1 /* $NetBSD: subr_autoconf.c,v 1.289 2021/08/07 16:19:18 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.289 2021/08/07 16:19:18 thorpej Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 #include <sys/stdarg.h> 111 112 #include <sys/disk.h> 113 114 #include <sys/rndsource.h> 115 116 #include <machine/limits.h> 117 118 /* 119 * Autoconfiguration subroutines. 120 */ 121 122 /* 123 * Device autoconfiguration timings are mixed into the entropy pool. 124 */ 125 static krndsource_t rnd_autoconf_source; 126 127 /* 128 * ioconf.c exports exactly two names: cfdata and cfroots. All system 129 * devices and drivers are found via these tables. 130 */ 131 extern struct cfdata cfdata[]; 132 extern const short cfroots[]; 133 134 /* 135 * List of all cfdriver structures. We use this to detect duplicates 136 * when other cfdrivers are loaded. 137 */ 138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 139 extern struct cfdriver * const cfdriver_list_initial[]; 140 141 /* 142 * Initial list of cfattach's. 143 */ 144 extern const struct cfattachinit cfattachinit[]; 145 146 /* 147 * List of cfdata tables. We always have one such list -- the one 148 * built statically when the kernel was configured. 149 */ 150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 151 static struct cftable initcftable; 152 153 #define ROOT ((device_t)NULL) 154 155 struct matchinfo { 156 cfsubmatch_t fn; 157 device_t parent; 158 const int *locs; 159 void *aux; 160 struct cfdata *match; 161 int pri; 162 }; 163 164 struct alldevs_foray { 165 int af_s; 166 struct devicelist af_garbage; 167 }; 168 169 /* 170 * Internal version of the cfargs structure; all versions are 171 * canonicalized to this. 172 */ 173 struct cfargs_internal { 174 union { 175 cfsubmatch_t submatch;/* submatch function (direct config) */ 176 cfsearch_t search; /* search function (indirect config) */ 177 }; 178 const char * iattr; /* interface attribute */ 179 const int * locators; /* locators array */ 180 devhandle_t devhandle; /* devhandle_t (by value) */ 181 }; 182 183 static char *number(char *, int); 184 static void mapply(struct matchinfo *, cfdata_t); 185 static void config_devdelete(device_t); 186 static void config_devunlink(device_t, struct devicelist *); 187 static void config_makeroom(int, struct cfdriver *); 188 static void config_devlink(device_t); 189 static void config_alldevs_enter(struct alldevs_foray *); 190 static void config_alldevs_exit(struct alldevs_foray *); 191 static void config_add_attrib_dict(device_t); 192 static device_t config_attach_internal(device_t, cfdata_t, void *, 193 cfprint_t, const struct cfargs_internal *); 194 195 static void config_collect_garbage(struct devicelist *); 196 static void config_dump_garbage(struct devicelist *); 197 198 static void pmflock_debug(device_t, const char *, int); 199 200 static device_t deviter_next1(deviter_t *); 201 static void deviter_reinit(deviter_t *); 202 203 struct deferred_config { 204 TAILQ_ENTRY(deferred_config) dc_queue; 205 device_t dc_dev; 206 void (*dc_func)(device_t); 207 }; 208 209 TAILQ_HEAD(deferred_config_head, deferred_config); 210 211 static struct deferred_config_head deferred_config_queue = 212 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 213 static struct deferred_config_head interrupt_config_queue = 214 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 215 static int interrupt_config_threads = 8; 216 static struct deferred_config_head mountroot_config_queue = 217 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 218 static int mountroot_config_threads = 2; 219 static lwp_t **mountroot_config_lwpids; 220 static size_t mountroot_config_lwpids_size; 221 bool root_is_mounted = false; 222 223 static void config_process_deferred(struct deferred_config_head *, device_t); 224 225 /* Hooks to finalize configuration once all real devices have been found. */ 226 struct finalize_hook { 227 TAILQ_ENTRY(finalize_hook) f_list; 228 int (*f_func)(device_t); 229 device_t f_dev; 230 }; 231 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 232 TAILQ_HEAD_INITIALIZER(config_finalize_list); 233 static int config_finalize_done; 234 235 /* list of all devices */ 236 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 237 static kmutex_t alldevs_lock __cacheline_aligned; 238 static devgen_t alldevs_gen = 1; 239 static int alldevs_nread = 0; 240 static int alldevs_nwrite = 0; 241 static bool alldevs_garbage = false; 242 243 static struct devicelist config_pending = 244 TAILQ_HEAD_INITIALIZER(config_pending); 245 static kmutex_t config_misc_lock; 246 static kcondvar_t config_misc_cv; 247 248 static bool detachall = false; 249 250 #define STREQ(s1, s2) \ 251 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 252 253 static bool config_initialized = false; /* config_init() has been called. */ 254 255 static int config_do_twiddle; 256 static callout_t config_twiddle_ch; 257 258 static void sysctl_detach_setup(struct sysctllog **); 259 260 int no_devmon_insert(const char *, prop_dictionary_t); 261 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 262 263 typedef int (*cfdriver_fn)(struct cfdriver *); 264 static int 265 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 266 cfdriver_fn drv_do, cfdriver_fn drv_undo, 267 const char *style, bool dopanic) 268 { 269 void (*pr)(const char *, ...) __printflike(1, 2) = 270 dopanic ? panic : printf; 271 int i, error = 0, e2 __diagused; 272 273 for (i = 0; cfdriverv[i] != NULL; i++) { 274 if ((error = drv_do(cfdriverv[i])) != 0) { 275 pr("configure: `%s' driver %s failed: %d", 276 cfdriverv[i]->cd_name, style, error); 277 goto bad; 278 } 279 } 280 281 KASSERT(error == 0); 282 return 0; 283 284 bad: 285 printf("\n"); 286 for (i--; i >= 0; i--) { 287 e2 = drv_undo(cfdriverv[i]); 288 KASSERT(e2 == 0); 289 } 290 291 return error; 292 } 293 294 typedef int (*cfattach_fn)(const char *, struct cfattach *); 295 static int 296 frob_cfattachvec(const struct cfattachinit *cfattachv, 297 cfattach_fn att_do, cfattach_fn att_undo, 298 const char *style, bool dopanic) 299 { 300 const struct cfattachinit *cfai = NULL; 301 void (*pr)(const char *, ...) __printflike(1, 2) = 302 dopanic ? panic : printf; 303 int j = 0, error = 0, e2 __diagused; 304 305 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 306 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 307 if ((error = att_do(cfai->cfai_name, 308 cfai->cfai_list[j])) != 0) { 309 pr("configure: attachment `%s' " 310 "of `%s' driver %s failed: %d", 311 cfai->cfai_list[j]->ca_name, 312 cfai->cfai_name, style, error); 313 goto bad; 314 } 315 } 316 } 317 318 KASSERT(error == 0); 319 return 0; 320 321 bad: 322 /* 323 * Rollback in reverse order. dunno if super-important, but 324 * do that anyway. Although the code looks a little like 325 * someone did a little integration (in the math sense). 326 */ 327 printf("\n"); 328 if (cfai) { 329 bool last; 330 331 for (last = false; last == false; ) { 332 if (cfai == &cfattachv[0]) 333 last = true; 334 for (j--; j >= 0; j--) { 335 e2 = att_undo(cfai->cfai_name, 336 cfai->cfai_list[j]); 337 KASSERT(e2 == 0); 338 } 339 if (!last) { 340 cfai--; 341 for (j = 0; cfai->cfai_list[j] != NULL; j++) 342 ; 343 } 344 } 345 } 346 347 return error; 348 } 349 350 /* 351 * Initialize the autoconfiguration data structures. Normally this 352 * is done by configure(), but some platforms need to do this very 353 * early (to e.g. initialize the console). 354 */ 355 void 356 config_init(void) 357 { 358 359 KASSERT(config_initialized == false); 360 361 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM); 362 363 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 364 cv_init(&config_misc_cv, "cfgmisc"); 365 366 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 367 368 frob_cfdrivervec(cfdriver_list_initial, 369 config_cfdriver_attach, NULL, "bootstrap", true); 370 frob_cfattachvec(cfattachinit, 371 config_cfattach_attach, NULL, "bootstrap", true); 372 373 initcftable.ct_cfdata = cfdata; 374 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 375 376 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN, 377 RND_FLAG_COLLECT_TIME); 378 379 config_initialized = true; 380 } 381 382 /* 383 * Init or fini drivers and attachments. Either all or none 384 * are processed (via rollback). It would be nice if this were 385 * atomic to outside consumers, but with the current state of 386 * locking ... 387 */ 388 int 389 config_init_component(struct cfdriver * const *cfdriverv, 390 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 391 { 392 int error; 393 394 KERNEL_LOCK(1, NULL); 395 396 if ((error = frob_cfdrivervec(cfdriverv, 397 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 398 goto out; 399 if ((error = frob_cfattachvec(cfattachv, 400 config_cfattach_attach, config_cfattach_detach, 401 "init", false)) != 0) { 402 frob_cfdrivervec(cfdriverv, 403 config_cfdriver_detach, NULL, "init rollback", true); 404 goto out; 405 } 406 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 407 frob_cfattachvec(cfattachv, 408 config_cfattach_detach, NULL, "init rollback", true); 409 frob_cfdrivervec(cfdriverv, 410 config_cfdriver_detach, NULL, "init rollback", true); 411 goto out; 412 } 413 414 /* Success! */ 415 error = 0; 416 417 out: KERNEL_UNLOCK_ONE(NULL); 418 return error; 419 } 420 421 int 422 config_fini_component(struct cfdriver * const *cfdriverv, 423 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 424 { 425 int error; 426 427 KERNEL_LOCK(1, NULL); 428 429 if ((error = config_cfdata_detach(cfdatav)) != 0) 430 goto out; 431 if ((error = frob_cfattachvec(cfattachv, 432 config_cfattach_detach, config_cfattach_attach, 433 "fini", false)) != 0) { 434 if (config_cfdata_attach(cfdatav, 0) != 0) 435 panic("config_cfdata fini rollback failed"); 436 goto out; 437 } 438 if ((error = frob_cfdrivervec(cfdriverv, 439 config_cfdriver_detach, config_cfdriver_attach, 440 "fini", false)) != 0) { 441 frob_cfattachvec(cfattachv, 442 config_cfattach_attach, NULL, "fini rollback", true); 443 if (config_cfdata_attach(cfdatav, 0) != 0) 444 panic("config_cfdata fini rollback failed"); 445 goto out; 446 } 447 448 /* Success! */ 449 error = 0; 450 451 out: KERNEL_UNLOCK_ONE(NULL); 452 return error; 453 } 454 455 void 456 config_init_mi(void) 457 { 458 459 if (!config_initialized) 460 config_init(); 461 462 sysctl_detach_setup(NULL); 463 } 464 465 void 466 config_deferred(device_t dev) 467 { 468 469 KASSERT(KERNEL_LOCKED_P()); 470 471 config_process_deferred(&deferred_config_queue, dev); 472 config_process_deferred(&interrupt_config_queue, dev); 473 config_process_deferred(&mountroot_config_queue, dev); 474 } 475 476 static void 477 config_interrupts_thread(void *cookie) 478 { 479 struct deferred_config *dc; 480 device_t dev; 481 482 mutex_enter(&config_misc_lock); 483 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 484 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 485 mutex_exit(&config_misc_lock); 486 487 dev = dc->dc_dev; 488 (*dc->dc_func)(dev); 489 if (!device_pmf_is_registered(dev)) 490 aprint_debug_dev(dev, 491 "WARNING: power management not supported\n"); 492 config_pending_decr(dev); 493 kmem_free(dc, sizeof(*dc)); 494 495 mutex_enter(&config_misc_lock); 496 } 497 mutex_exit(&config_misc_lock); 498 499 kthread_exit(0); 500 } 501 502 void 503 config_create_interruptthreads(void) 504 { 505 int i; 506 507 for (i = 0; i < interrupt_config_threads; i++) { 508 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL, 509 config_interrupts_thread, NULL, NULL, "configintr"); 510 } 511 } 512 513 static void 514 config_mountroot_thread(void *cookie) 515 { 516 struct deferred_config *dc; 517 518 mutex_enter(&config_misc_lock); 519 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 520 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 521 mutex_exit(&config_misc_lock); 522 523 (*dc->dc_func)(dc->dc_dev); 524 kmem_free(dc, sizeof(*dc)); 525 526 mutex_enter(&config_misc_lock); 527 } 528 mutex_exit(&config_misc_lock); 529 530 kthread_exit(0); 531 } 532 533 void 534 config_create_mountrootthreads(void) 535 { 536 int i; 537 538 if (!root_is_mounted) 539 root_is_mounted = true; 540 541 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 542 mountroot_config_threads; 543 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 544 KM_NOSLEEP); 545 KASSERT(mountroot_config_lwpids); 546 for (i = 0; i < mountroot_config_threads; i++) { 547 mountroot_config_lwpids[i] = 0; 548 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */, 549 NULL, config_mountroot_thread, NULL, 550 &mountroot_config_lwpids[i], 551 "configroot"); 552 } 553 } 554 555 void 556 config_finalize_mountroot(void) 557 { 558 int i, error; 559 560 for (i = 0; i < mountroot_config_threads; i++) { 561 if (mountroot_config_lwpids[i] == 0) 562 continue; 563 564 error = kthread_join(mountroot_config_lwpids[i]); 565 if (error) 566 printf("%s: thread %x joined with error %d\n", 567 __func__, i, error); 568 } 569 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 570 } 571 572 /* 573 * Announce device attach/detach to userland listeners. 574 */ 575 576 int 577 no_devmon_insert(const char *name, prop_dictionary_t p) 578 { 579 580 return ENODEV; 581 } 582 583 static void 584 devmon_report_device(device_t dev, bool isattach) 585 { 586 prop_dictionary_t ev, dict = device_properties(dev); 587 const char *parent; 588 const char *what; 589 const char *where; 590 device_t pdev = device_parent(dev); 591 592 /* If currently no drvctl device, just return */ 593 if (devmon_insert_vec == no_devmon_insert) 594 return; 595 596 ev = prop_dictionary_create(); 597 if (ev == NULL) 598 return; 599 600 what = (isattach ? "device-attach" : "device-detach"); 601 parent = (pdev == NULL ? "root" : device_xname(pdev)); 602 if (prop_dictionary_get_string(dict, "location", &where)) { 603 prop_dictionary_set_string(ev, "location", where); 604 aprint_debug("ev: %s %s at %s in [%s]\n", 605 what, device_xname(dev), parent, where); 606 } 607 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) || 608 !prop_dictionary_set_string(ev, "parent", parent)) { 609 prop_object_release(ev); 610 return; 611 } 612 613 if ((*devmon_insert_vec)(what, ev) != 0) 614 prop_object_release(ev); 615 } 616 617 /* 618 * Add a cfdriver to the system. 619 */ 620 int 621 config_cfdriver_attach(struct cfdriver *cd) 622 { 623 struct cfdriver *lcd; 624 625 /* Make sure this driver isn't already in the system. */ 626 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 627 if (STREQ(lcd->cd_name, cd->cd_name)) 628 return EEXIST; 629 } 630 631 LIST_INIT(&cd->cd_attach); 632 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 633 634 return 0; 635 } 636 637 /* 638 * Remove a cfdriver from the system. 639 */ 640 int 641 config_cfdriver_detach(struct cfdriver *cd) 642 { 643 struct alldevs_foray af; 644 int i, rc = 0; 645 646 config_alldevs_enter(&af); 647 /* Make sure there are no active instances. */ 648 for (i = 0; i < cd->cd_ndevs; i++) { 649 if (cd->cd_devs[i] != NULL) { 650 rc = EBUSY; 651 break; 652 } 653 } 654 config_alldevs_exit(&af); 655 656 if (rc != 0) 657 return rc; 658 659 /* ...and no attachments loaded. */ 660 if (LIST_EMPTY(&cd->cd_attach) == 0) 661 return EBUSY; 662 663 LIST_REMOVE(cd, cd_list); 664 665 KASSERT(cd->cd_devs == NULL); 666 667 return 0; 668 } 669 670 /* 671 * Look up a cfdriver by name. 672 */ 673 struct cfdriver * 674 config_cfdriver_lookup(const char *name) 675 { 676 struct cfdriver *cd; 677 678 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 679 if (STREQ(cd->cd_name, name)) 680 return cd; 681 } 682 683 return NULL; 684 } 685 686 /* 687 * Add a cfattach to the specified driver. 688 */ 689 int 690 config_cfattach_attach(const char *driver, struct cfattach *ca) 691 { 692 struct cfattach *lca; 693 struct cfdriver *cd; 694 695 cd = config_cfdriver_lookup(driver); 696 if (cd == NULL) 697 return ESRCH; 698 699 /* Make sure this attachment isn't already on this driver. */ 700 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 701 if (STREQ(lca->ca_name, ca->ca_name)) 702 return EEXIST; 703 } 704 705 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 706 707 return 0; 708 } 709 710 /* 711 * Remove a cfattach from the specified driver. 712 */ 713 int 714 config_cfattach_detach(const char *driver, struct cfattach *ca) 715 { 716 struct alldevs_foray af; 717 struct cfdriver *cd; 718 device_t dev; 719 int i, rc = 0; 720 721 cd = config_cfdriver_lookup(driver); 722 if (cd == NULL) 723 return ESRCH; 724 725 config_alldevs_enter(&af); 726 /* Make sure there are no active instances. */ 727 for (i = 0; i < cd->cd_ndevs; i++) { 728 if ((dev = cd->cd_devs[i]) == NULL) 729 continue; 730 if (dev->dv_cfattach == ca) { 731 rc = EBUSY; 732 break; 733 } 734 } 735 config_alldevs_exit(&af); 736 737 if (rc != 0) 738 return rc; 739 740 LIST_REMOVE(ca, ca_list); 741 742 return 0; 743 } 744 745 /* 746 * Look up a cfattach by name. 747 */ 748 static struct cfattach * 749 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 750 { 751 struct cfattach *ca; 752 753 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 754 if (STREQ(ca->ca_name, atname)) 755 return ca; 756 } 757 758 return NULL; 759 } 760 761 /* 762 * Look up a cfattach by driver/attachment name. 763 */ 764 struct cfattach * 765 config_cfattach_lookup(const char *name, const char *atname) 766 { 767 struct cfdriver *cd; 768 769 cd = config_cfdriver_lookup(name); 770 if (cd == NULL) 771 return NULL; 772 773 return config_cfattach_lookup_cd(cd, atname); 774 } 775 776 /* 777 * Apply the matching function and choose the best. This is used 778 * a few times and we want to keep the code small. 779 */ 780 static void 781 mapply(struct matchinfo *m, cfdata_t cf) 782 { 783 int pri; 784 785 if (m->fn != NULL) { 786 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 787 } else { 788 pri = config_match(m->parent, cf, m->aux); 789 } 790 if (pri > m->pri) { 791 m->match = cf; 792 m->pri = pri; 793 } 794 } 795 796 int 797 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 798 { 799 const struct cfiattrdata *ci; 800 const struct cflocdesc *cl; 801 int nlocs, i; 802 803 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 804 KASSERT(ci); 805 nlocs = ci->ci_loclen; 806 KASSERT(!nlocs || locs); 807 for (i = 0; i < nlocs; i++) { 808 cl = &ci->ci_locdesc[i]; 809 if (cl->cld_defaultstr != NULL && 810 cf->cf_loc[i] == cl->cld_default) 811 continue; 812 if (cf->cf_loc[i] == locs[i]) 813 continue; 814 return 0; 815 } 816 817 return config_match(parent, cf, aux); 818 } 819 820 /* 821 * Helper function: check whether the driver supports the interface attribute 822 * and return its descriptor structure. 823 */ 824 static const struct cfiattrdata * 825 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 826 { 827 const struct cfiattrdata * const *cpp; 828 829 if (cd->cd_attrs == NULL) 830 return 0; 831 832 for (cpp = cd->cd_attrs; *cpp; cpp++) { 833 if (STREQ((*cpp)->ci_name, ia)) { 834 /* Match. */ 835 return *cpp; 836 } 837 } 838 return 0; 839 } 840 841 #if defined(DIAGNOSTIC) 842 static int 843 cfdriver_iattr_count(const struct cfdriver *cd) 844 { 845 const struct cfiattrdata * const *cpp; 846 int i; 847 848 if (cd->cd_attrs == NULL) 849 return 0; 850 851 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) { 852 i++; 853 } 854 return i; 855 } 856 #endif /* DIAGNOSTIC */ 857 858 /* 859 * Lookup an interface attribute description by name. 860 * If the driver is given, consider only its supported attributes. 861 */ 862 const struct cfiattrdata * 863 cfiattr_lookup(const char *name, const struct cfdriver *cd) 864 { 865 const struct cfdriver *d; 866 const struct cfiattrdata *ia; 867 868 if (cd) 869 return cfdriver_get_iattr(cd, name); 870 871 LIST_FOREACH(d, &allcfdrivers, cd_list) { 872 ia = cfdriver_get_iattr(d, name); 873 if (ia) 874 return ia; 875 } 876 return 0; 877 } 878 879 /* 880 * Determine if `parent' is a potential parent for a device spec based 881 * on `cfp'. 882 */ 883 static int 884 cfparent_match(const device_t parent, const struct cfparent *cfp) 885 { 886 struct cfdriver *pcd; 887 888 /* We don't match root nodes here. */ 889 if (cfp == NULL) 890 return 0; 891 892 pcd = parent->dv_cfdriver; 893 KASSERT(pcd != NULL); 894 895 /* 896 * First, ensure this parent has the correct interface 897 * attribute. 898 */ 899 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 900 return 0; 901 902 /* 903 * If no specific parent device instance was specified (i.e. 904 * we're attaching to the attribute only), we're done! 905 */ 906 if (cfp->cfp_parent == NULL) 907 return 1; 908 909 /* 910 * Check the parent device's name. 911 */ 912 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 913 return 0; /* not the same parent */ 914 915 /* 916 * Make sure the unit number matches. 917 */ 918 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 919 cfp->cfp_unit == parent->dv_unit) 920 return 1; 921 922 /* Unit numbers don't match. */ 923 return 0; 924 } 925 926 /* 927 * Helper for config_cfdata_attach(): check all devices whether it could be 928 * parent any attachment in the config data table passed, and rescan. 929 */ 930 static void 931 rescan_with_cfdata(const struct cfdata *cf) 932 { 933 device_t d; 934 const struct cfdata *cf1; 935 deviter_t di; 936 937 KASSERT(KERNEL_LOCKED_P()); 938 939 /* 940 * "alldevs" is likely longer than a modules's cfdata, so make it 941 * the outer loop. 942 */ 943 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 944 945 if (!(d->dv_cfattach->ca_rescan)) 946 continue; 947 948 for (cf1 = cf; cf1->cf_name; cf1++) { 949 950 if (!cfparent_match(d, cf1->cf_pspec)) 951 continue; 952 953 (*d->dv_cfattach->ca_rescan)(d, 954 cfdata_ifattr(cf1), cf1->cf_loc); 955 956 config_deferred(d); 957 } 958 } 959 deviter_release(&di); 960 } 961 962 /* 963 * Attach a supplemental config data table and rescan potential 964 * parent devices if required. 965 */ 966 int 967 config_cfdata_attach(cfdata_t cf, int scannow) 968 { 969 struct cftable *ct; 970 971 KERNEL_LOCK(1, NULL); 972 973 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 974 ct->ct_cfdata = cf; 975 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 976 977 if (scannow) 978 rescan_with_cfdata(cf); 979 980 KERNEL_UNLOCK_ONE(NULL); 981 982 return 0; 983 } 984 985 /* 986 * Helper for config_cfdata_detach: check whether a device is 987 * found through any attachment in the config data table. 988 */ 989 static int 990 dev_in_cfdata(device_t d, cfdata_t cf) 991 { 992 const struct cfdata *cf1; 993 994 for (cf1 = cf; cf1->cf_name; cf1++) 995 if (d->dv_cfdata == cf1) 996 return 1; 997 998 return 0; 999 } 1000 1001 /* 1002 * Detach a supplemental config data table. Detach all devices found 1003 * through that table (and thus keeping references to it) before. 1004 */ 1005 int 1006 config_cfdata_detach(cfdata_t cf) 1007 { 1008 device_t d; 1009 int error = 0; 1010 struct cftable *ct; 1011 deviter_t di; 1012 1013 KERNEL_LOCK(1, NULL); 1014 1015 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 1016 d = deviter_next(&di)) { 1017 if (!dev_in_cfdata(d, cf)) 1018 continue; 1019 if ((error = config_detach(d, 0)) != 0) 1020 break; 1021 } 1022 deviter_release(&di); 1023 if (error) { 1024 aprint_error_dev(d, "unable to detach instance\n"); 1025 goto out; 1026 } 1027 1028 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1029 if (ct->ct_cfdata == cf) { 1030 TAILQ_REMOVE(&allcftables, ct, ct_list); 1031 kmem_free(ct, sizeof(*ct)); 1032 error = 0; 1033 goto out; 1034 } 1035 } 1036 1037 /* not found -- shouldn't happen */ 1038 error = EINVAL; 1039 1040 out: KERNEL_UNLOCK_ONE(NULL); 1041 return error; 1042 } 1043 1044 /* 1045 * Invoke the "match" routine for a cfdata entry on behalf of 1046 * an external caller, usually a direct config "submatch" routine. 1047 */ 1048 int 1049 config_match(device_t parent, cfdata_t cf, void *aux) 1050 { 1051 struct cfattach *ca; 1052 1053 KASSERT(KERNEL_LOCKED_P()); 1054 1055 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 1056 if (ca == NULL) { 1057 /* No attachment for this entry, oh well. */ 1058 return 0; 1059 } 1060 1061 return (*ca->ca_match)(parent, cf, aux); 1062 } 1063 1064 /* 1065 * Invoke the "probe" routine for a cfdata entry on behalf of 1066 * an external caller, usually an indirect config "search" routine. 1067 */ 1068 int 1069 config_probe(device_t parent, cfdata_t cf, void *aux) 1070 { 1071 /* 1072 * This is currently a synonym for config_match(), but this 1073 * is an implementation detail; "match" and "probe" routines 1074 * have different behaviors. 1075 * 1076 * XXX config_probe() should return a bool, because there is 1077 * XXX no match score for probe -- it's either there or it's 1078 * XXX not, but some ports abuse the return value as a way 1079 * XXX to attach "critical" devices before "non-critical" 1080 * XXX devices. 1081 */ 1082 return config_match(parent, cf, aux); 1083 } 1084 1085 static struct cfargs_internal * 1086 cfargs_canonicalize(const struct cfargs * const cfargs, 1087 struct cfargs_internal * const store) 1088 { 1089 struct cfargs_internal *args = store; 1090 1091 memset(args, 0, sizeof(*args)); 1092 1093 /* If none specified, are all-NULL pointers are good. */ 1094 if (cfargs == NULL) { 1095 return args; 1096 } 1097 1098 /* 1099 * Only one arguments version is recognized at this time. 1100 */ 1101 if (cfargs->cfargs_version != CFARGS_VERSION) { 1102 panic("cfargs_canonicalize: unknown version %lu\n", 1103 (unsigned long)cfargs->cfargs_version); 1104 } 1105 1106 /* 1107 * submatch and search are mutually-exclusive. 1108 */ 1109 if (cfargs->submatch != NULL && cfargs->search != NULL) { 1110 panic("cfargs_canonicalize: submatch and search are " 1111 "mutually-exclusive"); 1112 } 1113 if (cfargs->submatch != NULL) { 1114 args->submatch = cfargs->submatch; 1115 } else if (cfargs->search != NULL) { 1116 args->search = cfargs->search; 1117 } 1118 1119 args->iattr = cfargs->iattr; 1120 args->locators = cfargs->locators; 1121 args->devhandle = cfargs->devhandle; 1122 1123 return args; 1124 } 1125 1126 /* 1127 * Iterate over all potential children of some device, calling the given 1128 * function (default being the child's match function) for each one. 1129 * Nonzero returns are matches; the highest value returned is considered 1130 * the best match. Return the `found child' if we got a match, or NULL 1131 * otherwise. The `aux' pointer is simply passed on through. 1132 * 1133 * Note that this function is designed so that it can be used to apply 1134 * an arbitrary function to all potential children (its return value 1135 * can be ignored). 1136 */ 1137 static cfdata_t 1138 config_search_internal(device_t parent, void *aux, 1139 const struct cfargs_internal * const args) 1140 { 1141 struct cftable *ct; 1142 cfdata_t cf; 1143 struct matchinfo m; 1144 1145 KASSERT(config_initialized); 1146 KASSERT(!args->iattr || 1147 cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)); 1148 KASSERT(args->iattr || 1149 cfdriver_iattr_count(parent->dv_cfdriver) < 2); 1150 1151 m.fn = args->submatch; /* N.B. union */ 1152 m.parent = parent; 1153 m.locs = args->locators; 1154 m.aux = aux; 1155 m.match = NULL; 1156 m.pri = 0; 1157 1158 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1159 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1160 1161 /* We don't match root nodes here. */ 1162 if (!cf->cf_pspec) 1163 continue; 1164 1165 /* 1166 * Skip cf if no longer eligible, otherwise scan 1167 * through parents for one matching `parent', and 1168 * try match function. 1169 */ 1170 if (cf->cf_fstate == FSTATE_FOUND) 1171 continue; 1172 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1173 cf->cf_fstate == FSTATE_DSTAR) 1174 continue; 1175 1176 /* 1177 * If an interface attribute was specified, 1178 * consider only children which attach to 1179 * that attribute. 1180 */ 1181 if (args->iattr != NULL && 1182 !STREQ(args->iattr, cfdata_ifattr(cf))) 1183 continue; 1184 1185 if (cfparent_match(parent, cf->cf_pspec)) 1186 mapply(&m, cf); 1187 } 1188 } 1189 return m.match; 1190 } 1191 1192 cfdata_t 1193 config_search(device_t parent, void *aux, const struct cfargs *cfargs) 1194 { 1195 cfdata_t cf; 1196 struct cfargs_internal store; 1197 1198 cf = config_search_internal(parent, aux, 1199 cfargs_canonicalize(cfargs, &store)); 1200 1201 return cf; 1202 } 1203 1204 /* 1205 * Find the given root device. 1206 * This is much like config_search, but there is no parent. 1207 * Don't bother with multiple cfdata tables; the root node 1208 * must always be in the initial table. 1209 */ 1210 cfdata_t 1211 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1212 { 1213 cfdata_t cf; 1214 const short *p; 1215 struct matchinfo m; 1216 1217 m.fn = fn; 1218 m.parent = ROOT; 1219 m.aux = aux; 1220 m.match = NULL; 1221 m.pri = 0; 1222 m.locs = 0; 1223 /* 1224 * Look at root entries for matching name. We do not bother 1225 * with found-state here since only one root should ever be 1226 * searched (and it must be done first). 1227 */ 1228 for (p = cfroots; *p >= 0; p++) { 1229 cf = &cfdata[*p]; 1230 if (strcmp(cf->cf_name, rootname) == 0) 1231 mapply(&m, cf); 1232 } 1233 return m.match; 1234 } 1235 1236 static const char * const msgs[] = { 1237 [QUIET] = "", 1238 [UNCONF] = " not configured\n", 1239 [UNSUPP] = " unsupported\n", 1240 }; 1241 1242 /* 1243 * The given `aux' argument describes a device that has been found 1244 * on the given parent, but not necessarily configured. Locate the 1245 * configuration data for that device (using the submatch function 1246 * provided, or using candidates' cd_match configuration driver 1247 * functions) and attach it, and return its device_t. If the device was 1248 * not configured, call the given `print' function and return NULL. 1249 */ 1250 device_t 1251 config_found(device_t parent, void *aux, cfprint_t print, 1252 const struct cfargs * const cfargs) 1253 { 1254 cfdata_t cf; 1255 struct cfargs_internal store; 1256 const struct cfargs_internal * const args = 1257 cfargs_canonicalize(cfargs, &store); 1258 1259 cf = config_search_internal(parent, aux, args); 1260 if (cf != NULL) { 1261 return config_attach_internal(parent, cf, aux, print, args); 1262 } 1263 1264 if (print) { 1265 if (config_do_twiddle && cold) 1266 twiddle(); 1267 1268 const int pret = (*print)(aux, device_xname(parent)); 1269 KASSERT(pret >= 0); 1270 KASSERT(pret < __arraycount(msgs)); 1271 KASSERT(msgs[pret] != NULL); 1272 aprint_normal("%s", msgs[pret]); 1273 } 1274 1275 /* 1276 * This has the effect of mixing in a single timestamp to the 1277 * entropy pool. Experiments indicate the estimator will almost 1278 * always attribute one bit of entropy to this sample; analysis 1279 * of device attach/detach timestamps on FreeBSD indicates 4 1280 * bits of entropy/sample so this seems appropriately conservative. 1281 */ 1282 rnd_add_uint32(&rnd_autoconf_source, 0); 1283 return NULL; 1284 } 1285 1286 /* 1287 * As above, but for root devices. 1288 */ 1289 device_t 1290 config_rootfound(const char *rootname, void *aux) 1291 { 1292 cfdata_t cf; 1293 device_t dev = NULL; 1294 1295 KERNEL_LOCK(1, NULL); 1296 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1297 dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE); 1298 else 1299 aprint_error("root device %s not configured\n", rootname); 1300 KERNEL_UNLOCK_ONE(NULL); 1301 return dev; 1302 } 1303 1304 /* just like sprintf(buf, "%d") except that it works from the end */ 1305 static char * 1306 number(char *ep, int n) 1307 { 1308 1309 *--ep = 0; 1310 while (n >= 10) { 1311 *--ep = (n % 10) + '0'; 1312 n /= 10; 1313 } 1314 *--ep = n + '0'; 1315 return ep; 1316 } 1317 1318 /* 1319 * Expand the size of the cd_devs array if necessary. 1320 * 1321 * The caller must hold alldevs_lock. config_makeroom() may release and 1322 * re-acquire alldevs_lock, so callers should re-check conditions such 1323 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1324 * returns. 1325 */ 1326 static void 1327 config_makeroom(int n, struct cfdriver *cd) 1328 { 1329 int ondevs, nndevs; 1330 device_t *osp, *nsp; 1331 1332 KASSERT(mutex_owned(&alldevs_lock)); 1333 alldevs_nwrite++; 1334 1335 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1336 ; 1337 1338 while (n >= cd->cd_ndevs) { 1339 /* 1340 * Need to expand the array. 1341 */ 1342 ondevs = cd->cd_ndevs; 1343 osp = cd->cd_devs; 1344 1345 /* 1346 * Release alldevs_lock around allocation, which may 1347 * sleep. 1348 */ 1349 mutex_exit(&alldevs_lock); 1350 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP); 1351 mutex_enter(&alldevs_lock); 1352 1353 /* 1354 * If another thread moved the array while we did 1355 * not hold alldevs_lock, try again. 1356 */ 1357 if (cd->cd_devs != osp) { 1358 mutex_exit(&alldevs_lock); 1359 kmem_free(nsp, sizeof(device_t) * nndevs); 1360 mutex_enter(&alldevs_lock); 1361 continue; 1362 } 1363 1364 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs)); 1365 if (ondevs != 0) 1366 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs); 1367 1368 cd->cd_ndevs = nndevs; 1369 cd->cd_devs = nsp; 1370 if (ondevs != 0) { 1371 mutex_exit(&alldevs_lock); 1372 kmem_free(osp, sizeof(device_t) * ondevs); 1373 mutex_enter(&alldevs_lock); 1374 } 1375 } 1376 KASSERT(mutex_owned(&alldevs_lock)); 1377 alldevs_nwrite--; 1378 } 1379 1380 /* 1381 * Put dev into the devices list. 1382 */ 1383 static void 1384 config_devlink(device_t dev) 1385 { 1386 1387 mutex_enter(&alldevs_lock); 1388 1389 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1390 1391 dev->dv_add_gen = alldevs_gen; 1392 /* It is safe to add a device to the tail of the list while 1393 * readers and writers are in the list. 1394 */ 1395 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1396 mutex_exit(&alldevs_lock); 1397 } 1398 1399 static void 1400 config_devfree(device_t dev) 1401 { 1402 1403 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC); 1404 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1405 1406 if (dev->dv_cfattach->ca_devsize > 0) 1407 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1408 kmem_free(dev, sizeof(*dev)); 1409 } 1410 1411 /* 1412 * Caller must hold alldevs_lock. 1413 */ 1414 static void 1415 config_devunlink(device_t dev, struct devicelist *garbage) 1416 { 1417 struct device_garbage *dg = &dev->dv_garbage; 1418 cfdriver_t cd = device_cfdriver(dev); 1419 int i; 1420 1421 KASSERT(mutex_owned(&alldevs_lock)); 1422 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1423 1424 /* Unlink from device list. Link to garbage list. */ 1425 TAILQ_REMOVE(&alldevs, dev, dv_list); 1426 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1427 1428 /* Remove from cfdriver's array. */ 1429 cd->cd_devs[dev->dv_unit] = NULL; 1430 1431 /* 1432 * If the device now has no units in use, unlink its softc array. 1433 */ 1434 for (i = 0; i < cd->cd_ndevs; i++) { 1435 if (cd->cd_devs[i] != NULL) 1436 break; 1437 } 1438 /* Nothing found. Unlink, now. Deallocate, later. */ 1439 if (i == cd->cd_ndevs) { 1440 dg->dg_ndevs = cd->cd_ndevs; 1441 dg->dg_devs = cd->cd_devs; 1442 cd->cd_devs = NULL; 1443 cd->cd_ndevs = 0; 1444 } 1445 } 1446 1447 static void 1448 config_devdelete(device_t dev) 1449 { 1450 struct device_garbage *dg = &dev->dv_garbage; 1451 device_lock_t dvl = device_getlock(dev); 1452 1453 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1454 1455 if (dg->dg_devs != NULL) 1456 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs); 1457 1458 cv_destroy(&dvl->dvl_cv); 1459 mutex_destroy(&dvl->dvl_mtx); 1460 1461 KASSERT(dev->dv_properties != NULL); 1462 prop_object_release(dev->dv_properties); 1463 1464 if (dev->dv_activity_handlers) 1465 panic("%s with registered handlers", __func__); 1466 1467 if (dev->dv_locators) { 1468 size_t amount = *--dev->dv_locators; 1469 kmem_free(dev->dv_locators, amount); 1470 } 1471 1472 config_devfree(dev); 1473 } 1474 1475 static int 1476 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1477 { 1478 int unit; 1479 1480 if (cf->cf_fstate == FSTATE_STAR) { 1481 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1482 if (cd->cd_devs[unit] == NULL) 1483 break; 1484 /* 1485 * unit is now the unit of the first NULL device pointer, 1486 * or max(cd->cd_ndevs,cf->cf_unit). 1487 */ 1488 } else { 1489 unit = cf->cf_unit; 1490 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1491 unit = -1; 1492 } 1493 return unit; 1494 } 1495 1496 static int 1497 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1498 { 1499 struct alldevs_foray af; 1500 int unit; 1501 1502 config_alldevs_enter(&af); 1503 for (;;) { 1504 unit = config_unit_nextfree(cd, cf); 1505 if (unit == -1) 1506 break; 1507 if (unit < cd->cd_ndevs) { 1508 cd->cd_devs[unit] = dev; 1509 dev->dv_unit = unit; 1510 break; 1511 } 1512 config_makeroom(unit, cd); 1513 } 1514 config_alldevs_exit(&af); 1515 1516 return unit; 1517 } 1518 1519 static device_t 1520 config_devalloc(const device_t parent, const cfdata_t cf, 1521 const struct cfargs_internal * const args) 1522 { 1523 cfdriver_t cd; 1524 cfattach_t ca; 1525 size_t lname, lunit; 1526 const char *xunit; 1527 int myunit; 1528 char num[10]; 1529 device_t dev; 1530 void *dev_private; 1531 const struct cfiattrdata *ia; 1532 device_lock_t dvl; 1533 1534 cd = config_cfdriver_lookup(cf->cf_name); 1535 if (cd == NULL) 1536 return NULL; 1537 1538 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1539 if (ca == NULL) 1540 return NULL; 1541 1542 /* get memory for all device vars */ 1543 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1544 if (ca->ca_devsize > 0) { 1545 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1546 } else { 1547 dev_private = NULL; 1548 } 1549 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1550 1551 dev->dv_handle = args->devhandle; 1552 1553 dev->dv_class = cd->cd_class; 1554 dev->dv_cfdata = cf; 1555 dev->dv_cfdriver = cd; 1556 dev->dv_cfattach = ca; 1557 dev->dv_activity_count = 0; 1558 dev->dv_activity_handlers = NULL; 1559 dev->dv_private = dev_private; 1560 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1561 1562 myunit = config_unit_alloc(dev, cd, cf); 1563 if (myunit == -1) { 1564 config_devfree(dev); 1565 return NULL; 1566 } 1567 1568 /* compute length of name and decimal expansion of unit number */ 1569 lname = strlen(cd->cd_name); 1570 xunit = number(&num[sizeof(num)], myunit); 1571 lunit = &num[sizeof(num)] - xunit; 1572 if (lname + lunit > sizeof(dev->dv_xname)) 1573 panic("config_devalloc: device name too long"); 1574 1575 dvl = device_getlock(dev); 1576 1577 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1578 cv_init(&dvl->dvl_cv, "pmfsusp"); 1579 1580 memcpy(dev->dv_xname, cd->cd_name, lname); 1581 memcpy(dev->dv_xname + lname, xunit, lunit); 1582 dev->dv_parent = parent; 1583 if (parent != NULL) 1584 dev->dv_depth = parent->dv_depth + 1; 1585 else 1586 dev->dv_depth = 0; 1587 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1588 if (args->locators) { 1589 KASSERT(parent); /* no locators at root */ 1590 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1591 dev->dv_locators = 1592 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP); 1593 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1); 1594 memcpy(dev->dv_locators, args->locators, 1595 sizeof(int) * ia->ci_loclen); 1596 } 1597 dev->dv_properties = prop_dictionary_create(); 1598 KASSERT(dev->dv_properties != NULL); 1599 1600 prop_dictionary_set_string_nocopy(dev->dv_properties, 1601 "device-driver", dev->dv_cfdriver->cd_name); 1602 prop_dictionary_set_uint16(dev->dv_properties, 1603 "device-unit", dev->dv_unit); 1604 if (parent != NULL) { 1605 prop_dictionary_set_string(dev->dv_properties, 1606 "device-parent", device_xname(parent)); 1607 } 1608 1609 if (dev->dv_cfdriver->cd_attrs != NULL) 1610 config_add_attrib_dict(dev); 1611 1612 return dev; 1613 } 1614 1615 /* 1616 * Create an array of device attach attributes and add it 1617 * to the device's dv_properties dictionary. 1618 * 1619 * <key>interface-attributes</key> 1620 * <array> 1621 * <dict> 1622 * <key>attribute-name</key> 1623 * <string>foo</string> 1624 * <key>locators</key> 1625 * <array> 1626 * <dict> 1627 * <key>loc-name</key> 1628 * <string>foo-loc1</string> 1629 * </dict> 1630 * <dict> 1631 * <key>loc-name</key> 1632 * <string>foo-loc2</string> 1633 * <key>default</key> 1634 * <string>foo-loc2-default</string> 1635 * </dict> 1636 * ... 1637 * </array> 1638 * </dict> 1639 * ... 1640 * </array> 1641 */ 1642 1643 static void 1644 config_add_attrib_dict(device_t dev) 1645 { 1646 int i, j; 1647 const struct cfiattrdata *ci; 1648 prop_dictionary_t attr_dict, loc_dict; 1649 prop_array_t attr_array, loc_array; 1650 1651 if ((attr_array = prop_array_create()) == NULL) 1652 return; 1653 1654 for (i = 0; ; i++) { 1655 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1656 break; 1657 if ((attr_dict = prop_dictionary_create()) == NULL) 1658 break; 1659 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name", 1660 ci->ci_name); 1661 1662 /* Create an array of the locator names and defaults */ 1663 1664 if (ci->ci_loclen != 0 && 1665 (loc_array = prop_array_create()) != NULL) { 1666 for (j = 0; j < ci->ci_loclen; j++) { 1667 loc_dict = prop_dictionary_create(); 1668 if (loc_dict == NULL) 1669 continue; 1670 prop_dictionary_set_string_nocopy(loc_dict, 1671 "loc-name", ci->ci_locdesc[j].cld_name); 1672 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1673 prop_dictionary_set_string_nocopy( 1674 loc_dict, "default", 1675 ci->ci_locdesc[j].cld_defaultstr); 1676 prop_array_set(loc_array, j, loc_dict); 1677 prop_object_release(loc_dict); 1678 } 1679 prop_dictionary_set_and_rel(attr_dict, "locators", 1680 loc_array); 1681 } 1682 prop_array_add(attr_array, attr_dict); 1683 prop_object_release(attr_dict); 1684 } 1685 if (i == 0) 1686 prop_object_release(attr_array); 1687 else 1688 prop_dictionary_set_and_rel(dev->dv_properties, 1689 "interface-attributes", attr_array); 1690 1691 return; 1692 } 1693 1694 /* 1695 * Attach a found device. 1696 */ 1697 static device_t 1698 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1699 const struct cfargs_internal * const args) 1700 { 1701 device_t dev; 1702 struct cftable *ct; 1703 const char *drvname; 1704 bool deferred; 1705 1706 KASSERT(KERNEL_LOCKED_P()); 1707 1708 dev = config_devalloc(parent, cf, args); 1709 if (!dev) 1710 panic("config_attach: allocation of device softc failed"); 1711 1712 /* XXX redundant - see below? */ 1713 if (cf->cf_fstate != FSTATE_STAR) { 1714 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1715 cf->cf_fstate = FSTATE_FOUND; 1716 } 1717 1718 config_devlink(dev); 1719 1720 if (config_do_twiddle && cold) 1721 twiddle(); 1722 else 1723 aprint_naive("Found "); 1724 /* 1725 * We want the next two printfs for normal, verbose, and quiet, 1726 * but not silent (in which case, we're twiddling, instead). 1727 */ 1728 if (parent == ROOT) { 1729 aprint_naive("%s (root)", device_xname(dev)); 1730 aprint_normal("%s (root)", device_xname(dev)); 1731 } else { 1732 aprint_naive("%s at %s", device_xname(dev), 1733 device_xname(parent)); 1734 aprint_normal("%s at %s", device_xname(dev), 1735 device_xname(parent)); 1736 if (print) 1737 (void) (*print)(aux, NULL); 1738 } 1739 1740 /* 1741 * Before attaching, clobber any unfound devices that are 1742 * otherwise identical. 1743 * XXX code above is redundant? 1744 */ 1745 drvname = dev->dv_cfdriver->cd_name; 1746 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1747 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1748 if (STREQ(cf->cf_name, drvname) && 1749 cf->cf_unit == dev->dv_unit) { 1750 if (cf->cf_fstate == FSTATE_NOTFOUND) 1751 cf->cf_fstate = FSTATE_FOUND; 1752 } 1753 } 1754 } 1755 device_register(dev, aux); 1756 1757 /* Let userland know */ 1758 devmon_report_device(dev, true); 1759 1760 config_pending_incr(dev); 1761 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1762 config_pending_decr(dev); 1763 1764 mutex_enter(&config_misc_lock); 1765 deferred = (dev->dv_pending != 0); 1766 mutex_exit(&config_misc_lock); 1767 1768 if (!deferred && !device_pmf_is_registered(dev)) 1769 aprint_debug_dev(dev, 1770 "WARNING: power management not supported\n"); 1771 1772 config_process_deferred(&deferred_config_queue, dev); 1773 1774 device_register_post_config(dev, aux); 1775 return dev; 1776 } 1777 1778 device_t 1779 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1780 const struct cfargs *cfargs) 1781 { 1782 struct cfargs_internal store; 1783 1784 KASSERT(KERNEL_LOCKED_P()); 1785 1786 return config_attach_internal(parent, cf, aux, print, 1787 cfargs_canonicalize(cfargs, &store)); 1788 } 1789 1790 /* 1791 * As above, but for pseudo-devices. Pseudo-devices attached in this 1792 * way are silently inserted into the device tree, and their children 1793 * attached. 1794 * 1795 * Note that because pseudo-devices are attached silently, any information 1796 * the attach routine wishes to print should be prefixed with the device 1797 * name by the attach routine. 1798 */ 1799 device_t 1800 config_attach_pseudo(cfdata_t cf) 1801 { 1802 device_t dev; 1803 1804 KERNEL_LOCK(1, NULL); 1805 1806 struct cfargs_internal args = { }; 1807 dev = config_devalloc(ROOT, cf, &args); 1808 if (!dev) 1809 goto out; 1810 1811 /* XXX mark busy in cfdata */ 1812 1813 if (cf->cf_fstate != FSTATE_STAR) { 1814 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1815 cf->cf_fstate = FSTATE_FOUND; 1816 } 1817 1818 config_devlink(dev); 1819 1820 #if 0 /* XXXJRT not yet */ 1821 device_register(dev, NULL); /* like a root node */ 1822 #endif 1823 1824 /* Let userland know */ 1825 devmon_report_device(dev, true); 1826 1827 config_pending_incr(dev); 1828 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1829 config_pending_decr(dev); 1830 1831 config_process_deferred(&deferred_config_queue, dev); 1832 1833 out: KERNEL_UNLOCK_ONE(NULL); 1834 return dev; 1835 } 1836 1837 /* 1838 * Caller must hold alldevs_lock. 1839 */ 1840 static void 1841 config_collect_garbage(struct devicelist *garbage) 1842 { 1843 device_t dv; 1844 1845 KASSERT(!cpu_intr_p()); 1846 KASSERT(!cpu_softintr_p()); 1847 KASSERT(mutex_owned(&alldevs_lock)); 1848 1849 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1850 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1851 if (dv->dv_del_gen != 0) 1852 break; 1853 } 1854 if (dv == NULL) { 1855 alldevs_garbage = false; 1856 break; 1857 } 1858 config_devunlink(dv, garbage); 1859 } 1860 KASSERT(mutex_owned(&alldevs_lock)); 1861 } 1862 1863 static void 1864 config_dump_garbage(struct devicelist *garbage) 1865 { 1866 device_t dv; 1867 1868 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1869 TAILQ_REMOVE(garbage, dv, dv_list); 1870 config_devdelete(dv); 1871 } 1872 } 1873 1874 static int 1875 config_detach_enter(device_t dev) 1876 { 1877 int error; 1878 1879 mutex_enter(&config_misc_lock); 1880 for (;;) { 1881 if (dev->dv_pending == 0 && dev->dv_detaching == NULL) { 1882 dev->dv_detaching = curlwp; 1883 error = 0; 1884 break; 1885 } 1886 KASSERTMSG(dev->dv_detaching != curlwp, 1887 "recursively detaching %s", device_xname(dev)); 1888 error = cv_wait_sig(&config_misc_cv, &config_misc_lock); 1889 if (error) 1890 break; 1891 } 1892 KASSERT(error || dev->dv_detaching == curlwp); 1893 mutex_exit(&config_misc_lock); 1894 1895 return error; 1896 } 1897 1898 static void 1899 config_detach_exit(device_t dev) 1900 { 1901 1902 mutex_enter(&config_misc_lock); 1903 KASSERT(dev->dv_detaching == curlwp); 1904 dev->dv_detaching = NULL; 1905 cv_broadcast(&config_misc_cv); 1906 mutex_exit(&config_misc_lock); 1907 } 1908 1909 /* 1910 * Detach a device. Optionally forced (e.g. because of hardware 1911 * removal) and quiet. Returns zero if successful, non-zero 1912 * (an error code) otherwise. 1913 * 1914 * Note that this code wants to be run from a process context, so 1915 * that the detach can sleep to allow processes which have a device 1916 * open to run and unwind their stacks. 1917 */ 1918 int 1919 config_detach(device_t dev, int flags) 1920 { 1921 struct alldevs_foray af; 1922 struct cftable *ct; 1923 cfdata_t cf; 1924 const struct cfattach *ca; 1925 struct cfdriver *cd; 1926 device_t d __diagused; 1927 int rv = 0; 1928 1929 KERNEL_LOCK(1, NULL); 1930 1931 cf = dev->dv_cfdata; 1932 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || 1933 cf->cf_fstate == FSTATE_STAR), 1934 "config_detach: %s: bad device fstate: %d", 1935 device_xname(dev), cf ? cf->cf_fstate : -1); 1936 1937 cd = dev->dv_cfdriver; 1938 KASSERT(cd != NULL); 1939 1940 ca = dev->dv_cfattach; 1941 KASSERT(ca != NULL); 1942 1943 /* 1944 * Only one detach at a time, please -- and not until fully 1945 * attached. 1946 */ 1947 rv = config_detach_enter(dev); 1948 if (rv) { 1949 KERNEL_UNLOCK_ONE(NULL); 1950 return rv; 1951 } 1952 1953 mutex_enter(&alldevs_lock); 1954 if (dev->dv_del_gen != 0) { 1955 mutex_exit(&alldevs_lock); 1956 #ifdef DIAGNOSTIC 1957 printf("%s: %s is already detached\n", __func__, 1958 device_xname(dev)); 1959 #endif /* DIAGNOSTIC */ 1960 config_detach_exit(dev); 1961 KERNEL_UNLOCK_ONE(NULL); 1962 return ENOENT; 1963 } 1964 alldevs_nwrite++; 1965 mutex_exit(&alldevs_lock); 1966 1967 if (!detachall && 1968 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1969 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1970 rv = EOPNOTSUPP; 1971 } else if (ca->ca_detach != NULL) { 1972 rv = (*ca->ca_detach)(dev, flags); 1973 } else 1974 rv = EOPNOTSUPP; 1975 1976 /* 1977 * If it was not possible to detach the device, then we either 1978 * panic() (for the forced but failed case), or return an error. 1979 * 1980 * If it was possible to detach the device, ensure that the 1981 * device is deactivated. 1982 */ 1983 if (rv == 0) 1984 dev->dv_flags &= ~DVF_ACTIVE; 1985 else if ((flags & DETACH_FORCE) == 0) 1986 goto out; 1987 else { 1988 panic("config_detach: forced detach of %s failed (%d)", 1989 device_xname(dev), rv); 1990 } 1991 1992 /* 1993 * The device has now been successfully detached. 1994 */ 1995 1996 /* Let userland know */ 1997 devmon_report_device(dev, false); 1998 1999 #ifdef DIAGNOSTIC 2000 /* 2001 * Sanity: If you're successfully detached, you should have no 2002 * children. (Note that because children must be attached 2003 * after parents, we only need to search the latter part of 2004 * the list.) 2005 */ 2006 mutex_enter(&alldevs_lock); 2007 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 2008 d = TAILQ_NEXT(d, dv_list)) { 2009 if (d->dv_parent == dev && d->dv_del_gen == 0) { 2010 printf("config_detach: detached device %s" 2011 " has children %s\n", device_xname(dev), 2012 device_xname(d)); 2013 panic("config_detach"); 2014 } 2015 } 2016 mutex_exit(&alldevs_lock); 2017 #endif 2018 2019 /* notify the parent that the child is gone */ 2020 if (dev->dv_parent) { 2021 device_t p = dev->dv_parent; 2022 if (p->dv_cfattach->ca_childdetached) 2023 (*p->dv_cfattach->ca_childdetached)(p, dev); 2024 } 2025 2026 /* 2027 * Mark cfdata to show that the unit can be reused, if possible. 2028 */ 2029 TAILQ_FOREACH(ct, &allcftables, ct_list) { 2030 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 2031 if (STREQ(cf->cf_name, cd->cd_name)) { 2032 if (cf->cf_fstate == FSTATE_FOUND && 2033 cf->cf_unit == dev->dv_unit) 2034 cf->cf_fstate = FSTATE_NOTFOUND; 2035 } 2036 } 2037 } 2038 2039 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 2040 aprint_normal_dev(dev, "detached\n"); 2041 2042 out: 2043 config_detach_exit(dev); 2044 2045 config_alldevs_enter(&af); 2046 KASSERT(alldevs_nwrite != 0); 2047 --alldevs_nwrite; 2048 if (rv == 0 && dev->dv_del_gen == 0) { 2049 if (alldevs_nwrite == 0 && alldevs_nread == 0) 2050 config_devunlink(dev, &af.af_garbage); 2051 else { 2052 dev->dv_del_gen = alldevs_gen; 2053 alldevs_garbage = true; 2054 } 2055 } 2056 config_alldevs_exit(&af); 2057 2058 KERNEL_UNLOCK_ONE(NULL); 2059 2060 return rv; 2061 } 2062 2063 int 2064 config_detach_children(device_t parent, int flags) 2065 { 2066 device_t dv; 2067 deviter_t di; 2068 int error = 0; 2069 2070 KASSERT(KERNEL_LOCKED_P()); 2071 2072 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 2073 dv = deviter_next(&di)) { 2074 if (device_parent(dv) != parent) 2075 continue; 2076 if ((error = config_detach(dv, flags)) != 0) 2077 break; 2078 } 2079 deviter_release(&di); 2080 return error; 2081 } 2082 2083 device_t 2084 shutdown_first(struct shutdown_state *s) 2085 { 2086 if (!s->initialized) { 2087 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 2088 s->initialized = true; 2089 } 2090 return shutdown_next(s); 2091 } 2092 2093 device_t 2094 shutdown_next(struct shutdown_state *s) 2095 { 2096 device_t dv; 2097 2098 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 2099 ; 2100 2101 if (dv == NULL) 2102 s->initialized = false; 2103 2104 return dv; 2105 } 2106 2107 bool 2108 config_detach_all(int how) 2109 { 2110 static struct shutdown_state s; 2111 device_t curdev; 2112 bool progress = false; 2113 int flags; 2114 2115 KERNEL_LOCK(1, NULL); 2116 2117 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 2118 goto out; 2119 2120 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 2121 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 2122 else 2123 flags = DETACH_SHUTDOWN; 2124 2125 for (curdev = shutdown_first(&s); curdev != NULL; 2126 curdev = shutdown_next(&s)) { 2127 aprint_debug(" detaching %s, ", device_xname(curdev)); 2128 if (config_detach(curdev, flags) == 0) { 2129 progress = true; 2130 aprint_debug("success."); 2131 } else 2132 aprint_debug("failed."); 2133 } 2134 2135 out: KERNEL_UNLOCK_ONE(NULL); 2136 return progress; 2137 } 2138 2139 static bool 2140 device_is_ancestor_of(device_t ancestor, device_t descendant) 2141 { 2142 device_t dv; 2143 2144 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 2145 if (device_parent(dv) == ancestor) 2146 return true; 2147 } 2148 return false; 2149 } 2150 2151 int 2152 config_deactivate(device_t dev) 2153 { 2154 deviter_t di; 2155 const struct cfattach *ca; 2156 device_t descendant; 2157 int s, rv = 0, oflags; 2158 2159 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 2160 descendant != NULL; 2161 descendant = deviter_next(&di)) { 2162 if (dev != descendant && 2163 !device_is_ancestor_of(dev, descendant)) 2164 continue; 2165 2166 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 2167 continue; 2168 2169 ca = descendant->dv_cfattach; 2170 oflags = descendant->dv_flags; 2171 2172 descendant->dv_flags &= ~DVF_ACTIVE; 2173 if (ca->ca_activate == NULL) 2174 continue; 2175 s = splhigh(); 2176 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 2177 splx(s); 2178 if (rv != 0) 2179 descendant->dv_flags = oflags; 2180 } 2181 deviter_release(&di); 2182 return rv; 2183 } 2184 2185 /* 2186 * Defer the configuration of the specified device until all 2187 * of its parent's devices have been attached. 2188 */ 2189 void 2190 config_defer(device_t dev, void (*func)(device_t)) 2191 { 2192 struct deferred_config *dc; 2193 2194 if (dev->dv_parent == NULL) 2195 panic("config_defer: can't defer config of a root device"); 2196 2197 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2198 2199 config_pending_incr(dev); 2200 2201 mutex_enter(&config_misc_lock); 2202 #ifdef DIAGNOSTIC 2203 struct deferred_config *odc; 2204 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) { 2205 if (odc->dc_dev == dev) 2206 panic("config_defer: deferred twice"); 2207 } 2208 #endif 2209 dc->dc_dev = dev; 2210 dc->dc_func = func; 2211 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 2212 mutex_exit(&config_misc_lock); 2213 } 2214 2215 /* 2216 * Defer some autoconfiguration for a device until after interrupts 2217 * are enabled. 2218 */ 2219 void 2220 config_interrupts(device_t dev, void (*func)(device_t)) 2221 { 2222 struct deferred_config *dc; 2223 2224 /* 2225 * If interrupts are enabled, callback now. 2226 */ 2227 if (cold == 0) { 2228 (*func)(dev); 2229 return; 2230 } 2231 2232 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2233 2234 config_pending_incr(dev); 2235 2236 mutex_enter(&config_misc_lock); 2237 #ifdef DIAGNOSTIC 2238 struct deferred_config *odc; 2239 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) { 2240 if (odc->dc_dev == dev) 2241 panic("config_interrupts: deferred twice"); 2242 } 2243 #endif 2244 dc->dc_dev = dev; 2245 dc->dc_func = func; 2246 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2247 mutex_exit(&config_misc_lock); 2248 } 2249 2250 /* 2251 * Defer some autoconfiguration for a device until after root file system 2252 * is mounted (to load firmware etc). 2253 */ 2254 void 2255 config_mountroot(device_t dev, void (*func)(device_t)) 2256 { 2257 struct deferred_config *dc; 2258 2259 /* 2260 * If root file system is mounted, callback now. 2261 */ 2262 if (root_is_mounted) { 2263 (*func)(dev); 2264 return; 2265 } 2266 2267 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2268 2269 mutex_enter(&config_misc_lock); 2270 #ifdef DIAGNOSTIC 2271 struct deferred_config *odc; 2272 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) { 2273 if (odc->dc_dev == dev) 2274 panic("%s: deferred twice", __func__); 2275 } 2276 #endif 2277 2278 dc->dc_dev = dev; 2279 dc->dc_func = func; 2280 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2281 mutex_exit(&config_misc_lock); 2282 } 2283 2284 /* 2285 * Process a deferred configuration queue. 2286 */ 2287 static void 2288 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2289 { 2290 struct deferred_config *dc; 2291 2292 KASSERT(KERNEL_LOCKED_P()); 2293 2294 mutex_enter(&config_misc_lock); 2295 dc = TAILQ_FIRST(queue); 2296 while (dc) { 2297 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2298 TAILQ_REMOVE(queue, dc, dc_queue); 2299 mutex_exit(&config_misc_lock); 2300 2301 (*dc->dc_func)(dc->dc_dev); 2302 config_pending_decr(dc->dc_dev); 2303 kmem_free(dc, sizeof(*dc)); 2304 2305 mutex_enter(&config_misc_lock); 2306 /* Restart, queue might have changed */ 2307 dc = TAILQ_FIRST(queue); 2308 } else { 2309 dc = TAILQ_NEXT(dc, dc_queue); 2310 } 2311 } 2312 mutex_exit(&config_misc_lock); 2313 } 2314 2315 /* 2316 * Manipulate the config_pending semaphore. 2317 */ 2318 void 2319 config_pending_incr(device_t dev) 2320 { 2321 2322 mutex_enter(&config_misc_lock); 2323 KASSERTMSG(dev->dv_pending < INT_MAX, 2324 "%s: excess config_pending_incr", device_xname(dev)); 2325 if (dev->dv_pending++ == 0) 2326 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list); 2327 #ifdef DEBUG_AUTOCONF 2328 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2329 #endif 2330 mutex_exit(&config_misc_lock); 2331 } 2332 2333 void 2334 config_pending_decr(device_t dev) 2335 { 2336 2337 mutex_enter(&config_misc_lock); 2338 KASSERTMSG(dev->dv_pending > 0, 2339 "%s: excess config_pending_decr", device_xname(dev)); 2340 if (--dev->dv_pending == 0) { 2341 TAILQ_REMOVE(&config_pending, dev, dv_pending_list); 2342 cv_broadcast(&config_misc_cv); 2343 } 2344 #ifdef DEBUG_AUTOCONF 2345 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2346 #endif 2347 mutex_exit(&config_misc_lock); 2348 } 2349 2350 /* 2351 * Register a "finalization" routine. Finalization routines are 2352 * called iteratively once all real devices have been found during 2353 * autoconfiguration, for as long as any one finalizer has done 2354 * any work. 2355 */ 2356 int 2357 config_finalize_register(device_t dev, int (*fn)(device_t)) 2358 { 2359 struct finalize_hook *f; 2360 int error = 0; 2361 2362 KERNEL_LOCK(1, NULL); 2363 2364 /* 2365 * If finalization has already been done, invoke the 2366 * callback function now. 2367 */ 2368 if (config_finalize_done) { 2369 while ((*fn)(dev) != 0) 2370 /* loop */ ; 2371 goto out; 2372 } 2373 2374 /* Ensure this isn't already on the list. */ 2375 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2376 if (f->f_func == fn && f->f_dev == dev) { 2377 error = EEXIST; 2378 goto out; 2379 } 2380 } 2381 2382 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2383 f->f_func = fn; 2384 f->f_dev = dev; 2385 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2386 2387 /* Success! */ 2388 error = 0; 2389 2390 out: KERNEL_UNLOCK_ONE(NULL); 2391 return error; 2392 } 2393 2394 void 2395 config_finalize(void) 2396 { 2397 struct finalize_hook *f; 2398 struct pdevinit *pdev; 2399 extern struct pdevinit pdevinit[]; 2400 int errcnt, rv; 2401 2402 /* 2403 * Now that device driver threads have been created, wait for 2404 * them to finish any deferred autoconfiguration. 2405 */ 2406 mutex_enter(&config_misc_lock); 2407 while (!TAILQ_EMPTY(&config_pending)) { 2408 device_t dev; 2409 TAILQ_FOREACH(dev, &config_pending, dv_pending_list) 2410 aprint_debug_dev(dev, "holding up boot\n"); 2411 cv_wait(&config_misc_cv, &config_misc_lock); 2412 } 2413 mutex_exit(&config_misc_lock); 2414 2415 KERNEL_LOCK(1, NULL); 2416 2417 /* Attach pseudo-devices. */ 2418 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2419 (*pdev->pdev_attach)(pdev->pdev_count); 2420 2421 /* Run the hooks until none of them does any work. */ 2422 do { 2423 rv = 0; 2424 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2425 rv |= (*f->f_func)(f->f_dev); 2426 } while (rv != 0); 2427 2428 config_finalize_done = 1; 2429 2430 /* Now free all the hooks. */ 2431 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2432 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2433 kmem_free(f, sizeof(*f)); 2434 } 2435 2436 KERNEL_UNLOCK_ONE(NULL); 2437 2438 errcnt = aprint_get_error_count(); 2439 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2440 (boothowto & AB_VERBOSE) == 0) { 2441 mutex_enter(&config_misc_lock); 2442 if (config_do_twiddle) { 2443 config_do_twiddle = 0; 2444 printf_nolog(" done.\n"); 2445 } 2446 mutex_exit(&config_misc_lock); 2447 } 2448 if (errcnt != 0) { 2449 printf("WARNING: %d error%s while detecting hardware; " 2450 "check system log.\n", errcnt, 2451 errcnt == 1 ? "" : "s"); 2452 } 2453 } 2454 2455 void 2456 config_twiddle_init(void) 2457 { 2458 2459 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2460 config_do_twiddle = 1; 2461 } 2462 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2463 } 2464 2465 void 2466 config_twiddle_fn(void *cookie) 2467 { 2468 2469 mutex_enter(&config_misc_lock); 2470 if (config_do_twiddle) { 2471 twiddle(); 2472 callout_schedule(&config_twiddle_ch, mstohz(100)); 2473 } 2474 mutex_exit(&config_misc_lock); 2475 } 2476 2477 static void 2478 config_alldevs_enter(struct alldevs_foray *af) 2479 { 2480 TAILQ_INIT(&af->af_garbage); 2481 mutex_enter(&alldevs_lock); 2482 config_collect_garbage(&af->af_garbage); 2483 } 2484 2485 static void 2486 config_alldevs_exit(struct alldevs_foray *af) 2487 { 2488 mutex_exit(&alldevs_lock); 2489 config_dump_garbage(&af->af_garbage); 2490 } 2491 2492 /* 2493 * device_lookup: 2494 * 2495 * Look up a device instance for a given driver. 2496 */ 2497 device_t 2498 device_lookup(cfdriver_t cd, int unit) 2499 { 2500 device_t dv; 2501 2502 mutex_enter(&alldevs_lock); 2503 if (unit < 0 || unit >= cd->cd_ndevs) 2504 dv = NULL; 2505 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2506 dv = NULL; 2507 mutex_exit(&alldevs_lock); 2508 2509 return dv; 2510 } 2511 2512 /* 2513 * device_lookup_private: 2514 * 2515 * Look up a softc instance for a given driver. 2516 */ 2517 void * 2518 device_lookup_private(cfdriver_t cd, int unit) 2519 { 2520 2521 return device_private(device_lookup(cd, unit)); 2522 } 2523 2524 /* 2525 * device_find_by_xname: 2526 * 2527 * Returns the device of the given name or NULL if it doesn't exist. 2528 */ 2529 device_t 2530 device_find_by_xname(const char *name) 2531 { 2532 device_t dv; 2533 deviter_t di; 2534 2535 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2536 if (strcmp(device_xname(dv), name) == 0) 2537 break; 2538 } 2539 deviter_release(&di); 2540 2541 return dv; 2542 } 2543 2544 /* 2545 * device_find_by_driver_unit: 2546 * 2547 * Returns the device of the given driver name and unit or 2548 * NULL if it doesn't exist. 2549 */ 2550 device_t 2551 device_find_by_driver_unit(const char *name, int unit) 2552 { 2553 struct cfdriver *cd; 2554 2555 if ((cd = config_cfdriver_lookup(name)) == NULL) 2556 return NULL; 2557 return device_lookup(cd, unit); 2558 } 2559 2560 static bool 2561 match_strcmp(const char * const s1, const char * const s2) 2562 { 2563 return strcmp(s1, s2) == 0; 2564 } 2565 2566 static bool 2567 match_pmatch(const char * const s1, const char * const s2) 2568 { 2569 return pmatch(s1, s2, NULL) == 2; 2570 } 2571 2572 static bool 2573 strarray_match_internal(const char ** const strings, 2574 unsigned int const nstrings, const char * const str, 2575 unsigned int * const indexp, 2576 bool (*match_fn)(const char *, const char *)) 2577 { 2578 unsigned int i; 2579 2580 if (strings == NULL || nstrings == 0) { 2581 return false; 2582 } 2583 2584 for (i = 0; i < nstrings; i++) { 2585 if ((*match_fn)(strings[i], str)) { 2586 *indexp = i; 2587 return true; 2588 } 2589 } 2590 2591 return false; 2592 } 2593 2594 static int 2595 strarray_match(const char ** const strings, unsigned int const nstrings, 2596 const char * const str) 2597 { 2598 unsigned int idx; 2599 2600 if (strarray_match_internal(strings, nstrings, str, &idx, 2601 match_strcmp)) { 2602 return (int)(nstrings - idx); 2603 } 2604 return 0; 2605 } 2606 2607 static int 2608 strarray_pmatch(const char ** const strings, unsigned int const nstrings, 2609 const char * const pattern) 2610 { 2611 unsigned int idx; 2612 2613 if (strarray_match_internal(strings, nstrings, pattern, &idx, 2614 match_pmatch)) { 2615 return (int)(nstrings - idx); 2616 } 2617 return 0; 2618 } 2619 2620 static int 2621 device_compatible_match_strarray_internal( 2622 const char **device_compats, int ndevice_compats, 2623 const struct device_compatible_entry *driver_compats, 2624 const struct device_compatible_entry **matching_entryp, 2625 int (*match_fn)(const char **, unsigned int, const char *)) 2626 { 2627 const struct device_compatible_entry *dce = NULL; 2628 int rv; 2629 2630 if (ndevice_compats == 0 || device_compats == NULL || 2631 driver_compats == NULL) 2632 return 0; 2633 2634 for (dce = driver_compats; dce->compat != NULL; dce++) { 2635 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat); 2636 if (rv != 0) { 2637 if (matching_entryp != NULL) { 2638 *matching_entryp = dce; 2639 } 2640 return rv; 2641 } 2642 } 2643 return 0; 2644 } 2645 2646 /* 2647 * device_compatible_match: 2648 * 2649 * Match a driver's "compatible" data against a device's 2650 * "compatible" strings. Returns resulted weighted by 2651 * which device "compatible" string was matched. 2652 */ 2653 int 2654 device_compatible_match(const char **device_compats, int ndevice_compats, 2655 const struct device_compatible_entry *driver_compats) 2656 { 2657 return device_compatible_match_strarray_internal(device_compats, 2658 ndevice_compats, driver_compats, NULL, strarray_match); 2659 } 2660 2661 /* 2662 * device_compatible_pmatch: 2663 * 2664 * Like device_compatible_match(), but uses pmatch(9) to compare 2665 * the device "compatible" strings against patterns in the 2666 * driver's "compatible" data. 2667 */ 2668 int 2669 device_compatible_pmatch(const char **device_compats, int ndevice_compats, 2670 const struct device_compatible_entry *driver_compats) 2671 { 2672 return device_compatible_match_strarray_internal(device_compats, 2673 ndevice_compats, driver_compats, NULL, strarray_pmatch); 2674 } 2675 2676 static int 2677 device_compatible_match_strlist_internal( 2678 const char * const device_compats, size_t const device_compatsize, 2679 const struct device_compatible_entry *driver_compats, 2680 const struct device_compatible_entry **matching_entryp, 2681 int (*match_fn)(const char *, size_t, const char *)) 2682 { 2683 const struct device_compatible_entry *dce = NULL; 2684 int rv; 2685 2686 if (device_compats == NULL || device_compatsize == 0 || 2687 driver_compats == NULL) 2688 return 0; 2689 2690 for (dce = driver_compats; dce->compat != NULL; dce++) { 2691 rv = (*match_fn)(device_compats, device_compatsize, 2692 dce->compat); 2693 if (rv != 0) { 2694 if (matching_entryp != NULL) { 2695 *matching_entryp = dce; 2696 } 2697 return rv; 2698 } 2699 } 2700 return 0; 2701 } 2702 2703 /* 2704 * device_compatible_match_strlist: 2705 * 2706 * Like device_compatible_match(), but take the device 2707 * "compatible" strings as an OpenFirmware-style string 2708 * list. 2709 */ 2710 int 2711 device_compatible_match_strlist( 2712 const char * const device_compats, size_t const device_compatsize, 2713 const struct device_compatible_entry *driver_compats) 2714 { 2715 return device_compatible_match_strlist_internal(device_compats, 2716 device_compatsize, driver_compats, NULL, strlist_match); 2717 } 2718 2719 /* 2720 * device_compatible_pmatch_strlist: 2721 * 2722 * Like device_compatible_pmatch(), but take the device 2723 * "compatible" strings as an OpenFirmware-style string 2724 * list. 2725 */ 2726 int 2727 device_compatible_pmatch_strlist( 2728 const char * const device_compats, size_t const device_compatsize, 2729 const struct device_compatible_entry *driver_compats) 2730 { 2731 return device_compatible_match_strlist_internal(device_compats, 2732 device_compatsize, driver_compats, NULL, strlist_pmatch); 2733 } 2734 2735 static int 2736 device_compatible_match_id_internal( 2737 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id, 2738 const struct device_compatible_entry *driver_compats, 2739 const struct device_compatible_entry **matching_entryp) 2740 { 2741 const struct device_compatible_entry *dce = NULL; 2742 2743 if (mask == 0) 2744 return 0; 2745 2746 for (dce = driver_compats; dce->id != sentinel_id; dce++) { 2747 if ((id & mask) == dce->id) { 2748 if (matching_entryp != NULL) { 2749 *matching_entryp = dce; 2750 } 2751 return 1; 2752 } 2753 } 2754 return 0; 2755 } 2756 2757 /* 2758 * device_compatible_match_id: 2759 * 2760 * Like device_compatible_match(), but takes a single 2761 * unsigned integer device ID. 2762 */ 2763 int 2764 device_compatible_match_id( 2765 uintptr_t const id, uintptr_t const sentinel_id, 2766 const struct device_compatible_entry *driver_compats) 2767 { 2768 return device_compatible_match_id_internal(id, (uintptr_t)-1, 2769 sentinel_id, driver_compats, NULL); 2770 } 2771 2772 /* 2773 * device_compatible_lookup: 2774 * 2775 * Look up and return the device_compatible_entry, using the 2776 * same matching criteria used by device_compatible_match(). 2777 */ 2778 const struct device_compatible_entry * 2779 device_compatible_lookup(const char **device_compats, int ndevice_compats, 2780 const struct device_compatible_entry *driver_compats) 2781 { 2782 const struct device_compatible_entry *dce; 2783 2784 if (device_compatible_match_strarray_internal(device_compats, 2785 ndevice_compats, driver_compats, &dce, strarray_match)) { 2786 return dce; 2787 } 2788 return NULL; 2789 } 2790 2791 /* 2792 * device_compatible_plookup: 2793 * 2794 * Look up and return the device_compatible_entry, using the 2795 * same matching criteria used by device_compatible_pmatch(). 2796 */ 2797 const struct device_compatible_entry * 2798 device_compatible_plookup(const char **device_compats, int ndevice_compats, 2799 const struct device_compatible_entry *driver_compats) 2800 { 2801 const struct device_compatible_entry *dce; 2802 2803 if (device_compatible_match_strarray_internal(device_compats, 2804 ndevice_compats, driver_compats, &dce, strarray_pmatch)) { 2805 return dce; 2806 } 2807 return NULL; 2808 } 2809 2810 /* 2811 * device_compatible_lookup_strlist: 2812 * 2813 * Like device_compatible_lookup(), but take the device 2814 * "compatible" strings as an OpenFirmware-style string 2815 * list. 2816 */ 2817 const struct device_compatible_entry * 2818 device_compatible_lookup_strlist( 2819 const char * const device_compats, size_t const device_compatsize, 2820 const struct device_compatible_entry *driver_compats) 2821 { 2822 const struct device_compatible_entry *dce; 2823 2824 if (device_compatible_match_strlist_internal(device_compats, 2825 device_compatsize, driver_compats, &dce, strlist_match)) { 2826 return dce; 2827 } 2828 return NULL; 2829 } 2830 2831 /* 2832 * device_compatible_plookup_strlist: 2833 * 2834 * Like device_compatible_plookup(), but take the device 2835 * "compatible" strings as an OpenFirmware-style string 2836 * list. 2837 */ 2838 const struct device_compatible_entry * 2839 device_compatible_plookup_strlist( 2840 const char * const device_compats, size_t const device_compatsize, 2841 const struct device_compatible_entry *driver_compats) 2842 { 2843 const struct device_compatible_entry *dce; 2844 2845 if (device_compatible_match_strlist_internal(device_compats, 2846 device_compatsize, driver_compats, &dce, strlist_pmatch)) { 2847 return dce; 2848 } 2849 return NULL; 2850 } 2851 2852 /* 2853 * device_compatible_lookup_id: 2854 * 2855 * Like device_compatible_lookup(), but takes a single 2856 * unsigned integer device ID. 2857 */ 2858 const struct device_compatible_entry * 2859 device_compatible_lookup_id( 2860 uintptr_t const id, uintptr_t const sentinel_id, 2861 const struct device_compatible_entry *driver_compats) 2862 { 2863 const struct device_compatible_entry *dce; 2864 2865 if (device_compatible_match_id_internal(id, (uintptr_t)-1, 2866 sentinel_id, driver_compats, &dce)) { 2867 return dce; 2868 } 2869 return NULL; 2870 } 2871 2872 /* 2873 * Power management related functions. 2874 */ 2875 2876 bool 2877 device_pmf_is_registered(device_t dev) 2878 { 2879 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2880 } 2881 2882 bool 2883 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2884 { 2885 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2886 return true; 2887 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2888 return false; 2889 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2890 dev->dv_driver_suspend != NULL && 2891 !(*dev->dv_driver_suspend)(dev, qual)) 2892 return false; 2893 2894 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2895 return true; 2896 } 2897 2898 bool 2899 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2900 { 2901 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2902 return true; 2903 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2904 return false; 2905 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2906 dev->dv_driver_resume != NULL && 2907 !(*dev->dv_driver_resume)(dev, qual)) 2908 return false; 2909 2910 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2911 return true; 2912 } 2913 2914 bool 2915 device_pmf_driver_shutdown(device_t dev, int how) 2916 { 2917 2918 if (*dev->dv_driver_shutdown != NULL && 2919 !(*dev->dv_driver_shutdown)(dev, how)) 2920 return false; 2921 return true; 2922 } 2923 2924 bool 2925 device_pmf_driver_register(device_t dev, 2926 bool (*suspend)(device_t, const pmf_qual_t *), 2927 bool (*resume)(device_t, const pmf_qual_t *), 2928 bool (*shutdown)(device_t, int)) 2929 { 2930 dev->dv_driver_suspend = suspend; 2931 dev->dv_driver_resume = resume; 2932 dev->dv_driver_shutdown = shutdown; 2933 dev->dv_flags |= DVF_POWER_HANDLERS; 2934 return true; 2935 } 2936 2937 static const char * 2938 curlwp_name(void) 2939 { 2940 if (curlwp->l_name != NULL) 2941 return curlwp->l_name; 2942 else 2943 return curlwp->l_proc->p_comm; 2944 } 2945 2946 void 2947 device_pmf_driver_deregister(device_t dev) 2948 { 2949 device_lock_t dvl = device_getlock(dev); 2950 2951 dev->dv_driver_suspend = NULL; 2952 dev->dv_driver_resume = NULL; 2953 2954 mutex_enter(&dvl->dvl_mtx); 2955 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2956 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2957 /* Wake a thread that waits for the lock. That 2958 * thread will fail to acquire the lock, and then 2959 * it will wake the next thread that waits for the 2960 * lock, or else it will wake us. 2961 */ 2962 cv_signal(&dvl->dvl_cv); 2963 pmflock_debug(dev, __func__, __LINE__); 2964 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2965 pmflock_debug(dev, __func__, __LINE__); 2966 } 2967 mutex_exit(&dvl->dvl_mtx); 2968 } 2969 2970 bool 2971 device_pmf_driver_child_register(device_t dev) 2972 { 2973 device_t parent = device_parent(dev); 2974 2975 if (parent == NULL || parent->dv_driver_child_register == NULL) 2976 return true; 2977 return (*parent->dv_driver_child_register)(dev); 2978 } 2979 2980 void 2981 device_pmf_driver_set_child_register(device_t dev, 2982 bool (*child_register)(device_t)) 2983 { 2984 dev->dv_driver_child_register = child_register; 2985 } 2986 2987 static void 2988 pmflock_debug(device_t dev, const char *func, int line) 2989 { 2990 device_lock_t dvl = device_getlock(dev); 2991 2992 aprint_debug_dev(dev, 2993 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 2994 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 2995 } 2996 2997 static bool 2998 device_pmf_lock1(device_t dev) 2999 { 3000 device_lock_t dvl = device_getlock(dev); 3001 3002 while (device_pmf_is_registered(dev) && 3003 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 3004 dvl->dvl_nwait++; 3005 pmflock_debug(dev, __func__, __LINE__); 3006 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3007 pmflock_debug(dev, __func__, __LINE__); 3008 dvl->dvl_nwait--; 3009 } 3010 if (!device_pmf_is_registered(dev)) { 3011 pmflock_debug(dev, __func__, __LINE__); 3012 /* We could not acquire the lock, but some other thread may 3013 * wait for it, also. Wake that thread. 3014 */ 3015 cv_signal(&dvl->dvl_cv); 3016 return false; 3017 } 3018 dvl->dvl_nlock++; 3019 dvl->dvl_holder = curlwp; 3020 pmflock_debug(dev, __func__, __LINE__); 3021 return true; 3022 } 3023 3024 bool 3025 device_pmf_lock(device_t dev) 3026 { 3027 bool rc; 3028 device_lock_t dvl = device_getlock(dev); 3029 3030 mutex_enter(&dvl->dvl_mtx); 3031 rc = device_pmf_lock1(dev); 3032 mutex_exit(&dvl->dvl_mtx); 3033 3034 return rc; 3035 } 3036 3037 void 3038 device_pmf_unlock(device_t dev) 3039 { 3040 device_lock_t dvl = device_getlock(dev); 3041 3042 KASSERT(dvl->dvl_nlock > 0); 3043 mutex_enter(&dvl->dvl_mtx); 3044 if (--dvl->dvl_nlock == 0) 3045 dvl->dvl_holder = NULL; 3046 cv_signal(&dvl->dvl_cv); 3047 pmflock_debug(dev, __func__, __LINE__); 3048 mutex_exit(&dvl->dvl_mtx); 3049 } 3050 3051 device_lock_t 3052 device_getlock(device_t dev) 3053 { 3054 return &dev->dv_lock; 3055 } 3056 3057 void * 3058 device_pmf_bus_private(device_t dev) 3059 { 3060 return dev->dv_bus_private; 3061 } 3062 3063 bool 3064 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 3065 { 3066 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3067 return true; 3068 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 3069 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3070 return false; 3071 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3072 dev->dv_bus_suspend != NULL && 3073 !(*dev->dv_bus_suspend)(dev, qual)) 3074 return false; 3075 3076 dev->dv_flags |= DVF_BUS_SUSPENDED; 3077 return true; 3078 } 3079 3080 bool 3081 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 3082 { 3083 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 3084 return true; 3085 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3086 dev->dv_bus_resume != NULL && 3087 !(*dev->dv_bus_resume)(dev, qual)) 3088 return false; 3089 3090 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 3091 return true; 3092 } 3093 3094 bool 3095 device_pmf_bus_shutdown(device_t dev, int how) 3096 { 3097 3098 if (*dev->dv_bus_shutdown != NULL && 3099 !(*dev->dv_bus_shutdown)(dev, how)) 3100 return false; 3101 return true; 3102 } 3103 3104 void 3105 device_pmf_bus_register(device_t dev, void *priv, 3106 bool (*suspend)(device_t, const pmf_qual_t *), 3107 bool (*resume)(device_t, const pmf_qual_t *), 3108 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 3109 { 3110 dev->dv_bus_private = priv; 3111 dev->dv_bus_resume = resume; 3112 dev->dv_bus_suspend = suspend; 3113 dev->dv_bus_shutdown = shutdown; 3114 dev->dv_bus_deregister = deregister; 3115 } 3116 3117 void 3118 device_pmf_bus_deregister(device_t dev) 3119 { 3120 if (dev->dv_bus_deregister == NULL) 3121 return; 3122 (*dev->dv_bus_deregister)(dev); 3123 dev->dv_bus_private = NULL; 3124 dev->dv_bus_suspend = NULL; 3125 dev->dv_bus_resume = NULL; 3126 dev->dv_bus_deregister = NULL; 3127 } 3128 3129 void * 3130 device_pmf_class_private(device_t dev) 3131 { 3132 return dev->dv_class_private; 3133 } 3134 3135 bool 3136 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 3137 { 3138 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 3139 return true; 3140 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3141 dev->dv_class_suspend != NULL && 3142 !(*dev->dv_class_suspend)(dev, qual)) 3143 return false; 3144 3145 dev->dv_flags |= DVF_CLASS_SUSPENDED; 3146 return true; 3147 } 3148 3149 bool 3150 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 3151 { 3152 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3153 return true; 3154 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 3155 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3156 return false; 3157 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3158 dev->dv_class_resume != NULL && 3159 !(*dev->dv_class_resume)(dev, qual)) 3160 return false; 3161 3162 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 3163 return true; 3164 } 3165 3166 void 3167 device_pmf_class_register(device_t dev, void *priv, 3168 bool (*suspend)(device_t, const pmf_qual_t *), 3169 bool (*resume)(device_t, const pmf_qual_t *), 3170 void (*deregister)(device_t)) 3171 { 3172 dev->dv_class_private = priv; 3173 dev->dv_class_suspend = suspend; 3174 dev->dv_class_resume = resume; 3175 dev->dv_class_deregister = deregister; 3176 } 3177 3178 void 3179 device_pmf_class_deregister(device_t dev) 3180 { 3181 if (dev->dv_class_deregister == NULL) 3182 return; 3183 (*dev->dv_class_deregister)(dev); 3184 dev->dv_class_private = NULL; 3185 dev->dv_class_suspend = NULL; 3186 dev->dv_class_resume = NULL; 3187 dev->dv_class_deregister = NULL; 3188 } 3189 3190 bool 3191 device_active(device_t dev, devactive_t type) 3192 { 3193 size_t i; 3194 3195 if (dev->dv_activity_count == 0) 3196 return false; 3197 3198 for (i = 0; i < dev->dv_activity_count; ++i) { 3199 if (dev->dv_activity_handlers[i] == NULL) 3200 break; 3201 (*dev->dv_activity_handlers[i])(dev, type); 3202 } 3203 3204 return true; 3205 } 3206 3207 bool 3208 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 3209 { 3210 void (**new_handlers)(device_t, devactive_t); 3211 void (**old_handlers)(device_t, devactive_t); 3212 size_t i, old_size, new_size; 3213 int s; 3214 3215 old_handlers = dev->dv_activity_handlers; 3216 old_size = dev->dv_activity_count; 3217 3218 KASSERT(old_size == 0 || old_handlers != NULL); 3219 3220 for (i = 0; i < old_size; ++i) { 3221 KASSERT(old_handlers[i] != handler); 3222 if (old_handlers[i] == NULL) { 3223 old_handlers[i] = handler; 3224 return true; 3225 } 3226 } 3227 3228 new_size = old_size + 4; 3229 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP); 3230 3231 for (i = 0; i < old_size; ++i) 3232 new_handlers[i] = old_handlers[i]; 3233 new_handlers[old_size] = handler; 3234 for (i = old_size+1; i < new_size; ++i) 3235 new_handlers[i] = NULL; 3236 3237 s = splhigh(); 3238 dev->dv_activity_count = new_size; 3239 dev->dv_activity_handlers = new_handlers; 3240 splx(s); 3241 3242 if (old_size > 0) 3243 kmem_free(old_handlers, sizeof(void *) * old_size); 3244 3245 return true; 3246 } 3247 3248 void 3249 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 3250 { 3251 void (**old_handlers)(device_t, devactive_t); 3252 size_t i, old_size; 3253 int s; 3254 3255 old_handlers = dev->dv_activity_handlers; 3256 old_size = dev->dv_activity_count; 3257 3258 for (i = 0; i < old_size; ++i) { 3259 if (old_handlers[i] == handler) 3260 break; 3261 if (old_handlers[i] == NULL) 3262 return; /* XXX panic? */ 3263 } 3264 3265 if (i == old_size) 3266 return; /* XXX panic? */ 3267 3268 for (; i < old_size - 1; ++i) { 3269 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 3270 continue; 3271 3272 if (i == 0) { 3273 s = splhigh(); 3274 dev->dv_activity_count = 0; 3275 dev->dv_activity_handlers = NULL; 3276 splx(s); 3277 kmem_free(old_handlers, sizeof(void *) * old_size); 3278 } 3279 return; 3280 } 3281 old_handlers[i] = NULL; 3282 } 3283 3284 /* Return true iff the device_t `dev' exists at generation `gen'. */ 3285 static bool 3286 device_exists_at(device_t dv, devgen_t gen) 3287 { 3288 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 3289 dv->dv_add_gen <= gen; 3290 } 3291 3292 static bool 3293 deviter_visits(const deviter_t *di, device_t dv) 3294 { 3295 return device_exists_at(dv, di->di_gen); 3296 } 3297 3298 /* 3299 * Device Iteration 3300 * 3301 * deviter_t: a device iterator. Holds state for a "walk" visiting 3302 * each device_t's in the device tree. 3303 * 3304 * deviter_init(di, flags): initialize the device iterator `di' 3305 * to "walk" the device tree. deviter_next(di) will return 3306 * the first device_t in the device tree, or NULL if there are 3307 * no devices. 3308 * 3309 * `flags' is one or more of DEVITER_F_RW, indicating that the 3310 * caller intends to modify the device tree by calling 3311 * config_detach(9) on devices in the order that the iterator 3312 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 3313 * nearest the "root" of the device tree to be returned, first; 3314 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 3315 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 3316 * indicating both that deviter_init() should not respect any 3317 * locks on the device tree, and that deviter_next(di) may run 3318 * in more than one LWP before the walk has finished. 3319 * 3320 * Only one DEVITER_F_RW iterator may be in the device tree at 3321 * once. 3322 * 3323 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 3324 * 3325 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 3326 * DEVITER_F_LEAVES_FIRST are used in combination. 3327 * 3328 * deviter_first(di, flags): initialize the device iterator `di' 3329 * and return the first device_t in the device tree, or NULL 3330 * if there are no devices. The statement 3331 * 3332 * dv = deviter_first(di); 3333 * 3334 * is shorthand for 3335 * 3336 * deviter_init(di); 3337 * dv = deviter_next(di); 3338 * 3339 * deviter_next(di): return the next device_t in the device tree, 3340 * or NULL if there are no more devices. deviter_next(di) 3341 * is undefined if `di' was not initialized with deviter_init() or 3342 * deviter_first(). 3343 * 3344 * deviter_release(di): stops iteration (subsequent calls to 3345 * deviter_next() will return NULL), releases any locks and 3346 * resources held by the device iterator. 3347 * 3348 * Device iteration does not return device_t's in any particular 3349 * order. An iterator will never return the same device_t twice. 3350 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 3351 * is called repeatedly on the same `di', it will eventually return 3352 * NULL. It is ok to attach/detach devices during device iteration. 3353 */ 3354 void 3355 deviter_init(deviter_t *di, deviter_flags_t flags) 3356 { 3357 device_t dv; 3358 3359 memset(di, 0, sizeof(*di)); 3360 3361 if ((flags & DEVITER_F_SHUTDOWN) != 0) 3362 flags |= DEVITER_F_RW; 3363 3364 mutex_enter(&alldevs_lock); 3365 if ((flags & DEVITER_F_RW) != 0) 3366 alldevs_nwrite++; 3367 else 3368 alldevs_nread++; 3369 di->di_gen = alldevs_gen++; 3370 di->di_flags = flags; 3371 3372 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3373 case DEVITER_F_LEAVES_FIRST: 3374 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3375 if (!deviter_visits(di, dv)) 3376 continue; 3377 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 3378 } 3379 break; 3380 case DEVITER_F_ROOT_FIRST: 3381 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3382 if (!deviter_visits(di, dv)) 3383 continue; 3384 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 3385 } 3386 break; 3387 default: 3388 break; 3389 } 3390 3391 deviter_reinit(di); 3392 mutex_exit(&alldevs_lock); 3393 } 3394 3395 static void 3396 deviter_reinit(deviter_t *di) 3397 { 3398 3399 KASSERT(mutex_owned(&alldevs_lock)); 3400 if ((di->di_flags & DEVITER_F_RW) != 0) 3401 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 3402 else 3403 di->di_prev = TAILQ_FIRST(&alldevs); 3404 } 3405 3406 device_t 3407 deviter_first(deviter_t *di, deviter_flags_t flags) 3408 { 3409 3410 deviter_init(di, flags); 3411 return deviter_next(di); 3412 } 3413 3414 static device_t 3415 deviter_next2(deviter_t *di) 3416 { 3417 device_t dv; 3418 3419 KASSERT(mutex_owned(&alldevs_lock)); 3420 3421 dv = di->di_prev; 3422 3423 if (dv == NULL) 3424 return NULL; 3425 3426 if ((di->di_flags & DEVITER_F_RW) != 0) 3427 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 3428 else 3429 di->di_prev = TAILQ_NEXT(dv, dv_list); 3430 3431 return dv; 3432 } 3433 3434 static device_t 3435 deviter_next1(deviter_t *di) 3436 { 3437 device_t dv; 3438 3439 KASSERT(mutex_owned(&alldevs_lock)); 3440 3441 do { 3442 dv = deviter_next2(di); 3443 } while (dv != NULL && !deviter_visits(di, dv)); 3444 3445 return dv; 3446 } 3447 3448 device_t 3449 deviter_next(deviter_t *di) 3450 { 3451 device_t dv = NULL; 3452 3453 mutex_enter(&alldevs_lock); 3454 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3455 case 0: 3456 dv = deviter_next1(di); 3457 break; 3458 case DEVITER_F_LEAVES_FIRST: 3459 while (di->di_curdepth >= 0) { 3460 if ((dv = deviter_next1(di)) == NULL) { 3461 di->di_curdepth--; 3462 deviter_reinit(di); 3463 } else if (dv->dv_depth == di->di_curdepth) 3464 break; 3465 } 3466 break; 3467 case DEVITER_F_ROOT_FIRST: 3468 while (di->di_curdepth <= di->di_maxdepth) { 3469 if ((dv = deviter_next1(di)) == NULL) { 3470 di->di_curdepth++; 3471 deviter_reinit(di); 3472 } else if (dv->dv_depth == di->di_curdepth) 3473 break; 3474 } 3475 break; 3476 default: 3477 break; 3478 } 3479 mutex_exit(&alldevs_lock); 3480 3481 return dv; 3482 } 3483 3484 void 3485 deviter_release(deviter_t *di) 3486 { 3487 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 3488 3489 mutex_enter(&alldevs_lock); 3490 if (rw) 3491 --alldevs_nwrite; 3492 else 3493 --alldevs_nread; 3494 /* XXX wake a garbage-collection thread */ 3495 mutex_exit(&alldevs_lock); 3496 } 3497 3498 const char * 3499 cfdata_ifattr(const struct cfdata *cf) 3500 { 3501 return cf->cf_pspec->cfp_iattr; 3502 } 3503 3504 bool 3505 ifattr_match(const char *snull, const char *t) 3506 { 3507 return (snull == NULL) || strcmp(snull, t) == 0; 3508 } 3509 3510 void 3511 null_childdetached(device_t self, device_t child) 3512 { 3513 /* do nothing */ 3514 } 3515 3516 static void 3517 sysctl_detach_setup(struct sysctllog **clog) 3518 { 3519 3520 sysctl_createv(clog, 0, NULL, NULL, 3521 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3522 CTLTYPE_BOOL, "detachall", 3523 SYSCTL_DESCR("Detach all devices at shutdown"), 3524 NULL, 0, &detachall, 0, 3525 CTL_KERN, CTL_CREATE, CTL_EOL); 3526 } 3527