 static void config_makeroom(int, struct cfdriver *);
170 static void config_devlink(device_t);
171 static void config_devunlink(device_t);
172 
173 static void pmflock_debug(device_t, const char *, int);
174 
175 static device_t deviter_next1(deviter_t *);
176 static void deviter_reinit(deviter_t *);
177 
178 struct deferred_config {
179 	TAILQ_ENTRY(deferred_config) dc_queue;
180 	device_t dc_dev;
181 	void (*dc_func)(device_t);
182 };
183 
184 TAILQ_HEAD(deferred_config_head, deferred_config);
185 
186 struct deferred_config_head deferred_config_queue =
187 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
188 struct deferred_config_head interrupt_config_queue =
189 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
190 int interrupt_config_threads = 8;
191 
192 static void config_process_deferred(struct deferred_config_head *, device_t);
193 
194 /* Hooks to finalize configuration once all real devices have been found. */
195 struct finalize_hook {
196 	TAILQ_ENTRY(finalize_hook) f_list;
197 	int (*f_func)(device_t);
198 	device_t f_dev;
199 };
200 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
201 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
202 static int config_finalize_done;
203 
204 /* list of all devices */
205 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
206 kcondvar_t alldevs_cv;
207 kmutex_t alldevs_mtx;
208 static int alldevs_nread = 0;
209 static int alldevs_nwrite = 0;
210 static lwp_t *alldevs_writer = NULL;
211 
212 static int config_pending;		/* semaphore for mountroot */
213 static kmutex_t config_misc_lock;
214 static kcondvar_t config_misc_cv;
215 
216 static int detachall = 0;
217 
218 #define	STREQ(s1, s2)			\
219 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
220 
221 static bool config_initialized = false;	/* config_init() has been called. */
222 
223 static int config_do_twiddle;
224 static callout_t config_twiddle_ch;
225 
226 static void sysctl_detach_setup(struct sysctllog **);
227 
228 /*
229  * Initialize the autoconfiguration data structures.  Normally this
230  * is done by configure(), but some platforms need to do this very
231  * early (to e.g. initialize the console).
232  */
233 void
234 config_init(void)
235 {
236 	const struct cfattachinit *cfai;
237 	int i, j;
238 
239 	KASSERT(config_initialized == false);
240 
241 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
242 	cv_init(&alldevs_cv, "alldevs");
243 
244 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
245 	cv_init(&config_misc_cv, "cfgmisc");
246 
247 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
248 
249 	/* allcfdrivers is statically initialized. */
250 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
251 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
252 			panic("configure: duplicate `%s' drivers",
253 			    cfdriver_list_initial[i]->cd_name);
254 	}
255 
256 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
257 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
258 			if (config_cfattach_attach(cfai->cfai_name,
259 						   cfai->cfai_list[j]) != 0)
260 				panic("configure: duplicate `%s' attachment "
261 				    "of `%s' driver",
262 				    cfai->cfai_list[j]->ca_name,
263 				    cfai->cfai_name);
264 		}
265 	}
266 
267 	initcftable.ct_cfdata = cfdata;
268 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
269 
270 	config_initialized = true;
271 }
272 
273 void
274 config_init_mi(void)
275 {
276 
277 	if (!config_initialized)
278 		config_init();
279 
280 	sysctl_detach_setup(NULL);
281 }
282 
283 void
284 config_deferred(device_t dev)
285 {
286 	config_process_deferred(&deferred_config_queue, dev);
287 	config_process_deferred(&interrupt_config_queue, dev);
288 }
289 
290 static void
291 config_interrupts_thread(void *cookie)
292 {
293 	struct deferred_config *dc;
294 
295 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
296 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
297 		(*dc->dc_func)(dc->dc_dev);
298 		kmem_free(dc, sizeof(*dc));
299 		config_pending_decr();
300 	}
301 	kthread_exit(0);
302 }
303 
304 void
305 config_create_interruptthreads()
306 {
307 	int i;
308 
309 	for (i = 0; i < interrupt_config_threads; i++) {
310 		(void)kthread_create(PRI_NONE, 0, NULL,
311 		    config_interrupts_thread, NULL, NULL, "config");
312 	}
313 }
314 
315 /*
316  * Announce device attach/detach to userland listeners.
317  */
318 static void
319 devmon_report_device(device_t dev, bool isattach)
320 {
321 #if NDRVCTL > 0
322 	prop_dictionary_t ev;
323 	const char *parent;
324 	const char *what;
325 	device_t pdev = device_parent(dev);
326 
327 	ev = prop_dictionary_create();
328 	if (ev == NULL)
329 		return;
330 
331 	what = (isattach ? "device-attach" : "device-detach");
332 	parent = (pdev == NULL ? "root" : device_xname(pdev));
333 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
334 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
335 		prop_object_release(ev);
336 		return;
337 	}
338 
339 	devmon_insert(what, ev);
340 #endif
341 }
342 
343 /*
344  * Add a cfdriver to the system.
345  */
346 int
347 config_cfdriver_attach(struct cfdriver *cd)
348 {
349 	struct cfdriver *lcd;
350 
351 	/* Make sure this driver isn't already in the system. */
352 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
353 		if (STREQ(lcd->cd_name, cd->cd_name))
354 			return EEXIST;
355 	}
356 
357 	LIST_INIT(&cd->cd_attach);
358 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
359 
360 	return 0;
361 }
362 
363 /*
364  * Remove a cfdriver from the system.
365  */
366 int
367 config_cfdriver_detach(struct cfdriver *cd)
368 {
369 	int i;
370 
371 	/* Make sure there are no active instances. */
372 	for (i = 0; i < cd->cd_ndevs; i++) {
373 		if (cd->cd_devs[i] != NULL)
374 			return EBUSY;
375 	}
376 
377 	/* ...and no attachments loaded. */
378 	if (LIST_EMPTY(&cd->cd_attach) == 0)
379 		return EBUSY;
380 
381 	LIST_REMOVE(cd, cd_list);
382 
383 	KASSERT(cd->cd_devs == NULL);
384 
385 	return 0;
386 }
387 
388 /*
389  * Look up a cfdriver by name.
390  */
391 struct cfdriver *
392 config_cfdriver_lookup(const char *name)
393 {
394 	struct cfdriver *cd;
395 
396 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
397 		if (STREQ(cd->cd_name, name))
398 			return cd;
399 	}
400 
401 	return NULL;
402 }
403 
404 /*
405  * Add a cfattach to the specified driver.
406  */
407 int
408 config_cfattach_attach(const char *driver, struct cfattach *ca)
409 {
410 	struct cfattach *lca;
411 	struct cfdriver *cd;
412 
413 	cd = config_cfdriver_lookup(driver);
414 	if (cd == NULL)
415 		return ESRCH;
416 
417 	/* Make sure this attachment isn't already on this driver. */
418 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
419 		if (STREQ(lca->ca_name, ca->ca_name))
420 			return EEXIST;
421 	}
422 
423 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
424 
425 	return 0;
426 }
427 
428 /*
429  * Remove a cfattach from the specified driver.
430  */
431 int
432 config_cfattach_detach(const char *driver, struct cfattach *ca)
433 {
434 	struct cfdriver *cd;
435 	device_t dev;
436 	int i;
437 
438 	cd = config_cfdriver_lookup(driver);
439 	if (cd == NULL)
440 		return ESRCH;
441 
442 	/* Make sure there are no active instances. */
443 	for (i = 0; i < cd->cd_ndevs; i++) {
444 		if ((dev = cd->cd_devs[i]) == NULL)
445 			continue;
446 		if (dev->dv_cfattach == ca)
447 			return EBUSY;
448 	}
449 
450 	LIST_REMOVE(ca, ca_list);
451 
452 	return 0;
453 }
454 
455 /*
456  * Look up a cfattach by name.
457  */
458 static struct cfattach *
459 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
460 {
461 	struct cfattach *ca;
462 
463 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
464 		if (STREQ(ca->ca_name, atname))
465 			return ca;
466 	}
467 
468 	return NULL;
469 }
470 
471 /*
472  * Look up a cfattach by driver/attachment name.
473  */
474 struct cfattach *
475 config_cfattach_lookup(const char *name, const char *atname)
476 {
477 	struct cfdriver *cd;
478 
479 	cd = config_cfdriver_lookup(name);
480 	if (cd == NULL)
481 		return NULL;
482 
483 	return config_cfattach_lookup_cd(cd, atname);
484 }
485 
486 /*
487  * Apply the matching function and choose the best.  This is used
488  * a few times and we want to keep the code small.
489  */
490 static void
491 mapply(struct matchinfo *m, cfdata_t cf)
492 {
493 	int pri;
494 
495 	if (m->fn != NULL) {
496 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
497 	} else {
498 		pri = config_match(m->parent, cf, m->aux);
499 	}
500 	if (pri > m->pri) {
501 		m->match = cf;
502 		m->pri = pri;
503 	}
504 }
505 
506 int
507 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
508 {
509 	const struct cfiattrdata *ci;
510 	const struct cflocdesc *cl;
511 	int nlocs, i;
512 
513 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
514 	KASSERT(ci);
515 	nlocs = ci->ci_loclen;
516 	KASSERT(!nlocs || locs);
517 	for (i = 0; i < nlocs; i++) {
518 		cl = &ci->ci_locdesc[i];
519 		/* !cld_defaultstr means no default value */
520 		if ((!(cl->cld_defaultstr)
521 		     || (cf->cf_loc[i] != cl->cld_default))
522 		    && cf->cf_loc[i] != locs[i])
523 			return 0;
524 	}
525 
526 	return config_match(parent, cf, aux);
527 }
528 
529 /*
530  * Helper function: check whether the driver supports the interface attribute
531  * and return its descriptor structure.
532  */
533 static const struct cfiattrdata *
534 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
535 {
536 	const struct cfiattrdata * const *cpp;
537 
538 	if (cd->cd_attrs == NULL)
539 		return 0;
540 
541 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
542 		if (STREQ((*cpp)->ci_name, ia)) {
543 			/* Match. */
544 			return *cpp;
545 		}
546 	}
547 	return 0;
548 }
549 
550 /*
551  * Lookup an interface attribute description by name.
552  * If the driver is given, consider only its supported attributes.
553  */
554 const struct cfiattrdata *
555 cfiattr_lookup(const char *name, const struct cfdriver *cd)
556 {
557 	const struct cfdriver *d;
558 	const struct cfiattrdata *ia;
559 
560 	if (cd)
561 		return cfdriver_get_iattr(cd, name);
562 
563 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
564 		ia = cfdriver_get_iattr(d, name);
565 		if (ia)
566 			return ia;
567 	}
568 	return 0;
569 }
570 
571 /*
572  * Determine if `parent' is a potential parent for a device spec based
573  * on `cfp'.
574  */
575 static int
576 cfparent_match(const device_t parent, const struct cfparent *cfp)
577 {
578 	struct cfdriver *pcd;
579 
580 	/* We don't match root nodes here. */
581 	if (cfp == NULL)
582 		return 0;
583 
584 	pcd = parent->dv_cfdriver;
585 	KASSERT(pcd != NULL);
586 
587 	/*
588 	 * First, ensure this parent has the correct interface
589 	 * attribute.
590 	 */
591 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
592 		return 0;
593 
594 	/*
595 	 * If no specific parent device instance was specified (i.e.
596 	 * we're attaching to the attribute only), we're done!
597 	 */
598 	if (cfp->cfp_parent == NULL)
599 		return 1;
600 
601 	/*
602 	 * Check the parent device's name.
603 	 */
604 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
605 		return 0;	/* not the same parent */
606 
607 	/*
608 	 * Make sure the unit number matches.
609 	 */
610 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
611 	    cfp->cfp_unit == parent->dv_unit)
612 		return 1;
613 
614 	/* Unit numbers don't match. */
615 	return 0;
616 }
617 
618 /*
619  * Helper for config_cfdata_attach(): check all devices whether it could be
620  * parent any attachment in the config data table passed, and rescan.
621  */
622 static void
623 rescan_with_cfdata(const struct cfdata *cf)
624 {
625 	device_t d;
626 	const struct cfdata *cf1;
627 	deviter_t di;
628 
629 
630 	/*
631 	 * "alldevs" is likely longer than a modules's cfdata, so make it
632 	 * the outer loop.
633 	 */
634 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
635 
636 		if (!(d->dv_cfattach->ca_rescan))
637 			continue;
638 
639 		for (cf1 = cf; cf1->cf_name; cf1++) {
640 
641 			if (!cfparent_match(d, cf1->cf_pspec))
642 				continue;
643 
644 			(*d->dv_cfattach->ca_rescan)(d,
645 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
646 		}
647 	}
648 	deviter_release(&di);
649 }
650 
651 /*
652  * Attach a supplemental config data table and rescan potential
653  * parent devices if required.
654  */
655 int
656 config_cfdata_attach(cfdata_t cf, int scannow)
657 {
658 	struct cftable *ct;
659 
660 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
661 	ct->ct_cfdata = cf;
662 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
663 
664 	if (scannow)
665 		rescan_with_cfdata(cf);
666 
667 	return 0;
668 }
669 
670 /*
671  * Helper for config_cfdata_detach: check whether a device is
672  * found through any attachment in the config data table.
673  */
674 static int
675 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
676 {
677 	const struct cfdata *cf1;
678 
679 	for (cf1 = cf; cf1->cf_name; cf1++)
680 		if (d->dv_cfdata == cf1)
681 			return 1;
682 
683 	return 0;
684 }
685 
686 /*
687  * Detach a supplemental config data table. Detach all devices found
688  * through that table (and thus keeping references to it) before.
689  */
690 int
691 config_cfdata_detach(cfdata_t cf)
692 {
693 	device_t d;
694 	int error = 0;
695 	struct cftable *ct;
696 	deviter_t di;
697 
698 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
699 	     d = deviter_next(&di)) {
700 		if (!dev_in_cfdata(d, cf))
701 			continue;
702 		if ((error = config_detach(d, 0)) != 0)
703 			break;
704 	}
705 	deviter_release(&di);
706 	if (error) {
707 		aprint_error_dev(d, "unable to detach instance\n");
708 		return error;
709 	}
710 
711 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
712 		if (ct->ct_cfdata == cf) {
713 			TAILQ_REMOVE(&allcftables, ct, ct_list);
714 			kmem_free(ct, sizeof(*ct));
715 			return 0;
716 		}
717 	}
718 
719 	/* not found -- shouldn't happen */
720 	return EINVAL;
721 }
722 
723 /*
724  * Invoke the "match" routine for a cfdata entry on behalf of
725  * an external caller, usually a "submatch" routine.
726  */
727 int
728 config_match(device_t parent, cfdata_t cf, void *aux)
729 {
730 	struct cfattach *ca;
731 
732 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
733 	if (ca == NULL) {
734 		/* No attachment for this entry, oh well. */
735 		return 0;
736 	}
737 
738 	return (*ca->ca_match)(parent, cf, aux);
739 }
740 
741 /*
742  * Iterate over all potential children of some device, calling the given
743  * function (default being the child's match function) for each one.
744  * Nonzero returns are matches; the highest value returned is considered
745  * the best match.  Return the `found child' if we got a match, or NULL
746  * otherwise.  The `aux' pointer is simply passed on through.
747  *
748  * Note that this function is designed so that it can be used to apply
749  * an arbitrary function to all potential children (its return value
750  * can be ignored).
751  */
752 cfdata_t
753 config_search_loc(cfsubmatch_t fn, device_t parent,
754 		  const char *ifattr, const int *locs, void *aux)
755 {
756 	struct cftable *ct;
757 	cfdata_t cf;
758 	struct matchinfo m;
759 
760 	KASSERT(config_initialized);
761 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
762 
763 	m.fn = fn;
764 	m.parent = parent;
765 	m.locs = locs;
766 	m.aux = aux;
767 	m.match = NULL;
768 	m.pri = 0;
769 
770 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
771 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
772 
773 			/* We don't match root nodes here. */
774 			if (!cf->cf_pspec)
775 				continue;
776 
777 			/*
778 			 * Skip cf if no longer eligible, otherwise scan
779 			 * through parents for one matching `parent', and
780 			 * try match function.
781 			 */
782 			if (cf->cf_fstate == FSTATE_FOUND)
783 				continue;
784 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
785 			    cf->cf_fstate == FSTATE_DSTAR)
786 				continue;
787 
788 			/*
789 			 * If an interface attribute was specified,
790 			 * consider only children which attach to
791 			 * that attribute.
792 			 */
793 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
794 				continue;
795 
796 			if (cfparent_match(parent, cf->cf_pspec))
797 				mapply(&m, cf);
798 		}
799 	}
800 	return m.match;
801 }
802 
803 cfdata_t
804 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
805     void *aux)
806 {
807 
808 	return config_search_loc(fn, parent, ifattr, NULL, aux);
809 }
810 
811 /*
812  * Find the given root device.
813  * This is much like config_search, but there is no parent.
814  * Don't bother with multiple cfdata tables; the root node
815  * must always be in the initial table.
816  */
817 cfdata_t
818 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
819 {
820 	cfdata_t cf;
821 	const short *p;
822 	struct matchinfo m;
823 
824 	m.fn = fn;
825 	m.parent = ROOT;
826 	m.aux = aux;
827 	m.match = NULL;
828 	m.pri = 0;
829 	m.locs = 0;
830 	/*
831 	 * Look at root entries for matching name.  We do not bother
832 	 * with found-state here since only one root should ever be
833 	 * searched (and it must be done first).
834 	 */
835 	for (p = cfroots; *p >= 0; p++) {
836 		cf = &cfdata[*p];
837 		if (strcmp(cf->cf_name, rootname) == 0)
838 			mapply(&m, cf);
839 	}
840 	return m.match;
841 }
842 
843 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
844 
845 /*
846  * The given `aux' argument describes a device that has been found
847  * on the given parent, but not necessarily configured.  Locate the
848  * configuration data for that device (using the submatch function
849  * provided, or using candidates' cd_match configuration driver
850  * functions) and attach it, and return true.  If the device was
851  * not configured, call the given `print' function and return 0.
852  */
853 device_t
854 config_found_sm_loc(device_t parent,
855 		const char *ifattr, const int *locs, void *aux,
856 		cfprint_t print, cfsubmatch_t submatch)
857 {
858 	cfdata_t cf;
859 
860 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
861 	if (splash_progress_state)
862 		splash_progress_update(splash_progress_state);
863 #endif
864 
865 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
866 		return(config_attach_loc(parent, cf, locs, aux, print));
867 	if (print) {
868 		if (config_do_twiddle && cold)
869 			twiddle();
870 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
871 	}
872 
873 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
874 	if (splash_progress_state)
875 		splash_progress_update(splash_progress_state);
876 #endif
877 
878 	return NULL;
879 }
880 
881 device_t
882 config_found_ia(device_t parent, const char *ifattr, void *aux,
883     cfprint_t print)
884 {
885 
886 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
887 }
888 
889 device_t
890 config_found(device_t parent, void *aux, cfprint_t print)
891 {
892 
893 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
894 }
895 
896 /*
897  * As above, but for root devices.
898  */
899 device_t
900 config_rootfound(const char *rootname, void *aux)
901 {
902 	cfdata_t cf;
903 
904 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
905 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
906 	aprint_error("root device %s not configured\n", rootname);
907 	return NULL;
908 }
909 
910 /* just like sprintf(buf, "%d") except that it works from the end */
911 static char *
912 number(char *ep, int n)
913 {
914 
915 	*--ep = 0;
916 	while (n >= 10) {
917 		*--ep = (n % 10) + '0';
918 		n /= 10;
919 	}
920 	*--ep = n + '0';
921 	return ep;
922 }
923 
924 /*
925  * Expand the size of the cd_devs array if necessary.
926  */
927 static void
928 config_makeroom(int n, struct cfdriver *cd)
929 {
930 	int old, new;
931 	device_t *nsp;
932 
933 	if (n < cd->cd_ndevs)
934 		return;
935 
936 	/*
937 	 * Need to expand the array.
938 	 */
939 	old = cd->cd_ndevs;
940 	if (old == 0)
941 		new = 4;
942 	else
943 		new = old * 2;
944 	while (new <= n)
945 		new *= 2;
946 	cd->cd_ndevs = new;
947 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
948 	if (nsp == NULL)
949 		panic("config_attach: %sing dev array",
950 		    old != 0 ? "expand" : "creat");
951 	memset(nsp + old, 0, sizeof(device_t [new - old]));
952 	if (old != 0) {
953 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
954 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
955 	}
956 	cd->cd_devs = nsp;
957 }
958 
959 static void
960 config_devlink(device_t dev)
961 {
962 	struct cfdriver *cd = dev->dv_cfdriver;
963 
964 	/* put this device in the devices array */
965 	config_makeroom(dev->dv_unit, cd);
966 	if (cd->cd_devs[dev->dv_unit])
967 		panic("config_attach: duplicate %s", device_xname(dev));
968 	cd->cd_devs[dev->dv_unit] = dev;
969 
970 	/* It is safe to add a device to the tail of the list while
971 	 * readers are in the list, but not while a writer is in
972 	 * the list.  Wait for any writer to complete.
973 	 */
974 	mutex_enter(&alldevs_mtx);
975 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
976 		cv_wait(&alldevs_cv, &alldevs_mtx);
977 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
978 	cv_signal(&alldevs_cv);
979 	mutex_exit(&alldevs_mtx);
980 }
981 
982 static void
983 config_devunlink(device_t dev)
984 {
985 	struct cfdriver *cd = dev->dv_cfdriver;
986 	int i;
987 
988 	/* Unlink from device list. */
989 	TAILQ_REMOVE(&alldevs, dev, dv_list);
990 
991 	/* Remove from cfdriver's array. */
992 	cd->cd_devs[dev->dv_unit] = NULL;
993 
994 	/*
995 	 * If the device now has no units in use, deallocate its softc array.
996 	 */
997 	for (i = 0; i < cd->cd_ndevs; i++) {
998 		if (cd->cd_devs[i] != NULL)
999 			return;
1000 	}
1001 	/* nothing found; deallocate */
1002 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1003 	cd->cd_devs = NULL;
1004 	cd->cd_ndevs = 0;
1005 }
1006 
1007 static device_t
1008 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1009 {
1010 	struct cfdriver *cd;
1011 	struct cfattach *ca;
1012 	size_t lname, lunit;
1013 	const char *xunit;
1014 	int myunit;
1015 	char num[10];
1016 	device_t dev;
1017 	void *dev_private;
1018 	const struct cfiattrdata *ia;
1019 	device_lock_t dvl;
1020 
1021 	cd = config_cfdriver_lookup(cf->cf_name);
1022 	if (cd == NULL)
1023 		return NULL;
1024 
1025 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1026 	if (ca == NULL)
1027 		return NULL;
1028 
1029 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1030 	    ca->ca_devsize < sizeof(struct device))
1031 		panic("config_devalloc: %s", cf->cf_atname);
1032 
1033 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1034 	if (cf->cf_fstate == FSTATE_STAR) {
1035 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1036 			if (cd->cd_devs[myunit] == NULL)
1037 				break;
1038 		/*
1039 		 * myunit is now the unit of the first NULL device pointer,
1040 		 * or max(cd->cd_ndevs,cf->cf_unit).
1041 		 */
1042 	} else {
1043 		myunit = cf->cf_unit;
1044 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1045 			return NULL;
1046 	}
1047 #else
1048 	myunit = cf->cf_unit;
1049 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1050 
1051 	/* compute length of name and decimal expansion of unit number */
1052 	lname = strlen(cd->cd_name);
1053 	xunit = number(&num[sizeof(num)], myunit);
1054 	lunit = &num[sizeof(num)] - xunit;
1055 	if (lname + lunit > sizeof(dev->dv_xname))
1056 		panic("config_devalloc: device name too long");
1057 
1058 	/* get memory for all device vars */
1059 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1060 	if (ca->ca_devsize > 0) {
1061 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1062 		if (dev_private == NULL)
1063 			panic("config_devalloc: memory allocation for device softc failed");
1064 	} else {
1065 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1066 		dev_private = NULL;
1067 	}
1068 
1069 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1070 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1071 	} else {
1072 		dev = dev_private;
1073 	}
1074 	if (dev == NULL)
1075 		panic("config_devalloc: memory allocation for device_t failed");
1076 
1077 	dvl = device_getlock(dev);
1078 
1079 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1080 	cv_init(&dvl->dvl_cv, "pmfsusp");
1081 
1082 	dev->dv_class = cd->cd_class;
1083 	dev->dv_cfdata = cf;
1084 	dev->dv_cfdriver = cd;
1085 	dev->dv_cfattach = ca;
1086 	dev->dv_unit = myunit;
1087 	dev->dv_activity_count = 0;
1088 	dev->dv_activity_handlers = NULL;
1089 	dev->dv_private = dev_private;
1090 	memcpy(dev->dv_xname, cd->cd_name, lname);
1091 	memcpy(dev->dv_xname + lname, xunit, lunit);
1092 	dev->dv_parent = parent;
1093 	if (parent != NULL)
1094 		dev->dv_depth = parent->dv_depth + 1;
1095 	else
1096 		dev->dv_depth = 0;
1097 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1098 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1099 	if (locs) {
1100 		KASSERT(parent); /* no locators at root */
1101 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1102 				    parent->dv_cfdriver);
1103 		dev->dv_locators =
1104 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1105 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1106 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1107 	}
1108 	dev->dv_properties = prop_dictionary_create();
1109 	KASSERT(dev->dv_properties != NULL);
1110 
1111 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1112 	    "device-driver", dev->dv_cfdriver->cd_name);
1113 	prop_dictionary_set_uint16(dev->dv_properties,
1114 	    "device-unit", dev->dv_unit);
1115 
1116 	return dev;
1117 }
1118 
1119 static void
1120 config_devdealloc(device_t dev)
1121 {
1122 	device_lock_t dvl = device_getlock(dev);
1123 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1124 
1125 	cv_destroy(&dvl->dvl_cv);
1126 	mutex_destroy(&dvl->dvl_mtx);
1127 
1128 	KASSERT(dev->dv_properties != NULL);
1129 	prop_object_release(dev->dv_properties);
1130 
1131 	if (dev->dv_activity_handlers)
1132 		panic("config_devdealloc with registered handlers");
1133 
1134 	if (dev->dv_locators) {
1135 		size_t amount = *--dev->dv_locators;
1136 		kmem_free(dev->dv_locators, amount);
1137 	}
1138 
1139 	if (dev->dv_cfattach->ca_devsize > 0)
1140 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1141 	if (priv)
1142 		kmem_free(dev, sizeof(*dev));
1143 }
1144 
1145 /*
1146  * Attach a found device.
1147  */
1148 device_t
1149 config_attach_loc(device_t parent, cfdata_t cf,
1150 	const int *locs, void *aux, cfprint_t print)
1151 {
1152 	device_t dev;
1153 	struct cftable *ct;
1154 	const char *drvname;
1155 
1156 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1157 	if (splash_progress_state)
1158 		splash_progress_update(splash_progress_state);
1159 #endif
1160 
1161 	dev = config_devalloc(parent, cf, locs);
1162 	if (!dev)
1163 		panic("config_attach: allocation of device softc failed");
1164 
1165 	/* XXX redundant - see below? */
1166 	if (cf->cf_fstate != FSTATE_STAR) {
1167 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1168 		cf->cf_fstate = FSTATE_FOUND;
1169 	}
1170 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1171 	  else
1172 		cf->cf_unit++;
1173 #endif
1174 
1175 	config_devlink(dev);
1176 
1177 	if (config_do_twiddle && cold)
1178 		twiddle();
1179 	else
1180 		aprint_naive("Found ");
1181 	/*
1182 	 * We want the next two printfs for normal, verbose, and quiet,
1183 	 * but not silent (in which case, we're twiddling, instead).
1184 	 */
1185 	if (parent == ROOT) {
1186 		aprint_naive("%s (root)", device_xname(dev));
1187 		aprint_normal("%s (root)", device_xname(dev));
1188 	} else {
1189 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1190 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1191 		if (print)
1192 			(void) (*print)(aux, NULL);
1193 	}
1194 
1195 	/*
1196 	 * Before attaching, clobber any unfound devices that are
1197 	 * otherwise identical.
1198 	 * XXX code above is redundant?
1199 	 */
1200 	drvname = dev->dv_cfdriver->cd_name;
1201 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1202 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1203 			if (STREQ(cf->cf_name, drvname) &&
1204 			    cf->cf_unit == dev->dv_unit) {
1205 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1206 					cf->cf_fstate = FSTATE_FOUND;
1207 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1208 				/*
1209 				 * Bump the unit number on all starred cfdata
1210 				 * entries for this device.
1211 				 */
1212 				if (cf->cf_fstate == FSTATE_STAR)
1213 					cf->cf_unit++;
1214 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1215 			}
1216 		}
1217 	}
1218 #ifdef __HAVE_DEVICE_REGISTER
1219 	device_register(dev, aux);
1220 #endif
1221 
1222 	/* Let userland know */
1223 	devmon_report_device(dev, true);
1224 
1225 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1226 	if (splash_progress_state)
1227 		splash_progress_update(splash_progress_state);
1228 #endif
1229 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1230 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1231 	if (splash_progress_state)
1232 		splash_progress_update(splash_progress_state);
1233 #endif
1234 
1235 	if (!device_pmf_is_registered(dev))
1236 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1237 
1238 	config_process_deferred(&deferred_config_queue, dev);
1239 	return dev;
1240 }
1241 
1242 device_t
1243 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1244 {
1245 
1246 	return config_attach_loc(parent, cf, NULL, aux, print);
1247 }
1248 
1249 /*
1250  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1251  * way are silently inserted into the device tree, and their children
1252  * attached.
1253  *
1254  * Note that because pseudo-devices are attached silently, any information
1255  * the attach routine wishes to print should be prefixed with the device
1256  * name by the attach routine.
1257  */
1258 device_t
1259 config_attach_pseudo(cfdata_t cf)
1260 {
1261 	device_t dev;
1262 
1263 	dev = config_devalloc(ROOT, cf, NULL);
1264 	if (!dev)
1265 		return NULL;
1266 
1267 	/* XXX mark busy in cfdata */
1268 
1269 	if (cf->cf_fstate != FSTATE_STAR) {
1270 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1271 		cf->cf_fstate = FSTATE_FOUND;
1272 	}
1273 
1274 	config_devlink(dev);
1275 
1276 #if 0	/* XXXJRT not yet */
1277 #ifdef __HAVE_DEVICE_REGISTER
1278 	device_register(dev, NULL);	/* like a root node */
1279 #endif
1280 #endif
1281 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1282 	config_process_deferred(&deferred_config_queue, dev);
1283 	return dev;
1284 }
1285 
1286 /*
1287  * Detach a device.  Optionally forced (e.g. because of hardware
1288  * removal) and quiet.  Returns zero if successful, non-zero
1289  * (an error code) otherwise.
1290  *
1291  * Note that this code wants to be run from a process context, so
1292  * that the detach can sleep to allow processes which have a device
1293  * open to run and unwind their stacks.
1294  */
1295 int
1296 config_detach(device_t dev, int flags)
1297 {
1298 	struct cftable *ct;
1299 	cfdata_t cf;
1300 	const struct cfattach *ca;
1301 	struct cfdriver *cd;
1302 #ifdef DIAGNOSTIC
1303 	device_t d;
1304 #endif
1305 	int rv = 0;
1306 
1307 #ifdef DIAGNOSTIC
1308 	cf = dev->dv_cfdata;
1309 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1310 	    cf->cf_fstate != FSTATE_STAR)
1311 		panic("config_detach: %s: bad device fstate %d",
1312 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1313 #endif
1314 	cd = dev->dv_cfdriver;
1315 	KASSERT(cd != NULL);
1316 
1317 	ca = dev->dv_cfattach;
1318 	KASSERT(ca != NULL);
1319 
1320 	KASSERT(curlwp != NULL);
1321 	mutex_enter(&alldevs_mtx);
1322 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1323 		;
1324 	else while (alldevs_nread != 0 ||
1325 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1326 		cv_wait(&alldevs_cv, &alldevs_mtx);
1327 	if (alldevs_nwrite++ == 0)
1328 		alldevs_writer = curlwp;
1329 	mutex_exit(&alldevs_mtx);
1330 
1331 	/*
1332 	 * Ensure the device is deactivated.  If the device doesn't
1333 	 * have an activation entry point, we allow DVF_ACTIVE to
1334 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1335 	 * device is busy, and the detach fails.
1336 	 */
1337 	if (!detachall &&
1338 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1339 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1340 		rv = EOPNOTSUPP;
1341 	} else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
1342 		rv = 0;	/* Do not treat EOPNOTSUPP as an error */
1343 
1344 	/*
1345 	 * Try to detach the device.  If that's not possible, then
1346 	 * we either panic() (for the forced but failed case), or
1347 	 * return an error.
1348 	 */
1349 	if (rv == 0) {
1350 		if (ca->ca_detach != NULL)
1351 			rv = (*ca->ca_detach)(dev, flags);
1352 		else
1353 			rv = EOPNOTSUPP;
1354 	}
1355 	if (rv != 0) {
1356 		if ((flags & DETACH_FORCE) == 0)
1357 			goto out;
1358 		else
1359 			panic("config_detach: forced detach of %s failed (%d)",
1360 			    device_xname(dev), rv);
1361 	}
1362 
1363 	dev->dv_flags &= ~DVF_ACTIVE;
1364 
1365 	/*
1366 	 * The device has now been successfully detached.
1367 	 */
1368 
1369 	/* Let userland know */
1370 	devmon_report_device(dev, false);
1371 
1372 #ifdef DIAGNOSTIC
1373 	/*
1374 	 * Sanity: If you're successfully detached, you should have no
1375 	 * children.  (Note that because children must be attached
1376 	 * after parents, we only need to search the latter part of
1377 	 * the list.)
1378 	 */
1379 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1380 	    d = TAILQ_NEXT(d, dv_list)) {
1381 		if (d->dv_parent == dev) {
1382 			printf("config_detach: detached device %s"
1383 			    " has children %s\n", device_xname(dev), device_xname(d));
1384 			panic("config_detach");
1385 		}
1386 	}
1387 #endif
1388 
1389 	/* notify the parent that the child is gone */
1390 	if (dev->dv_parent) {
1391 		device_t p = dev->dv_parent;
1392 		if (p->dv_cfattach->ca_childdetached)
1393 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1394 	}
1395 
1396 	/*
1397 	 * Mark cfdata to show that the unit can be reused, if possible.
1398 	 */
1399 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1400 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1401 			if (STREQ(cf->cf_name, cd->cd_name)) {
1402 				if (cf->cf_fstate == FSTATE_FOUND &&
1403 				    cf->cf_unit == dev->dv_unit)
1404 					cf->cf_fstate = FSTATE_NOTFOUND;
1405 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1406 				/*
1407 				 * Note that we can only re-use a starred
1408 				 * unit number if the unit being detached
1409 				 * had the last assigned unit number.
1410 				 */
1411 				if (cf->cf_fstate == FSTATE_STAR &&
1412 				    cf->cf_unit == dev->dv_unit + 1)
1413 					cf->cf_unit--;
1414 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1415 			}
1416 		}
1417 	}
1418 
1419 	config_devunlink(dev);
1420 
1421 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1422 		aprint_normal_dev(dev, "detached\n");
1423 
1424 	config_devdealloc(dev);
1425 
1426 out:
1427 	mutex_enter(&alldevs_mtx);
1428 	KASSERT(alldevs_nwrite != 0);
1429 	if (--alldevs_nwrite == 0)
1430 		alldevs_writer = NULL;
1431 	cv_signal(&alldevs_cv);
1432 	mutex_exit(&alldevs_mtx);
1433 	return rv;
1434 }
1435 
1436 int
1437 config_detach_children(device_t parent, int flags)
1438 {
1439 	device_t dv;
1440 	deviter_t di;
1441 	int error = 0;
1442 
1443 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1444 	     dv = deviter_next(&di)) {
1445 		if (device_parent(dv) != parent)
1446 			continue;
1447 		if ((error = config_detach(dv, flags)) != 0)
1448 			break;
1449 	}
1450 	deviter_release(&di);
1451 	return error;
1452 }
1453 
1454 device_t
1455 shutdown_first(struct shutdown_state *s)
1456 {
1457 	if (!s->initialized) {
1458 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1459 		s->initialized = true;
1460 	}
1461 	return shutdown_next(s);
1462 }
1463 
1464 device_t
1465 shutdown_next(struct shutdown_state *s)
1466 {
1467 	device_t dv;
1468 
1469 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1470 		;
1471 
1472 	if (dv == NULL)
1473 		s->initialized = false;
1474 
1475 	return dv;
1476 }
1477 
1478 bool
1479 config_detach_all(int how)
1480 {
1481 	static struct shutdown_state s;
1482 	device_t curdev;
1483 	bool progress = false;
1484 
1485 	if ((how & RB_NOSYNC) != 0)
1486 		return false;
1487 
1488 	for (curdev = shutdown_first(&s); curdev != NULL;
1489 	     curdev = shutdown_next(&s)) {
1490 		aprint_debug(" detaching %s, ", device_xname(curdev));
1491 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1492 			progress = true;
1493 			aprint_debug("success.");
1494 		} else
1495 			aprint_debug("failed.");
1496 	}
1497 	return progress;
1498 }
1499 
1500 int
1501 config_deactivate(device_t dev)
1502 {
1503 	const struct cfattach *ca = dev->dv_cfattach;
1504 	int rv = 0, oflags = dev->dv_flags;
1505 
1506 	if (ca->ca_activate == NULL)
1507 		return EOPNOTSUPP;
1508 
1509 	if (dev->dv_flags & DVF_ACTIVE) {
1510 		dev->dv_flags &= ~DVF_ACTIVE;
1511 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1512 		if (rv)
1513 			dev->dv_flags = oflags;
1514 	}
1515 	return rv;
1516 }
1517 
1518 /*
1519  * Defer the configuration of the specified device until all
1520  * of its parent's devices have been attached.
1521  */
1522 void
1523 config_defer(device_t dev, void (*func)(device_t))
1524 {
1525 	struct deferred_config *dc;
1526 
1527 	if (dev->dv_parent == NULL)
1528 		panic("config_defer: can't defer config of a root device");
1529 
1530 #ifdef DIAGNOSTIC
1531 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1532 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1533 		if (dc->dc_dev == dev)
1534 			panic("config_defer: deferred twice");
1535 	}
1536 #endif
1537 
1538 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1539 	if (dc == NULL)
1540 		panic("config_defer: unable to allocate callback");
1541 
1542 	dc->dc_dev = dev;
1543 	dc->dc_func = func;
1544 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1545 	config_pending_incr();
1546 }
1547 
1548 /*
1549  * Defer some autoconfiguration for a device until after interrupts
1550  * are enabled.
1551  */
1552 void
1553 config_interrupts(device_t dev, void (*func)(device_t))
1554 {
1555 	struct deferred_config *dc;
1556 
1557 	/*
1558 	 * If interrupts are enabled, callback now.
1559 	 */
1560 	if (cold == 0) {
1561 		(*func)(dev);
1562 		return;
1563 	}
1564 
1565 #ifdef DIAGNOSTIC
1566 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1567 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1568 		if (dc->dc_dev == dev)
1569 			panic("config_interrupts: deferred twice");
1570 	}
1571 #endif
1572 
1573 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1574 	if (dc == NULL)
1575 		panic("config_interrupts: unable to allocate callback");
1576 
1577 	dc->dc_dev = dev;
1578 	dc->dc_func = func;
1579 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1580 	config_pending_incr();
1581 }
1582 
1583 /*
1584  * Process a deferred configuration queue.
1585  */
1586 static void
1587 config_process_deferred(struct deferred_config_head *queue,
1588     device_t parent)
1589 {
1590 	struct deferred_config *dc, *ndc;
1591 
1592 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1593 		ndc = TAILQ_NEXT(dc, dc_queue);
1594 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1595 			TAILQ_REMOVE(queue, dc, dc_queue);
1596 			(*dc->dc_func)(dc->dc_dev);
1597 			kmem_free(dc, sizeof(*dc));
1598 			config_pending_decr();
1599 		}
1600 	}
1601 }
1602 
1603 /*
1604  * Manipulate the config_pending semaphore.
1605  */
1606 void
1607 config_pending_incr(void)
1608 {
1609 
1610 	mutex_enter(&config_misc_lock);
1611 	config_pending++;
1612 	mutex_exit(&config_misc_lock);
1613 }
1614 
1615 void
1616 config_pending_decr(void)
1617 {
1618 
1619 #ifdef DIAGNOSTIC
1620 	if (config_pending == 0)
1621 		panic("config_pending_decr: config_pending == 0");
1622 #endif
1623 	mutex_enter(&config_misc_lock);
1624 	config_pending--;
1625 	if (config_pending == 0)
1626 		cv_broadcast(&config_misc_cv);
1627 	mutex_exit(&config_misc_lock);
1628 }
1629 
1630 /*
1631  * Register a "finalization" routine.  Finalization routines are
1632  * called iteratively once all real devices have been found during
1633  * autoconfiguration, for as long as any one finalizer has done
1634  * any work.
1635  */
1636 int
1637 config_finalize_register(device_t dev, int (*fn)(device_t))
1638 {
1639 	struct finalize_hook *f;
1640 
1641 	/*
1642 	 * If finalization has already been done, invoke the
1643 	 * callback function now.
1644 	 */
1645 	if (config_finalize_done) {
1646 		while ((*fn)(dev) != 0)
1647 			/* loop */ ;
1648 	}
1649 
1650 	/* Ensure this isn't already on the list. */
1651 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1652 		if (f->f_func == fn && f->f_dev == dev)
1653 			return EEXIST;
1654 	}
1655 
1656 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1657 	f->f_func = fn;
1658 	f->f_dev = dev;
1659 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1660 
1661 	return 0;
1662 }
1663 
1664 void
1665 config_finalize(void)
1666 {
1667 	struct finalize_hook *f;
1668 	struct pdevinit *pdev;
1669 	extern struct pdevinit pdevinit[];
1670 	int errcnt, rv;
1671 
1672 	/*
1673 	 * Now that device driver threads have been created, wait for
1674 	 * them to finish any deferred autoconfiguration.
1675 	 */
1676 	mutex_enter(&config_misc_lock);
1677 	while (config_pending != 0)
1678 		cv_wait(&config_misc_cv, &config_misc_lock);
1679 	mutex_exit(&config_misc_lock);
1680 
1681 	KERNEL_LOCK(1, NULL);
1682 
1683 	/* Attach pseudo-devices. */
1684 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1685 		(*pdev->pdev_attach)(pdev->pdev_count);
1686 
1687 	/* Run the hooks until none of them does any work. */
1688 	do {
1689 		rv = 0;
1690 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1691 			rv |= (*f->f_func)(f->f_dev);
1692 	} while (rv != 0);
1693 
1694 	config_finalize_done = 1;
1695 
1696 	/* Now free all the hooks. */
1697 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1698 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1699 		kmem_free(f, sizeof(*f));
1700 	}
1701 
1702 	KERNEL_UNLOCK_ONE(NULL);
1703 
1704 	errcnt = aprint_get_error_count();
1705 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1706 	    (boothowto & AB_VERBOSE) == 0) {
1707 		mutex_enter(&config_misc_lock);
1708 		if (config_do_twiddle) {
1709 			config_do_twiddle = 0;
1710 			printf_nolog(" done.\n");
1711 		}
1712 		mutex_exit(&config_misc_lock);
1713 		if (errcnt != 0) {
1714 			printf("WARNING: %d error%s while detecting hardware; "
1715 			    "check system log.\n", errcnt,
1716 			    errcnt == 1 ? "" : "s");
1717 		}
1718 	}
1719 }
1720 
1721 void
1722 config_twiddle_init()
1723 {
1724 
1725 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1726 		config_do_twiddle = 1;
1727 	}
1728 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1729 }
1730 
1731 void
1732 config_twiddle_fn(void *cookie)
1733 {
1734 
1735 	mutex_enter(&config_misc_lock);
1736 	if (config_do_twiddle) {
1737 		twiddle();
1738 		callout_schedule(&config_twiddle_ch, mstohz(100));
1739 	}
1740 	mutex_exit(&config_misc_lock);
1741 }
1742 
1743 /*
1744  * device_lookup:
1745  *
1746  *	Look up a device instance for a given driver.
1747  */
1748 device_t
1749 device_lookup(cfdriver_t cd, int unit)
1750 {
1751 
1752 	if (unit < 0 || unit >= cd->cd_ndevs)
1753 		return NULL;
1754 
1755 	return cd->cd_devs[unit];
1756 }
1757 
1758 /*
1759  * device_lookup:
1760  *
1761  *	Look up a device instance for a given driver.
1762  */
1763 void *
1764 device_lookup_private(cfdriver_t cd, int unit)
1765 {
1766 	device_t dv;
1767 
1768 	if (unit < 0 || unit >= cd->cd_ndevs)
1769 		return NULL;
1770 
1771 	if ((dv = cd->cd_devs[unit]) == NULL)
1772 		return NULL;
1773 
1774 	return dv->dv_private;
1775 }
1776 
1777 /*
1778  * Accessor functions for the device_t type.
1779  */
1780 devclass_t
1781 device_class(device_t dev)
1782 {
1783 
1784 	return dev->dv_class;
1785 }
1786 
1787 cfdata_t
1788 device_cfdata(device_t dev)
1789 {
1790 
1791 	return dev->dv_cfdata;
1792 }
1793 
1794 cfdriver_t
1795 device_cfdriver(device_t dev)
1796 {
1797 
1798 	return dev->dv_cfdriver;
1799 }
1800 
1801 cfattach_t
1802 device_cfattach(device_t dev)
1803 {
1804 
1805 	return dev->dv_cfattach;
1806 }
1807 
1808 int
1809 device_unit(device_t dev)
1810 {
1811 
1812 	return dev->dv_unit;
1813 }
1814 
1815 const char *
1816 device_xname(device_t dev)
1817 {
1818 
1819 	return dev->dv_xname;
1820 }
1821 
1822 device_t
1823 device_parent(device_t dev)
1824 {
1825 
1826 	return dev->dv_parent;
1827 }
1828 
1829 bool
1830 device_activation(device_t dev, devact_level_t level)
1831 {
1832 	int active_flags;
1833 
1834 	active_flags = DVF_ACTIVE;
1835 	switch (level) {
1836 	case DEVACT_LEVEL_FULL:
1837 		active_flags |= DVF_CLASS_SUSPENDED;
1838 		/*FALLTHROUGH*/
1839 	case DEVACT_LEVEL_DRIVER:
1840 		active_flags |= DVF_DRIVER_SUSPENDED;
1841 		/*FALLTHROUGH*/
1842 	case DEVACT_LEVEL_BUS:
1843 		active_flags |= DVF_BUS_SUSPENDED;
1844 		break;
1845 	}
1846 
1847 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1848 }
1849 
1850 bool
1851 device_is_active(device_t dev)
1852 {
1853 	int active_flags;
1854 
1855 	active_flags = DVF_ACTIVE;
1856 	active_flags |= DVF_CLASS_SUSPENDED;
1857 	active_flags |= DVF_DRIVER_SUSPENDED;
1858 	active_flags |= DVF_BUS_SUSPENDED;
1859 
1860 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1861 }
1862 
1863 bool
1864 device_is_enabled(device_t dev)
1865 {
1866 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1867 }
1868 
1869 bool
1870 device_has_power(device_t dev)
1871 {
1872 	int active_flags;
1873 
1874 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1875 
1876 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1877 }
1878 
1879 int
1880 device_locator(device_t dev, u_int locnum)
1881 {
1882 
1883 	KASSERT(dev->dv_locators != NULL);
1884 	return dev->dv_locators[locnum];
1885 }
1886 
1887 void *
1888 device_private(device_t dev)
1889 {
1890 
1891 	/*
1892 	 * The reason why device_private(NULL) is allowed is to simplify the
1893 	 * work of a lot of userspace request handlers (i.e., c/bdev
1894 	 * handlers) which grab cfdriver_t->cd_units[n].
1895 	 * It avoids having them test for it to be NULL and only then calling
1896 	 * device_private.
1897 	 */
1898 	return dev == NULL ? NULL : dev->dv_private;
1899 }
1900 
1901 prop_dictionary_t
1902 device_properties(device_t dev)
1903 {
1904 
1905 	return dev->dv_properties;
1906 }
1907 
1908 /*
1909  * device_is_a:
1910  *
1911  *	Returns true if the device is an instance of the specified
1912  *	driver.
1913  */
1914 bool
1915 device_is_a(device_t dev, const char *dname)
1916 {
1917 
1918 	return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
1919 }
1920 
1921 /*
1922  * device_find_by_xname:
1923  *
1924  *	Returns the device of the given name or NULL if it doesn't exist.
1925  */
1926 device_t
1927 device_find_by_xname(const char *name)
1928 {
1929 	device_t dv;
1930 	deviter_t di;
1931 
1932 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1933 		if (strcmp(device_xname(dv), name) == 0)
1934 			break;
1935 	}
1936 	deviter_release(&di);
1937 
1938 	return dv;
1939 }
1940 
1941 /*
1942  * device_find_by_driver_unit:
1943  *
1944  *	Returns the device of the given driver name and unit or
1945  *	NULL if it doesn't exist.
1946  */
1947 device_t
1948 device_find_by_driver_unit(const char *name, int unit)
1949 {
1950 	struct cfdriver *cd;
1951 
1952 	if ((cd = config_cfdriver_lookup(name)) == NULL)
1953 		return NULL;
1954 	return device_lookup(cd, unit);
1955 }
1956 
1957 /*
1958  * Power management related functions.
1959  */
1960 
1961 bool
1962 device_pmf_is_registered(device_t dev)
1963 {
1964 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
1965 }
1966 
1967 bool
1968 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
1969 {
1970 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
1971 		return true;
1972 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
1973 		return false;
1974 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
1975 	    dev->dv_driver_suspend != NULL &&
1976 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
1977 		return false;
1978 
1979 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
1980 	return true;
1981 }
1982 
1983 bool
1984 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
1985 {
1986 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1987 		return true;
1988 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1989 		return false;
1990 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
1991 	    dev->dv_driver_resume != NULL &&
1992 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
1993 		return false;
1994 
1995 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
1996 	return true;
1997 }
1998 
1999 bool
2000 device_pmf_driver_shutdown(device_t dev, int how)
2001 {
2002 
2003 	if (*dev->dv_driver_shutdown != NULL &&
2004 	    !(*dev->dv_driver_shutdown)(dev, how))
2005 		return false;
2006 	return true;
2007 }
2008 
2009 bool
2010 device_pmf_driver_register(device_t dev,
2011     bool (*suspend)(device_t PMF_FN_PROTO),
2012     bool (*resume)(device_t PMF_FN_PROTO),
2013     bool (*shutdown)(device_t, int))
2014 {
2015 	dev->dv_driver_suspend = suspend;
2016 	dev->dv_driver_resume = resume;
2017 	dev->dv_driver_shutdown = shutdown;
2018 	dev->dv_flags |= DVF_POWER_HANDLERS;
2019 	return true;
2020 }
2021 
2022 static const char *
2023 curlwp_name(void)
2024 {
2025 	if (curlwp->l_name != NULL)
2026 		return curlwp->l_name;
2027 	else
2028 		return curlwp->l_proc->p_comm;
2029 }
2030 
2031 void
2032 device_pmf_driver_deregister(device_t dev)
2033 {
2034 	device_lock_t dvl = device_getlock(dev);
2035 
2036 	dev->dv_driver_suspend = NULL;
2037 	dev->dv_driver_resume = NULL;
2038 
2039 	mutex_enter(&dvl->dvl_mtx);
2040 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2041 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2042 		/* Wake a thread that waits for the lock.  That
2043 		 * thread will fail to acquire the lock, and then
2044 		 * it will wake the next thread that waits for the
2045 		 * lock, or else it will wake us.
2046 		 */
2047 		cv_signal(&dvl->dvl_cv);
2048 		pmflock_debug(dev, __func__, __LINE__);
2049 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2050 		pmflock_debug(dev, __func__, __LINE__);
2051 	}
2052 	mutex_exit(&dvl->dvl_mtx);
2053 }
2054 
2055 bool
2056 device_pmf_driver_child_register(device_t dev)
2057 {
2058 	device_t parent = device_parent(dev);
2059 
2060 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2061 		return true;
2062 	return (*parent->dv_driver_child_register)(dev);
2063 }
2064 
2065 void
2066 device_pmf_driver_set_child_register(device_t dev,
2067     bool (*child_register)(device_t))
2068 {
2069 	dev->dv_driver_child_register = child_register;
2070 }
2071 
2072 static void
2073 pmflock_debug(device_t dev, const char *func, int line)
2074 {
2075 	device_lock_t dvl = device_getlock(dev);
2076 
2077 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2078 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2079 	    dev->dv_flags);
2080 }
2081 
2082 static bool
2083 device_pmf_lock1(device_t dev)
2084 {
2085 	device_lock_t dvl = device_getlock(dev);
2086 
2087 	while (device_pmf_is_registered(dev) &&
2088 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2089 		dvl->dvl_nwait++;
2090 		pmflock_debug(dev, __func__, __LINE__);
2091 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2092 		pmflock_debug(dev, __func__, __LINE__);
2093 		dvl->dvl_nwait--;
2094 	}
2095 	if (!device_pmf_is_registered(dev)) {
2096 		pmflock_debug(dev, __func__, __LINE__);
2097 		/* We could not acquire the lock, but some other thread may
2098 		 * wait for it, also.  Wake that thread.
2099 		 */
2100 		cv_signal(&dvl->dvl_cv);
2101 		return false;
2102 	}
2103 	dvl->dvl_nlock++;
2104 	dvl->dvl_holder = curlwp;
2105 	pmflock_debug(dev, __func__, __LINE__);
2106 	return true;
2107 }
2108 
2109 bool
2110 device_pmf_lock(device_t dev)
2111 {
2112 	bool rc;
2113 	device_lock_t dvl = device_getlock(dev);
2114 
2115 	mutex_enter(&dvl->dvl_mtx);
2116 	rc = device_pmf_lock1(dev);
2117 	mutex_exit(&dvl->dvl_mtx);
2118 
2119 	return rc;
2120 }
2121 
2122 void
2123 device_pmf_unlock(device_t dev)
2124 {
2125 	device_lock_t dvl = device_getlock(dev);
2126 
2127 	KASSERT(dvl->dvl_nlock > 0);
2128 	mutex_enter(&dvl->dvl_mtx);
2129 	if (--dvl->dvl_nlock == 0)
2130 		dvl->dvl_holder = NULL;
2131 	cv_signal(&dvl->dvl_cv);
2132 	pmflock_debug(dev, __func__, __LINE__);
2133 	mutex_exit(&dvl->dvl_mtx);
2134 }
2135 
2136 device_lock_t
2137 device_getlock(device_t dev)
2138 {
2139 	return &dev->dv_lock;
2140 }
2141 
2142 void *
2143 device_pmf_bus_private(device_t dev)
2144 {
2145 	return dev->dv_bus_private;
2146 }
2147 
2148 bool
2149 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2150 {
2151 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2152 		return true;
2153 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2154 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2155 		return false;
2156 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
2157 	    dev->dv_bus_suspend != NULL &&
2158 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2159 		return false;
2160 
2161 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2162 	return true;
2163 }
2164 
2165 bool
2166 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2167 {
2168 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2169 		return true;
2170 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
2171 	    dev->dv_bus_resume != NULL &&
2172 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2173 		return false;
2174 
2175 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2176 	return true;
2177 }
2178 
2179 bool
2180 device_pmf_bus_shutdown(device_t dev, int how)
2181 {
2182 
2183 	if (*dev->dv_bus_shutdown != NULL &&
2184 	    !(*dev->dv_bus_shutdown)(dev, how))
2185 		return false;
2186 	return true;
2187 }
2188 
2189 void
2190 device_pmf_bus_register(device_t dev, void *priv,
2191     bool (*suspend)(device_t PMF_FN_PROTO),
2192     bool (*resume)(device_t PMF_FN_PROTO),
2193     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2194 {
2195 	dev->dv_bus_private = priv;
2196 	dev->dv_bus_resume = resume;
2197 	dev->dv_bus_suspend = suspend;
2198 	dev->dv_bus_shutdown = shutdown;
2199 	dev->dv_bus_deregister = deregister;
2200 }
2201 
2202 void
2203 device_pmf_bus_deregister(device_t dev)
2204 {
2205 	if (dev->dv_bus_deregister == NULL)
2206 		return;
2207 	(*dev->dv_bus_deregister)(dev);
2208 	dev->dv_bus_private = NULL;
2209 	dev->dv_bus_suspend = NULL;
2210 	dev->dv_bus_resume = NULL;
2211 	dev->dv_bus_deregister = NULL;
2212 }
2213 
2214 void *
2215 device_pmf_class_private(device_t dev)
2216 {
2217 	return dev->dv_class_private;
2218 }
2219 
2220 bool
2221 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2222 {
2223 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2224 		return true;
2225 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
2226 	    dev->dv_class_suspend != NULL &&
2227 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2228 		return false;
2229 
2230 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2231 	return true;
2232 }
2233 
2234 bool
2235 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2236 {
2237 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2238 		return true;
2239 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2240 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2241 		return false;
2242 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
2243 	    dev->dv_class_resume != NULL &&
2244 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2245 		return false;
2246 
2247 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2248 	return true;
2249 }
2250 
2251 void
2252 device_pmf_class_register(device_t dev, void *priv,
2253     bool (*suspend)(device_t PMF_FN_PROTO),
2254     bool (*resume)(device_t PMF_FN_PROTO),
2255     void (*deregister)(device_t))
2256 {
2257 	dev->dv_class_private = priv;
2258 	dev->dv_class_suspend = suspend;
2259 	dev->dv_class_resume = resume;
2260 	dev->dv_class_deregister = deregister;
2261 }
2262 
2263 void
2264 device_pmf_class_deregister(device_t dev)
2265 {
2266 	if (dev->dv_class_deregister == NULL)
2267 		return;
2268 	(*dev->dv_class_deregister)(dev);
2269 	dev->dv_class_private = NULL;
2270 	dev->dv_class_suspend = NULL;
2271 	dev->dv_class_resume = NULL;
2272 	dev->dv_class_deregister = NULL;
2273 }
2274 
2275 bool
2276 device_active(device_t dev, devactive_t type)
2277 {
2278 	size_t i;
2279 
2280 	if (dev->dv_activity_count == 0)
2281 		return false;
2282 
2283 	for (i = 0; i < dev->dv_activity_count; ++i) {
2284 		if (dev->dv_activity_handlers[i] == NULL)
2285 			break;
2286 		(*dev->dv_activity_handlers[i])(dev, type);
2287 	}
2288 
2289 	return true;
2290 }
2291 
2292 bool
2293 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2294 {
2295 	void (**new_handlers)(device_t, devactive_t);
2296 	void (**old_handlers)(device_t, devactive_t);
2297 	size_t i, old_size, new_size;
2298 	int s;
2299 
2300 	old_handlers = dev->dv_activity_handlers;
2301 	old_size = dev->dv_activity_count;
2302 
2303 	for (i = 0; i < old_size; ++i) {
2304 		KASSERT(old_handlers[i] != handler);
2305 		if (old_handlers[i] == NULL) {
2306 			old_handlers[i] = handler;
2307 			return true;
2308 		}
2309 	}
2310 
2311 	new_size = old_size + 4;
2312 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2313 
2314 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2315 	new_handlers[old_size] = handler;
2316 	memset(new_handlers + old_size + 1, 0,
2317 	    sizeof(int [new_size - (old_size+1)]));
2318 
2319 	s = splhigh();
2320 	dev->dv_activity_count = new_size;
2321 	dev->dv_activity_handlers = new_handlers;
2322 	splx(s);
2323 
2324 	if (old_handlers != NULL)
2325 		kmem_free(old_handlers, sizeof(void * [old_size]));
2326 
2327 	return true;
2328 }
2329 
2330 void
2331 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2332 {
2333 	void (**old_handlers)(device_t, devactive_t);
2334 	size_t i, old_size;
2335 	int s;
2336 
2337 	old_handlers = dev->dv_activity_handlers;
2338 	old_size = dev->dv_activity_count;
2339 
2340 	for (i = 0; i < old_size; ++i) {
2341 		if (old_handlers[i] == handler)
2342 			break;
2343 		if (old_handlers[i] == NULL)
2344 			return; /* XXX panic? */
2345 	}
2346 
2347 	if (i == old_size)
2348 		return; /* XXX panic? */
2349 
2350 	for (; i < old_size - 1; ++i) {
2351 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2352 			continue;
2353 
2354 		if (i == 0) {
2355 			s = splhigh();
2356 			dev->dv_activity_count = 0;
2357 			dev->dv_activity_handlers = NULL;
2358 			splx(s);
2359 			kmem_free(old_handlers, sizeof(void *[old_size]));
2360 		}
2361 		return;
2362 	}
2363 	old_handlers[i] = NULL;
2364 }
2365 
2366 /*
2367  * Device Iteration
2368  *
2369  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2370  *     each device_t's in the device tree.
2371  *
2372  * deviter_init(di, flags): initialize the device iterator `di'
2373  *     to "walk" the device tree.  deviter_next(di) will return
2374  *     the first device_t in the device tree, or NULL if there are
2375  *     no devices.
2376  *
2377  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2378  *     caller intends to modify the device tree by calling
2379  *     config_detach(9) on devices in the order that the iterator
2380  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2381  *     nearest the "root" of the device tree to be returned, first;
2382  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2383  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2384  *     indicating both that deviter_init() should not respect any
2385  *     locks on the device tree, and that deviter_next(di) may run
2386  *     in more than one LWP before the walk has finished.
2387  *
2388  *     Only one DEVITER_F_RW iterator may be in the device tree at
2389  *     once.
2390  *
2391  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2392  *
2393  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2394  *     DEVITER_F_LEAVES_FIRST are used in combination.
2395  *
2396  * deviter_first(di, flags): initialize the device iterator `di'
2397  *     and return the first device_t in the device tree, or NULL
2398  *     if there are no devices.  The statement
2399  *
2400  *         dv = deviter_first(di);
2401  *
2402  *     is shorthand for
2403  *
2404  *         deviter_init(di);
2405  *         dv = deviter_next(di);
2406  *
2407  * deviter_next(di): return the next device_t in the device tree,
2408  *     or NULL if there are no more devices.  deviter_next(di)
2409  *     is undefined if `di' was not initialized with deviter_init() or
2410  *     deviter_first().
2411  *
2412  * deviter_release(di): stops iteration (subsequent calls to
2413  *     deviter_next() will return NULL), releases any locks and
2414  *     resources held by the device iterator.
2415  *
2416  * Device iteration does not return device_t's in any particular
2417  * order.  An iterator will never return the same device_t twice.
2418  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2419  * is called repeatedly on the same `di', it will eventually return
2420  * NULL.  It is ok to attach/detach devices during device iteration.
2421  */
2422 void
2423 deviter_init(deviter_t *di, deviter_flags_t flags)
2424 {
2425 	device_t dv;
2426 	bool rw;
2427 
2428 	mutex_enter(&alldevs_mtx);
2429 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2430 		flags |= DEVITER_F_RW;
2431 		alldevs_nwrite++;
2432 		alldevs_writer = NULL;
2433 		alldevs_nread = 0;
2434 	} else {
2435 		rw = (flags & DEVITER_F_RW) != 0;
2436 
2437 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2438 			;
2439 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2440 		       (rw && alldevs_nread != 0))
2441 			cv_wait(&alldevs_cv, &alldevs_mtx);
2442 
2443 		if (rw) {
2444 			if (alldevs_nwrite++ == 0)
2445 				alldevs_writer = curlwp;
2446 		} else
2447 			alldevs_nread++;
2448 	}
2449 	mutex_exit(&alldevs_mtx);
2450 
2451 	memset(di, 0, sizeof(*di));
2452 
2453 	di->di_flags = flags;
2454 
2455 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2456 	case DEVITER_F_LEAVES_FIRST:
2457 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2458 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2459 		break;
2460 	case DEVITER_F_ROOT_FIRST:
2461 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2462 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2463 		break;
2464 	default:
2465 		break;
2466 	}
2467 
2468 	deviter_reinit(di);
2469 }
2470 
2471 static void
2472 deviter_reinit(deviter_t *di)
2473 {
2474 	if ((di->di_flags & DEVITER_F_RW) != 0)
2475 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2476 	else
2477 		di->di_prev = TAILQ_FIRST(&alldevs);
2478 }
2479 
2480 device_t
2481 deviter_first(deviter_t *di, deviter_flags_t flags)
2482 {
2483 	deviter_init(di, flags);
2484 	return deviter_next(di);
2485 }
2486 
2487 static device_t
2488 deviter_next1(deviter_t *di)
2489 {
2490 	device_t dv;
2491 
2492 	dv = di->di_prev;
2493 
2494 	if (dv == NULL)
2495 		;
2496 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2497 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2498 	else
2499 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2500 
2501 	return dv;
2502 }
2503 
2504 device_t
2505 deviter_next(deviter_t *di)
2506 {
2507 	device_t dv = NULL;
2508 
2509 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2510 	case 0:
2511 		return deviter_next1(di);
2512 	case DEVITER_F_LEAVES_FIRST:
2513 		while (di->di_curdepth >= 0) {
2514 			if ((dv = deviter_next1(di)) == NULL) {
2515 				di->di_curdepth--;
2516 				deviter_reinit(di);
2517 			} else if (dv->dv_depth == di->di_curdepth)
2518 				break;
2519 		}
2520 		return dv;
2521 	case DEVITER_F_ROOT_FIRST:
2522 		while (di->di_curdepth <= di->di_maxdepth) {
2523 			if ((dv = deviter_next1(di)) == NULL) {
2524 				di->di_curdepth++;
2525 				deviter_reinit(di);
2526 			} else if (dv->dv_depth == di->di_curdepth)
2527 				break;
2528 		}
2529 		return dv;
2530 	default:
2531 		return NULL;
2532 	}
2533 }
2534 
2535 void
2536 deviter_release(deviter_t *di)
2537 {
2538 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2539 
2540 	mutex_enter(&alldevs_mtx);
2541 	if (!rw) {
2542 		--alldevs_nread;
2543 		cv_signal(&alldevs_cv);
2544 	} else if (alldevs_nwrite > 0 && alldevs_writer == NULL) {
2545 		--alldevs_nwrite;	/* shutting down: do not signal */
2546 	} else {
2547 		KASSERT(alldevs_nwrite != 0);
2548 		if (--alldevs_nwrite == 0)
2549 			alldevs_writer = NULL;
2550 		cv_signal(&alldevs_cv);
2551 	}
2552 	mutex_exit(&alldevs_mtx);
2553 }
2554 
2555 static void
2556 sysctl_detach_setup(struct sysctllog **clog)
2557 {
2558 	const struct sysctlnode *node = NULL;
2559 
2560 	sysctl_createv(clog, 0, NULL, &node,
2561 		CTLFLAG_PERMANENT,
2562 		CTLTYPE_NODE, "kern", NULL,
2563 		NULL, 0, NULL, 0,
2564 		CTL_KERN, CTL_EOL);
2565 
2566 	if (node == NULL)
2567 		return;
2568 
2569 	sysctl_createv(clog, 0, &node, NULL,
2570 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2571 		CTLTYPE_INT, "detachall",
2572 		SYSCTL_DESCR("Detach all devices at shutdown"),
2573 		NULL, 0, &detachall, 0,
2574 		CTL_CREATE, CTL_EOL);
2575 }
2576